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ABSTRACT 
 

INVESTIGATION OF tRNA DERIVED SMALL RNAs  
IN Drosophila melanogaster 

 
 Types of small RNAs considered as crucial players of regulation of gene 

expression increase gradually in number. Improvements in cloning and sequencing 

strategies and technologies resulted in identification of tRNA derived small RNAs which 

are highly expressed in the cell just like other small RNAs such as microRNAs, endo-

siRNA, and Piwi interacting RNAs.  

Depending on stress and changing physiological conditions, tRFs are originated 

from different positions, in different frequency and different tRNAs.  However, their 

functions and the complexes they interact with remain largely unknown.  

In this thesis study, one of the aims is to characterize tRNA derived small RNAs 

expressed during embryonic development in Drosophila melanogaster  by in-vitro and in-

vivo experiments. This study also aimed to demonstrate the differences between embryonic 

tRFs and stress induced tRNA derived small RNAs. Lastly, it was aimed to obtain some 

clues about their biogenesis, mechanism and functions.  

 It was shown that the tRFs expressed in 1-hour and 8-h Drosophila embryos are 

different from stress induced tRNA derived small RNAs in terms of both position and 

length. The other important result is that embryonic tRFs are associated with complexes in 

mRNP and 60S fractions and they are expressed temporally and selectively during 

Drosophila embryogenesis.  
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ÖZET 
 

Drosophila melanogaster’ DE tRNA KAYNAKLI KÜÇÜK RNA’LARIN 
ARAŞTIRILMASI 

 

 Gen ifadesinin düzenlenmesinde hayati oyuncular olarak düşünülen küçük 

RNA çeşitleri giderek sayıca artmaktadır. Klonlama ve sekanslama strateji ve 

teknolojilerindeki gelişmeler, mikro RNA, endojen küçük susturucu RNA ve Piwi 

etkileşimli RNA’lar gibi diğer küçük RNA’lara benzer olarak hücre içinde yüksek oranda 

ifade edilen tRNA kaynaklı küçük RNA’ların tanımlanması ile sonuçlanmıştır. 

Stres ve değişen fizyolojik şartlara bağlı olarak, tRF’lerin farklı tRNA lardan farklı 

pozisyonlarda farklı sıklıkta orjinlendikleri deneysel olarak gösterilmiştir. Buna rağmen 

fonksiyonları ve etkileştikleri kompleksler büyük oranda bilinmemektedir.  

Bu tez çalışmasında hedeflerden biri, Drosophila melanogaster’ de embriyonik 

gelişim sırasında ifade edilen tRNA kaynaklı küçük RNA’ların in-vitro ve in-vivo  

deneylerle karakterize edilmesidir. Ayrıca bu çalışmada, embryonic tRF’ler ile stres 

şartlarında üretilen tRNA kaynaklı küçük RNA’lar arasındaki farklılığın ortaya konması 

hedeflenmiştir. Son olarak, tRF’lerin biyogenezlerine, mekanizmalarına ve fonksiyonlarına 

ilişkin ipuçlarının elde edilmesi amaçlanmıştır.  

Sonuç olarak 1 ve 8 saatlik embryolarda ifade edilen tRNA kaynaklı küçük 

RNA’ların  stres koşullarında üretilen küçük RNA’lardan pozisyon ve uzunluk bakımından 

farklı oldukları ortaya çıkarılmıştır. Diğer önemli sonuç ise tRNA kaynaklı küçük 

RNA’ların oluşturdukları komplekslerin translasyonun mRNP ve 60S fraksiyonlarında 

yoğunlaştıkları ve Drosophila embriyonik gelişiminde geçici ve seçici olarak ifade 

edildikleridir.    
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Small RNAs 

 

  In the human genome, 20,500 protein-coding genes have been identified by 

International Human Genome Sequencing Consortium in 2004 but there are more than 2 

million functional proteins regulating a great number of functions in the whole body 

(Clamp, et al. 2007). This situation raised some questions about the real definition of a 

eukaryotic gene and the total number of genes. These intriguing issues could be explained 

by the presence of alternative splicing and many of non-coding small RNAs in eukaryotic 

transcriptomes. Both the genome and the transcriptome are kept under extensive 

surveillance by small-coding RNAs. The functions of small RNAs range from 

heterochromatin formation to mRNA destabilization and translational control (Filipowicz, 

et al. 2008). Because they have ability to impact genome and transcriptome extensively, 

they are involved in a great deal of biological processes including cell differentiation, 

apoptosis, cell proliferation, developmental timing, metabolic control, transposon 

silencing, anti-viral defense and so on. 

Recent progress in high throughput sequencing has revealed the astounding scopes 

regarding small RNAs. Small RNAs are classified into three groups based on their 

biogenesis mechanism and the type of the Argonaute protein that they are associated with 

(Lu, et al. 2005; Margulies, et al. 2005). These small RNAs are microRNAs, endogenous 

small interfering RNAs (endo-siRNAs) and Piwi interacting RNAs (piRNAs). But recently, 

the newest small RNA group is falling under the small RNA family as tRNA derived small 

RNAs having common and different characteristics with the other small RNAs in terms of 

biogenesis, mechanisms and function revealed recently (Lee, et al. 2011). 
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1.2. MicroRNAs 

 

miRNAs are single stranded RNAs (ssRNAs) about 22 nt in length which are 

generated from endogeneous hairpin-shaped transcripts mediated by RNA polymerase II in 

general. The primary transcripts (pri-miRNAs) are usually several kilobases long and 

contain local stem loop structures (Lee, et al. 2002). In nucleus these primary transcripts 

are processed by the nuclear RNase III type protein Drosha to produce precursor miRNAs 

(pre-miRNAs) (Lee, et al. 2003). Drosha requires a cofactor called DiGeorge Syndrome 

Critical Region Gene 8 (DGRC8) in humans and Pasha in D. melanogaster. The 

association of Drosha and Pasha or DGRC8 is named microprocessor complex which is 

500 kDa in Drosophila melanogaster   and 650 kDa in humans (Han, et al. 2004; Denli, et 

al. 2004; Gregory, et al. 2004; Wang, et al. 2007). Following nuclear processing, pre-

miRNAs are transported to cytoplasm mediated by exportin 5 (EXP5) which is a member 

of the nuclear transport receptor family (Lund, et al. 2004; Yi, et al. 2005; Bohnsack, et al. 

2004). The next step is that pre-miRNAs are cleaved by Dicer, which is a higly conserved 

protein in almost all eukaryotic organisms, releasing about 22 nt miRNA dublexes. After 

then Dicer cleavage, the RNA dublex is loaded onto an Ago protein so as to generate 

effector complex, RISC. One strand of this RNA dublex is selected in terms of 

thermodynamic stabilities of strands and the selected strand called as mature miRNA 

remains in RISC complex while the other strand is degraded in the cytoplasm (Figure 1.1).  

After incorporation into RISC complex, miRNAs direct the RNAi machinery to 

their target mRNAs by the formation of imperfect hybrids with 3' UTR sequences of target 

mRNA. By the means of this imperfect match, squence specific repression of productive 

translation or mRNA decay comes about (Ambros, et al. 2004; Bartel, et al. 2004; Zamore 

and Haley, 2005). At first, general consideration about miRNA- mediated repression 

mechanism is merely inhibition of target mRNA translation (Olsen and Ambros, 1999; 

Seggerson, et al. 2002). Subsequently, studies have indicated that miRNAs can also induce 

rapid decay of target mRNAs (Bagga, et al. 2005; Lim, et al. 2005; Behm-Ansmant, et al. 

2006; Giraldez, et al. 2006; Wu, et al. 2006; Eulalio et al. 2007). A recent report about this 

issue shows that destabilization of target mRNAs is the predominant reason for reduced 

protein output (Guo, et al. 2010). Thus, there are at least two general modes of miRNA-

mediated downregulation of targets in metazoan cells: miRNA-mediated translational 

repression and miRNA-mediated RNA decay. miRNA-mediated translational repression 
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includes inhibition of initiation of translation resulting in prevention of ribosome 

association with target mRNA and inhibition of translation post-initiation resulting in 

premature ribosome drop off, slowed or stalled elongation and co-tranlational protein 

degredation (Notrott, et al. 2006; Petersen, et al. 2006; Humphreys, et al. 2005). Run-off 

of ribosomes results in aggregation of the repressed ribosome-free mRNA into P-bodies for 

either storage or degradation (Bhattacharyya, et al. 2006; Pillai, et al. 2005; Liu, et al. 

2005). miRNA-mediated RNA decay includes de-adenylation and de-capping of target 

mRNAs bringing about destabilization of target mRNAs (Behm-Ansmant, et al. 2006; 

Giraldez, et al. 2006; Wu, et al. 2006.). 

 

 

 

Figure 1.1. Biogenesis of small RNAs 

(Source: Suh and Bleloch, 2011) 

 

 

 

 

 

 

 

 



                          

                                                                                                                                                                                                             

4 

1.3. Small Interfering RNAs 

 

 The second small RNAs group is small interfering RNAs which are 21 bp in length 

and have perfect match with their targets. They can be classified into two groups  as 

endogenous small interfering RNAs and exogenous interfering RNAs based on their origin.  

 Exo-siRNAs are derived from experimentally introduced dsRNAs or viral RNAs by 

cellular transfections, microinjections, feeding, or from genetic material of invading 

viruses and can be processed from these precursor RNAs (Fire, et al. 1998; Timons and 

Fire, 1998; Elbashir, et al. 2001; Wilkins, et al. 2005).  

Endogenous small interfering RNAs are originated from transposon transcripts, 

sense- antisense transcripts pair and long stem-loop structures (Figure 1.1), (Okamura, et 

al. 2008; Kawamura, et al. 2008). The processing of endo-siRNAs is dependent on Dicer 2 

rather than Dicer 1(Ruby, et al. 2006.) Also, endo-siRNAs are derived form long stem- 

loop based on Laquacious (LOQS) which functions in miRNA biogenesis (Forstemann, et 

al. 2005 and Saito, et al. 2005). esiRNAs are loaded onto AGO1-4 in order to acquire the 

ability of transcriptional repression, translational block, or mRNA cleavage. 21 nt in length 

endo-siRNAs binds their target with perfect base pairing. Therefore, they induce clearly 

degredation of their target mRNAs (Czech, et al. 2008).    

 

1.4. Piwi-interacting RNAs 

 

Piwi-interacting RNAs responsible for transposon silencing and regulating during 

embryonic development are derived from intergenic repetitive elements, transposons or 

large piRNA clusters (Aravin, et al. 2001; Aravin, et al. 2003). They are processed form 

single-stranded RNA precursor and not dependent on either Drosha or Dicer. Processing 

based on nuclease activity is carried out by Piwi proteins (Cox, et al. 1998). piRNA 

biogenesis contains primary and secondary processing mechanisms (Figure 1.1).  Because 

Piwi proteins which are MIWI and MILI are localized in the cytoplasm, primary process 

and loading occur in there (Aravin, et al. 2006). Factors involving in primary process are 

not known yet. The secondary process is 5’ processing of precursor by MILI and MIWI2. 

The nuclease responsible for 3’ processing of piRNAs is also not known (Brennecke, et al. 

2007; Gunawardane, et al. 2007). 



                          

                                                                                                                                                                                                             

5 

1.5. tRNA-derived Small RNAs 

  

tRNAs are basic and fundamental component of translation machinery and until a 

decade, they were considered as quite stable RNA structures. Over the last decade, through 

improvement of techniques and instruments regarding cloning and sequencing, in various 

organisms, it has been noticed and revealed that tRNAs are the source of some fragments 

17-55 bp in length originating from different parts of tRNAs in the cell  (Thompson, et al. 

2008; Hsieh, et al. 2009; Cole, et al. 2009). 

In microbes, Streptomyces coelicolor, Aspergillus fumigatus, Giardia lamblia, 

Tetrahymena thermophila, Saccharomyces cerevisiae have 30–35, 36–39, 44–49, 33–42, 

and 35–50 nt in length respectively. tRNA derived small RNA originated from anticodon 

loops of tRNAs under starvation and oxidative stress (Haiser, et al. 2008; Jochl, et al. 

2008; Li, et al. 2008; Lee, et al. 2005; Thompson, et al. 2008; Thompson, et al. 2009). In 

Drosophila melanogaster, 16-26 nt in length tRNA derived fragments were identified 

without positions originated from in which parts of tRNAs during developmental process 

(Aravin, et al. 2003). In plants, Cucurbita maxima (pumpkin) has 31-68 nt in length tRNA 

derived small RNA originated from anticodon and D loop of tRNAs especially in phloem 

sap tissue (Zhang, et al. 2009). Studies in Arabidopsis thaliana have revealed that under 

oxidative stress conditions, 48-55 nt in lenght tRNA derived small RNAs are produced 

position in anticodon loop (Thompson, et al 2008).  Under phosphate starvation in 

Arabidopsis thaliana 30-40 nt in length small RNAs are produced from D and anticodon 

loop of tRNAs in root tissues (Hsieh, et al. 2009).  In human data, tRFs have been reported 

35-45 nt in length under oxidative stress, nutrition deficiency heat shock, hypothermia, 

hypoxia, UV irridation originated from anticodon. Also, in HeLa  and proliferating cancer 

cell line 17-26 nt in length derived from D and T loop and 3’ end of tRNA precursor tRFs 

have been identified (Thompson, et al. 2008; Fu, et al. 2009; Yamasaki, et al. 2009; Cole, 

et al. 2009; Lee, et al. 2009; Haussecker, et al. 2010).     

Up to now, findings about biogenesis of tRFs are based on two different patterns. 

One of them is the biogenesis of type I tRFs which require Dicer activity but not Drosha 

activity (Figure 1.2) (Cole, et al. 2009; Haussecker, et al. 2010). Second of them is type II 

tRFs for which biogenesis process is based on RNase Z nuclease family activity depending 

on RNA polymerase III termination for maturation of 5’ and 3’ ends respectively. (Figure 

1.2) (Haussecker, et al. 2010). Also Rny I and angiogenin are 2 nucleases responsible for 



                          

                                                                                                                                                                                                             

6 

the cleavage of tRNA molecules in yeast and mammalian cells respectively. (Thompson, et 

al. 2009 and Fu, et al. 2009.). In order to define which RNAi related proteins are 

associated with tRFs, it has been demonstrated because 3’ terminal ribose of tRNA derived 

fragments are modified, tRNA fragments are not efficiently incorporated into Ago 

complexes. (Cole, et al. 2009). But, in immunoprecipitation experiments, tRNA derived 

small RNAs have relative preference for Argonaute 3 and 4 association. (Haussecker, et al. 

2010). 

 

 

Figure 1.2. Model for tRFs Biogenesis: RNA polymerase III (Pol III) generates a precursor tRNA (1).  

           The 5′ leader and 3′ trailers are removed by RNaseP (2) and Z (3), respectively. The mature tRNA 

is then exported into the cytoplasm (4). There, Dicer recognizes some, potentially misfolded 

tRNAs to produce Type I tsRNAs (5). The small RNA produced by nuclear RNaseZ cleavage and 

Pol III termination is a Type II tsRNA. Based on the near-exclusive cytoplasmic localization of 

type II tsRNAs, it is possible that a cytoplasmic pool of RNaseZ is responsible for the processing 

into type II tsRNAs of immature tRNAs have evaded nuclear quality control (Source : Haussecker 

et al. 2010). 

 

The potential roles of newly discovered tRFs in gene regulation are largely unknown. 

First group of tRFs identified during stress conditions called stress induced tRNAs have 

several potential mechanisms by which cleaved or nicked tRNAs might inhibit mRNA 

function. For example, nicked tRNAs might activate a stress response or stall elongation 

by interacting with the translation machinery. tRNA fragments could interact either with an 

unknown general repression complex or with known complexes such as Argonaute or Piwi 
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to inhibit translation. tRNA fragments may also direct cleavage of specific mRNAs in 

conjunction with tRNA processing or Argonaute complexes (Figure 1.3). 

 

 

Figure 1.3. Stress induced tRNA cleavage and potential mechanisms 

(Source: Thompson and Parker, 2009) 

 

Due to the involment of Dicer in tRF biogenesis, it may be speculated that tRFs 

could compete with pre-miRNAs for Dicer. By this way, they affect the modulating of the 

miRNA homeostasis. (Cole, et al. 2009). Although there is no any direct link related with 

abundance of miRNAs and tRFs levels, tRFs were also proposed to modulate the silencing 

activities of microRNAs and siRNAs (Haussecker, et al., 2010).  

The most known tRFs in function is tRF-1001 which was shown to be essential for 

cell proliferation in human prostate cancer cell line (Figure 1.4). Biogenesis of tRF-1001, 

and most likely all short RNAs of the tRF-1 series, is catalyzed by ELAC2, which had 

been identified originally as a candidate prostate cancer susceptibility gene (Tavtigian, et 

al. 2001) and was revealed later as an endonuclease for 3’ trimming of pre-tRNA (Takaku, 

et al. 2003). tRF-1001 as well as its pre-tRNA was detected exclusively in the cytoplasm. It 

is believed that 5’ and 3’ trimming of pre-tRNA to produce the mature tRNA occurs in the 

nucleus. pre-tRNA transcripts from a given tRNA gene may have two fates: rapid cleavage 

in the nucleus for biogenesis of mature tRNA, or export to the cytoplasm for generation of 

tRF-1 series of short RNA. The pretRNA for tRF-1001 was not detected in the nucleus, 

possibly because processing to mature tRNA or export to the cytoplasm is too fast to detect 

a steady-state level of nuclear pre-tRNA. In contrast, the cytoplasmically exported pre-

tRNA that serves to generate tRF-1001 is more stable and can be detected easily. A 
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cytoplasmic location of the tRF-1001 precursor pre-tRNA is consistent with its 

susceptibility to siRNA, since the siRNA machinery is believed to poorly target nuclear 

RNAs. Interestingly, ELAC2, the enzyme that trims the pretRNA to generate tRF-1001, is 

localized predominantly in the cytoplasm (Korver, et al. 2003). 

 

 

Figure1.4. A model for biogenesis and regulation of tRF-1001 

 (Source : Lee, et al .2009) 

 

1.6. Aims of the Study 

 

 In this study, it was aimed to investigate tRNA-derived from small RNAs 

regulating gene expression at the level of translation in 1 hour and 8 hours Drosophila 

embryos. Also it was aimed to confirm Deep sequence results obtained from fractionated 

total RNA of 1 hour and 8 hours embryos tRFs by in-vitro and in-vivo experiments. Finally 

it was aimed to compare these tRFs and other tRNA derived fragments documented in 

literature.   
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CHAPTER 2 

 

MATERIAL AND METHODS 

 

2.1. Drosophila melanogaster Maintenance and Embryo Collection 

   

 Drosophila melanogaster lines were grown at 25ºC on yeast-sucrose-agar medium 

prepared as follows. 30 gram agar and 60 gram yeast were dissolved and boiled in 1,8 L 

dH2O and also in different cage, 110 gram corn meal and 96 gram sucrose were dissolved 

and mixed in 1,5 L dH2O. Then sucrose and corn meal mixture were added into boiling 

yeast-agar mixture. The total mixture was boiled for 20 minutes and after then cooling 25 

ml propionic acid (Merc) and 25 ml nipagyn were added to the mixture to prevent mold 

growing. Medium was changed every two weeks. When Drosophila population reached 

sufficient density, the whole population was transferred to a common and large cage. 

Embryo collection plates were prepared as follows. 22.5 g agar was boiled in 700 mL 

dH2O, 94 g sucrose was dissolved in 150mL dH2O and mixed with 330 mL fruit juice. 0-

1h embryos was collected by placing embryo collection plates in a large cage and waiting 

for an hour. 8 hour embryos were collected by incubating the plate in an incubator at 25ºC 

for 7 hours after the plate incubated for one hour in the large Drosophila case. Embryos 

were immediately washed with 0,7% NaCl and 0.1% Triton-X and then stored at -80 ºC 

until use. 

 

2.2. Drosophila Schneider 2 Embryonic Stem Cell Culture 

 

2.2.1. Drosophila Schneider 2 Embryonic Stem Cell Maintenance 

 

Drosophila Schneider 2 embryonic stem cells are maintained in Drosophila 

Schneider medium (Invitrogen) supplemented with L-Glutamine and 10% FBS and 

(GIBCO), 2% penicillin-streptomycin (Biochrom AG) at 25ºC without CO2. Passages of 

cells were performed twice a week.  
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2.2.2. RNA Transfection 

 

 5x10
6
 S2 cells were seeded in each well of a 6-well plate and incubated in complete 

medium containing 10% FBS and 2% penicillin-streptomycin 24 hours before transfection. 

Calcium-Phosphate Transfection Kit (Invitrogen) was used to transfect the tRNA 

fragments. Two reactions were prepared in two different micro centrifuge tubes. The first 

reaction comprised 18 µl 2 M CaCl2 and 2 µg biotin labelled tRNA fragments in 150 µl 

steril water. The second one comprised 150 µl HBS ( Hepes Buffered Saline). Using a 

pasteur pipette, first solution was slowly added dropwise to the second solution while 

bubbling air through second solution with another pipette. This is a slow process which 

was completed over 1 or 2 minutes. Then, the mixture was incubated for 30 minutes and 

dropped on the cells gently. The medium was replaced with fresh medium 24 hours post 

transfection. 

  

2.2.3. Stress Induction 

 

 In order to induce stress-mediated tRNA fragmentation, S2 cells were exposed to 

oxidative and heat stress conditions. Oxidative stress was applied by incubating cells in a 

medium containing 1%, 10% and 20% hydrogen peroxide for 2 hours and heat shock stress 

condition was applied to cells by incubating cells at 37 ºC and 42 ºC for 2 and 4 hours.  

 

2.4. RNA Isolation 

 

2.4.1. RNA Isolation by Sucrose Density Gradient Fractionation System 

  

2.4.1.1. Sucrose Gradient Preparation 

 

 Sucrose gradients were prepared by a combination of 5% and 70% sucrose 

solutions including 100mM NaCl2, 10mM MgCl2, 30mM Tris-HCl (pH 7), 200U 

Superase RNase Inhibitor (Ambion) via Density Gradient Fractionation System Gradient 

Making Program (ISCO) in a polyallomer tube (Beckman). At the end of the procedure, the 
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density of sucrose through gradient decreases from the bottom (70%) to top (5%) of the 

polyallomer tube. Gradients were kept at +4 C for overnight. 

 

2.4.1.2. RNA Fractionation 

 

 0,2 gram Drosophila embryo or 50x10
6  

S2 cells were homogenized in lysis buffer 

containing 100mM NaCI2, 10mM MgCl2, 30mM Tris-HCl (pH 7), 1% Triton-X, 1% 

NaDoC, 100µg/mL cycloheximide (Applichem) and 30U/mL Superase RNase Inhibitor 

(Ambion) (Akgül and Tu, 2006). After 8 minutes incubation on ice, homogenates were 

centrifuged at 12.000xg for 8 min at 4ºC in order to eliminate cell nuclei and debris. 2 ml 

of supernatant including RNAs were loaded on to top of the sucrose gradients and were 

centrifuged at 27.000 rpm for 2h 55 minutes at 4ºC in a Beckman SW28 rotor. Gradients 

including RNAs, genomic DNA and proteins were fractionated by ISCO Density Gradient 

Fractionation System at 254 nm absorbance. Fractions were collected based on their A254  

readings as four different subgroups presenting translation levels which are mRNP, 40S, 

monosome, and polysome. Fractions were made to 150mM NaCI2 and 0,5% SDS 

(Applichem).  

 

2.4.1.3. Phenol-Chloroform Extraction and Ethanol Precipitation 

 

Total RNA was extracted with an equal volume of phenol-chloroform-

isoamylalcohol 25:24:1 (pH: 4-5 Applichem). The mixture was vortexed for 1,5 minutes 

and centrifuged  at 3000 RPM for 5 minutes at room temperature. The clear upper phase 

was transfered into a fresh falcon tube and an equal volume of phenol-chloroform-

isoamylalcohol 25:24:1 was added and the previous step was repeated. The upper aqueus 

phase was  transferred into fresh tube then equal volume of chloform (Merck) was added 

and vortexed 1 minute and centrifuged at same condition for once to eliminate phenol. 

After picking up aqueous phase including only RNAs, 1/10 volume of 3M NaOAC (ph: 7) 

and two volumes of 100% ethanol were added into this aqueous phase and incubated at -

20ºC overnight. Next day, 100% and 70% ethanol precipitation were applied to RNA in 

clear tubes of Beckman adaptable for SW28 rotor of Beckman Ultracentrifuge. RNA was 

pelleted at 12.000xg for 20 min at 4ºC. Pellet was dissolved in 50µL DEPC treated water. 
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Concentration (260/280) potential contamination of proteins and other organic molecules 

(260/230) were measured by Nanodrop ND UV-Vis Spectrophotometer. 

 

2.4.2. RNA Isolation By Trizol Reagent 

 

 After 48 hours post- transfection, cells were harvested and rinsed with PBS two 

times. The pelleted cells were lysed with 1 ml of Trizol by repetitive pipeting. The 

homogenized cells were incubated for 5 minutes at room temperature to permit the 

complete dissociation of nucleoprotein complexes. Then, 0,2 ml chloroform was added to 

lysate  and shaken vigorously by hand for 15 seconds and mixture was incubated at room 

temperature for 2 to 3 minutes. Following centrifugation at 12000xg for 15 minutes at 4 ºC, 

the mixture separated into a lower red, phenol-chloroform phase, an interphase, and a 

colorless upper aqueous phase. The aqueous phase including RNA was transferred into a 

fresh tube and 0,5 ml isopropyl alcohol was added and incubated for 10 minutes at room 

temperature. RNA was precipitated at 12000xg for 10 minutes at 4 ºC. After centrifugation, 

the pellet was washed with 1 ml 75% RNase free, dried for 20 minutes at room 

temperature and dissolved in 50 µl RNase free water. The concentration of RNA was 

measured by Nanodrop ND UV-Vis Spectrophotometer. 

 

2.4.3. Small RNA Isolation 

 

The total RNA isolated from mRNP, 40S, monosome and polysome fractions were 

further purified by a mirVANA miRNA isolation kit (Ambion) to remove RNAs longer 

than 200nt. 5 volumes of lysis/binding buffer and then 1/10 volume of miRNA homogenate 

additive were added to 100µg RNA and incubated for 10 min on ice. After 1/3 volume of 

100% ethanol was added into the RNA mixture, 700 µL was applied to a filter and 

centrifuged at 5000xg for 1 min at room temperature. For greater volumes, centrifugation 

was repeated with the same filter and filtrate including small RNAs was collected. The 

filter trapped longer RNAs. 2/3 volume 100% ethanol was added to the filtrate. The 

mixture was applied onto a new filter and centrifuged at 5000xg for 1. The filter was 

washed with 700µL miRNA wash solution and centrifugated at 5000xg for 1 min. Two 

times of 500 µL wash solution 2/3 was applied. After centrifugation at 10.000xg for 1 min, 

50 µL 12 pre-heated elution buffer was loaded onto the center of filter and centrifuged at 
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10.000xg for 1 min. Concentration, 260/280 and 260/230 values  were measured by 

Nanodrop ND UV-Vis Spectrophotometer. 

 

2.5. RNA Quality Control 

 

 RNA integrity was checked by 2100 bioanalyzer using Agilent RNA 6000 Nano 

Kit and Agilent Small RNA Kit based on manufacturer instructions. Agilent 2100 

bianalyzer software was used to asses the results. 

 

2.6. Small RNA Deep Sequencing Analysis 

 

 Fractionated total RNAs obtained from mRNP, 60S, monosome and polysome 

fractions and total RNA itself of 0-1 hour and 8 hours embryos were pyrosequenced for 

small RNAs using Illumina Genome Analyzer (Fasteris, Switzerland).  0-1 hour and 8 

hour, fractionated and total small RNA profiles were compared and contrasted by 

bioinformatic tools.  

 

2.7. Northern Blotting 

 

2.7.1. In Vitro Transcription 

 

 6 µl from 100 µM commercial linear sense and anti-sense DNA primers containing 

T7 polymerase promoter were mixed and  incubated at 95 ºC for 5 minutes in order to form 

double stranded template for in-vitro transcription. Then, 1 µl of ATP (10 mM),CTP (10 

mM), GTP (10 mM) (Ambion Maxiscript In-vitro Transcription kit)  and biotin-labeled 

UTP (10 mM) (Epicentre) and 2 µl RNA polymerase (Ambion) and 2 µl 10X transcription 

buffer (Ambion) were added to DNA template and mixture was incubated at 37 ºC for 1 

hour. RNase free DNase was added to the mixture to eliminate the DNA template and 

incubated at 37 ºC for 15 minutes. 
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2.7.2. Denaturing Polyacrylamide Gel Electrophoresis 

 

 In order to visualize the biotin-labeled tRNA fragments or non-transfected naturally 

produced tRNA fragments in S2 cells, the total RNA isolated from S2 cells  was run on 

12% polyacrylamide gel containing 8M urea [10X TBE (0.9M Tris base, 0.9M Boric acid, 

20mM EDTA pH 7), 40% Acrylamide (19:1) (Applichem)]. To prepare 90 ml denaturing 

PAGE , 43,2 gram urea (Ambion), 9 ml 10X TBE and 27 ml %40 Acrylamide-

Bisacrylamide (19:1) were mixtured and the volume was completed to 90 mL with DEPC-

treated water. The mixture was heated and stirred until urea completely dissolved. 320µL 

APS (Applichem), and 43 µL TEMED (Applichem ) were added to 40 ml gel mixture and 

the mix was immediately poured into the glass plate set. After polymerization, the gel was 

placed into the tank and pre-run at 300V for 15min. RNA samples were mixed with an 

equal volume of 1X gel loading buffer (Ambion) and heated at 95ºC for 5 minutes. 

Samples were then kept on ice. Running was performed at 350 V for 3 hour. 

 

2.7.3. RNA Blotting 

 

 In order to transfer RNAs separated on denaturing gel to positively charged Nylon 

membrane (Ambion Brightstar-Plus), Thermo OWL HEP1 semidry electroblotter system 

was used. The gel piece of interest was cut and sandwiched in between Whatman 3M 

Chromatography papers. The membrane and 3M paper were wet by 1X TBE. The transfer 

was performed at 400 mA for 1 hour. The transferred RNAs were cross-linked by 

incubating the filter at 80 ºC for 20 minutes.  

 

2.7.4. RNA Imaging 

 

 The membrane cross-linked with RNA was pre-hybridized in 25 ml hybridization 

buffer at 37 ºC for at least 30 minutes in a hybridization oven (If biotin-labeled RNA was 

used, pre-hybridization and hybridization step were skipped). Then 7 µl probe synthesized 

by in vitro transcription was diluted in 10 ml hybridization buffer and dropped on 

membrane and incubated for overnight in the hybridization oven at 37ºC after discarding 

the pre-hybridization buffer. About 12-24 hour later, the membrane was washed with 
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~50ml pre-warmed SSPE wash buffer (2X SSPE, 0.1% SDS) for three times each for 10 

minutes. The membrane was then washed twice in 50 ml washing buffer for 5 min. To 

prevent non-specific binding, membrane was incubated twice with blocking buffer for 5 

minutes and once for 30 minutes. 1 µl Streptavidin-conjugated HRP (0,5 µg /ml) was 

diluted in 10 ml blocking buffer and incubated with the membrane for 30 minutes followed 

by incubation in  50 ml blocking buffer to remove the excess secondary antibody. 

Following three rounds of washes in 50 ml washing buffer for 10 minutes, the membrane 

was incubated with substrate (Thermo luminol enhancer) and reaction buffer (Thermo 

peroxide buffer). Before addition of components, the membrane was incubated with 1X 

Assay buffer for 2 minutes. Having added the substrate and buffer of HRP, the membrane 

was incubated at dark for 5 minutes. At the end of the reaction, the chemical light was 

measured by chemiluminescence camera of Versa-Doc Imaging System (3X3 gain, 4X4 

bin) (Biorad). 

 

2.8. Gel Shift Assay (Electromobilitic Shift Assay) 

 

 In order to determine the proteins associated with tRFs under in-vitro conditions, 

electromobilitic shift assay was performed.  EMSA consisted of four steps, which were 

isolation of cytoplasmic total protein by lysis of S2 cells, incubation proteins with biotin 

labeled tRNA fragments in EMSA reaction buffer, running non denaturing gel and imaging 

or staining protein and RNA complex. 10 million S2 cells were lysed with 100 µl lysis 

buffer containing 0,5% triton, 50mM Hepes, 150 mM NaCl, 50mM Tris, phosphatase 

inhibitor and protease inhibitor 1 vial (Pierce), 10% Glycerol. Cell membranes, organels, 

nucleus and debris were eliminated by centrifugation at 13000 g at 4 ºC for 10 minutes. 

5µg protein was incubated with 20nM biotin labeled tRNA fragments (26 bp) in EMSA 

buffer containing 10 nM Tric-HCl (pH:8), 50 mM KCl, 1mM EDTA,(pH:8) , 5 mM MgCl2 

, 5 mM DTT in 100 µL total reaction volume for 30 minutes. Unlabelled tRNA fragments 

were used as specific competitors. 20 µl of total reaction in 50% glycerol was loaded on 

8% native (non-denaturing) gel. At 250V for 2 h , gel was run and transferred to membrane 

and visualized  tRNA pieces and associated proteins as explained in the sections 2.7.3 and 

2.7.4 on page 16.  
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2.9. In Vivo Croslinking 

 

 S2 cells were plated in 6 well plate and transfected with biotin labeled tRNA 

fragments as explained in the sections 2.2.1 and 2.2.2. After 48 hours, cells were rinsed 

with 1X PBS two times and 5x10
6
 cells in 3 mL 1X PBS were exposed to 86 mJ/cm

2 
UV 

light in UV box for 10 minutes. Then cells were lysed in lysis buffer (0,5% triton, 50mM 

Hepes, 150 mM NaCl, 50mM Tris, Phosphatase inhibitor and protease inhibitor 1 vial 

(Pierce), 10% Glycerol) and 10 µg  total protein was run in 8% native PAGE gel as 

explained in the EMSA procedure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                          

                                                                                                                                                                                                             

17 

CHAPTER 3 

 

RESULTS AND DISCUSSION 

 

3.1. Polysome Profile of 0-1Hour and 8 Hours Embryos 

 

 By Polysome profiling, cytoplasmic mRNP complexes can be fractionated based on 

their translational status such as mRNP, 60S, monosome and polysome. There is no  

ribosomal subunits. 40S or 60S status represent that mRNPs bounded with small ribosomal 

subunits in the mRNP fractions. At monosome or 80S levels, messenger RNAs are 

bounded with only one full ribosome. Polysomes contains at least more than one 

ribosomes. Polysome profiles of 0-1 and 8 h embryos were obtained successfully with an 

increasing size and volume (Figure 3.1). 

 

 

Figure 3.1.Polysome profilings of 1 and 8 hour embryos. The lysate of embryos was centrifuged and 

                 fractionated  by Density Sucrose Gradient Fractionation (DSGF) system. The first highest peak  

                 represents mRNP status and second one represents 60S subunits of ribosome and in the middle  

                 of the profile, the highest peak represents monosome. Polysome is heaviest fraction relative 

                 to monosome, 60S and mRNP. Each increasing peak presents the ribosome number on  mRNA   

                 and polysome volume. 
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3.2. RNA Quality Control by Bioanalyzer 

 

 RNA quality was measured by bioanalyzer (Agilent 2100) and reference points are 

sharpness and intactness of 18S and 28S peaks and flat baseline of RNA electropherogram. 

RNAs used for deep sequence analysis were controlled by chip base analysis to eliminate 

degradation products. As a result, it was seen that the total and small RNAs isolated had 

high quality based on sharpness of their 18S and 28S peaks (Figure 3.2).  

 

 

Figure 3.2. Agilent 2100 Bioanalyzer electropherograms of mRNP, 60S, monosome and polysome RNAs.  

                  Quality of fractionated RNAs depending on their translational status were measured with the  

                  .reference of 18S and 28S peaks and flat baseline. 

 

3.3. Deep Sequence Analysis 

 

Three replicates from unfractionated total RNAs and fractionated mRNP, 60S, 

monosomal and polysomal RNAs of 0-1 hour and 8 hour embryos were mixed in equal 

amounts and sequenced using Illumina Genome Analyzer by Fasteris (Switzerland).  

The number of unique sequence in each sample ranged from 45,685 to 687,558 

accounting approximately for 20,2-48,29% of total reads for each sample (Table 3.1)   
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Table 3.1.  All unique sequences analysis in the total sequence read in each fraction. 

 mRNP 60S MONOSOME POLYSOME TOTAL ALL 

 1h_em 8h_em 1h_em 8h_em 1h_em 8h_em 1h_em 8h_em 1h_em 8h_em  

Unique 

seq 478116 119109 391938 396700 316214 299926 157426 45685 687588 113458 3006160 

Total 

seq 1646432 589616 811581 1101742 838995 1071315 334176 101883 2424271 435539 9355550 

% 29,039 20,201 48,293 36,006 37,689 27,9960 47,108 44,840 28,3626 26,050 32,132 

 

 

The analysis of origins of the all sequences revealed that 9% of the all sequences 

stem from tRNAs (Figure 3.3). In addition, a great majority of these tRNA-derived small 

RNAs present in mRNP status of 1h and 8h embryos  (Figure 3.4). 

 

 

Figure 3.3.  Classification of small RNAs in all sequences.     
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Figure 3.4. Distrubition of tRNA-derived small fragments in fractions of  1h and 8h  embryos. The great                    

majority of tRNA-derived small fragments present in mRNP status in  both 1h and 8h embryos. 

     

                   

When all tRNA derived sequences were imposed onto a single tRNA, more than 

90% of reads matched to the 5’ ends of tRNAs flanking the nucleotides 1 and 26. When 

tRNA derived reads were blasted to individual tRNAs, some reads specifically matched to 

the 3’ ends without any significant matches to the 5’ ends (Figure 3.5). 

 

Figure 3.5. Blast results of tRNA derived sequences imposing to tRNAs. %96 of tRNA derived   sequences 

match with 5’ ends of tRNAs flanking the nucleotides 1 and 26. 

 

In order to determine the 3’ of processing site of tRFs, all tRFs were blasted to 

individual tRNA . The majority of 3’ processing site was 19, 26 or 27 nucleotide 

downstream from the 5’ end (Figure 3.6) 
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  Figure 3.6. Analysis of 3’ processing site of tRNA derived sequences. The 3’ trimming site of  tRNA derived 

sequences are nucleotides 26,27,19 in density respectively. 

 

In order to determine the location of 3’ processing site on folded tRNAs, 12 

coordinates were assigned on folded tRNAs and aligned all tRNA-derived sequences 

relative to each coordinate. By means of this analysis, it was revealed that the 3’ processing 

site of tRFs is towards the 5’ stem of anticodon loop closer to the D arm (Figure 3.7)    

    

 

Figure 3.7. Analysis of mapping site of tRNA derived small RNAs on folding tRNA 

 

 

According to blast results, although sequences have the same length distribution 

sequences enrichment are in length of 23 to 26 bp (Figure 3.8).  
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Figure 3.8. Analysis of length distrubition of all small RNA sequences. 

 

The quantitative analysis of expression levels of tRFs in both fractionated and 

unfractionated 1 and 8 hour embryo total RNAs revealed several interesting points. Firstly, 

certain tRFs appear to be over-expressed in 1 hour embryos while some others are down-

regulated. At 1h, tRFs derived from tRNA proline, histidine, valine are over expressed 

while at 8h, those from tRNA glycine and mitochondrial Serine are overexpressed (Table 

3.2). Secondly, tRFs are generated not from all but a selective subset of tRNAs. In some 

case , this selectivity is originated from tRNAs carrying same aminoacid but possessing a 

different anticodon. For examples, tRFs derived from tRNA Proline with TGG anticodon 

are expressed about 10-fold more than tRFs derived from tRNA Proline with CGG 

anticodon at 1h embryos (Table 3.2).  Also, mitochondrial tRNA seem to be processed less 

frequently relative to cytosolic tRNA. 
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Table 3.2. Cloning frequency of tRNA derived sequences in fractionated and unfractionated 1 hour and 8         

hour total RNAs. 

 1h 8h 

tRNA Name mRNP 40S MON POLY TOT mRNP 40S MON POLY TOTAL 

tRNA:G:GCC:AE002638-a 49890 4293 1494 1188 2288 110188 9901 4320 4260 12214 

tRNA:G:GCC:AE002690-c 49890 4293 1494 1188 2288 110188 9901 4320 4260 12214 

tRNA:G:GCC:AE002638-a 32628 0 0 0 264 0 0 0 0 0 

tRNA:G:GCC:AE002690-c 32628 0 0 0 264 0 0 0 0 0 

mt:tRNA:S:AGY 26019 313 4872 473 24 31546 1372 21690 3082 1635 

mt:tRNA:S:AGY 10542 26 311 66 36 1231 93 982 432 223 

mt:tRNA:S:AGY 6535 9 91 9 16 90 6 120 20 25 

tRNA:P:TGG:AE002708-e 5100 0 0 0 141 0 0 0 0 0 

tRNA:H:GTG:AE002787-a 4839 884 418 126 17 1035 1599 224 128 62 

mt:tRNA:K 3789 335 145 30 6 23986 826 341 304 106 

mt:tRNA:K 3739 755 441 185 54 10651 2004 921 1865 994 

tRNA:P:AGG:AE002602-c 2197 0 0 0 440 0 0 0 0 0 

tRNA:G:TCC:AE002708-a 886 5 2 24 48 107 3 0 108 44 

tRNA:P:CGG:AE002593 658 35 89 12 111 2074 52 165 79 9 

tRNA:K:CTT:AE002787-a 475 22 14 6 75 690 60 18 20 248 

tRNA:K:TTT:AE002699-a 405 6 2 3 30 39 5 6 10 16 

tRNA:S:CGA:AE002593-c 372 9 7 6 1 3 0 0 0 0 

tRNA:Q:TTG:AE002602 372 9 7 6 1 3 0 0 0 0 

tRNA:Q:TTG:AE002566 372 9 7 6 1 3 0 0 0 0 

tRNA:Q:CTG:AE002690 372 9 7 6 1 3 0 0 0 0 

tRNA:Q:CTG:AE002690 338 9 1 3 3 0 1 0 0 0 

tRNA:Y:GTA:AE002708-b 256 12 14 15 0 2 1 1 0 0 

tRNA:A:AGC:AE002708-f 256 6 39 1014 119 7 54 6 108 16 

tRNA:A:AGC:AE002708-d 256 6 39 1014 119 7 54 6 108 16 

tRNA:G:TCC:AE002575-b 250 5 0 27 7 19 1 0 20 14 

                                                                                                                                               (Continued on next page) 
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Table 3.2. (Continued) 

tRNA:R:TCG:AE002593-e 213 11 12 6 4 0 0 0 0 0 

tRNA:R:TCG:AE002708-b 213 11 12 6 4 0 0 0 0 0 

tRNA:A:TGC:AE002787-a 202 27 38 69 223 0 555 54 0 23 

tRNA:A:TGC:AE002787-b 202 27 38 69 223 0 555 54 0 23 

tRNA:A:TGC:AE002787-a 180 63 44 21 24 31 38 31 10 129 

mt_tRNA_A 178 0 6 0 5 12 24 0 29 14 

mt:tRNA:R 149 1 7 12 6 14 8 19 0 0 

tRNA:Y:GTA:AE002708-b 138 10 4 3 1 0 1 0 0 0 

tRNA:Q:CTG:AE002787 138 10 4 3 1 0 1 0 0 0 

tRNA:S:AGA:AE002593-a 132 32 25 3 49 87 51 32 0 177 

tRNA:S:CGA:AE002593-c 132 32 25 3 49 87 51 32 0 177 

mt_tRNA_H 132 6 2 0 1 34 15 12 29 7 

mt_tRNA_N 126 2 0 0 1 54 11 5 0 2 

tRNA:W:CCA:AE002787-a 117 9 18 0 1 0 0 0 0 2 

tRNA:W:CCA:AE002638 117 9 18 0 1 0 0 0 0 2 

tRNA:A:CGC:AE002575-a 108 0 0 0 0 0 0 0 0 0 

tRNA:G:TCC:AE002575-b 102 0 0 0 110 2 0 0 0 0 

tRNA:A:AGC:AE002708-f 80 505 438 132 616 32 219 226 147 792 

tRNA:A:AGC:AE002708-d 80 505 438 132 616 32 219 226 147 792 

tRNA:T:AGT:AE002787-b 77 0 0 0 19 0 5 0 0 0 

tRNA:T:AGT:AE002708-b 77 0 0 0 19 0 5 0 0 0 

tRNA:TΨ:AGT:AE002602 77 0 0 0 19 0 5 0 0 0 

tRNA:TΨ:AGT:AE002602 74 1 4 0 5 0 0 0 0 0 

tRNA:E:CTC:AE002584-e 56 46 29 15 270 7 19 28 20 276 

tRNA:R:TCG:AE002681 47 4 0 0 1 0 3 0 0 2 

tRNA:S:AGA:AE002593-e 44 18 5 0 0 2 5 1 0 0 

tRNA:S:AGA:AE002638-a 44 18 5 0 0 2 5 1 0 0 

                                                                                                                                                (Continued on next page) 
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Table 3.2. (Continued) 

tRNA:S:GCT:AE002708-c 36 1 2 0 2 0 3 0 0 0 

tRNA:S:GCT:AE002708-e 36 1 2 0 2 0 3 0 0 0 

tRNA:V:CAC:AE002708-c 36 0 0 0 0 0 0 0 0 0 

mt:tRNA:P 34 9 17 0 0 29 20 16 20 7 

tRNA:TΨ:AGT:AE002602 30 0 0 0 0 0 0 0 0 0 

tRNA:R:ACG:AE002708-b 29 25 27 0 0 0 3 3 0 0 

tRNA:TΨ:AGT:AE002602 21 1 1 0 0 0 6 0 0 0 

tRNA:TΨ:AGT:AE002602 20 9 4 3 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 20 9 4 3 0 0 0 0 0 0 

tRNA:SeC:TCA:AE002787 20 1 1 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 16 2 0 0 3 2 4 0 0 2 

tRNA:L:CAA:AE002787-b 16 2 0 0 3 2 4 0 0 2 

tRNA:M:CAT:AE002787-c 16 0 1 0 0 195 8 13 0 5 

tRNA:S:CGA:AE002593-c 13 1 1 3 1 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 13 1 1 3 1 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 13 0 0 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 13 0 0 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 13 10 19 0 21 2 7 9 0 2 

mt:tRNA:I 13 118 250 9 1 7 36 142 0 7 

mt:tRNA:M 12 10 7 0 0 10 18 14 0 0 

mt:tRNA:Y 12 10 2 9 182 3 27 12 0 0 

tRNA:V:AAC:AE002602-a 10 2 1 9 26 0 6 0 0 57 

mt_tRNA_L_CUN 10 292 4 3 1 5 254 3 0 0 

tRNA:N:GTT:AE002769-d 10 16 5 6 0 2 2 1 0 0 

tRNA:F:GAA:AE002566-a 9 79 5 6 2 2 13 3 0 11 

tRNA:V:CAC:AE002708-a 7 4 4 0 0 32 10 7 0 0 

tRNA:V:AAC:AE002708-a 7 1 0 3 4 0 0 0 0 2 

                                                                                                                                               (Continued on next page) 
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Table 3.2.(Continued) 

tRNA:E4:53A 6 36 25 0 153 2 21 15 0 69 

tRNA:E4:53A 6 36 25 0 153 2 21 15 0 69 

mt:tRNA:G 5 1 1 0 0 15 23 0 0 0 

tRNA:S:CGA:AE002593-c 5 2 12 0 3 0 3 8 0 0 

tRNA:S:CGA:AE002593-c 4 0 0 0 1 0 0 0 0 0 

tRNA:Q:TTG:AE002566 4 81 119 6 1 2 8 34 0 0 

tRNA:Y:GTA:AE002620-b 4 73 7 3 7 31 97 11 0 71 

tRNA:Y:GTA:AE002638-b 4 73 7 3 7 31 97 11 0 71 

tRNA:Y:GTA:AE002708-b 4 73 7 3 7 31 97 11 0 71 

tRNA:S:CGA:AE002593-c 4 0 0 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 3 1 0 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 3 4 1 0 0 0 0 0 0 2 

tRNA:S:CGA:AE002593-c 3 0 0 0 0 0 0 0 0 0 

tRNA:E4:53A 3 531 51 6 42 14 218 51 39 99 

mt:tRNA:Y 3 531 51 6 42 14 218 51 39 99 

tRNA:P:CGG:AE002566 2 28 253 18 5 17 16 156 0 5 

tRNA:S:CGA:AE002593-c 2 0 0 0 0 0 0 0 0 0 

tRNA:S:CGA:AE002593-c 2 0 0 0 0 0 0 0 0 0 

mt:tRNA:Y 2 28 253 18 5 17 16 156 0 5 

mt_tRNA_C 1 0 0 0 0 473 18 7 0 0 

tRNA:E:TTC:AE002787-c 1 352 27 0 2 3 146 8 0 5 

tRNA:S:CGA:AE002593-c 1 1 0 0 2 0 0 0 0 2 

tRNA:E4:53A 1 352 27 0 2 3 146 8 0 5 

tRNA:E4:53A 1 153 6 0 0 59 553 11 0 7 

mt:tRNA:T 1 9 0 0 0 0 10 1 0 0 

mt:tRNA:Q 1 1072 5 0 0 7 563 4 0 9 

mt_tRNA_D 0 4 0 0 0 0 73 0 0 0 
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3.4. Northern Blotting Analysis for Fractionated Total RNA 

 

 Before transfection of biotin labeled tRNA fragments, Northern Blotting analysis of 

fractionated RNAs from both Drosophila embryos and S2 cells confirmed the data as in 

deep sequence results. As it can be seen in figure 3.9, tRNA derived small RNAs are found 

in mRNP and 60S fractions.  

 

                                                           A                                                  B 

 Figure 3.9.  Northern Blotting Analysis of tRNA derived small RNAs in Drosophila embryos and S2 cells. 

A) Northern Blotting of  tRNA glycine derived small RNAs in 1 hour and 8 hour Drosophila 

embryos. 1. mRNP  total RNA of 8 hour embryos (5 µg), 2. mRNP total RNA of 1 hour 

embryos (5 µg). B) Norhern Blotting of tRNA Proline derived small RNAs in fractionated total 

RNA of S2 cells. 1. Polysome total RNA (50 µg), 2. Monosome total RNA (50 µg), 3. 60S total 

RNA (27 µg), 4. mRNP total RNA (5 µg). 
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3.5. Demonstration of Differences from Stress Induced tRNA-derived               

Small RNA 

 

In order to reveal differences between  tRFs obtained from deep sequencing 

analysis and stress-induced tRNA derived small RNAs in the literature, S2 cells were 

exposed to Hidrogen peroxide (H2O2) and heat shock to induce stress response resulting in 

tRNA degradation. Stress-induced small RNAs were produced in a range of 40-60 bp 

which are longer than tRNA derived small RNAs produced in Drosophila embryos 

(Figures 3.10, 3.11 and 3.12)   

               

 

Figure 3.10. Northern analysis of stress induced tRNA Glycine fragmentation in S2 cells. 1. MicroRNA 

marker, 2. Biotin labeled tRFs as marker 26 bp (5 ng) and 34 bp (10 ng), 3. 10 µg total RNA of 

S2 cells incubated with medium containing 1mM H2O2   for 3 hour at RT, 4. 10 µg total RNA of 

S2 cells incubated with medium containing 20 mM H2O2   for 3 hour at RT. 5. 10 µg total RNA 

of S2 cells incubated at 37ºC for 3h (heat stress), 6. 10 µg total RNA of S2 cells incubated at 

42ºC for 3h (heat shock condition), 7. 10 µg total RNA of S2 cells not exposed to any stress 

condition as control group, 8. Biotin labeled tRFs as marker 26 bp(5 ng) and 34 bp (10 ng).   
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Figure 3.11. Northern analysis of stress induced tRNA Valine fragmentation in S2 cells, 1. Biotin labeled 

tRFs as marker 26 bp (5 ng) and 34 bp (10 ng), 2. 10 µg total RNA of S2 cells incubated with 

medium containing 1mM H2O2   for 3 hour at RT, 3. 10 µg total RNA of S2 cells incubated with 

medium containing 20 mM H2O2   for 3 hour at RT. 4. 10 µg total RNA of S2 cells incubated at 

37ºC for 3h (heat stress), 5. 10 µg total RNA of S2 cells incubated at 42ºC for 3h (heat shock 

condition), 6. 10 µg total RNA of S2 cells not exposed to any stress condition as control group,  

 

Figure 3.12. Northern analysis of stress induced mitochondrial tRNA Serine fragmentation in S2 cells, 1. 

Biotin labeled tRFs as marker 26 bp (5 ng) and 34 bp (10 ng), 2. 10 µg total RNA of S2 cells 

incubated with medium containing 1mM H2O2   for 3 hour at RT, 3. 10 µg total RNA of S2 cells 

incubated with medium containing 20 mM H2O2   for 3 hour at RT. 4. 10 µg total RNA of S2 

cells incubated at 37ºC for 3h (heat stress), 5. 10 µg total RNA of S2 cells incubated at 42ºC for 

3h (heat shock condition), 6. 10 µg total RNA of S2 cells not exposed to any stress condition as 

control group.  
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In the result obtained from three different tRNAs degradation induced by different 

stress conditions, stress induced tRNA derived small RNAs which are 40-60 bp in range 

are different from tRNA derived small RNAs produced at 0-1 and 8h Drosophila embryos. 

 

3.6. Polysome Analysis of Transfected Biotin Labeled tRFs 

 

In order to further verify the mRNP-association of tRFs, one of the biotin-labelled 

tRFs (5’ of tRNA glycine) was transfected into S2 cells. The transfected tRF (5’ of tRNA 

glycine) was co-sedimented in mRNP and 60S fractions (Figure 3.13). This was in 

agreement with deep sequence analysis and tRFs apparently interact with 60S of ribosomal 

subunit suggesting a potential involvement during pre-translational status of target 

mRNAs. 

                                   

   

Figure 3.13. Northern Blotting of Polysome Analysis. 1. Biotin labeled tRF itself as a marker 26 bp 

                    (10 ng), 2. mRNP total RNA  (2,5 µg).  3. 60S total RNA(3 µg), 4. Monosome total RNA  

                    (15 µg), 5. Polysome total RNA (15µg), 6. Total RNA (10 µg). 
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3.7. Determination of Proteins That Associate With tRFs 

 

 After determination where candidate tRF complex act as a regulator during 

translation, the next step was to reveal which proteins are associated with the tRF complex. 

Initially, biotin labeled tRF (5’ of tRNA glycine) was incubated with fresh S2 cell lysate 

including cytoplasmic proteins under in vitro conditions. As a negative control 3’ of tRNA 

glycine was also incubated with S2 cell lysate. As a specific competitor, same RNA 

fragments without biotin mark were used. As it can be seen in  Figure 3.14, there was an 

association between some proteins and 5’ of tRNA. An association of a complex related 

with the negative control 3’ of tRNA was also observed. This association probably 

originated from different conditions in S2 cells or could be non-specific bindings. 

 

 

                                                        

 

Figure 3.14. Electromobilitic Shift Assay of 5’ and 3’ of tRNA glycine. 1. Biotin labeled tRF (5’ of tRNA 

                    glycine) itself as a marker 26 bp (10 ng), 2. S2 cell lysate (5 µg) and 20 nM biotin labeled 5’ 

                    of tRNA glycin  e, 3. S2 cell lysate (5 µg) and 20 nM biotin labeled 5’ of  tRNA glycine and  

                    400 nM of unlabelled 5’ of tRNA glycine as specific competitor, 4. S2 cell lysate (5 µg) and   

                    20 nM biotin labeled 3’ of tRNA glycine, 5. S2 cell lysate (5 µg) and 20 nM biotin labeled 3’  

                    of  tRNA glycine and 400 nM of unlabelled 3’ of tRNA glycine as specific competitor. 
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 Following in vitro association of proteins and tRNA derived fragments, biotin 

labeled tRNA derived fragments were transfected to S2 cells to examine interactions in 

vivo. The same pattern about 5’ of tRNA derived fragments were observed that is, there 

was a complex association (Figure 3.15). Interestingly the complex observed under in vitro 

condition regarding 3’ of tRNA derived fragment disappeared. It can be inferred the 

forming complex associated with 3’ of tRNA was non-specific association which is absent 

under in- vivo conditions. 

 

                     Transfection                          -      -        +      +       +      + 

                     Uv crosslink                          -     +        -       +       -       +                                                                

                                                         1       2     3        4        5      6       7 

 

Figure 3.15. In-vivo crosslinking analysis. 1. Biotin labeled tRF (5’ of tRNA glycine)  itself as a marker 26 bp 

(10 ng), 2. Transfection and UV negative cells’ total cell lysate (30 µg), 3. Transfection negative 

UV positive cells’ total lysate (30 µg), 4. Transfected with biotin labeled 5’ of tRNA glycine and 

UV negative cells, 5. Transfected with biotin labeled 5’ tRNA glycine  and UV positive cells, 6. 

Transfected with biotin labeled 3’ of tRNA glycine and UV negative cells, 7. Transfected with 

biotin labeled 3’ of tRNA glycine and UV positive cells. 

 

 

 

 

Marker(26 bp) 

tRFs 

associated 

with proteins 

 

tRFs not 

associated with 

proteins 

 



                          

                                                                                                                                                                                                             

33 

CHAPTER 4 

 

CONCLUSION 

 

 For the first time, it was shown that tRNA derived small RNAs are 

temporally and selectively expressed in 1 hour and 8 hour Drosophila embryos. The tRFs 

generated from 5’ end of tRNAs are associated with primarily non-polysomal fractions. 

The findings in S2 cells were in parallel to those in embryos.  

Based on the importance of the cell death and proliferation in development and 

stress response, the temporal and selective expression of embryonic tRFs represent 

biological and metabolic roles modulating apoptosis and stress response processes during 

embryonic development.  

 The tRFs demonstrated here are different from the tRNA-derived small fragments 

generated during stress response (Thompson et al. 2009b). Stress-induced fragments were 

about 40 nt in length longer than about 26 nt in length embryonic tRFs. In addition, stress-

induced tRNA derived small RNAs are originated from the vicinity of anti-codon loop of 

tRNAs. However, Drosophila embryonic tRFs are produced from upstream from the anti-

codon loop, nearly at the stem of the loop. Moreover, the tRFs are different form stress 

induced tRNA derived small fragments in terms of selectivity in the type and amount of 

tRFs up on developmental stage. Our data put forward that selectivity exists not only 

among the tRNAs carrying different aminoacids but also those carrying same aminoacid 

anti-codon.  

Our data also suggest that tRFs may have function differently from miRNAs. 

Though miRNAs are selectively associated with all of the four fractions (mRNP, 60S, 

Monosome, Polysome) in our experimental settings, tRFs are found in extremely low 

levels in polysomes. tRFs particularly co-localize with complexes matching the size of 60S 

ribosomal subunit and mRNPs. This shows tRFs act as a regulator away from actively 

translation machinery. According to our data it can be speculated that tRFs may potentially 

interact with 40S, 43S, 48S, or 60S ribosomal subunits to interfere with association of 

these subunits with other subunits or proteins needed for forming active translation 

machinery.  
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Much more work is needed to understand how tRNAs are selectively processed,  

and what their biological function is. It will be quite exciting and challenging to investigate 

regulatory small fragments derived from tRNAs, which adds another layer of complexity 

to gene regulation in eukaryotes. 
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