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ABSTRACT 

 

WATER VAPOR AND GAS BARRIER PROPERTIES OF 

BIODEGRADABLE POLYMER NANOCOMPOSITES FILMS 

 

Polylactide nanocomposite (PLANC) films were prepared with solution 

intercalation method by introducing sonication as an alternative for conventional 

polymers. The effect of polymer clay interaction on PLANCs was investigated with 

respect to molecular weight of the polylactide, organic modifier presence and type by 

focusing on five major aspects: structural analysis, barrier, thermal, mechanical and 

rheological properties. 

According to structural analyses, the best level of dispersion was obtained in 

PL65-10A nanocomposites due to high molecular weight polylactide and 

organomodified nanoclay usage leading to better molecular interaction between the 

layered silicates and polymer chains. However, phase separated structure was observed 

in PLA composites prepared with unmodified clay as basal space between layered 

silicates were not sufficient enough for the penetrating of the polymer chains into the 

layers. Barrier and mechanical properties of the nanocomposites were improved up to 

critical clay content for each nanocomposite system. Thermal stability of the 

intercalated and exfoliated nanocomposites increased with the addition of the clay. Best 

improvements were obtained in PL65-10A nanocomposites in accordance with 

structural analyses. In dynamic mechanical analysis, glass transition temperatures and 

storage modulus of PLANCs increased with increasing of clay amount owing to 

reinforcement effect of the silicate layers. In rheological measurements, PLANCs 

showed solid-like behavior at lower shear rates due to the formation of a network 

percolating clay lamellae, besides PLANCs showed shear thinning behavior at higher 

shear rates leading to developments on the processability of nanocomposites. 

Consequently, intercalated and exfoliated PLANCs could be used as an eco-friendly 

promising alternative to conventional polymers for short-life applications such as food 

packaging and coating. 
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ÖZET 

 

BİYOBOZUNUR POLİMER NANOKOMPOZİT FİLMLERİNİN SU 

BUHARI VE GAZ GEÇİRGENLİK ÖZELLİKLERİ 

 
Polilaktid nanokompozit (PLANC) filmler geleneksel polimerlere alternatif 

olarak ultrasonik ses dalgası uygulanarak çözücü interkalasyon yöntemi ile hazırlandı. 

Polimer kil etkileşiminin etkisi polilaktidin moleküler ağırlığına, kildeki organik 

düzenleyici varlığına ve tipine göre yapısal analizler, bariyer, mekanik, termal ve 

reolojik özellikler olarak beş ana yönde odaklanarak araştırıldı.   

Yapısal analizlere göre, yüksek moleküler ağırlıklı polilaktid ve organik 

düzenleyiciyle modifiye edilmiş kil kullanımıyla oluşan kil tabakaları ve polimer 

zincirleri arasındaki iyi moleküler etkileşimden dolayı PL65-10A nanokompozitlerinde 

en iyi derecede dağılım gözlendi. Fakat tabakalı silikatların arasındaki boşluk polimer 

zincirlerinin tabakalar arasına girmesi için yeterli olmaması nedeni ile modifiye 

olmayan kille hazırlanan PLA kompozitlerinde faz ayrımı yapılar gözlendi. 

Nanokompozitlerin bariyer ve mekanik özelliklerinde kritik nanokil miktarına kadar 

iyileştirirken, interkale ve eksfoliye yapıdaki nanokompozitlerin termal stabiliteleri kil 

eklenmesi ile arttı. En iyi iyileştirmeler yapısal analizlerle uyumlu olarak PL65-10A 

nanokompozitlerinde gözlendi. Dinamik mekanik analizinde silika tabakalarının 

güçlendirme etkisiyle PLANC‘lerin camsı geçiş sıcaklığı ve depolama modulü kil 

miktarı artıkça arttı. Reolojik ölçümlerde düşük frekanslarda kil tabakaları süzgeçvari 

ağ yapısında olmasından dolayı PLANC‘leri katı-benzeri davranış gösterdi. Ayrıca 

yüksek frekanslarda kesmeyle incelen davranış göstermesiyle nanokompozitlerin 

işlenebilirliği gelişti.  

Sonuç olarak, interkale ve eksfoliye yapıdaki PLANC‘ler çevre dostu polimerler 

olarak,  gıda ambalajı ve kaplama gibi kısa süreli uygulamalarda geleneksel 

polimerlerin yerine kullanılma potansiyeli mevcuttur. 
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CHAPTER 1 

 

INTRODUCTION  

 

In recent years, many researches have been aimed to improve biodegradable 

properties of polymeric materials, thus; the use of natural polymers has grown 

extensively (Kolybaba et al., 2003). Polylactide is one of the promising polymers 

especially in food packaging application due to its economical pros of production. 

Polylactide is thermoplastic and aliphatic polyester which has gained enormous 

attention as the replacement of conventional polymers as it is biodegradable and bio-

based polymer. Polylactide is mainly used in medical, coating and food packaging 

applications today (Shen et al., 2009; Auras et al., 2004). However, some of the other 

properties, such as gas barrier properties and melt-viscosity for further processing, are 

frequently not good enough for a wide-range of applications. To overcome this 

problem, biodegradable polymer nanocomposites are used with different ingredients 

which approve physical properties of polymers such as barrier and mechanical (Koo, 

2006; Mittal, 2010).  

To improve the physical properties of the polymers, several nanoparticles are used 

such as nanoclays, carbon fibers, carbon nanotubes, titanium oxide, etc. To acquire the 

improvement in barrier properties of polymer nanocomposite films, layered silicates 

are preferred as diffusion path in the polymer matrix increase incorporation of layered 

silicates into the polymer matrix. The most widely used layered silicates are 

montmorillonite clays having nano-scale dimensions (1-100 nm). Besides barrier 

properties, thermal and mechanical properties are enhanced due to the presence of 

layered silicate layers if the desired morphological structure is obtained.When the 

layered silicates are associated with a polymer, phase separated, intercalated and 

exfoliated structures can  obtained. and desired property is obtained if intercalated and 

exfoliated structures are observed.However, to achieve intercalated or exfoliated 

structure, clay should be dispersed very well in polymer matrix (Alexandre and 

Dubois, 2000; Ray and Okomato, 2003). Morphology of the polymer layered silicate 

nanocomposites (PLSNCs) depends on the dispersion level of the layered silicates in 

the polymer matrix which can be affected by nature of the polymer (polarity, 
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molecular weight, etc.) and layered silicate (organomodification, etc.), preparation 

method and layered silicate content. Zurburtikudus and coworkers (2006) investigated 

effect of organomodification on the morphology and thermal properties of the 

polylactide nanocomposites (PLANCs). Improvements in thermal stability have been 

observed by Koh and coworkers (2008). They studied mechanical, thermal and  carbon 

dioxide and oxygen barrier properties of PLANCs with respect to nanoclay content 

and it was seen that thermal and mechanical properties were improved up to critical 

clay loading while barrier properties were enhanced continuously with the addition of 

nanoclay.  Rhim and coworkers (2009) compared commercial organomodified layered 

silicates (Cloisite 20A and 30B) and natural clay (Cloisite Na
+
) and desired structure 

and enhancement of the water vapor barrier properties of the PLANCs were observed 

due to the organomodification effect.  

Although there are many studies related to PLA-layered silicate 

nanocomposites in literature, to our knowledge there is no study related to Cloisite 

10A and Cloisite 93 layered silicates in PLA polymer. Therefore throughout this 

study, polylactide nanocomposite films were prepared with solution intercalation 

method by introducing sonication to achieve intercalated or exfoliated structure by 

using Cloisite 10A and 93A nanoclays. Furthermore, polymer clay interaction was 

investigated with respect to polymer type, organic modifier presence and type. 

Moreover, the barrier, mechanical, thermal and rheological properties of silicate 

layered polylactide nanocomposite was examined to determine the effect of the level 

of dispersion of layered silicates in the polymer matrix. 

In conclusion, six chapters constitute this thesis report. Brief information about 

polymer nanocomposite and the aim of this research study were given in chapter 1. 

Moreover, properties of biodegradable polymers and specifically polylactide polymer 

were discussed in chapter 2 while polymer nanocomposites especially polylactide 

nanocomposites (PLANCs) concepts were covered in chapter 3. In chapter 4, 

experimental procedure of the PLANCs preparation method and characterization of 

PLANCs and measurement methods of barrier, thermal, mechanical and rheological 

properties were explained. The results of experiments were discussed in chapter 5. 

Finally, all the results and discussions were concluded in chapter 6.  
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CHAPTER 2 

 

BIODEGRADABLE POLYMERS 

 

Since the Second World War, polymers have been a part of human life owing 

to their advanced physical and chemical properties and processability. Today, global 

consumption of polymers is more than 200 million tones with the increase of 5% per 

year. However, polymer industry depends on limited fossil fuels, therefore; the 

increase of the price of fossil fuels affects the polymer sector. Moreover, durability of 

conventional polymers results in land crisis and pollution that leads to governments, 

scientist and industry to seek for alternatives. Thus, the idea of the use of 

biodegradable polymers has appeared as they are easily processable, have good 

performance properties and are cost competitive with conventional polymers. (Shen et 

al., 2009). 

Not only biodegradation, but also bio-based become popular words in 

academic studies and industrial applications due to the environmental concern and 

regulations. (Figure 2.1). According to American Society for Testing and Materials 

(ASTM) and European Standardization Committee (CEN), degradation is defined as a 

reversible process leading to a significant change of the structure of a material, 

typically characterized by a loss of fragmentation and/or properties such as integrity, 

molecular weight, structure or mechanical strength and in biodegradation that 

structural change of material is caused by microorganisms (WEB_1). In addition to 

these, an ideal polymer should be compostable which undergoes degradation by 

biological processes during composting to yield carbon dioxide, water, inorganic 

compounds and biomass at a rate consistent with other compostable materials and 

leaves no visible, distinguishable or toxic residue so that disposal of the polymers in 

the soil can be done to get rid of expensive recycling process. However, biodegradable 

polymers convert into biomass, water and carbon dioxide naturally (Figure 2.2).  

Besides, the definition of bio-based is man-made or man-processed organic 

macromolecules derived from biological resources. Thus, the usages of biodegradable 

polymers have been promising subject last two decades, especially short-life range 
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applications such as packaging, agriculture, etc  (WEB_1; Shen et al., 2009; Siracusa 

et al., 2008). 

 

 
Figure 2.1. Polymers according biodegradability and origin 

(Source: Shen et al., 2009). 

 

 

 
 

Figure 2.2. Life cycle of biodegradable polymer 

 (Source: Siracusa et al., 2008). 

 
2.1. Classification of Biodegradable Polymers 

 

Generally, raw materials of biodegradable polymers can be both fossil-based 

and bio-based such as plant or animal origin. Biodegradable polymers are classified 
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into four groups according to their origin and production method (Figure 2.3).  First 

group of biodegradable polymers is directly extracted or removed from biomass such 

as corn, exoskeleton of crustaceans, wood pulp etc.  Chitosan casein, cellulose, zein 

are the example of that group.  The second group of biodegradable polymers uses 

microorganisms or genetically modified bacteria to produce this type of polymers. 

This group consists mainly of the polyhydroxyalkonoates, but developments with 

bacterial cellulose are in progress. The third group of the polymers uses 

biotechnological methods. For instance, monomers are produced from classical 

chemical synthesis or fermentation, and then monomers are polymerized. A good 

example is polylactide polymer which is polymerized from lactic acid monomers. The 

monomers generally are obtained via fermentation of carbohydrate feedstock. The last 

group of biogradable polymers such as polycaprolactones, polyester amides etc. is 

produced from the crude oil with the conventional chemical methods (Weber 2000; 

Chiellini and Solaro, 2003).  

 

 
 

Figure 2.3. Classification of biodegradable polymers 

                      (Source:Weber, 2000; Siracusa et al., 2008) 
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2.2. Applications of Biodegradable Polymers 

 

The biodegradable polymers are suitable for agricultural, medicaluses and food 

packaging applications as they have certain advantages during use or recovery of the 

polymers. For instance, reuses of polymers are not always possible or economical 

because of infeasibility of process and risk of contamination.   

Biodegradable polymers are applied in mulching, hydromulcing, seed coating 

and controlled release systems in agricultural uses. For example, polymers for 

mulching applications are low density polyethylene (LDPE), poly(vinyl chloride) 

(PVC), polybutylene and copolymers of ethylene with vinyl acetate which control 

radiation, soil compaction, humidity, weed growth and degree of carbon dioxide 

retention. Despite the fact that, these films cause some problems such as  harvesting, 

removal of the film and  recycling owing to pesticide contamination. Therefore, 

chitosan and pectin, starch and pectin, soy protein and starch blends have been 

generally studied in the literature for agricultural applications as alternative to 

synthetic ones (Chiellini and Solaro, 2003). 

Biodegradable polymers are preferred in especially short term applications 

such as surgical sutures, drug delivery systems and implants,besides, the absorption 

and degradation of biodegradable polymers are safe in the body as they do not cause 

inflammatory and toxic response and the degradation products can be cleared from the 

body (Naira and Laurencina, 2007). 

Besides agricultural and medical uses, biodegradable polymers are also used in 

food packaging applications. Today mainly, synthetics polymers such as 

polypropylene (PP), polyethylene terephthalate (PET), polyamide (PA), polyethylene 

(PE), polystyrene (PS) and poly(vinyl chloride) (PVC) are dominating food industry 

sector , as they have low cost and advanced physical properties such as mechanical 

and barrier.  However, disposal problem of the conventional synthetic polymers in 

food packaging have become unbearable issue for the authorities since recycling 

problems due to the foodstuff contamination. Polymers used in food packaging 

applications should maintain the food quality. To optimize the shell-life of the foods 

and the production methods, barrier and both mechanical and thermal properties are 

effective, respectively.  In addition, they should be compatible with foods; therefore, 

biodegradable only few  polymers have been  used such as polycaprolactones, 
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polyhydroxyalkonoates, polylactide, starch etc. Among them, polylactide polymer has 

gained much attention in packaging applications due to desired properties explained 

below in section 2.3. 

 

2.3. Polylactide  

 

Polylactide is thermoplastic and aliphatic polyester which has gained enormous 

attention as the replacement of conventional polymers as it is biodegradable and bio-

based polymer. Polylactide is mainly used in medical, coating and food packaging 

applications today. Polylactide is one of the promising polymers especially in food 

packaging application due to its economic pros of production and its chemical 

properties.Besides physical properties are nearly the same as PET and oriented PS. can 

be manipulated easily by changing its chemical properties (Shen et al., 2009; Auras et 

al., 2004).  

 

2.3.1. Production of Polylactide 

 

Polylactide is produced via polycondensation and ring opening polymerisation 

of the lactide or direct polymerisation of the lactic acid.  By polycondensation of lactic 

acid, low molecular weight polylactide are obtained and with the ring opening 

polymerization high molecular weight polylactide is produced. In the second method, 

lactic acid is converted high molecular weight polylactide directly (Shen et al., 2009). 

During the production of the polylactide, less energy is required as the fossil 

fuel consumption is 50% less than conventional polymer. Besides, polylactide is eco-

friendly polymer since the release of carbon dioxide during the biodegradation is 

nearly same as consumption of carbon dioxide while the production of polylactide 

(Figure 2.4.). Thus, the usage of polylactide has both economical and environmental 

benefits (Mohanty, 2005). 
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  Figure 2.4. Relative a) energy required b) greenhouse emissions for production of 

various polymers (Source:Mohanty 2005). 

 

2.3.2. Chemical Properties of Polylactide 

 

Lactic acid- 2-hydroxypropoinic acid -is water-soluble, three-carbon chiral 

acid, obtained from plant sources such as corn, wheat or rice or bacterial fermentation. 

The repeat unit of polylactide has one stereo center that can be either L or D in 

configuration (Figure 2.5.) Thus, molecular weight, melting point, extent of 

crystallization and mechanical properties of polylactide is significantly affected by the 

conditions of the polymerization reaction and the conformation of the lactides (Shen, 

2009; Auras et al.,  2004; Rasal and Janorkar, 2010).  

The chemical structure of polylactide can be characterized by Fourier 

Transform Infrared (FT-IR)spectroscopy. Auras and coworkers (2004) summarized 

clearly FT-IR spectra of pure polylactide in the literature (Table 2.1). The 

characteristic peaks were examined in the ranges  of 60 to 2995 cm
-1 

absorption bands. 

The maximum absorbance was observed at 240 nm represented the ester group present 

in the backbone. Strong IR bands at 2877, 2946 and 2997 cm
-1

that were specified to 

the CH stretching region, νasCH3, νsCH3 and νCH modeswere ob served. At 1748 cm
-1 

, 

a large band was seen corresponding the C=O stretching region. The region between 

1500 and 1360 cm
-1 

was defined as CH3 band. The peaks at 1382 cm
-1

 and 1365 cm
-

1
were

 
assigned to the CH deformation and asymmetric bands, respectively. The CH 

bending modes resulted in the bands at 1315 cm
-1

and 1300 cm
-1

. The C–O stretching 

modes of the ester groups could be observed at 1225 cm
-1 

and the νO–C asymmetric 

mode could appear at 1090 cm
-1

. In the region of the 1000 cm
-1

and 800 cm
-1

, it was 

possible to see peaks at 956 cm
-1

and 921 cm
-1

owing to the characteristic vibrations of 

the helical backbone with CH3 rocking modes. Amorphous and crystalline phase of 
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polylactide could be determined from the peaks as 871 cm
-1 

and 756 cm
-1

, 

respectively. All peaks below 300 cm
-1 

showed the CH3 torsion modes and the skeletal 

C–C torsions (Auras et al., 2004). Crystallinity was also supported by FTIR spectra 

between 1186 and 1269 cm
-1

. 

 

 
 

Figure 2.5. Chemical structure of a) L and D-lactic acid b) LL-, meso-and DD-lactides   

and c) constitutional unit of polylactide.(Source: Auras, 2009). 

 

 

Table 2.1. Characteristic Infrared Spectra Bands of Polylactide 

(Source: Auras et al.,  2004) 

 

Assigment Peak Position (cm
-1

) 

-OH stretch free 3571 

-CH- stretch 2997(asym),2946 (sym), 2877 

-CO=O carbonyl stretch 1748 

-CH3 bend 1456 

-CH- deformation including  

asymmetric and symmetric bend 

1382 1365 

-C=O bend 1225 

-C-O- stretch 1194, 1130, 1093 

-OH bend 1047 

-CH3 rocking modes 956, 921 

-C-C- stretch 926 

 

2.3.3. Physical Properties of Polylactide 

 

Polylactide is one of the promising polymers in food packaging applications 

due to its physical properties nearly the same as PET and oriented PS. According to its 
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stereocomplex configuration and molecular weight; the properties of the polylactide 

such as solubility, barrier, thermal and mechanical properties vary. This section gives 

the properties of polylactide in detail.  

 

2.3.3.1. Solubility of Polylactide 

 

The relative affinity of a polymer and a solvent can be assessed using  

solubility parameters.  

Polymer–polymer, polymer–binary-solvent, and multi-component solvent 

equilibria can be predicted by using solubility parameter.  Hildebrand developed a 

relation based on cohesive energy for nonpolar systems to define the interaction 

between polymer and solvent , defined as (Mark, 2007): 

 

               VUc /5.0                                                            (2.1) 

 

where δ, U and V are solubility parameter, the molar internal energy and molar 

volume, respectively. 

Solubility parameter was defined as the sum of two components: nonpolar 

solubility and polar solubility parameter given in Equation. 2.2 (Mark, 2007).  

 

222

  
                                                         (2.2) 

 

where δλandδη can be defined as a nonpolar solubility and a polar solubility 

parameter, respectively. 

Hansen and co-workers proposed a practical extension of the Hildebrand 

parameter method to polar and hydrogen-bonding systems. In agreement with Hansen 

extension of the Hildebrand, dispersion, polar, and hydrogen-bonding parameters were 

valid simultaneously, related by this equation (Mark, 2007): 

 

2222

hpdt  
                                                    (2.3) 

where δt is Hansen‘s total solubility parameter, δd the dispersive term, δp the polar 

term, and δh the hydrogen-bonding term. 
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For every system, the Hansen solubility parameters (HSP)  sometimes do not 

show good agreement with experimental data as there has been based on a great 

variety of chemical and physical properties of solvents. Therefore, some solubility 

parameters are measures of solvent basicity, and others are obtained from direct 

determinations of the solubility of a representative solute in a range of liquids. 

Solubility parameters of solvents can be determined by using Van der Waals gas 

constant, surface tension, index of refraction, internal pressure, dipole moment 

vaporization enthalpy or boiling point. For polymers, solubility parameters can not be 

calculated from heat of vaporization data because of their nonvolatility. However, it 

can be determined by using the internal pressure, swelling data, inverse phase, gas 

chromatography, refractive index, intrinsic viscosity, dipole moment or group 

contribution methods (Mark, 2007; Agrawal, 2007).  Table 2.2 gives the solubility 

parameters of polylactide polylactide and many different solvents  predicted at 25 
o
C 

by using different solubility methods. The solubility parameters are good indicators to 

choose a right solvent for the polymer-solvent system.  Good solubility between 

polymer and solvent is obtained when the difference between the solvent and polymers 

solubility parameters is smaller than 2.5MPa
0.5 

or 5 (J/cm
3
)
0.5

 (Mark, 2007).  

As seen in  Table 2.2 , acetone, acetonitrile, benzene, chloroform, m-Cresol, 

dimethyl formamide, dimethyl sulphoxide, 1-4 dioxane, 1-3 dioxolane, ethyl acetate, 

isoamyl alcohol, methylene dichloride, pyridine, toluene and xylene dissolve 

polylactide at 25 
o
C despite the fact that it is not soluble in isopropyl ether, 

cyclohexane, hexane, ethanol, methanol, water  and diethyl ether   According to Auras 

and coworkers (2004), polylactides are soluble in dioxane, acetonitrile, chloroform, 

methylene chloride, 1,1,2-trichloroethane, dichloroacetic acid at room temperature and 

in ethyl benzene, toluene, acetone, tetrahydrofuran at their boiling points. However, 

polylactides are insoluble in water, some alcohols and alkanes (Auras et al., 2004).  
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Table 2.2. Solubility parameters of polylactide and solvents at 25
o
C  

(Source :Agrawal, 2004) 

 
Solvents HSP (J/cc)

0.5
 at 25

o
C Nonsolvents HSP (J/cc)

0.5
 at 25

o
C 

δd δp δd δt δd δp δd δp 

Acetone 15.0  10.4  7.0  19.6 Isopropyl ether  13.7  3.9  2.3  14.4 

Acetonitrile 15.3  18.0  6.1  24.4 

 

Cyclohexane  16.5  0.0  0.2  16.5 

Benzene 

 

18.4  0.0  2.0  18.5 Hexane  14.9  0.0  0.0  14.9 

Chloroform 17.8  3.1  5.5  18.9 

 

Ethanol  15.8  

 

8.8  19.4  26.5 

m-Cresol 

 

18  5.1  12.9  22.7 Methanol  15.1  12.3  22.3  29.6 

Dimethyl 

formamide 

17.4  13.7  

 

11.3  24.9 Water  15.5  16.0  42.3  47.8 

Dimethyl 

sulphoxide 

18.4  

 

16.4  10.0  26.6 Diethyl ether  14.5 2.9  5.1  15.6 

1-4 Dioxane 19.0  1.8 7.4 20.5  

Method 

Solubility parameters of 

PLA (J/cc)
0.5

 at 25
o
C 

1-3 Dioxolane 18.1  6.6  9.3  21.4 δd δp δh δt 

Ethyl acetate 15.8  5.3  

 

7.2  18.2 Intrinsic 3D 

viscosity method 

17.61  5.30  

 

5.80  19.28  

Isoamyl 

alcohol 

15.8  5.2  13.3  21.3 Intrinsic 1D 

viscosity method 

- - - 19.16 

Methylene 

dichloride 

18.2  6.3  6.1  20.2 Classical-3D 

geometric method 

16.85  9.00  4.05  19.53 

Pyridine 

 

19.0  8.8  5.9  21.8 Fedors group 

contribution 

- - - 21.42 

Toluene 

 

18.0  1.4  2.0  18.2 VanKrevelen 

group contribution 

- - - 17.64 

Xylene 17.6  1.0  3.1  17.9 Optimization 

method 

18.50  9.70  6.00  21.73 
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2.3.3.2. Barrier Properties of Polylactide 

 

Gas or vapor permeate through polymer films owing to pressure differences 

between the opposite membrane interfaces. Permeation of gases or vapor through 

polymer matrix consists of three main processes: 

1. Solution of the gas into the polymer matrix 

2. Molecular diffusion of the gas in and through polymer matrix 

3. Release from the polymer matrix 

Permeability of gases and vapors in polymer depends on the solubility of gas 

or vapor on the polymer matrix and diffusion through the polymer matrix related with 

the equation: 

 

                                  SDP                                                                (2.4) 

 

where P, D and S show permeability, diffusion coefficient and solubility 

coefficient respectively. 

Solubility coefficient depends on the difference between solubility parameters 

of polymer and gas/vapor (Δδ), molar volume of gas/vapor (Vg), temperature (T) and 

constant characteristic of polymer property (γ) which is shown in the Eqn. (2.5): 

 
















RT

V
SS

g

2

0 exp




                                            (2.5) 

 

The diffusion process for the steady state is defined by the general Fick‘s law 

(Crank, 1956; Letcher, 2007): 

 

t

C
DF






                                                            (2.6) 

 

where C is concentration and x is diffusion direction. The unsteady-state three-

dimensional diffusion process is described by Fick‘s second law (Crank. 1956): 
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where t is time. In the case of a membrane, and if the diffusion coefficient D is 

independent of the concentration the one-dimensional form of relation is equal to 

(Crank, 1956): 

 

2

2

x

C
D

t

C




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



                                                            (2.8) 

 

 Besides, if diffusing species flow at steady state is measured, rate of transfer of 

molecules (F) can be assumed to be the same across all the polymers membrane with 

thickness of l .F can be determined with the following relation: 

 

l

CC
D

t

C
DF 21 






                                                   (2.9) 

 

where C1 and C2 are surface concentrations of polymer membrane, However, in 

practical systems surface concentrations can not be determined but only gas or vapor 

pressures P1 and P2 on the two side of the membrane, Therefore,  permeability 

constant (P) can be defined with respect to thickness and the pressure difference and 

diffusion rate with the following equation: 

 

l

p
PF

)(


                                                           (2.10) 

 

where l, A and ΔP indicate thickness, pressure gradient of the across the polymer 

matrix, respectively(Crank, 1956).  

Temperature, relative humidity, pH of the environment; molecular size, 

functional group and chemical potential of the diffusing species; morphology, 

orientation, free volume and cohesion and adhesion forces of the polymer affects the 

mass transfer through the polymer matrix (Letcher, 2007). 

To control the mass transfer between the food and air, barrier films need to be 

producedsince presence amount of  water vapor, oxygen or carbon dioxide affects the 
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food quality.  Water vapor leads to microbial growth, undesirable textural changes, 

and deteriorative chemical and enzymatic reactions. Therefore, controlling barrier 

properties of polymer films is necessary to extend shell-life of food (Janjarasskul, and 

Krochta, 2010; Auras et al., 2005; Gontard, 1996; Weber, 2000). 

 Auras and coworkers (2005) studied the water vapor permeability of 

polylactide (PLA) and compared the permeability results with commercial synthetic 

polymer of polyethylene tetraphthalate (PET) and oriented polystyrene (PS). It was 

found that permeability values of PLA were nearly the same as these conventional 

polymers.  Weber and coworkers (2000) have compared the biopolymers and 

conventional polymers with respect to their water vapor transmission rates (WVTR) as 

low to high range (Figure 2.6.). WVTR of PLA was found to be in between PS and 

PHA. Moreover, Auras and coworkers (2005) have stated that permeability of 

polylactide changes with the relative humidity of the environment and temperature. 

Table 2.3 lists the permeability and diffusivity of water vapor in polylactide polymer 

at various temperatures.  

 
 

Figure 2.6.Comparison of water vapor transmission rates of polymers 
(Source: Weber 2000). 
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Table 2.3.Water Vapor Permeability and diffusivity of water vapor in polylactide at   

              different temperatures. 

 

Polymer 

Type 

Reference Water Vapor 

Permeability 

(g/m
2
day mmHg)mm 

Diffusion 

coefficient 

(m
2
/s) 

ΔRH 

(%) 

Temperature 

(
o
C) 

PLLA Auras 2004 0.15 NA 100 37.8 

OPLA Auras 2005 1.48 4x10
-12

 NA 20 

PLA Siparsky 

1997 

2.19 5-0.9x10
-11

 90 40 

 

Oxygen permeation value of polylactide was found to be the same as 

polyethylene, polystyrene and polyethylene tetraphthalate and it permeates moderate 

amount of oxygen with respect to other biopolymers (Figure 2.7) (Weber , 2000 and 

Auras et al.,2005). Moreover, degree of crystallinity in polylactide polymers affects 

the permeability value. The higher the crystallinity degree in the polymer was the 

lower permeability values were obtained for polylactide as more tortuous path is 

generated for the oxygen molecule permeation. Oxygen permeability of polylactide 

was reported between the 3.5 and 2.0x10 
7
  ml mm/m

2 
day atm (Maiti et al., 2002; 

Auras et al.,2005; Drieskens, 2009,). 

 

 
Figure 2.7. Comparison of oxygen transmission rates of polymers  

( Source: Weber 2000) 
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Carbon dioxide permeability of PLA (1.7610
-17

kgm/m
2
sPa) was found to lower 

than polystyrene but higher than polyethylene tetraphthalate.(Auras and coworkers, 

2004).  

 

2.3.2.3. Thermal Properties of Polylactide 

 

 Nomenclature Committee of the International Confederation for Thermal 

Analysis (ICTA) defines thermal analysis as a group of analytical methods by which 

change of the physical property such as mass, dimension, enthalpy etc. of a substance 

is measured as a function of time; therefore, thermal analyses are not said to be 

chemical analysis. Differential scanning calorimetry (DSC), differential thermal 

analysis (DTA), thermogravimetric analysis (TGA), thermal mechanical analysis 

(TMA, DMTA), thermal optical analysis (TOA) and dielectric thermal analysis 

(DETA) are the methods of measuring specific property shown in Figure 2.8. By using 

these methods, melting and crystallization of flexible-chain polylactide phase 

transitions in liquid–crystalline polymers and chemical reactions including degradation 

of polylactide can be investigated. One of the important thermal properties of polymer 

is glass transition which determines the lower use limit of rubber and upper use limit 

of thermoplastics, defines the transition temperature between the glassy and rubbery 

state of the amorphous polymers. Besides this, melting temperature defines transition 

temperature between the solid state and liquid state of the crystalline polymers, 

therefore, semicrystalline polymers have both glass transition and melting 

temperature, moreover, degradation of polymers are important property and 

dissociation of the weakest bond of the polymer can be defined as thermal degradation 

which can be characterized by measuring initial decomposition temperature, half 

decomposition temperature, maximum rate of decomposition temperature and amount 

of char. By determining these quantities, mechanism of decomposition of polymer and 

process conditions of the polymer sample can be specified. Moreover, structural 

characterization of polymer composites can be done with respect to temperature 

(Gedde, 1996; Krevelen and Nijenhuis, 2009). 
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Figure 2.8. Thermo analytical methods 

 (Source: Gedde, 1996). 

 

Ahmed and coworkers (2009) studied thermal properties of polylactides with 

respect to microstructure, number average molecular weight and stereocomplex 

configuration of the polylactide. Effect of molecular weight on the glass transition 

temperature, melting temperature and crystallization temperatures of polylactide was 

also studied. It was found that the glass transition temperature of semicrystalline 

poly(L-lactide) increased from -3.8
 o

C to 66.8
 o

C while the number average molecular 

weight increased from 550 to 2750. However, glass transition temperature started to 

decrease at higher molecular weight. Besides, stereocomplex structure of the polymer 

changed the glass transition temperature of polylactide. L-lactide polymer was found 

to be higher than D-lactide polymer structure.  Melting temperatures and 

crystallization temperatures of polylactides were also increased with molecular weight 

increase from 88
 o

C to 180
 o
C and 98

 o
C to 106

 o
C, respectively. Degree of crystallinity 

was calculated by taking crystallization enthalpy of 100% crystalline polylactide as 93 

J/g (Ahmed, 2009). Tsuji and Fukui (2003) studied the thermal degradation behavior 

of poly(L-lactide), poly(D-lactide) and poly(L/D-lactide) films by thermogravimetric 

analysis under nitrogen flow with heating rate of 10 °C min
−1

 up to 400 °C. Onset and 

endset degradation temperatures of poly(L-lactide), poly(D-lactide) and poly(L/D-

lactide) for non-isothermal degradation conditions were reported (Ahmed, 2009). 

Yang and coworkers (2008) found the glass transition temperature as 61.2 
o
C and 

melting temperature as 170 
o
C for pure polylactide polymer from DSC measurements. 
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From TGA measurements, onset degradation temperature of polylactide started at 280 

o
C and degradation temperatures at 10% and 50% mass loss values were reported as 

292
o
C and 325 

o
C, respectively.   

 

2.3.2.4. Mechanical Properties of Polylactide 

 

To get an  idea about long-term performance of the polylactide, mechanical 

properties are generally investigated by the help of short-term tests such as tensile 

testing, dynamic mechanical analysis etc. To characterize mechanical strength of 

polylactide generally tensile testing is used. With certain geometry and stretching 

speed, relationship between the stress and tensile strain are determined which is called 

Hooke law based on elasticity of the materials like a spring. Stress (ζ) is defined as the 

measurement of the average forces (F) per unit area of a surface (Ao) shown by 

relation below (Mark, 2007): 

 

                        OAF
                                                        (2.11) 

 

Tensile strain (ε) is the ratio of total deformation to the initial dimension of the 

material body in which the forces are being applied seen clearly by the relation: 

 

         

 

o

o

l

ll )( 


                                                           (2.12) 

 

where l and lo are the current and original length of the material (Mark 2007) . 

 Tensile strength, elongation at break and modulus of elasticity (Young‘s 

modulus) give the information about polylactide mechanical behavior. Tensile strength 

shows the maximum load tolerance of the material per unit area. Percent elongation 

shows how much stress is needed to break polymer and modulus of elasticity (E). It 

tells us the resistance of polymer to deformation related by the Hooke‘s law (Mark, 

2007): 

 

 G                                                                (2.13) 
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Auras and coworkers (2004) studied the mechanical properties of polylactide. 

Tensile strength of polylactide was found to be   between 44 and 66 MPa and percent 

elongation at break between 5% to 11%. Moreover, molecular weight and 

configuration of molecules also affect the mechanical properties.  Mechanical 

properties of the polylactide show similar behavior with polystyrene. Yang and 

coworkers reported tensile strength, tensile modulus and elongation at break of 

polylactide as 65.78 ±0.39 MPa, 1.68±0.07 GPa, and 8.91±0.44, respectively. 

Moreover, Lopez-Rodriguezand coworkers (2006) tabulated yield strength and stress 

at break as 56.8 MPa and 54.4 MPa while yield strain and strain at break were 

obtained as 0.4 and 0.5 respectively. Young‘s modulus was reported as 5.2 GPa much 

higher than Yang‘s study (Mark, 2007) .    

Dynamic mechanical analysis (DMA) is another mechanical analysis which 

investigates elastic (‗) and viscous flow (―) behavior of the polymers as a function of 

an oscillatory deformation (strain or stress) and temperature. The response of the 

polymer sample is determined as periodic strain stress. Dynamic mechanical 

properties can be determined by measuring the phase angle or phase shift (δ) between 

the oscillatory deformation and the response. For ideal elastic materials δ is 0 whereas 

for purely viscous fluids δ is determined as π/2. The sample can be loaded in a 

sinusoidal fashion in shear, tension, flexion, or torsion mode (Figure 2.9). 

. 

 

 

Figure 2.9.  Sinusodial strain and stress with phase angle δ 

(Source: Krevel en and Nihenjuis, 2009) 

 

If the deformation is sinusoidal tensile strain and tensile stress can be related 

equations below: 

       
)sin( to  

                                                      (2.14) 

 

    
)cos( to  
                                               (2.15) 
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where  

εo= the amplitude of the sinusiodial tensile deformation (-) 

ζo= the amplitude of the sinusiodial tensile stress (N/m) 

ω= the angular frequency (rad/sec)=2πν; ν=frequency(Hz) 

Generally investigation of polymers films are performed in tension, one 

determines the elastic tensile modulus E‘ called storage modulus and the 

corresponding viscous flow quantity E‘‘ called the loss modulus also glass transition 

temperature can be determined by the ratio of G‖/ G‘ known as tanδ. These three main 

properties in DMA related with the equations below: 
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                                                  (2 .13) 
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                                                   (2.14) 
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                                                           (2.15) 

 

where δoand εo represent the amplitudes of stress and strain, respectively.  δ denotes 

the phase shift between stress and strain. 

Clearly DMA data are of importance in designing products to be used in, for 

instance, vibration isolation, where the mechanical damping properties are used to 

convert mechanical vibrations into heat. DMA  is  also highly useful in studies of 

phase separation in multicomponent systems, and investigation of effects of fillers and 

other additives, different processing variables, degree of crystallinity, molecular 

orientation, internal stresses, etc on mechanical response. Dynamic mechanical 

behavior of polylactide was studied by Lopez-Rodriguez and coworkers (2006) and Tg 

value of polylactide was measured as 61.2 
o
C. Furthermore, at room temperature 

storage modulus of PLLA was found as 3000 MPa and  decreased to  300 MPa above 

glass transition temperature, Moreover, Sarazin and coworkers (2008) studied 

dynamic mechanical behavior of the pure polylactide and its blends, Tg of pure PLA 

was found as 62.8 and storage modulus was decreased significantly above the Tg.  
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2.3.2. Rheological Properties of Polylactide 

 

The study of rheology is the deformation of matter resulting from the 

application of a force. The type of deformation depends on the state of matter. Matter 

can have elastic or viscous behavior. Elastic behavior of the matter is defined clearly 

in section 2.3.2.4 which gives theoretically information about Hooke‘s law. Basically 

elastic materials store the energy as a spring also called as ideal solid. However 

viscous materials dissipate the energy such as water also called as ideal liquid. Ideal 

liquid is defined clearly Newton‘s law: 

 







 




t                                                       (2.16) 

 

where η is the shear stress and ,    is the applied shear rate and η is viscosity and the 

derivative of the strain with respect to time is,   shear rate. 

It is obviously seen that there is a linear relationship between shear rate and 

stress as seen in the Figure 2.10 and the equation 2.16. However, generally fluids can 

not behave ideally at all are called non-Newtonian fluids. At lower shear rates, some 

matters behaves like Newtonian liquids despite the fact that at higher shear rates, 

viscosity of the matter can show decreasing (shear-thinning) or increasing (shear 

thickening) behavior as a function of a shear rate. These materials are called as 

pseudoplastic and dilatant fluids, respectively. If there is a linear relationship between 

shear stress and strain with yield stress, this material is called as Bingham plastics and 

shear thinning behavior with yield stress is seen at Herschel-Bulkey fluid. ( Goodwin 

and Hughes, 2000; Smith, 2011) 
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Figure  2.10. Rheological behavior of matters 

     (Source: Smith, 2011) 

 

Polymer melts can store and dissipate the energy therefore; they are 

viscoelastics materials and generally show; moreover, shear thinning behavior is 

generally observed in polymer melts can be related by Power Law model:  

 

      



 nK                                                              (2.17) 

 

where K is the flow consistency index and n is the flow behavior index  . Based 

on flow behavior index, the fluid type can be classified, (Goodwin and Hughes,2000; 

Smith, 2011): 

if n<1 pseudoplastic 

n=1 Newtonian 

n>1 Dilatant 

Besides Herschel-Bulkey model can also be applied for polymers: 

 

o

nK  


                                                           (2.18) 

 

where ηo is yield stress 

It is very essential to control the rheological properties of polymer melts during  

processing and applications such as mixing, dispensing, settling and flow control. 
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Polymer type, additive amount and type, temperature and shear affect the rheological 

behavior of the polymer (Smith, 2011). 

Thermal processes such as injection molding, extrusion, film blowing, fiber 

spinning sheet forming and thermoforming are affected from the rheological properties 

of polymers especially shear viscosity. Polystyrene and polylactide have the same melt 

behavior. Melt viscosities of high molecular weight polylactide are reported as 500 to 

1000 Pas at 50 to 10 s
-1

. From the rheological measurements, polylactide is 

viscoelastic fluid. (Auras et al., 2004). Sarazin and coworkers (2008) measured shear 

viscosities of pure polylactide and ts blends and shear thinning beahaviour was 

observed and viscosity changed between the range of a 40   to 2000 Pas at 1000 to 10 

s
-1

. 
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CHAPTER 3 

 

POLYMER NANOCOMPOSITES 

 

Industrial uses of polymers are generally in the form of composites which can 

be defined as a combination of two or more materials (reinforcing elements, fillers and 

composite matrix binder) differing in form or composition on a macro or micro scale 

as they have better physical properties than pure polymers (WEB_2). However, length 

scale of conventional fillers in micrometers at least which leads to more filler usage to 

enhance the physical property. Therefore, authorities turn toward new concept, 

nanocomposite which results in the development of materials with properties that are 

far superior to conventional composites. With low filler loadings, typically 1-10 wt%, 

physical properties of the polymer can be improved significantly so the overall cost 

can remain low as less filler is required to increase the performance of the polymer 

matrix (Koo, 2006).  

Polymer nanocomposites consist of polymeric material (thermoplastics, 

thermosets or elastomers) and nanoparticles. In case of nanocomposites, the filler 

particles have at least one dimension on the nanometer length scale (1-100 nm) results 

in ultra large interfacial area to volume ratio, and the distance between the polymer 

and filler are extremely short. Therefore, with the increase the molecular interaction 

between polymer matrix and nanoparticles, mechanical, barrier properties dimensional 

stability, chemical resistance etc are improved, despite the fact that; dispersion 

difficulties, viscosity increase, optical issues occurr (Table 3.1.). Properties of polymer 

nanocomposites are affected by: 

 

 Nature of the nanoparticles (aspect ratio, size, geometry, cation 

exchange capacity etc.) 

 Nature of the polymer (polar or apolar, crystallinity, molecular weight, 

polymer chemistry etc.) 

 Morphology of polymer nanocomposites 

 Synthesis methods  

 The amount of the nanoparticles(Koo, 2006; Mittal 2010) 
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Table 3.1.Characteristics of nanoparticles to polymers. 

(Source: Koo, 2006). 

 

Improved properties Disadvantages 

Mechanical Properties ( tensile 

strength, stiffness, toughness) 

Viscosity increase  ( limits 

processability) 

Barrier Dispersion difficulties 

Dimensional stability Optical Issues 

Thermal stability Sedimentation 

Chemical resistance  

Reinforcement  

 

3.1. Nanoparticles 

 

With the incorporation of different types of nanoparticles into polymer matrix, 

different improved properties can be obtained in polymer nanocomposites so 

nanoparticles selection should be done according to application area of the material. In 

the literature most common used nanoparticles are: 

 

 Nanoclays  (Montmorillonite(MMT), bentonite 

 Nanosilica (N-silica) 

 Carbon nanofibers (CNF) 

 Carbon nanotubes (multiwall (MWNTs), smaller-diameter (SDNTs) and 

single-wall (SWNTs) 

 Polyhedral oligomericsilsesquioxane (POSS) 

 Nanoaluminum oxide (Al2O3) 

 Nanotitanium oxide (TiO2) 

 Others (Koo, 2006). 

Among all nanoparticles, nanoclays are the most extensively researched group of 

nanoparticles. They belong to the layered silicate family. 

 

3.1.1. Nanoclays (Layered Silicates) 

 

Nanoclays or layered silicates (LS) have been more widely investigated in the 

literature as it is easy to access o layered silicate nanocomposites exhibit markedly 
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improved barrier, mechanical, thermal properties with respect to the pure polymer or 

conventional composites (Alexandre and Dubois, 2000; Ray, 2003). Layered silicates 

are briefly classified according to the types and the relative content of the unit crystal 

lamellae (Table 3.2) (Ke, 2005). 

 

   Table 3.2. Classification of layered silicate crystals 

 (Source: Ke, 2005) 

 

Unit crystal lamellae type Family of clay Examples of Clay 

1:1 Family of kaolinite 

Family of illite 

Kaolinite, perlite clay, etc. 

Illite, etc. 

2:1 Family of saponite 

 

Family of hydromica 

Montmorillonite, saponite, 

vermiculite 

Illite, glauconite 

2:2 Chlorite family and others Chlorite 

Mixed layer chain structure Family of saponite Sepiolite, palygorskite, etc. 

 

According to the relative ratio of two unit crystal, the layered silicatesare 

divided into three types: 

 

 1:1 type: Its unit lamellar crystal is composed of one crystal sheet of 

silica tetrahedron combined with one-crystal lamellae of alumina 

octahedron. 

 2:1 type: Its unit lamellar crystal is composed of two crystal sheets of 

silica tetrahedron combined with one crystal sheet of alumina 

octahedron between them. 

 2:2 type: Four crystal sheets form its unit lamellar crystal, in which 

crystal sheets of silica tetrahedron and alumina or magnesium 

octahedron are alternately arranged. 

 

In mixed lamellar and chain-like structure, the lamellar hexagon rings 

composed of silica tetrahedron sheets are arranged opposite to one another in a right 

direction from the top down (Ke, 2005). 
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Montmorillonite (MMT) is the most common used clay mineral to prepare 

layered silicate nanocomposites; has a low content of alumina and a high content of 

silica. The chemical formula of the montmorillonite clay is 

Na1/3(Al5/3Mg1/3)Si4O10(OH)2. MMT is plate-like particles and belong to the family of 

2:1 phyllosilicates. Silica is the dominant constituent of the montmorillonite clay with 

alumina being essential. The chemical structure of montmorillonite clays are seen in 

Figure 3.1. The 2:1 layer consists of two tetrahedral silica sheets that consist of SiO4 

groups linked together to form a hexagonal network of repeating units of composition 

Si4O20 and sandwiches an alumina octahedral sheet. The physical dimensions of one 

such layer may be 100 nm in diameter and 1nm in thickness. Owing to isomorphic 

substitutions in octahedral and tetrahedral sheets, the layers have negative charges. 

The negative charges are counterbalanced by the interlayer alkali or alkaline earth 

metal cations such as Na
+ 

etc.  and as a result of this the 2:1 layers are held together in 

stacks by electrostatic and van der Waals forces (Alexandre and Dubois, 2000; Ke, 

2005; Koo, 2006; Mittal, 2010). 

 

 

Figure 3.1. Structure of MMT 

 (Source: Alexandre and Dubois 2000) 

 

Most of alkali or alkaline earth metal cations have high energetic hydrophilic 

surfaces which make them incompatible with hydrophobic polymer matrix. Therefore, 

agglomeration of layered silicates in polymer matrix prevents to achieve maximum 

properties of nanocomposites. Dispersion of layered silicates in polymer matrix is 

typically accomplished via ion exchange between inorganic alkali cations on the clay 
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surface with the desired organic cation so interlayer distance between the layers and 

molecular interaction between layered silicates (LS) and polymer matrix increase. The 

several surface treatments are (Koo, 2006; Mittal, 2010): 

 

 Quanteryammonium salts based on textile antistatic agents 

 Alkyl imidazoles which provides improved thermal stability 

 Coupling and tethering agents  

 Other kind of cations containing phosphorous ionic cations.  

 

Since degree of dispersion of layered silicates depends on both interlayer charge 

(cation) of the clay and polymer character. Next section will briefly mention how the 

nature of polymer effects the dispersion of LS.  

 

3.2. Nature of the Polymer 

 

Achieving impressive property improvements in polymer-clay composites 

depends on the dispersion of the clay in polymer matrix. Polarity and molecular 

weight of the polymers affect the mode of filler delamination (Koo, 2006; Mittal, 

2010). 

Polar polymers are observed to have better filler dispersion as compared to 

nonpolar polymers owing to the better match of polarity of polar polymers with 

partially polar surface of the clay. Thus, in the case of polar polymers, it is more likely 

the interfacial interactions between the organic and inorganic phases which lead to the 

delamination of the filler. To avoid delamination problem in nonpolar polymer 

systems organomodified clays are introduced therefore, electrostatic forces between 

the layers are reduced by increasing the basal spaces between the layers (Koo, 2006; 

Mittal, 2010). 

The molecular weight (Mw) of polymers affects the dispersion of fillers in 

polymer matrix owing to their viscosities. When the molecular weight of a polymer is 

low, it will easily penetrate into the basal spaces of the silicate layers as wetting of the 

silicate layer are enough to prepare the nanocomposites. In contrast to this, when the 

molecular weight and viscosity of the polymer is high, then the incorporation of the 
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fillers may be difficult as the fillers break easily due to strong shear and elongational 

forces during mixing leading to good dispersion (Mittal, 2010). However, Fornes and 

coworkers (2001) studied nylon6 nanocomposites by using three different molecular 

weight (low, medium and high) of nylon. In this study, it was found that a mixed 

structure for the low Mw based nanocomposites, having regions of intercalated and 

exfoliated clay platelets, while the medium molecular weight and high molecular 

weight composites revealed well exfoliated structures were observed. The physical 

property improvement was obtained at the high molecular weight based 

nanocomposites (Fornes, 2001). 

 

3.3. Structure of Polymer-Layered Silicate Nanocomposites 

 

The physical mixture of a polymer and layered silicate may form four different 

types of nanocomposite depending on the strength of interfacial interactions between 

the polymer matrix and layered silicate. (Figure 3.3-a): 

 

 Phase-separated composites  

 Intercalated nanocomposites 

 Flocculated nanocomposites 

 Exfoliated nanocomposites 

 

Owing to the poor molecular interaction between layered silicates and polymer 

matrix, phase separated structure is obtained and the property of that composite is the 

same as the conventional composites. In intercalated nanocomposites, the insertion of 

a polymer matrix into the layered silicate structure occurs in a crystallographically 

regular fashion, regardless of the clay to polymer ratio. Intercalated nanocomposites 

are normally interlayer by a few molecular layers of polymer. Flocculated 

nanocomposites are conceptually same as intercalated nanocomposites. However, 

silicate layers are sometimes flocculated due to hydroxylated edge–edge interaction of 

the silicate layers. In an exfoliated nanocomposite, the individual clay layers are 

separated in a continuous polymer matrix by an average distances that depends on clay 

loading. Usually, the clay content of an exfoliated nanocomposite is much lower than 

that of an intercalated nanocomposite (Koo, 2006). 
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Characterization of nanocomposites has been primarily done by wide-angle X-

ray diffraction (WAXD) and transmission electron microscopy techniques (TEM) 

(Figure 3.2-b&c).In WAXD measurements, characteristic peaks of layered silicates 

give the information about the structure of the PLSNCs as 2θ donates the basal spaces 

between the LSs. If the XRD peaks of the nanocomposite is same as the clay 

characteristic peaks, phase separated structures are obtained, In XRD measurements 

smaller and broaden is attribute to intercalated structure. Intercalateation with 

flocculation is identified by observing new lower angles peaks. Disappearance of 

peaks is caused by large gallery height indicates exfoliation structure of the 

nanocomposite. 

 

 

Figure 3.2. (a) Layered silicate composites structure (b) WAXD patterns and (c) TEM 

images of three different types of nanocomposites (Source: Okomato, 

2005).  

 

Besides, other techniques such as FTIR and NMR can also be used to support 

XRD technique. Natural and organomodified montmorillonites were characterized by 

FTIR analysis in the literature. By this method, characteristics bands of all layered 

a)  a)                      b)                                          c) 
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silicate types were obtained  at 3636 and 3395 cm
−1

 attributed to O–H stretching for 

the silicate and water, 1639 cm
−1

 (related to O–H bending), 1040 cm
−1

 (owing to 

stretching vibration of Si–O–Si from silicate) and 917 cm
−1

 (from Al–OH–Al 

deformation of aluminates),respectively (Figure 3.3).There are also unique bands due 

to tetrahedral SiO4 near 200 and 700 cm
-1

 in layer silicates that can be used for specific 

mineral identification. However, there are some bands in organomodified layered 

silicates spectra which are not exhibited by the natural montmorillonite; these bands 

were located at 2924, 2842 and 1475 cm
−1

 and were assigned to C–H vibrations of 

methylene groups (asymmetric stretching, symmetric stretching and bending, 

respectively) from chemical structure of the surfactant (Cervantes-Uc, 2007).  

 

 

 

Figure 3.3. Various spectra of commercial clays 

(Source: Cervantes-Uc, 2007) 

 

3.4. Production Methods of Polymer Nanocomposites 

 

To create desired polymer nanocomposite, a proper nanocomposite preparation 

method should be applied. There are three main preparation methods used to prepare 

polymer-layered silicate nanocomposites (Koo 2006) (Figure 3.4.): 

 Solution intercalation polymer/ prepolymer solutions  

 Melt Intercalation 

 In situ intercalative polymerization  
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Figure 3.4.Preparation methods of layered silicate polymer  

nanocomposites (Source: Koo, 2006) 

 

3.4.1. Solution Iintercalation Polymer/ Prepolymer Solutions  

 

Solution intercalation is the simplest method to prepare layered silicate 

polymer nanocomposite. The silicate layers are transformed into single layers using a 

solvent in which the polymer (or a prepolymer in case of insoluble polymers) is 

soluble. There are several different steps carried out in literature.  It is well known that 

layered silicates can be easily dispersed and swollen in an adequate solvent, due to the 

weak forces that stack the layers together as clay type and solvent surface energy are 

important factors in the swelling process of layered silicates. Besides, basal spacing of 

the layered silicates increases by applying shear stress such as mixing or ultrasound. 

Then, polymer chains can adsorb onto the delaminated sheets when the solvent is 

evaporated (or the mixture precipitated) and finally exfoliated and intercalated 

structure can be obtained (Alexandre and Dubois, 2000; Koo, 2006; Mittal, 2010).  

 For the selection of the adequate solvent, interaction between the clay and 

solvent should be investigated. Swelling degree and increase in the basal spacing is 

related with the difference between the surface energies of the silicate layers and 

solvent. Table 3.3 lists the surface energies of solvents and organic modifiers. It was 

seen that among many solvents studied surface energy of benzyl alcohol is larger than 

organic modifiers which means basal spacing of the layered silicates in benzyl alcohol 

is larger than others (Burgentzlé, 2004). 
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Table 3.3.Surface energies of the different solvents and organic modifiers  

(Source: Burgentzlé, 2004) 

 

Solvent/ 

Organic Modifiers 

Surface Energy 

(mNm
-1

) 

Solvent/ 

Organic Modifiers  

Surface Energy 

(mNm
-1

) 

Ethyl alcohol 22.8 Ethyl Benzene 29.2 

Acetone 23.7 Xylene 30.1 

Ethyl acetate 23.9 Dimethylformamide 35.8 

Butane 1-ol 24.6 Benzyl alcohol 39.0 

Methyl Ethyl 

Ketone 

24.6 Na+ 44.0 

Cyclohexane 25.5 2MBHT 30.0 

Chloroform 27.1 2H2HT 25.4 

Toluene 28.5 MT2EtOH 34.5 

 

3.4.2. In situ Intercalative Polymerization  

 

In this technique, the layered silicate is swollen within the liquid monomer (or 

a monomer solution) so as the polymer formation can occur in between the 

intercalated sheets. Polymerization can be initiated either by heat or radiation, by the 

diffusion of suitable initiator or by an organic initiator or catalyst fixed through 

cationic exchange inside the interlayer before the swelling step by the monomer 

(Alexandre and Dubois, 2000). 

 

3.4.3. Melt Intercalation 

 

Most commonly used and industrially promising method is melt intercalation 

method for nanocomposite preparation.  High molecular weight polymers are melted 

after which clay powder is added to the molten polymer in the extruder. Under these 

conditions and if the layer surfaces are sufficiently compatible with the chosen 

polymer, the polymer can crawl into the interlayer space and form either an 

intercalated or an exfoliated nanocomposite structure. Since shear is applied during 

preparation method, intercalation of silicates followed by exfoliation becomes more 

effective compared to other methods. In this technique, no solvent is required. 

However, onset degradation temperatures of organic modifiers which are 
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approximately at 200 
o
C limit the process temperature of the nanocomposite 

preparation (Alexandre and Dubois 2000, Mittal 2010). 

 

3.5. Polylactide Layered Silicate Nanocomposites (PLA-LSN) 

 

 As mentioned in section 2.3, to date, polylactide is the front runner and the 

most promising polymer among alternatives to petroleum based plastics for 

biodegradable film applications and disposable items because of some similarities with 

PS and PET synthetic polymers. However, some properties still need to be improved 

such as thermal stability, barrier improvements for shelf life of the foods and 

mechanical properties. However, improvements can be done by several approaches 

such as blending, copolymerization or nanofillers addition.  Of particular interest is a 

nanocomposite technology consists of polylactide and layered silicates.  Last two 

decades, many investigations have been done in polylactide layered silicate 

nanocomposites to develop their barrier, thermal, mechanical and rheological 

properties with respect to their morphology. 

 

3.5.1. Barrier Properties of PLA-LSN 

 

 Permeation through PLA-LSNs is based on the same processes as pure 

polylactide which is explained in detail in chapter 2. The basic theory -Fick‘s law- is 

related with permeability of PLA-LSNs as that the polylactide matrix maintains the 

same properties and characteristics as the pure polylactide. However, the PLA-LSNs 

consist of a permeable phase (polylactide matrix) in which non-permeable layered 

silicates are dispersed. Basically, improvements in barrier properties by the 

introduction of fillers in the polymer matrix are primarily attributed to the tortuous 

path formed for the permeating molecules. 

There are three main factors that influence the permeability of a 

nanocomposite(Choudalakis, 2009):  

 the volume fraction of the layered silicate 

 their orientation relative to the diffusion direction 
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 their aspect ratio (L/W ratio) 

 

Incorporation of the silicate layers, a decrease of the solubility is expected in the 

nanocomposite due to the reduced polymer matrix volume, as well as a decrease in 

diffusion due to a more tortuous path for the diffusing molecules. But, volume 

fractions of the layered silicates are low results in small reduction of polylactide 

matrix. Therefore, decrease in the permeability of PLA-LSNs is more affected from 

change of diffusion coefficient than solubility. The tortuosity is the main factor, 

related to the shape and the degree of dispersion of the layered silicates.(Figure 3.5.) 

Dispersion degree of the layered silicates is also determined by the degree of 

exfoliation. The fully exfoliated nanocomposite presents much higher values for the 

tortuosity factor and the aspect ratio in comparison with the intercalated 

nanocomposite leads to improved barrier properties.(Ray, 2003; Lu, 2007; 

Choudalakis, 2009). 

 

 

Figure 3.5.Tortuous path in (a) conventional composite and (b) layered silicate  

nanocomposite. 

 

The principle of mass transfer through the nanocomposites films same as pure 

polymer and like pure polymers diffusion and solubility coefficient control the 

permeation through the films (Equation 2.4.). However, these parameters are modified 

owing to the presence of silicate layers: 

 

)1(0  SS
                                                       (3.1) 

 

0DD 
                                                            (3.2) 

 

where 

L 

 

W 

 

b)                a)                                     b)                            
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 =volume fraction of nanoparticles in the matrix 

 η =the tortuosity factor 

Do=diffusion of pure polymer 

So=solubility coefficient of pure polymer. 

 

The ratio between the length (L) and width (W) (aspect ratio) and shape and 

orientation of the layer in the polymer matrix affect the tortuosity can be defined as: 

 

ll '                                                                 (3.3) 

where 

l = membrane (film) thickness 

l’= the distance a solute must travel inthe presence of silicate layers 

With the presence of silicate layers the diffusion length increases. To 

standardize that effect of silicates layers on the theory, solute travelling distance is 

calculated by the relation: 

 

)2/(' LNll                                                           (3.4) 

 

where N denotes the number of silicate layers on the path which is related with 

thickness of the film, volume fraction and width of the layers: 

 

W

l
N




                                                                 (3.5) 

 

so the distance a solute must travel in the presence of silicate layers becomes as: 

 

W

l
ll


'

                                                                 (3.6) 

 

and tortuosity (η) can be determined with the following relation: 

 

W

l
l

2


 

                                                              (3.6) 
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Then with incorporation of silicate layers into polymer matrix diffusion 

coefficient and permeability of nanocomposites are determined with the following 

relations: 

 

W

l

D
D O

2
1






                                                          (3.8) 

    

Consequently, permeability of the nanocomposites is obtained with the 

following relation by using Eqns (3.8) and (3.1): 
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1
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P

                                             (3.9)    

 

Several empirical models were developed based on the tortusity effect to 

determine the aspect ratio and give the idea about amount the structure of the 

nanocomposites. Most of the permeability models ignored any possible structure 

change occurred. Among these models, the first model was the Nielsen Model 

assuming regular arrangement of 2 dimensional rectangular platelets which are aligned 

perpendicular to diffusion direction. Nielsen model was obtained by dividing the 

nanocomposite permeability equation (Equation 3.9) by permeability of pure polymer. 

(Nielsen, 1967) 

Relative theoretical permeability can be calculated as: 

 





)2/(1

1






oP

P

                                                 (3.10) 

 

where 

 P=permeability of pure polymer 

Po= permeability of nanocomposites 

 = aspect ratio (L/W)  

Volume fraction of nanofillers in composites can be calculated by using relation given 

below: 
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where 

c =density of clays 

P =density of polymer 

Mc= mass fraction of clay. 

Besides Nielsen, Cussler and coworkers also developed mathematical model 

for gaseous diffusion in polymer matrix containing impermeable flakes, based on the 

idealization of the geometries that includes pores, slits and random shapers flakes. 

Layers are positioning regularly and align normal to the diffusion direction. According 

to their assumptions, the derived relation is: 
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2
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1
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                                                 (3.12) 

 

Moreover, with the assumption of random positioning of layers Cussler model 

was developed as: 
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                                                  (3.13) 

 

By including the orientation of layers, Nielsen model is extended by Bharadwaj: 
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where S donates the diffusion direction of the solute to the layers which can be 

calculated by: 
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)1cos3(2/1 2  S                                                  (3.15) 

 

As the θ denotes the angle between diffusion direction and the orientation of 

solute so it value may have a value between 0 and 1 (Bharadwaj, 2001). 

All models based on the assumptions and orientation of the filler is listed in 

Table 3.4. These models allow us to predict the  aspect ratio with the assumption of 

good level dispersion of the silicate layers .Therefore,  these models can only be 

applicable to dilute or semi dilute LS containing composite systems. The estimated 

aspect ratio is normalized for the overall polymer-clay system.  The higher length 

width ratio means higher degree of dispersion of silicate layers and the aspect ratio of 

the layered silicate was found in the range of 10 to 1000  (Paul and Robeson, 2008; 

Sun, 2008).  

Zenkiewicz and coworkers (2008) studied water vapor, oxygen and carbon 

dioxide transmission rates through polylactide nanocomposites films with the addition 

of the natural and organomodified clay. Transmission rates of water vapor, oxygen and 

carbon dioxide of organomodified clay nanocomposites were reduced with the ratio of 

43%, 39% and 82%, respectively. Besides the reduction ratio of the natural clay 

nanocomposite was improved as 25%, 4% and 76%  in water vapor oxygen and 

carbon dioxide transmission rates respectively. Increment in clay content resulted in 

continuous decrease in transmission rates. 
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Table 3.4. Permeability models for nanocomposites  

(Source: Sun, 2008) 

 
Models Filler Type Array/ 

Orientation 

Dimension Aspect 

ratio 

Formulas 

 

Nielsen  

Ribbon

 

 

Regular array / 

oriented 

 

2D 

 

w/l 




)2/(1

1






oP

P

 

 

Cussler-

regular array 

Ribbon

 

 

Regular array / 

oriented 

 

2D 

 

w/l 

 

2)
2

(1

1











OP

P

 

 

Cussler-

random array 

Ribbon 

 

 

Random array / 

oriented 

 

2D 

w/l  

2)
3

1(

1











OP

P

 

 

Bharadwaj 

Ribbon

 

 

Random array / 

non-oriented 

 

2D 

w/l 

)2/1(
3

1

1






S
P

P

O 




 

 

Moreover, Rhim and coworkers (2009) reported continuous decrease in water 

vapor permeability of nanocomposites prepared by organomodified clay but, increase 

in permeability of nanocomposites was obtained for  unmodified clay containing 

samples.  Koh and coworkers (2008) investigated modifier effect on the oxygen and 

carbon dioxide permeability and polymer type. They reported that the concentration of 

the modifier affect the molecular interaction between the polymer matrix and silicates 

layers. Therefore, different nanocomposite structures were obtained with the different 

type of modifier and the permeability of the nanocomposites was decreased with 

respect to dispersion degree of the silicates layers in polymer matrix. Effect of length 

and width ratio (aspect ratio) on the permeability and degree of dispersion on polymer 

matrix was studied by Ray and Okomato (2009).  It was found that layered silicates 

having higher aspect ratios gave better dispersion where exfoliated structures were 

obtained. Oxygen barrier properties were also improved with an increase in aspect 

ratio. 
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3.5.2. Thermal Properties of PLA-LSN 

 

Thermal improvements are achieved by crosslinking between polymer chains 

and clay sheets and molecular chains are confined inside the interlayer distance of clay 

sheets. Generally, decrease in melting temperature was observed by additon of 

nanofiller in polymer matrix. , but different results were also responses seen in the 

literature owing to relation between the polymer matrix and clay (Koh, 2006; Mittal, 

2010) . 

As volatile components are not generated during the decomposition, thermal 

stability is improved and also formation of the char is supported (Mittal, 2010). Koh 

and coworkers (2008) compared the thermal degradation behavior of polylactide 

nanocomposites with the pure polylactide. It is observed that pure polymer leaves 

fewer residues than its nanocomposites therefore; thermal resistance was increased 

with the increase of clay content. Thellen and coworkers (2006) reported that the onset 

of thermal degradation of pure polylactide was approximately 9 
o
C lower than its 

nanocomposite. Paul and coworkers (2003) have reported enhancement in thermal 

stability of PLA nanocomposites with increasing clay content, up to clay loading of 

5wt%. With further increase of filler content, a decrease in thermal stability was 

observed. This was explained by the relative extent of exfoliation as a function of the 

amount of organomodified layered silicates. However, Wu and coworkers (2006) 

studied thermal stability of the polylactide nanocomposites and decrease in onset 

temperature was also observed although even flocculated structure was obtained. 

In the literature, mostly decrease in melting temperature was observed with the 

incorporation of clay, Peterson and Oksman (2006) did not observe any change in 

melting temperature of polylactide nanocomposites. However, glass transition 

temperature and enthalpy of melting decreased with an increase in clay content. So, 

crystallinity degree was decreased by the filler addition (degree of crystallization). 

Lewitus and coworkers (2006) did not report  any change in glass transition 

temperature, but cold crystallization temperature of nanocomposites decreased around 

14-15
o
C with respect to pure polylactide owing to nucleation effect on the degree of 

crystallization with the use of clay. 

Consequently, thermal behavior of the nanocomposites depends on polymer 

type and clay type as for each polymer clay system give different response in thermal 
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analysis. In addition to this, the degree of exfoliation also affects the thermal stability 

of the nanocomposites (Peterson and Oksman 2006). 

 

3.5.3. Mechanical Properties of PLA-LSN 

 

Mechanical properties of conventional polymer which are improved by adding 

fillers with dimensions in the micrometer range and are related to volume fraction, 

shape and the size of the filler particles(Mittal, 2010). Whatever the size of the filler is, 

rigid fillers in a soften polymer matrix are resistant to stretching to maximum 

extension owing to their high modules and adequate bonding between the two phases. 

The first evidence of the improvement in polymer nanocomposites was mechanical 

improvement reported by Toyata research group on a Nylon-6/montmorillonite 

composite. By the addition of only a small filler volume compared traditional 

polymers, the greater reinforcing effect was obtained as the larger the surface of the 

filler was in contact with the polymer matrix. The mechanical properties can include 

Young‘s modulus, yield stress, ultimate stress and strain etc. The improvement in the 

mechanical performances of nanocomposites is due mainly to the nanosized 

dimensions of the fillers which results in an extremely large aspect ratio and strong 

polymer-filler interactions that may affect the effectiveness of load transfer between 

the nanofillers and the polymer matrix. In addition, the type of the filler surface 

treatment governs the degree of particle dispersion in the matrix and, thus plays a key 

role in the mechanical performances of the final nanocomposite (Mittal,2010). The 

nanocomposite stiffness (Young‘s modulus) is increased by a significant factor over 

that of the neat matrix when a uniform dispersion is achieved in nanoscale size. 

However, nonlinear mechanical properties such as tensile strength, elongation at break 

or impact strength. This may be explained by the fact that the Young‘s modulus is 

evaluated at low strains, whereas other properties are determined beyond catastrophic 

break where the loading transfer between the matrix and filler important (Paul and 

Robeson, 2008; Mittal, 2010) 

 Rhim and coworkers (2009) investigated the tensile strength values of 

polylactide nanocomposites.  Maximum 20% and 17% decrease was observed in 

tensile strength and elongation of break of nanocomposites, respectively with respect 

to pure polylactide. Effects of filler type and loading on mechanical properties of 
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polylactide layered silicate nanocomposites were studied by Koh and coworkers 

(2008). It was observed that the improvement in modulus of elasticity and tensile 

strength was changing depending on the each polymer clay system. Generally modulus 

increased, however, tensile strength decreased with the addition of clay. But if the the 

clay was superior compatible with the polymer matrix increase could be seen. On the 

other hand Lewitus and coworkers (2006) observed that Young‘s modulus and tensile 

strength of polylactide nanocomposites were increased with the addition of clay due to 

the high aspect ratio of silicate layers leading to large surface area between the silicate 

layers and polymer matrix. 

In the case of dynamic mechanical studies of polylactide–layered silicate 

nanocomposites, the storage modulus increases upon dispersion of a layered silicate in 

a polymer. This increase is generally larger above the glass transition temperature, and 

for exfoliated polylactide nanocomposites structures is probably due to the creation of 

a three-dimensional network of interconnected long silicate layers, strengthening the 

material through mechanical percolation. Above the glass transition temperature, when 

materials become soft, the reinforcement effect of the clay particles becomes more 

prominent, due to the restricted movement of the polymer chains. Generally, a 

decrease of tanδ peaks was observed. This indicates glass transition suppression by the 

presence of the clay. (Peterson and Oksman, 2006 ; Lewitus, 2006 , Ray and 

Bousmina 2005).  

 

3.5.4. Rheological Properties of PLA-LSN 

 

The rheological properties of the nanocomposites is vital importance as there 

are difficulties in polymer processing owing to increase of the viscosity with the 

addition of the clay. Also, rheological material functions are strongly influenced by the 

structure and the interfacial properties. The dispersion state of the clays can be studied 

at two levels: 

 

 The macroscopic level: It includes the measurements of the rheological 

properties of the bulk blend. 

 The microscopic level: It investigates the detailed dynamics of the 

individual particles 
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Therefore, rheology can be used as a tool that is complementary to traditional 

methods of nanocomposite characterization (Paul and Robeson, 2008; Mittal, 2010). 

Based on the rheological studies done in the literature, it was found that 

polymer nanocomposite were very often have solid-like behavior owing to the 

physical jamming percolation of the randomly distributed silicate layers, at 

surprisingly low volume fraction, due to their anisotropy at lower shear rates. On the 

other hand, at high shear rates, shear thinning behavior was usually observed. As the 

alignment of silicate layers moved towards the direction of flow at high shear rates. 

Also, complex viscosity, loss and storage modulus of the nanocomposites was 

increasing by increasing angular frequency owing to clay addition. At lower 

frequency, behavior is sensitive to the structure of the percolation state of the silicate 

layers within the nanocomposite (Ray, 2002; Ray, 2003; Ray 2006, Wu 2006; Gu, 

2007; Ahmed, 2010). 
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CHAPTER 4 

 

EXPERIMENTAL STUDY 

 

4.1. Materials 

 

Two kinds of poly (L-lactides)  (PL65 and GF)  were used to prepare the films. 

PL65 with inherent viscosity (i.v.) of 6.74 dl g
-1

 , density (ρ) of 1,24 g/cm
3
and GF 

with inherent viscosity (i.v.) of 1.02 dl g
-1

 , density (ρ) of 1,25 g/cm
3 

were  supplied 

from Purac Biomaterials (Netherlands) and Good Fellow(England). Chloroform was 

used as solvent obtained from Merck. To prepare polylactide nanocomposite 

(PLANC) films, commercial organomodified montmorillonites: Cloisite 10A, Cloisite 

93 A and unmodified natural montmorillonite, Nanofill 116, from Southern Clay-

Rockwood were used as nanofillers (Table 4.1.). 

 

Table 4.1. Properties of Montmorillonite 

 

Clay Type Density 

(g/cm
3
) 

Organic modifier Cation Exchange 

Capacity 

(meq/100g clay) 

 

Cloisite 10A 

 

1.90 

2MBHT   

125  

 

Cloisite 93A 

 

1.88 

M2HT  

90  

Nanofill 116 2.86 No modification 116 
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4.2. Preparation of Polylactide (PLA) and Polylactide 

Nanocomposites (PLANC) Films 
 

Pure polylactide films were prepared by solution casting method by using 

chloroform containing 3 (w/v) % polylactide from Purac (PL65-P) and 7.5 (w/v) 

polylactide from Good Fellow (GF-P) at room temperature. Films were cast on the 

glass plates and then kept at 60
o 

C in the vacuum oven for 24 hour to ensure complete 

solvent removal.  

Nanocomposite films were prepared by solution intercalation method. Initially 

clays were swollen in chloroform by mixing for 24 hours while polylactide dissolved 

in chloroform then clay solution was sonicated with ultrasonic probe sonicator 

(MISONIX 20±0.05 kHz) for an hour to increase interlayer distance between the 

layers. After clay and polymers solutions were mixed for an hour and sonication 

process was again introduced in order to improve dispersion of clays in the polymer 

matrix. The amount of clay in PLANC was varied between 1 wt% to 10 wt%.  Finally, 

films were cast on the glass plates and then kept at 60
o 

C in the vacuum oven for 24 

hour to ensure complete solvent removal.  

 

4.3. Determination of Thickness of PLA and PLANC Films 

 

An electronic digital micrometer (293-821, Mitutoyo) with 0.001m sensitivity 

was used to measure the thickness of PLA and PLANC films. Each analyzed sample 

in permeability measurements and mechanical tests were measured by taking at least 

ten different measurements randomly. 

 

4.4. Structural Characterizations of PLANC Films  

 

4.4.1. Fourier Transform Infrared (FTIR) Analysis of PLA 

andPLANC Films 

 

FTIR analysis gave information on the chemical structures of the 

nanocomposites, presence of polylactide and montmorillonite. IR spectra were taken 

in the range of 400 to 4000 cm
-1

 with a FTIR Schimadzu 8201 Model. 
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4.4.2. X-Ray Diffraction (XRD) Analysis of PLANC Films 

 

The structure of clay and nanocomposites were characterized by Phillips 

X‘Pert Pro MRD (Cu Kα radiation (λ=1.54 nm),40 kV,40 mA)  between 2
o 

and  8
o
. 

Interlayer distance between the silicate layers was determined with Braggs‘ Law:  

 sin2d                                                     (4.1) 

where: 

=wavelength of X-ray 

=diffraction angle 

 d =interlayer distance  

 

4.5. Permeability of Measurements 

 

4.5.1. Determination of Relative Humidity Effect on Thickness of 

PLA and PLANC Films 

 

 Three samples were used for each PLA and PLANC film thickness 

measurements. Films were kept at 60
o 

C in the vacuum oven for 2 days to ensure 

complete water removal. Ten measurements on each sample were done to determine 

average thickness of the dried samples. After that, films put into relative humidity 

chamber at 90% RH and 37.8 
o
C for one day. Then wet samples were measured ten 

times to find average thickness of the wet films. Change in thickness was calculated 

by the following formulas: 

 

100
)(

(%)
DFT

DFTWTF
thickness


                                    (4.2) 

 

where WTF and DFT denote wet film thickness and dry film thickness, respectively. 
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4.5.2. Water Vapor Permeability Measurements of PLA and PLANC 

Films 

 

The water vapor transmission rates of the PLAand PLANC films were measured with 

Mocon Permatran-W model 3/33 water vapor permeation measurement system. 

Measurements were performed at conditions of 37.8 °C and 90% relative humidity 

with 100 cm
3
/min nitrogen gas flow rate (ASTM F1249 standard). 

To analyse  water vapor barrier performance PLA or PLANC film samples  

film is placed in a test cell. Test cells are divided into two chambers separated by the 

sample material. The inner chamber is filled with nitrogen (carrier gas) and the outer 

chamber with water vapor (test gas). Molecules of water diffuse through the film to 

the inside chamber and are conveyed to the sensor by the carrier gas. The computer 

monitors the increase in water vapor concentration in the carrier gas and it reports that 

value on the screen as the water vapor transmission rate. 

 

 

Figure 4.1. Illustration of water vapor permeability experiment 

 (Source: Mocon Manual Book) 

 

By using water vapor transmission rate, (WVTR), permeance and permeability 

can be calculated from the following formulas:  

 

                
)( 21 RRS

WTR
Permeance




                                          (4.3) 

 

ThicknessPermeancetyPermeabili                              (4.4) 

 

where: 
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ΔP = Vapor pressure difference in inches of mercury 

R1 = Relative humidity at the source expressed as a fraction 

(R1 = 1.00 for a 100% RH chamber, and for 90% RH chamber R1 = 0.90) 

R2 = Relative humidity of the vapor sink expressed as a fraction 

(R2 = 0 for the 0% RH chamber (dry side)) 

S = Vapor pressure of water at the test temperature. 

 

4.5.3. Oxygen and Carbon dioxide Permeability Measurements of 

PLA and PLANC Films 

 

The oxygen permeability of the films was measured according to the ASTM 

D3985 standard using gas permeation instrument, Lyssy L100-5000 (PBI Dansensor, 

Denmark) based on the manometric testing principle. In the manometric testing 

method, a pressure difference (driving force) across the sample is created by 

maintaining the test gas at atmospheric pressure in the upper chamber, while vacuum 

is applied in the lower measuring chamber. While the gas permeates through the 

sample, the pressure in the lower measuring chamber increases. The instrument 

measures the time required for the lower chamber pressure to increase from a 

predefined lower limit to a pre-defined upper limit. The measured time interval is then 

transformed into the gas permeability rate expressed in ml/m
2
/day. Gas permeabilities 

of the films were determined at constant temperature (23 
o
C) and relative humidity 

(0% RH) conditions with 5–10 cm
3
/min gas flow. 

 

 

Figure 4.2. Illustration of gas permeability experiment  

(Source:PBI Dansensor) 
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4.6. Thermal Analysis of PLA and PLANC Films 

 
 

Glass transition and melting temperature of the PLA and PLNC were measured 

by differential scanning calorimetry DSC, TA instruments Q10 under nitrogen flow of 

50 L/min with the heating rate 10
o
C/min. Crystallization temperature of the PLA and 

PLNC were determined with the following procedure. Initially films were heated up to 

200
 o

C with the heating rate 10
o
C/min, then they were cooled down to 0

 o
C with the 

cooling rate 2
o
C/min and finally, they were heated up to 200

 o
C with the heating rate 

10
o
C/min again. 

Thermal stability and onset degradation temperature of PLA and PLANC were 

investigated with Perkin Elmer Diamond TG/ DTA from room temperature to 1000
 o

C 

with the heating rate 10
o
C/min. The analyses were performed in a dry nitrogen 

atmosphere. 

 

4.7. Mechanical Property Determination of PLA and PLANC Films 

 

According to ASTMD-882 standard modulus of elasticity, tensile strength 

percent elongation at break, yield strength and  percent elongation at yield were 

determined with texture analyzer (TA XT Plus) equipped with a 5 kgf load cell in 

tensile mode.  Tested films were cut in 10 mm width and 80 mm in length and put 

into relative humidity chamber at 50% RH and 23 
o
C for three days. The initial gauge 

length and testing speed were fixed at 50 mm and 5 mm/min, respectively. At least 

five films were tested and the average wasreported. 

Glass transition temperatures, loss modulus, storage modulus of films were determined 

using a dynamic mechanical analyzer (Q800, TA Instruments). Dynamic mechanical 

analysis (DMA) was performed in tension mode at a frequency of 1 Hz and an 

amplitude of 15 μm from 35 °C to 150 °C at a heating rate of 3 °C/min 
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4.8. Rheological Measurements of PLA and PLANC Films 

 

Melt rheological measurements were performed by a parallel plate 

rheometer,TA instruments. Measurements were conducted by using a set of 25 mm 

diameter parallel plates with a sample thickness of 1 mm.  

The limits of linear viscoelastic properties of PLA and PLANCs were 

determined by dynamic strain sweeps that were performed at 170
o
C and a frequency 

of 10 rad s
-1

. The strain amplitude was fixed to 1% to obtain reasonable signal 

intensities even at elevated temperature to avoid the nonlinear response.  

For dynamic frequency measurements were performed at 170 
o
C which was 

chosen as the most representative of a typical processing temperature of PLA. The 

storage modulus, loss modulus and complex viscosities were determined. Steady-shear 

viscosity measurements were conducted at 170 
o
C at 0.01, 0.05 and 0.1 s

-1
. 

 

4.9. Contact Angle Measurements of PLA and PLANC Films 

 

To determine the surface wettability property of the films, contact angle 

measurements were performed using Attension Theta Optical Tensiometer, KSV. 

During the analyses, 6 μl of water were dropped on the film surface. Contact angles of 

left and right sides were determined by computer programme digitally and the mean 

value of both sides was calculated and ten replications of the analyses were done for 

each sample and obtained mean values of the replications were reported. 

 

4.10. Color Measurements of PLA and PLANC Films 

 

The color measurement of PLA and PLANC was performed using a color 

measurement device (Avantis, AvaSoft 6.2). The color change between the pure 

polylactide and polylactide nanocomposites was determined by using white paper as a 

background for color measurements of the films. In the Huntersystem, color is 

represented as a position in a three-dimensional sphere, where the vertical axis L 

indicates the lightness (ranging from black to white), and the horizontal axes, indicated 

by a and b, are the chromatic coordinates (ranging from a: greenness to redness and b: 
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blueness to yellowness). Hunter L, a, and b values were averaged from five readings 

across for each coating replicate. The total color difference (ΔE) can be calculated by 

the following equation; 

 

                                   (4.5) 
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CHAPTER 5 

 

RESULTS AND DISCUSSIONS 

 

The aim of the study was to investigate the effects of nanoclay type, nanoclay 

content and polymer molecular weight on the barrier, mechanical, surface, optical and 

thermal properties of layered silicate polylactide nanocomposite by achieving 

intercalated or exfoliated structures. Structural characterization of the nanocomposites 

was conducted by FTIR, SEM and XRD analysis. Besides, rheological properties were 

also examined to see the effect of nanoclay addition on the processability of PLANCs.  

Polylactide nanocomposites (PLANCs) were prepared by solution intercalation 

method by using layered silicates as nanofiller. In order to open clay stackings (step I) 

and obtain further penetration of PLA chains into clay galleries (step II), sonication 

process was applied in the preparation steps of the nanocomposites as explained in 

Section 4.2. Sonication time of both steps was optimized with the help of XRD 

analysis. From XRD chromatograms of  PLANC samples (Figures  A1 and A2), it is 

evident that 2θ values of nanocomposites decreased with increasing  sonication time 

from 5 min to 60 min due to the opening of clay layer stackings (increase of the 

interlayer distance between the silicate layers) and better penetration in polymer 

chains into interlayer space. Therefore, sonication time of the two steps was set to an 

hour.   

Effects of organomodification of clay and molecular weight of PLA on the 

properties of nanocomposites were studied by using two different organomodified 

clays (Cloisite 10A and Cloisite 93A) and PLA polymers (PLA65 and GF-PLA) with 

different molecular weights, Resulting films were named according to their clay 

content in PLA polymer and its polymer and clay types and coded as shown in Table 

5.1  
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Table 5.1. Sample codes of  prepared films according to polymer and nanoclay 

type and nanoclay content. 
 

Sample Code Polymer Type Clay Type Clay Amount (%) 

PL65-P Purac - 0 

PL65-10A-2 Purac Cloisite 10A 2 

PL65-10A-5 Purac Cloisite 10A 5 

GF-P Good Fellow - 0 

GF-10A-1 Good Fellow Cloisite 10A 1 

GF-10A-2 Good Fellow Cloisite 10A 2 

GF-10A-5 Good Fellow Cloisite 10A 3 

GF-10A-7 Good Fellow Cloisite 10A 7 

GF-10A-10 Good Fellow Cloisite 10A 10 

GF-93A-1 Good Fellow Cloisite 93A 1 

GF-93A-2 Good Fellow Cloisite 93A 2 

GF-93A-5 Good Fellow Cloisite 93A 5 

GF-93A-7 Good Fellow Cloisite 93A 7 

GF-93A-10 Good Fellow Cloisite 93A 10 

GF-NF-2 Good Fellow Nanofil 116 2 

GF-NF-5 Good Fellow Nanofil 116 5 

 

5.1. Structural Characterizations 

 

 Structural characterization of the PLA nanocomposites was performed by using 

FTIR, SEM and XRD analysis in order to understand the interactions between the 

silicate layers and polymer matrix and also their effect on the properties of the films. 

 

5.1.1. Fourier Transform Infrared (FTIR) Analysis 

 

 In any composite system, the interaction of filler with the polymer matrix can 

be examined by FT-IR spectroscopy. Appearance of new bands is the evidence of this 

interaction. Figure 5.1 shows the chemical structure of all silicate layers used in this 

study. Layered silicates give a large band in the region 750-1350 cm
-1

 due to the 

several Si-O-Si bonds between the layered silicate platelets as seen in Figure 5.1. All 

bands detected by FT-IR analysis are consistent with the literature results discussed in 

Section 3.3 in Chapter 3. Cervantes-Uc and coworkers determined organomodifier 

presence in organomodified layered silicates from the bands which were located at 

2842 and 2924 cm
-1

. These bands were assigned to C–H vibrations of methylene 

groups (asymmetric stretching, symmetric stretching respectively) owing to chemical 
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structure of the surfactant.  Organomodified clays, Cloisite 10A and 93A, show two 

bands between 2800 and 3000 cm
−1

 which can be attribute to organomodifier 

presence. However, nanofill 116 does not show these bands since it is an unmodified 

layered silicate. 
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Figure 5.1. FTIR spectra of Cloisite 10A, Cloisite 93 A and Nanofill 116. 

 

Figure A.2.5 in appendix A. illustrates the characteristic bands of PL65-P and 

GF-P  polymers  in the range of   800 cm
−1

 to 1800 cm
−1

 wavenumber region. 

Vibrations of the helical backbone with CH3 rocking modes were observed between 

800 and 1000 cm
−1

. The νO–C asymmetric mode and  C–O stretching modes of the 

ester groups appeared at 1090 cm
-1

 and 1225 cm
-1

. CH3 bands were seen at the region 

between 1500 and 1360 cm
-1

. Besides, at the same region clay has O–H bending at 

1639 cm
−1

, stretching vibration of Si–O–Si at 1040 cm
−1

 and Al–OH–Al deformation 

at 917 cm
−1 

(Figure 5.1.). Moreover, between 2800 and 3000 cm
−1

 IR bands of PL65-P 

and GF-P were observed indicating the CH stretching region of PLA. These bands 

were overlapped with organoclay bands between 2800 and 2900 cm
−1

. Hence, degree 

of exfoliation can not be followed by the FTIR spectra of the PLANCs.  

However, by comparing FTIR spectra of pure PLA and all PLANCs films in 

Figures A.2-5, it was seen that determinative nanoclay bands were located at 525 and 

465 cm
-1 

owing to Al-O stretching and Si-O bending of nanoclays, respectively.  
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Therefore, wavenumber versus percent absorbance graphs were drawn to 

investigate effect of clay addition on these bands for all polymer-clay systems (Figures 

5.2-5.5). It was obviously seen that the percent absorbance of the polymer 

nanocomposites at 525 and 465  cm
-1 

increased with the addition of the clay. That 

indicates the presences of nanoclays in PLA matrix. 
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Figure 5.2. Percent FTIR spectra of   PL65-P and PL65-10A nanocomposite   films in 

400-600cm-
1 

region. 

 

0

5

10

15

20

25

30

35

40

45

50

400450500550600

Wavenumber (cm
-1

)

A
b

so
rb

a
n

ce
 (

%
)

GF-P GF10A-1

GF-10A-2 GF-10A-5

GF-10A-7 GF-10A-10

 

Figure 5.3. Percent FTIR spectra of GF-P and GF-10A nanocomposite filmsin 400-

600cm-
1 

region. 
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Figure 5.4. Percent FTIR spectra of GF-P and GF-93A nanocomposite films in 400-

600cm-
1 

region. 
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Figure 5.5. Percent FTIR spectra of GF-P and GF-NF nanocomposite     films in 

400-600cm-
1 

region. 

 

5.1.2. X-Ray Diffraction (XRD) Analysis  

 

X-Ray diffraction is the most commonly used technique to characterize the 

structure of nanocomposites. The distance between layers of the silicate can be 
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determined by utilizing Bragg‘s law (Equation 4.1.). If the there is no change in basal 

reflections of the layered silicate polymer nanocomposites with respect to 

characteristic peak of nanoclay, it can be said that phase separated structure is obtained 

owing to incompatiblility between the layered silicate and polymer matrix.  

Intercalated structures can be determined by monitoring peak shifts to lower angles 

and/or broader peaks as the spacing of the organoclays increases.  Exfoliated 

structures do not give diffraction peaks since distances between layered silicate 

platelets are higher than the detection limit of XRD (Koo, 2006; Pavlidou and 

Papaspyrides, 2006; Mittal 2010).  

Figures 5.6 and 5.7 show the XRD patterns of Cloisite 10A, Cloisite 93A and 

Nanofil 116 clays.  Their basal spacing (d-spacing) were calculated as 1.92nm, 2.36 

nm and 1.026 nm, respectively from their characteristic diffraction peaks at 2θ values 

of 4.65, 3.72 and 8.65, respectively by  using Braggs‘ law (Equation 4.1).  
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Figure 5.6. XRD patterns of Cloisite 10A and Cloisite 93A. 
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Figure 5.7. XRD pattern of Nanofill 116. 

 

Figure 5.8 shows the XRD results of PLA65-10A nanocomposites. Comparing 

the structures of these films, as seen in Figure 5.8, the characteristics peak of the clay 

disappeared in the XRD spectrum for PL65-10A nanocomposite films when the clay 

content was below 5wt%, which may be attributed to the complete delamination of 

clay platelets (exfoliated structure).  The diffraction peaks of the nanocomposite films 

containing 5wt % and 7wt% clay shifted to lower angles with broader peaks showing 

intercalated flocculated structure. PL65-10A-10 sample showed a peak broadening 

between 2θ values of 2.89 and 5.20 that indicated intercalated and partially 

agglomerated structure. These results indicates that high interaction between the 

layered silicates and polymer matrix was achieved and penetration of the polymer 

chains into layered silicates became more expressed by the increase of the clay amount 

as layered silicates aggregated due to particle interaction.  
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Figure 5.8. XRD patterns of PL65-10A nanocomposites with different clay contents. 

 

Figure 5.9 illustrates the XRD patterns of GF-10A nanocomposite films.  The 

characteristics peak of the clay was not observed in the XRD spectra of GF-10A-1 

nanocomposites. Peaks of the GF-10A nanocomposite films were shifted towards left 

up to the clay content 10wt%. The movement of the basal reflection of clay to lower 

angle indicates the formation of an intercalated nanostructure. As the peak position is 

the same as that of the organoclay, the structure of GF-10A-10 nanocomposite might 

be as phase separated structure.  
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Figure 5.9. XRD patterns of GF-10A nanocomposites with different clay contents. 
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In Figure 5.10, the XRD patterns of GF-93A nanocomposites are shown. The 

basal spacing of GF-93A nanocomposites are determined as 1.90 nm (2θ = 4.62°), 

2.83 nm (2θ = 3.15°) and 1.80 nm (2θ = 4.83°) for 1 wt %, 5 wt %, 7 wt % and 10 wt 

% clay contents, respectively. According to these results, increase in basal spacing of 

layered silicates was not large enough for the penetration of the polymer chains into 

the layered silicates. . This showed that the level of dispersion of clay particles in 

polymer matrix was not good as compared to PLA-65 polymer nanocomposite 

systems.  
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Figure 5.10. XRD patterns of GF-93A nanocomposites with different clay contents. 

 

 

No intercalation of PLA occurs in the case of structure of GF-NF 

nanocomposites determined to be phase separated (Figure 5.11). Natural clay is 

immiscible with PLA due to surface energy differences or polarity differences. 

Interlayer distance of the GF-NF nanocomposites with 2wt% and 5wt% platelets were 

calculated as 1.43 and 1.49 nm, respectively. The intercalated structure could not be 

achieved   as the interlayer distance between silicate galleries were small for 

intercalation, even though interaction exists between PLA and natural clay. 

increasing 

clay loading 
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Figure 5.11. XRD patterns of GF-NF nanocomposites with different clay contents. 

 

By comparing the XRD spectra of PL65-10A, GF-10A, GF-93A and GF-NF 

nanocomposites it was seen that best results were obtained at PL65-10A 

nanocomposite system as interfacial interaction between the PL65 and Cloisite 10A 

was higher than others owing to nature of the polymer, presence of organic modifier 

and modifier type. Inherent viscosity of PL65 is greater than GF polylactide which 

indicates molecular weight of PL65 is higher than molecular weight of GF. In the 

literature, the penetration of the chains of the low molecular weight polymers into the 

basal spacing was easy; however, the chance of bond capability between the layered 

silicate and polymer chain was higher when the molecular weight was higher (Fornes 

2001; Koo, 2006; Mittal. 2010).  This could be the main reason of the better 

morphological structure was obtained for PL65-10A nanocomposites with respect to 

other PLANC‘s. Besides, the better morphological structures were obtained at 

PLANCs prepared with the Cloisite 10A nanoclays compared to other clays used in 

this work as organomodification increased compatibility of layered silicates with 

polymer matrix. Due to the presence of organomodifiers, the more hydrophobic 

structure of the nanoclays was obtained; hence electrostatic forces between the layered 

silicates were reduced. 
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5.2. Transport Properties of PLANCs 

 

 Transport properties of prepared films were investigated by measuring water 

vapor, oxygen, and carbon dioxide transmission rates through PLA and PLANCs 

films. Water vapor (WVP), oxygen (OP) and carbon dioxide (CP) permeability of each 

film was calculated by using equations 4.2 and 4.3. 

 

5.2.1. Effect of Relative Humidity on Thickness of PLANCs  

 

 Swelling in polymeric materials is important in several aspects. Water 

molecules may act as plasticizers relaxing interactions between polymeric chains and 

may have dramatic changes in permeability properties especially for hydrophilic 

polymers, but solution of transport properties in polymer assumes that thickness of 

polymer film is constant.  To make sure that this assumption is valid for our polymer 

system studied, swelling degree of the prepared films were investigated. Average 

swelling degree of the PLA and PLANCs were determined by measuring thickness of 

the films before and after humidification. Average swelling degree of the PLA and 

PLANCs were calculated to be between 0.5 % to 2.0 %. Average swelling degrees of 

prepared films were tabulated in Table A.2.  From the results, it was seen that the 

thickness of the films did not change significantly. This can also be accepted as an 

indication of hydrophobic character of PLA. Therefore permeability calculations were 

done by assuming no change in the initial thickness. 

 

5.2.2. Water Vapor Permeability 

 

 Water vapor permeability (WVP) is one of the important properties for 

industrial usage of polymers especially in food packaging applications. In the literature 

significant improvements on water vapor permeability were obtained with 

incorporation of layered silicates up to critical clay loading when good level of 

dispersion of layered silicates in the polymer matrix were achieved (Alexandre et al., 

2009).  
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The results of WVP analysis were plotted in Figure 5.12. The water vapor 

permeability of PL65-P and GF-P are calculated as 2.84 and 0.15 g m/m
2
 day mmHg, 

respectively. WVP of base polymers were observed to be different owing to degree of 

crystallinity and molecular weight of the pure polymers and they were consistent with 

the literature seen in Table 2.2 in Chapter 2.  Effect of organomodification of 

nanoclays on WVP was also investigated. While WVP of samples prepared by 

organomodified nanoclays decreased significantly; WVP of the GF-NF films prepared 

by the incorporation of pristine nanoclay; increased by 64% with respect to pure 

polymer. Therefore, it can be said that organomodification significantly affected the 

molecular interaction between the layered silicates and polymer matrix leading to 

enhancement of the water barrier performances of polymers as hydrophilic character 

of natural clay turns toward hydrophobic by organomodification in accordance with 

study of Yano and coworkers (1997). Yano and coworkers (1997) modified natural 

clay in order to reduce hydrophilicity of montmorollinite as it was negatively charged 

due to sodium ions. Intercalated sturcture of layered silicates were obtained in 

polyimide matrix and decrease in permeability coefficient of water vapor was 

observed. Also, Rhim and coworkers (2009) showed that water vapor permeability of 

polylactide increased with the addition pristine nanoclay whereas with the 

organomodified nanoclay addition decreased the permeability due to the increase in 

diffusing path lenght of water vapor in polymer matrix.  
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Figure 5.12. Water vapor permeabilities of PL65-10, GF-10A, GF-93A and GF-NF  

 nanocomposites films with respect to clay content. 
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In Figure 5.13, it was observed that the permeability values of PL65-10A 

nanocomposites are lower than PL65-P. Moreover, the higher the clay content the 

lower the water vapor permeability of PL65-10A nanocomposites. The percent of 

maximum decrease in water vapor permeability of nanocomposite films was achieved 

as 97% in PL65-10A-10 nanocomposite. Decrease in permeabilities is believed to be 

due to the presence of ordered dispersed particle layers with large aspect ratios in the 

polymer matrix, thus water vapor travels through the film to follow a tortuous path 

through the polymer matrix surrounding the clay particles by increasing the effective 

path length for diffusion (Ray and Okomato, 2009).  
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Figure 5.13. Water vapor permeabilities of PL65-10A nanocomposites films with 

respect to  clay content. 

 

Figure 5.14 shows the effect of organomodification type on the WVP for GF-

10A, GF-93A and GF-NF nanocomposites systems. Results of analyses indicated a 

continuous decrease in WVP of GF-10A and GF-93A nanocomposites with increased 

clay content up to critical clay loading. In case of GF-10A and GF-93A 

nanocomposite systems, the percent of maximum decrease were determined to be 53% 

and 45% for 7wt% and 10wt% nanoclay loading, respectively.  

The results showed that vapor permeability of GF-10A and GF-93A 

nanocomposites were systematically decreased with increasing clay content and when 

the clay loading is as much as 7 wt% and 10 wt%, respectively. It was obviously seen 

that both polymer type and the organomodification type affect the improvement of 

water vapor barrier properties of polymer nanocomposite. However, the permeability 
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of the GF-NF films increased by 64% with respect to pure polymer. Therefore, 

organomodification significantly improved the molecular interaction between the 

layered silicates and polymer matrix leading to enhancement of the water barrier 

performances of polymers (Yano et al., 1997).  
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Figure 5.14. Water vapor permeabilities of GF-10A, GF-93A and GF-93A         

nanocomposites films with respect to  clay content. 

 

5.2.3. Oxygen Permeability 

 

Oxygen permeability plays an important role in packaging application to 

control shell-life of the foods, drinks and goods. Moreover, corrosion which is known 

as a gradual wearing away of a metal by a chemical or oxidizing process, can be 

prevented by using the polymers as coating materials.Therefore, when a polymer film 

has a low oxygen permeability coefficients, the oxidation is retarded and the shelf-life 

of the product extends. (Sangaj and Malshe 2004; Siracusa et al., 2008).  

Maiti and coworkers (2002) studied oxygen permeability (OP) of polylactide 

nanocomposite and 60 % improvement in OP was obtained with the addition of the 

modified montmorollinite due to the good level of dispersion. OP of prepared films 

was given in the Figure 5.15. OP of PL65-P and GF-P were calculated as 5.33x10 
5
 

and 3.11x10 
5
 ml m/m

2
 day atm, respectively. Incorporation of organoclays resulted in 

significant OP decreases depending on the polymer and nanofiller type up to critical 

clay loading except natural clay loaded composites. 
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Figure 5.15. Oxygen permeabilities of PL65-10A, GF-10A, GF-93A and GF-NF 

nanocomposites films with respect to  clay content. 

 

 

Figure 5.16 illustrates the OP of PL65 nanocomposite films. Incorporation of 

organomodified nanoclays into PLA polymer decreased OP by 99 %, besides; oxygen 

permeability of PL65-10A nanocomposite was decreasing continuously with clay 

concentration. It was clearly understood that in nanocomposite system molecular path 

way of the oxygen molecule was increasing due to dispersion state of silicate layers in 

polymer matrix indicating that interfacial area between the silicate layers and polymer 

chain was larger (Ray, 2003). These results showed the similar behavior as WVP 

results. 

In Figure 5.17, OP of GF-10A, GF-93A and GF-NF nanocomposites systems 

were seen.  OP of GF-10A and GF-93A nanocomposite films were decreased by 47% 

and 32%, respectively. Besides, oxygen permeability of GF-10A and GF-93A 

nanocomposites were systematically decreased with increasing clay content and when 

the clay loading is as much as 5 wt% and 2 wt%, respectively which means there was 

no good interaction between silicate layers and polymer matrix owing to polymer type. 

Moreover, OP of GF-NF nanocomposite films were increased instead of decreasing as 

expected with the addition of clay that indicated agglomeration state. 
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Figure 5.16. Oxygen permeabilities of PL65-10A nanocomposites films with respect 

to  clay content. 
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Figure 5.17. Oxygen permeabilities of GF-10A, GF-93A and GF-NF nanocomposites 

films with respect to  clay content. 

 

All in all, oxygen and water vapor permeability behavior of PLANC films 

were nearly the same  due to  same tortuous path of the polymer matrix.   

 

 

 

 

 



 

 

 

70 

5.2.4. Carbon Dioxide Permeability 

 

Carbon dioxide permeation from the polymer films are also important in food 

packaging, and coating applications like oxygen and water vapor (Siracusa et al., 

2008). Figure 5.18 shows permeability of PLA and PLANCs films. The carbon 

dioxide permeability of PL65-P and GF-P are calculated as 1.64x10 
6
 and 5.99x10 

5
 ml 

m/m
2
 day atm, respectively.  
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Figure 5.18. Carbon dioxide permeabilities of PL65-10A, GF-10A, GF-93A and GF-

NF nanocomposites films with respect to  clay content. 

 

 

Żenkiewicz and Richert (2008) studied carbon dioxide permeability of 

polylactide layered silicate nanocomposites and 22 % decrease in carbon dioxide 

permeability was observed with the incorporation of Cloisite 30B. In accordance with 

literature, in Figures 5.19 and 5.20, maximum percent improvement of carbon dioxide 

barrier in PL65-10A, GF-10A and GF-93A was achieved as 89%, 26% and 15% 

respectively. In PL65-10A nanocomposite, decrease in the carbon dioxide 

permeability was obtained for all clay loadings, however l the GF-10A-7 

nanocomposites films have not been achieved good level dispersion of clays in 

polymer matrix. Besides carbon dioxide permeability of GF-10A and GF-93A 

nanocomposites were systematically decreased with increasing clay content and when 

the clay loading is as much as 5 wt % and 2 wt %, respectively (Figure 5.19) which 

means there is no good interaction between silicate layers and polymer matrix owing 
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to polymer type. Moreover, carbon dioxide permeability of GF-NF nanocomposite 

was  higher than  PLA films. 
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Figure 5.19. Carbon dioxide permeabilities of PL65-10A, GF-10A, GF-93A and GF-

NF nanocomposites films with respect to  clay content. 
 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

1.00E+07

1 2 3 4 5 6

C
P

  (
m

l 
/m

2
d

a
y

a
tm

)m
m

Clay Content (%)

GF-10A

GF-93A

GF-NF

 
 

Figure 5.20. Carbon dioxide permeabilities of GF-10A, GF-93A and GF-NF 

nanocomposites films with respect to  clay content. 
 

 
Besides, XRD results showed that PL65 nanocomposites had exfoliated and 

flocculated intercalated structure, intercalated structures were obtained in GF-10A and 
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GF-93A nanocomposite films and phase separated structure were occurred in GF-NF 

composites Best improvement in barrier properties was achieved at PL65 

nanocomposites. Therefore, we can say that permeability data of the nanocomposites 

were in good agreement with XRD results.       

 

5.2.5. Permeability Models 

 

The dramatic improvements in barrier properties of polymer nanocomposites 

are attributed to formation of a tortuous path by the incorporation of nano-size fillers 

(Herrera-Alonso, 2009; Choudalakis, 2009). That is, when impermeable nanoparticles 

are incorporated into a polymer, the permeating molecules are forced to wiggle around 

them in a random walk, and hence diffuse through a tortuous pathway. The degree of 

exfoliation or intercalation in the polymer matrix is the most important factor that 

affects the barrier properties of the layered silicate nanocomposite films. However, for 

each nanoclay-polymer system, permeability properties may differ with several factors 

such as clay content, orientation of fillers etc. Hence, it is impossible to comment on 

degree of exfoliation by using permeation data alone. At this point, predictive 

theoretical permeability models may be helpful. Experimental permeability data can be 

fit to various phenomenological models, predicting the permeability of polymer 

systems filled with nanoclays as a function of clay concentration and aspect ratio of 

silicate layers (Sun, 2007). Effective aspect ratio utilized in prepared nanocomposites 

can be predicted by using the models, and comments can be made by comparing 

predicted aspect ratio with literature data. 

Several permeability models discussed in details in Chapter 3 (given in Table 

3.4) were fitted to experimental WVP, OP and CP data of PL65-10A and GF-10A 

nanocomposites as the assumption of models is good level dispersion of silicate layers 

in polymer matrix. Cussler-random model is the well-fitted model, also aspect ratio 

was calculated between 498-574. In the case of GF-10A nanocomposite system, the 

well-fitted model was found as Nielsen model with the aspect ratio of 243-382. Higher 

aspect ratio indicates intercalation or exfoliation structure in polymer layered silicate 

nanocomposite system. 
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Figure 5.21. Permeability models fitted to experimental (a)water vapor (b) oxygen and     

(c) carbon dioxide permeability of PL65-10A nanocomposite films. 
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Figure 5.22. Permeability models fitted to experimental (a)water vapor(b) oxygen and 

(c) carbon dioxide permeability of  GF-10Ananocomposite films. 
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5.3. Thermal Analysis 

 

Thermal properties of the PLA and PLANCs were investigated using 

differential scanning microscopy (DSC) and thermogravimetric analysis (TGA). 

 

5.3.1. Differential Scanning Calorimetry (DSC) Analysis 

 

DSC analyses of the prepared nanocomposite samples showed no significant 

effect of organomodification or nanoclay content in thermal properties of 

nanocomposites compared to pure PLA films. As can be seen from the DSC results 

given together in the Table 5.2; only small variations in glass transition, melting and 

crystallization temperatures as well as degree of crystallinity of PLA nanocomposites 

were observed. However, crystallization temperature of PL65 nanocomposites were 

decreasing with clay loading that indicates nucleation effect due to the large surface 

area for the nanofiller (Mittal, 2010). Moreover, glass transition of the GF-93A 

nanocomposite films were increased about 10 
o
C, but same trends were not achieved at 

other nanocomposite systems, therefore this increment was caused by organomodifier 

type. Furthermore melting temperature, of GF-10A and GF-93A nanocomposite films 

were slightly decreased by the incorporation of the clay into the polymer matrix while 

significant change was not observed in the other composite systems.  As it is 

mentioned in Chapter 3, there was no restricted relationship between the DSC results 

and dispersion of state and amount of clay. Table 5.2 tabulates DSC results of PLA 

and PLANC‘s films. 
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Table 5.2. DSC results of PLA and PLANCs films 

 

Sample 

Tg Tm Hm Xc Tc (
o
C) 

(
o
C) (

o
C) (J/g) % cold 

PL65-P 62.07 164.07 33.46 36.0 121.43 

PL65-10A-2 61.24 164.55 34.47 37.1 111.04 

PL65-10A-5 61.01 166.82 30.82 33.1 111.86 

GF-P 59.35 169.94 36.97 39.8 101.1 

GF-10A-1 61.78 163.41 36.18 38.9 102.15 

GF-10A-2 61.66 163.68 35.38 38.1 102.53 

GF-10A-5 61.41 163.35 34.27 36.9 108.27 

GF-10A-7 61.93 162.56 42.93 46.2 101.96 

GF-10A-10 51.36 159.41 33.99 36.5 100.8 

GF-93A-1 51.79 163.58 33.55 36.01 102.75 

GF-93A-2 61.46 163.10 34.53 37.1 103.10 

GF-93A-5 62.41 162.67 33.32 35.8 110.56 

GF-93A-7 67.67 162.91 33.30 35.8 101.96 

GF-93A-10 60.72 162.07 35.86 38.6 101.1 

GF-NF-2 57.30 169.76 44.38 47.7 108.97 

GF-NF-5 56.90 170.56 36.68 39.4 109.98 

 

5.3.2. Thermogravimetric Analysis (TGA) 

 

Thermogravimetric analysis (TGA) was conducted to determine the effect of 

nanocomposites on PLA thermal stability. TGA analyses were done under nitrogen 

atmosphere with a temperature increment of 10
o
C/min. Discussions and comparisons 

on thermal stability of PLANCs were done according to: 

 the onset temperature of thermal degradation (Tonset) 

 end temperature of thermal degradation (Tend) 

 the yield of charred residue (char %) 

 10wt%  loss temperature (T0.1) 

 50wt%  loss temperature (T0.5) 

 

To see the nanoclay and polymer interaction clearly, TGA analysis of the 

nanoclays were conducted. The thermogravimetric weight loss curves of the nanoclays 
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used in this study can be seen in Figure 5.23. From the decomposition pattern of the 

nanoclays was different for each sample owing to organomodifier presence and type. 

Onset decomposition temperatures of organomodifiers were generally observed at 

200
o
C in the literature (Koo, 2006; Mittal, 2010). In accordance with literature, 

decomposition of the organoclays started around 200-250 
o
C and the percent weight 

loss of the Cloisite 10A and 93A were observed as 45% and 42%, respectively. 

Nanofil 116 loss only 8% of its weight up to 656 
o
C, then weight gain were observed 

due to the presence of oxygen and metal species in the clay as clay might act as 

catalyst to the oxidative cleavage of alkenes to produce aldehydes at elevated 

temperatures (Cervantes-Uc, 2007).   
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Figure 5.23. TGA results of Cloisite 10A, Cloisite 93A and Nanofil 116. 

 

PL65-10A nanocomposites showed enhancement in thermal stability compared to 

pure PLA. TGA indicated an increase of 28 and 31 °C in the Tonset value of 2 wt% and 

5wt% organomodified nanoclay containing PL65-10A nanocomposites, respectively. 

Similar improvements were also seen for Tend, T0.1 and T0.5. In case of onset 

temperature of GF-10A and GF-93A nanocomposites, maximum temperature 

improvement was only 10 °C. The reason of less significant property improvements 

for GF-10A and GF-93A nanocomposites was probably due to poorer dispersion in 

silicate layers in polymer matrix. Therefore, it can be said that better dispersion of the 

layered silicates in the matrix of PL65 nanocomposites is responsible for significant 

http://www.sciencedirect.com/science/article/pii/S0040603107001281#fig3
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thermal stability. Besides, high molecular interaction between silicate layers and 

polymer chains also contributes to thermal stability improvements as reported in 

several studies (Mittal, 2010). Besides these, in GF-10A nanocomposites, Tonset values 

of 10wt % clay addition decreased due to presence of more organomodifier leading 

polymer matrix to become destabilize as ammonium cations tended to decompose to 

produce ammonia and olefein (Mittal, 2010). 

On the contrary, PLANCs prepared by the incorporation of unmodified natural 

montmorillonite exhibited 12 °C and 14 °C decreases on the Tonset for GF-NF-2 and 

GF-NF-5 nanocomposite films, respectively. Similar decreases were also observed for 

Tend, T0.1 and T0.5. Alteration of thermal stability of PLA nanocomposites can be 

attributed poor bonding between unmodified nanoclays and PLA matrix due to 

inefficient dispersion of nanoclays in the matrix. 

Mittal (2010) summarized that the presence of nanofiller leaded in degradation 

reactions before the onset of thermal degradation of neat polymer; therefore, char 

formation increased and rate of mass loss in degradation was slowed down. But, 

ammonium alkyl salts in the clays showed catalytic activity towards the degradation 

reactions. Moreover, there could be no interaction between the layered silicates and 

polymer chains if the expected char residue is equal to obtained one. Therefore; GF-

10A-1 and PL65-10A-2 nanocomposites, higher char formation was obtained than the 

expected due to interaction between the organomodifier and polymer chains indicating 

fully exfoliated structure. However, low char residue was obtained than expected with 

the addition of nanoclay. For instance, the expected charr residue of GF-10A-5 

nanocomposite film was expected as 3.7% but obtained value was 0.58 corresponding 

partially exfoliated and intercalated structure. Furthermore, it was seen that in GF-

10A-7, GF-93A-7 and NF-10A-5 nanocomposite films char residue was found as 

expected which showed lower interaction between layered silicate and polylactide 

chains. 
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Table 5.3. TGA results of PLA and PLANCs films. 

 

Sample 

Tonset Tend Char T0.1 (
o
C) T0.5 (

o
C) 

(
o
C) (

o
C) % 10%mass loss 50%mass loss 

PL65-P 274.60 346.66 1.181 301.33 326.58 

PL65-10A-2 305.76 369.92 3.230 324.86 347.59 

PL65-10A-5 302.42 376.01 2.436 321.33 348.53 

GF-P 308.1 368.55 0.917 325.51 348.03 

GF-10A-1 312.89 473.98 7.253 330.61 353.30 

GF-10A-2 310.27 375.93 0.973 334.36 352.59 

GF-10A-5 313.00 376.87 0.600 321.91 349.13 

GF-10A-7 318.14 735.04 4.650 332.61 353.50 

GF-10A-10 316.70 379.76 2.009 334.79 356.17 

GF-93A-1 306.20 373.54 0.530 329.79 350.89 

GF-93A-2 310.96 368.04 3.739 332.59 349.16 

GF-93A-5 316.40 370.11 2.746 333.50 349.51 

GF-93A-7 316.58 383.48 4.563 336.34 365.94 

GF-93A-10 318.56 380.23 2.788 333.381 356.15 

GF-NF-2 296.91 359.78 0.566 315.63 338.73 

GF-NF-5 294.15 362.39 5.158 315.73 339.37 

      

Consequently, thermal stability of the PL65-10A, GF-10A and GF-93A 

nanocomposite systems increased with incorporation of the clay owing to the 

dispersion of the clay and surfactant presence in the polymer matrix.  

 

5.4. Mechanical Analysis 

 

Mechanical properties were important properties of polymer to determine 

application area and design process. Mechanical properties are generally investigated 

by the help of short-term tests such as tensile testing, dynamic mechanical analysis etc. 

Tensile testing and dynamic mechanical analysis in tensile mode was performed to 

investigate the stiffness and temperature dependency on the mechanical properties of 

the PLA and PLANCs. 
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5.4.1 Tensile Test 

 

Generally, Young‘s modulus and tensile strength values of layered silicate 

nanocomposites increases with the addition of nanoclay up to critical clay loading 

whereas elongation at break values decreases (Koo, 2006; Mittal, 2010).  However, 

Lewitus and coworkers (2006) achieved 45% increase in elongation at break values 

with addition of 5wt% Closite 25A into polylactide matrix. Moreover, Koh and 

coworkers (2008) observed different behavior of Young‘s modulus and tensile 

strength of PLANCs with the addition of different organomodified nanoclays due to 

the interaction between the organomodifier and polymer chain. The tensile strengths 

and strength at breaks of the PLA and PLANC films with different clay contents and 

types were presented in Table 5.4. The values showed that, the tensile strength of the 

PLANCs increased remarkably with the clay content and possessed a maximum value 

for a critical clay loading. Above this critical loading, the strength values of all the 

PLANCs decreased. Improvements or decreases in the tensile strength can be 

attributed to level of nanoclay dispersion in the PLA matrix. The tensile strength and 

strength at break values increased as a result of incorporation of 1wt% organomodified 

nanoclay as can be seen for GF-10A and GF-93A nanocomposite films. Further 

nanoclay addition into PLA matrix resulted in decreased improvement efficiency or 

alteration of base polymer mechanical properties. Such decreases can be attributed to 

poorer dispersion of nanoclays as it was proven by the XRD results.  The most 

significant improvements for tensile strength were obtained for PL65-10A 

nanocomposites as in the case of permeability properties. This can be attributed to 

better interactions between matrix and nanoclays as a result of more effective 

dispersion of fillers.  
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Table. 5.4. Tensile strength, strength at break, elongation at break and Young‘s 

Modulus  of  PLA and PLANCs films 
 

Sample 

Tensile 

Strength 

(MPa) 

Strength 

@break (MPa) 

Elongation 

@break 

(%) 

Young’s 

Modulus 

PL65-P 54.79±2.02 47.30±6.22 4.12±1.50 26.43±1. 06 

PL65-10A-2 60.05±3.89 59.83±2.10 5.36±1.00 27.21±2.82 

PL65-10A-5 61.44±3.68 57.74±4.86 6.67±2.60 30.02±1.71 

GF-P 54.24±3.73 45.36±3.22 16.56±6.77 24.26±1.69 

GF-10A-1 58.11±1.58 53.11±4.52 3.07±0.28 25.94±1.23 

GF-10A-2 53.70±3.08 50.12±3.38 4.56±1.49 27.70±1.75 

GF-10A-5 45.78±1.86 43.27±1.32 3.85±1.51 28.08±0.76 

GF-10A-7 41.78±2.17 41.76±2.55 1.71±0.97 32.90±3.65 

GF-10A-10 30.16±4.58 29.74±4.95 1.27±0.15 25.07±2.38 

GF-93A-1 56.34±1.59 50.09±1.02 6.71±1.66 25.54±0.42 

GF-93A-2 49.04±2.49 46.58±4.26 4.31±1.34 26.09±0.39 

GF-93A-5 46.33±2.32 45.10±2.03 4.31±1.34 28.51±1.93 

GF-93A-7 42.52±1.98 40.40±14.19 4.40±0.99 26.59±1.19 

GF-93A-10 36.09±3.45 35.89 ±14.19 1.98±0.46 23.43±3.59 

GF-NF-2 50.31±2.54 48.59±1.99 3.91±0.70 24.43±1.41 

GF-NF-5 48.97±1.46 48.99±4.34 5.15±3.14 22.31±4.88 

 

The most promising feature of nanocomposites in terms of mechanical 

properties is the Young‘s modulus improvements. Several authors reported significant 

modulus improvements obtained by nanocomposites (Zewitus, 2006; Mittal, 2010). 

The Young‘s modulus increased continuously with increasing clay content up to 

7 wt% for GF-10A and 5 wt% for GF-93A nanocomposite films, respectively as can 

be seen in the Table 5.4. This behavior was ascribed to the resistance exerted by the 

clay itself and to the orientation and aspect ratio of the intercalated silicate layers 

(Mittal, 2010). Additionally, the stretching resistance of the oriented backbone of the 

polymer chain in the gallery was also reported to contribute to modulus enhancements 

(Mittal, 2010). Further incorporation of nanoclays lead to decreases in improvements 
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due to more intercalated structure of nanocomposites as it was also evidenced by XRD 

analysis. Most significant effect of ineffective dispersion and phase separation on 

modulus of nanocomposites was observed for GF-NF samples prepared by unmodified 

nanoclay. Modulus of nanocomposite films altered compared to base PLA films. Such 

modulus diminishing was attributed to incompatibility of hydrophilic montmorillonite 

with hydrophobic matrix observed in several studies (Mittal, 2010). Besides, stiffness 

of PLA has been shown to be improved when nanocomposites are formed with layered 

silicates up to critical clay loading. It was understood that high aspect ratio of layered 

silicate layers results in high interfacial area to volume and increase in the mechanical 

properties  with very low filler content are expected. Furthermore, beyond the critical 

clay loading the additional silicates are already affected by other silicate layers, and 

thus it was expected that the enhancement of modulus would be much less dramatic. 

A characteristic drawback of composite applications is that elasticity of the 

polymeric films is sacrificed for property improvements. Nanocomposites often 

exhibit the same drawback in a lesser content than conventional composites (Koh, 

2008; Rhim, 2009).  The elongation at break values of the nanocomposite films 

prepared by using various clays was tabulated in Table 5.4. The elongation at break of 

pure PLA clearly decreased with the incorporation of nanoclays and also elasticity 

decreases become more expressed by the increase in the nanoclay loading. 

Interestingly, elongation at break of PLA65-10A nanocomposites exhibited significant 

increases, a 50% increase for 5wt% organomodified nanoclay loading. Elasticity 

increase is in good accordance with superior barrier improvements observed in 

PLA65-10A samples and can be attributed to facile interactions between polymer and 

nanoclays (Mittal, 2010). 

 

5.4.2. Dynamic Mechanical Analysis (DMA) 

 

Glass transition temperature of the nanocomposites and temperature 

dependence on storage (G′) and loss modulus (G’′) and tan δ of PLNCs were 

investigated by dynamic mechanical analysis. Glass transition temperatures (tan δ 

values in Figures 5.24 and 5.25) of all nanocomposite increased with the addition of 

the clay.(Table 5.5.)  
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In Table 5.5 glass transition temperature of nanocomposites were seen and 

glass transition temperature increased with the addition of clay. Figures 5.24 and 5.25 

show the change in storage modulus, loss modulus and tanδ values of PLANCs with 

respect to temperature.  As seen in the figures, below Tg , the enhancement of G′ is 

clear in the PLA65-10A, GF-10A and GF-93A nanocomposites. Furthermore, above 

Tg, all the three nanocomposites systems exhibited much higher enhancement of G′ as 

compared to that of pure PLA owing to reinforcement by layered silicates and high 

temperature. Strong enhancement of modulus was observed above Tg, as the materials 

become soft leading to reinforcement effect of the clay particles negligible. Besides in 

GF-NF composite system, decrease in storage modulus that was due to the phase 

separated structure.  

 

Table 5.5. Glass transition temperature values of PLA and PLANCs from DMA 

 

Sample Tg(
o
C) Sample Tg(

o
C) 

GF-P 69.86 GF-93A-1 - 

GF-10A-1 72.44 GF-93A-2 70.02 

GF-10A-2 75.26 GF-93A-5 77.90 

GF-10A-5 77.09 GF-93A-7 78.65 

GF-10A-7 78.15 GF-93A-10 79.85 

GF-10A-10 80.02 PL65-P 75.20 

GF-NF-2 75.20 PL65-10A-2 78.91 

GF-NF-5 81.37 PL65-10A-5 81.37 

 

On the other hand, above Tg the enhancement of G″ of PLACNs is much higher 

compared to that of below Tg indicating plastic response to the deformation was 

important in the presence of clay as material becomes soft. However, there is no 

significant shift and broadening of tan δ curves with incorporation of the layered 

silicates. This could be explained as the unrestricted segmental motions at the organic–

inorganic interface neighborhood of intercalated PLACNs (Ray and Bousmina, 2005; 

Mittal 2010). It is obvious that choosing appropriate polymer-clay pair and clay 

content in polymer were more effective in improvement of the dynamic mechanical 

properties of PLANC films.  
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Mittal (2010) summarized that G‘/G gave the information about the structure 

of nanocomposites. Higher ratio was attributed to presence of filler in the matrix 

leading to solid-like behavior. Decrease in the ratio showed the agglomeration of the 

filler in the polymer matrix which did not contribute the mechanical properties. For 

GF-10A and GF-93A nanocomposites G‘/G ratio increased up to 7wt% and 5wt% clay 

amount, respectively. For PL65-10A nanocomposite system, this ratio increased 

whereas in NF-10A nanocomposite system, it did not as natural clay particles 

aggregated in PLA matrix.  Based on all DMA results, it was seen that G‘/G ratio 

increased with respect to pure polymer up to critical clay amount when the exfoliation 

of nanoclay is achieved due to an interfacial interaction between polymer matrix and 

clay layers.   
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                                (a)                                                                       ( b) 

Figure 5.24. Temperature dependence of storage modulus (G′), loss modulus (G″), and 

their  ratio (tan δ) for  (a) PL65-10A nanocomposites (b)  GF-10A 

nanocomposites. 
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                                (a)                                                                       ( b) 

Figure 5.25. Temperature dependence of storage modulus (G′), loss modulus (G″), and 

their ratio (tan δ) for  (a)  GF-93A nanocomposites (b) GF- NF 

nanocomposites. 

 

5.5. Rheological Analysis 

 

Rheological measurements were performed to investigate the viscoelastic 

properties of GF-10A nanocomposite system only above the melting temperature 

defined as 170
o
C. 
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Initially dynamic strain sweep test was performed to investigate the linear and 

nonlinear region of GF-P and GF-10A nanocomposite systems, illustrated in Figure 

5.26. As seen in the figure, nonlinear region started where decrease in the storage 

modulus was observed. It is seen that nonlinear region of the nanocomposite differed 

with the addition of the clay. According to these results, %strain was set below %10 to 

perform linear viscoelastic measurements. 
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Figure 5.26. Storage modulus of GF-P and GF-10A nanocomposites as a function of   

%strain. 

 

Figures 5.27-5.29 show the angular frequency dependency of storage modulus, 

loss modulus, and complex viscosity for GF-P and GF-10A nanocomposites.  The 

modulus of the nanocomposites increased with increasing clay loading at all 

frequencies. This showed that materials exhibited a pseudo-solid-like behavior with 

the addition of the clay.  At high frequencies, storage and loss modulus of GF-10A 

nanocomposites remained same as GF-P and unaffected with frequency changes. 

However, at low frequencies, storage modulus and loss modulus increased 

monotonically with increasing clay content. As layered silicates can resist through the 

flow at lower frequencies, but at higher frequencies layered silicates involves in flow 

(Ray and Bousima, 2005).  
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Figure 5.27. Storage modulus of GF-P and GF-10A nanocompositesas a function of  

angular frequency at 170 
o
C. 
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Figure 5.28. Loss modulus of GF-P and GF-10A  nanocomposites as a function of 

angular frequency at 170 
o
C. 
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Figure 5.29. Complex viscosity of GF-P and GF-10A nanocomposites as a a function    

of temperature. 

 

Ray and Okamato (2003) explained that slope of storage modulus (G‘(ω))  and 

loss modulus (G‖(ω)) were lower than neat polylactide due to the solid-like behavior 

of the nanocomposites. In Table 5.6, it was seen that slopes of nanocomposites were 

decreasing with the addition of nanoclay indicating pseudo-solid-like behavior in 

accordance with literature studies (Ray and Okamato, 2003; Gu, 2007). 

 

Table 5.6. Terminal regions of slopes of G‘(ω) and G‖(ω) 

 

Sample G’(ω) G”(ω) 

GF-P 0.93 0.83 

    GF-10A-1 0.83 0.76 

GF-10A-2 0.62 0.43 

   GF-10A-5 0.44 0.29 

GF-10A-7 0.35 0.26 

GF-10A-10 0.19 0.18 

  

Figure 5.30 shows the shear rate dependence of viscosity for GF-P and GF-

10A nanocomposites measured at 170
o
C. GF-P showed almost Newtonian behavior at 

all shear rates however, the GF-10A nanocomposites exhibited non- Newtonian 

behavior. At very low shear rates, the shear viscosity of the GF-10A nanocomposites 

initially exhibited increase in the viscosity with respect to time and this indicated the 
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rheopexy as observed at very low shear rates as layered silicate nanocomposite were 

mostly strongly correlated the mesoscopic structure of the layered silicates which 

depended on not only the strength of the polymer-clay interaction but also inherent 

viscoelastic properties of layered silicates (Mittal, 2010) Additionally, at very high 

shear rates, the steady shear viscosities of GF-10A nanocomposites are lower than 

pure PLA. These observations suggest that the silicate layers are strongly oriented 

towards the flow direction at high shear rates. In accordance with this study, Ray and 

Okamato (2003) and Gu and coworkers (2007) also studied steady shear viscosity of 

PLANCs as a function of shear rate and shear thinning behavior were found with the 

addition of nanoclay at higher shear rates. 
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Figure 5.30. Shear Viscosity of GF-P and GF-10A  as a function of shear rate. 

 
The steady shear rheological behavior of GF-P and GF-10A nanocomposites 

are shown in Figures 5.31-5.36. The shear viscosity of GF-10A nanocomposites were  

improved  at all shear rates with time for all clay loadings , and at a fixed shear rate it  

increased monotonically with increasing clay loadings. On the other hand, all GF-10A 

nanocomposites exhibited strong rheopexy behavior, and this behavior was obviously 

seen at low shear rate 0.001 s
-1

, while viscosity of GF-P decreased at all shear rates. 

The same behavior was observed by Ray and Okamoto (2003) in PLANCs films as the 

planer alignment of layered silicates towards the flow direction under steady shear 

rate. 
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Figure 5.31. Steady shear viscosity of GF-P as a function of time. 
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Figure 5.32. Steady shear viscosity of GF-10A-1  as a function of time. 
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Figure 5.33. Steady shear viscosity of GF-10A-2 as a function of time. 
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Figure 5.34. Steady shear viscosity of GF-10A-5 as a function of time. 
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Figure 5.35. Steady shear viscosity of GF-10A-7 as a function of time. 
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Figure 5.36. Steady shear viscosity of GF-10A-10as a function of time 
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5.6. Contact Angle Measurements 

 

Contact angle measurements were performed to observe the effects of clay type 

and clay amount on surface hydrophobicity of PLA and PLANC films. Contact angle 

is the measure of wettability of a substance. While hydrophobicity of the surface 

increases, contact angle tends to increase. Measured water contact angles of the PLA 

and PLANC films are given in Table 5.7. Surface hydrophobicity of neat PLAobtained 

from Goodfellow Company was observed as higher than neat PLA supplied by Purac 

Company as the contact angle of the GF-P was measured higher than the other due to 

molecular weight difference of the polylactide as hydroxyl group increased while the 

molecular weight increased leading to increase in hydrophilicity (Sangaj and Malshe, 

2004). In case of PL65-10A, GF-10A and GF-93A nanocomposite, the degree of 

surface hydrophobicity increased with increasing clay content. However, contact 

angles of GF-NF composite films were decreasing due to the phase separated 

structure. Although the PL65 polymer is more hydrophilic compared to GF polymer, 

the improvement in contact angles from hydrophilic to hydrophobic surface is more 

effective with the addition of clay for PLa65-10A nanocomposites. Moreover, the 

degree of surface hydrophobicity was consistent with water vapor permeability 

measurement of PLA and PLA nanocomposite films. Since degrees of surface 

hydrophobicity increased while the permeabilities of PLA and PLA nanocomposite 

films decreased. That showed the linear relationship between contact angle changes 

and water vapor permeabilities due to changes in the nanocomposite structure in the 

polymer matrix.  
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Table 5.7. Contact angles measured for PLA and PLANC films 
 

Sample  θ(mean value) Sample  θ(mean value) 

GF-P 78.31 ±1.58 PL65-P 46.09±7.30 

GF-10A-1 78.85 ±3.87 PL65-10A-1 68.70±2.19 

GF-10A-2 78.93 ±1.20 PL65-10A-2 71.80±0.93 

GF-10A-5 83.72 ±2.80 PL65-10A-5 74.37±2.78 

GF-10A-7 83.37 ±1.55 PL65-10A-7 86.36±3.76 

GF-10A-10 81.00 ±1.95 PL65-10A-10 83.38±1,20 

GF-93A-1 84.11 ±2.84 GF-NF-2 61.58±7.11 

GF-93A-2 
86.69± 6.96 

GF-NF-5 66.60 ±5.52 

GF-93A-5 
86.27±2.50 

    

GF-93A-7 80.49 ±3.12     

GF-93A-10 80.63  ±3.21     

 

5.7. Color Measurement 

 

The color of films is important property for packaging and coating applications 

requiring visibility.  Besides, color measurements helped to determine dispersion of 

clay in the nanocomposite films (Hong, 2004). The results of the color measurements 

of the prepared PLA and PLANC films were shown in Table 5.8. As can be seen from 

the Table 5.8, the incorporation of Cloisite 10A and 93A in PLA matrix had almost no 

effect on the color of the films. It is generally known that ΔE <3–4 means that the 

color change can not be detected by naked human eye (Oguzlu and Tihminlioglu, 

2010). Therefore, the results indicated that the dispersion of clay in the polymer matrix 

can be assumed to be uniform especially up to 10 wt% loaded samples. However, ΔE 

values GF-NF composite were observed to be significantly greater than 3, which can 

be attributed to poorer dispersion of nanoclays in the PLA matrix. When PL65-10A 

nanocomposite was compared with other nanocomposite systems, it was seen that less 

color difference of the PL65-10A05 nanocomposites was observed indicating better 

dispersion have achieved in PL65-10A nanocomposites. Addition to these, significant 

changes in the color of PLANCs are also in good accordance with the poorer 

properties of PLANCs prepared by using unmodified natural montmorillonite.   
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Table 5.8. The total color difference (ΔE) and color parameters of PLA and PLANCs 
 

Sample  L  A  b  ΔE 

PL65-P 85.83±0.45 4.09±0.08 -8.98±0.14 - 

PL65-10A-2 85.60±0.11 4.06±0.09 -8.68±0.20 0.41±0.20 

PL65-10A-5 84.57±0.17 3.91±0.05 -8.03±0.25 0.27±1.59 

GF-P 88.88±0.19 0.41 ±0.07 0.97±0.52 - 

GF-10A-1 88.63±0.09 0.46 ±0.05 0.88±0.92 0.32±0.11 

GF-10A-2 88.61±0.14 0.44±0.08 0.92±0.20 0.36±0.11 

GF-10A-5 88.37±0.11 0.16±0.07 1.93±019 1.11±0.21 

GF-10A-7 89.02±0.11 0.23±0.05 1.45±0.11 0.55±0.09 

GF-10A-10 89.00±0.09 0.41±0.04 1.11±0.15 0.25±0.06 

GF-93A-1 88.89±0.09 0.50±0.04 1.06±0.04 0.15±0.05 

GF-93A-2 88.07±0.24 0.36±0.05 1.26±0.17 0.88±0.21 

GF-93A-5 88.53±0.03 0.17±0.05 1.73±0.23 0.88±0.20 

GF-93A-7 88.51±0.17 -0.02±0.04 2.54±0.30 1.68±0.29 

GF-93A-10 88.27±0.06 0.06±0.05 2.06±0.08 1.30±0.06 

GF-NF-2 86.41±0.49 3.17±0.05 -6.28±0.33 8.16±0.29 

GF-NF-5 86.74±0.25 2.96±0.05 -5.66±0.11 7.42±0.11 
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CHAPTER 6 

 

CONCLUSION 

 

 

Throughout the research study, polylactide clay nanocomposite (PLANC) 

films were investigated as an alternative to conventional polymer composites.  The 

purpose of the study was to examine the effect of nanoclay content, presence and type 

of organomodifier and nature of the polymer on barrier, thermal, mechanical and 

rheological properties and also surface and optical properties. 

During the research study, FTIR- and XRD analysis were performed to 

characterize the PLANC films. FTIR analysis was used to be sure about presence of 

nanoclay in PLA matrix. It was seen that, percent absorbance of the Al-O stretching 

and Si-O bending at 525 and 465 cm
-1

was increasing with the increasing of the clay 

content. Structure of the nanocomposite had significant influence on the physical 

properties of the nanocomposites as the dispersion of the clay in polymer matrix and 

interfacial area between the silicate and polymer chain are larger than conventional 

microcomposites. XRD analysis was performed to determine exfoliation degree of the 

nanocomposites and exfoliated structure was observed in PL65-10 nanocomposites 

films and intercalated structures were obtained GF-10A and GF-93A up 5wt%.  

Water vapor, oxygen and carbon dioxide permeabilities were measured to 

investigate the barrier properties of the nanocomposites. Nanoclay addition improved 

barrier properties of pure PLA. Best improvement in barrier properties was achieved 

in PL65-10A nanocomposites films as the molecular interaction between the layered 

silicates and polymer chains were higher than others. It was obviously seen from XRD 

results and permeability measurements that the structure of the nanocomposites 

significantly affected permeability of the PLANCs. As permeation of the water vapor 

or gas molecules followed a tortuous path through the polymer matrix by increasing 

the effective path length for diffusion. To get an idea about the tortuosity in PLANCs 

experimental permeability data were fitted to various permeability models and length 

width ratio of the PL65-10A and GF-10A are found between 498-574 and 243-382, 

respectively. 
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No significant change in DSC results were investigated during the study, 

However, thermal stability of the PL65-10A, GF-10A and GF-93A nanocomposite 

systems increased with incorporation of the clay owing to the dispersion of the clay 

and surfactant presence in the polymer matrix. Tensile strength and Young‘s modulus 

of the GF-10A and GF-93A were improved by the addition of organomodified 

montmorillonite up to critical clay amount 7wt%.  However, mechanical properties of 

GF-NF nanocomposite were decreasing due to bad level dispersion of silicate layers in 

polymer matrix. In dynamic mechanical analysis glass transition temperatures of 

PLANCs were increasing with increasing of clay amount. Below Tg storage modulus 

of PL65-10A, GF-10A and GF-93A nanocomposites were improved due to 

reinforcement effect of the silicate layers. 

In rheological measurements it was seen that GF-10A nanocomposites showed 

solid-like behavior at lower shear rates due to the presence of clay content as they 

resisted through the flow. Besides, those GF-10A nanocomposites showed shear 

thinning behavior at higher shear rates leading to improvements on the processability 

of nanocomposite. 

In conclusion, excellent barrier and thermal properties of PL65-10A 

nanocomposite films were investigated combined with mechanical properties analysis 

with respect to other nanocomposite systems studied. Despite the best properties were 

achieved for PL65-10A nanocomposite GF-10A nanocomposites, physical properties 

of GF-10A and GF-93A nanocomposites were developed up to critical clay amount. 

Therefore, this study showed that  industrial usage of polylactide polymers can be 

extended with  incorporation of the nanoclays into polymer matrix using 

nanotechnology. 
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APPENDIX A 
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Figure A.1. XRD patterns of PLANCs according to clay solution sonication time. 
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Figure A.2. XRD patterns of PLANCs according to polymer-clay solution sonication time.  
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Figure A.3. FTIR spectra of PL65-P and PL65-10A nanocomposite films in 400-600cm-
1 

region 

 

Figure A.4. FTIR spectra of GF-P and GF-10A nanocomposite films in 400-600cm-
1 
region 
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Figure A.5. FTIR spectra of GF-P and GF-93A nanocomposite films in 400-600cm-
1 
region 

 

 

Figure A.6. FTIR spectra of GF-P and GF-NF composite films in 400-600cm-
1 
region 
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Figure A.7. TGA results of PL65-P and PL65-10A nanocomposite films  

 

 

Figure A.8. TGA results of GF-P and GF-10A nanocomposite films  
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Figure A.8. TGA results of GF-P and GF-93A nanocomposite films  

 

 

Figure A.9. TGA results of GF-P and GF-NF nanocomposite films  
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Table A.1. Swelling degree of PLA and PLANCs 

Sample 

 

Dry film 

thickness(m) 

Wet film 

thickness(m) 

Thickness 

change (%) 

Avg. thickness 

change(%) 
Sample 

 

Dry film 

thickness(m) 

Wet film 

thickness(m) 

Thickness 

change (%) 

Avg. thickness 

change(%) 

GF-P 25.80±1.23 26.00 ±  2.86 0.78  GF-93A-1 20.20 ± 0.63 20.27 ± 0.90 0.36  

 18.50±0.53 18.91 ±  0.70 2.21 1.70 ± 0.81  22.10 ± 1.66 22.42 ± 1.56 1.43 0.75± 0.59 

 18.80±0.63 19.20 ±  1.32 2.13   22.00 ± 2.83 22.10 ± 2.47 0.45  

GF-10A-1 35.40 ± 0.97 35.50 ± 1.27 0.28  GF-93A-2 22.70 ± 1.25 22.91 ± 1.04 0.92  

 35.64 ± 0.67 35.82 ± 0.75 0.51 0.81 ± 0.73  21.90 ± 0.74 22.00 ± 1.13 0.46 0.88 ± 0.41 

 39.60 ± 1.71 40.25 ± 0.97 1.64   22.30 ± 1.16 22.58 ± 0.67 1.27  

GF-10A-2 23.80 ± 0.79 24.42 ± 1.16 2.59  GF-93A-5 26.30 ± 1.83 26.36 ± 1.69 0.24  

 23.50 ± 1.35 23.55 ± 0.93 0.19 1.43 ± 1.20  24.20 ± 0.92 24.45 ± 0.82 1.05 0.85 ± 0.54 

 31.20 ± 2.78 31.67 ± 2.57 1.50   31.80 ± 3.22 32.20 ± 2.30 1.26  

GF-10A-5 26.10± 2.76 26.45 ± 3.24 1.36  GF-93A-7 43.40 ± 3.50 43.67 ± 2.00 0.61  

 21.00 ± 0.82 21.82 ± 1.40 3.90 2.15 ± 1.51  43.56 ± 1.01 44.20 ± 1.03 1.48 0.83 ± 0.57 

 26.50 ± 2.76 26.82 ± 2.86 1.20   48.70 ± 6.73 48.90 ± 4.86 0.41  

GF-10A-7 21.92 ± 3.09 22.18 ± 0.60 1.21  GF-93A-10 30.60 ± 6.04 31.00 ± 6.20 1.31  

 20.80 ± 1.99 21.27 ± 1.42 2.27 1.28 ± 0.95  37.30 ± 5.33 38.30 ± 5.17 2.68 2.60 ± 1.25 

 22.10 ± 3.21 22.18 ± 0.75 0.37   17.10 ± 1.79 17.75 ± 2.26 3.80  

GF-10A-10 34.10 ± 2.69 34.55 ± 1.13 1.31  PL65-P 8.70 ± 1.16 8.77 ± 0.93 0.80  

 30.00 ± 4.74 30.82 ± 4.40 2.73 1.79 ± 0.81  8.00 ±0.00 8.23 ± 0.44 2.88 1.70± 1.07 

 39.20 ± 4.32 39.73 ± 1.85 1.35   8.10 ± 0.74 8.21 ± 0.80 1.41  

GF-NF-2 35.70± 0.95 36.00±1.66 0.84  PL65-10A-2 11.00 ± 0.47 11.08 ± 0.86 0.70  

 39.90± 0.57 40.00±0.85 0.25 0.54±0.29  10.80 ± 0.79 11.00 ± 0.95 1.85 1.05 ± 0.70 

 40.20± 0.42 40.42±0.97 0.54   10.40 ± 0.52 10.46 ± 0.66 0.59  

GF-NF-5 40.00 ±1.56 40.25±0.97 0.63  PL65-10-5 16.44 ± 0.88 16.62 ± 1.33 1.04  

 31.40 ± 0.97 32.00±1.21 1.91 1.69±0.98  14.50 ± 0.71 14.50 ± 0.89 0.00 1.10 ± 1.14 

 22.50 ± 0.53 23.07±0.83 2.54   8.00 ±0.00 8.18 ± 0.40 2.27  

1
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GF-P
GF-P - Power law

 

Figure A.10. Power model fits of GF-P  
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Figure A.11. Hersckel-Bukley fits of GF-P  
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Figure A.12. Power model fits of GF-P  
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Figure A.13. Hersckel-Bukley fits of GF-10-1 
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Figure A.14. Power model fits of GF-10A-2  

 

 

 

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000
shear rate (1/s)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

s
h

e
a

r
 

s
t

r
e

s
s

 
(

P
a

)

GF-10A-2

GF-10A-2 - Herschel-Bulkley

Herschel-Bulkley
a: yield stress: -192.1 Pa
b: viscosity: 2695 Pa.s
c: rate index: 0.6579 
standard error: 17.84 
thixotropy: 0 Pa/s
normalised thixotropy: 0 1/s
End condition: Finished normally

Figure A.15. Hersckel-Bukley fits of GF-10A-2 
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Figure A.16. Power model fits of GF-10A-5 

 

 

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.00
shear rate (1/s)

0

2500

5000

7500

10000

12500

15000

17500

20000

22500

s
h

e
a

r
 

s
t

r
e

s
s

 
(

P
a

)

GF-10A-5

*GF-10A-5 - Herschel-Bulkley

Herschel-Bulkley
a: yield stress: 935.5 Pa
b: viscosity: 5145 Pa.s
c: rate index: 0.5754 
standard error: 16.87 
thixotropy: 0 Pa/s
normalised thixotropy: 0 1/s
End condition: Finished normally

 

Figure A.17. Hersckel-Bukley fits of GF-10A-5 
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Figure A.18. Power model fits of GF-10A-7 
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Figure A.19. Hersckel-Bukley fits of GF-10A-7 
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Figure A.20. Power model fits of GF-10A-10 
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Figure A.21. Hersckel-Bukley fits of GF-10A-10 

 

 

 

 


