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ABSTRACT

We introduce and study absolutely supplement (respectively complement)
modules. We call a module an absolutely supplement (respectively complement)
if it is a supplement (respectively complement) in every module containing it.
We show that a module is absolutely supplement (respectively complement) if
and only if it is a supplement (respectively complement) in its injective enve-
lope. The class of all absolutely supplement (respectively complement) modules
is closed under extensions and under supplement submodules (respectively under
factor modules by complement submodules). We also consider the dual notions

of absolutely co-supplements (respectively co-complements).
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Bu tezde mutlak tiimleyen ve mutlak biitiinleyen modiilleri tanimladik
ve inceledik. Bir modiil kendisini igeren tiim modiillerin igerisinde tiimleyen
(sirasiyla biitiinleyen) ise bu modiile mutlak tiimleyen (sirasiyla biitiinleyen)
modiil denir. Bir modiiliin mutlak tiimleyen (sirasiyla biitiinleyen) olmasi igin
gerek ve yeter kosul bu modiiliin kendi injektif biirtimii i¢inde bir tiimleyen
(sirastyla biitiinleyen) olmasidir. Biitiin mutlak tiimleyen (sirasiyla biitiinleyen)
modiiller siifi geniglemeler ve tiimleyen alt modiiller (sirasiyla biitiinleyen alt
modiillere gore boliim modulleri) altinda kapalidir. Ayrica mutlak tiimleyen
(swrastyla biitiinleyen) modiillerin dualleri olan mutlak dual-tiimleyen (sirasiyla

dual-biitiinleyen) modiilleri ele aldik.
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Chapter 1

INTRODUCTION

The decomposition of modules into the direct sum of their submodules
plays an important role in Module and Ring Theory. Supplements and comple-
ments are two generalizations of direct summands when only one of two conditions
of the direct sum and some condition of minimality (respectively maximality) are
satisfied. Namely, a submodule N of a module M is a supplement (respectively
complement) of K < M if N+ K =M (NNK =0)and N is minimal (respec-
tively maximal) with respect to this property. The class of short exact sequences

f

0 N M L 0

where f(N) is a supplement (respectively complement) for some K < M, forms
a proper class (purity in other terminology) in the sense of Buchsbaum and
McLane, which we denote by S (respectively C). One of the classical examples
of proper classes is the Cohn class (Cohn purity) and one of the useful notions
in the study of the Cohn class is the absolutely pure and flat modules. We intro-
duce and study analogous notions for supplements and complements. Namely,
N is an absolutely supplement (respectively absolutely complement) module if
N is a supplement (respectively complement) of some submodule of each mod-
ule M containing N. N is an absolutely co-supplement (respectively absolutely
co-complement) module if in all cases when M /L = N for some module M and
its submodule L, L is a supplement (respectively complement) of some K < M.

We show that N is absolutely supplement if and only if N is a supple-
ment in the injective envelope F(N) of N. Every finite direct sum of absolutely
supplement (respectively absolutely co-supplement) modules is absolutely sup-
plement (respectively absolutely co-supplement). Every supplement submodule
of an absolutely supplement module is absolutely supplement. If N < M and N,
M/N are absolutely supplement modules then M is an absolutely supplement
module. We show also that M is absolutely co-supplement if and only if there

is a projective module P and an epimorphism f : P — M such that Ker f



is a supplement in P. If M is an absolutely co-supplement module and N is a
supplement submodule of M then M/N is also absolutely co-supplement. Con-
versely, if N < M and N, M/N are absolutely co-supplement modules then M
is an absolutely co-supplement module. It turns out that absolutely complement
modules coincide with injective modules. Using this fact we prove that every
complement submodule of an injective module is injective. If N < M and N,
M/N are absolutely complement modules then M is an absolutely complement
module. A module M is absolutely co-complement if and only if there is an
epimorphism f : P — M with a projective module P and Ker f a complement
submodule of P. If M is an absolutely co-complement module and N is a com-
plement submodule of M then M/N is absolutely co-complement. Conversely,
if N < M and N, M/N are absolutely co-complement modules then M is an

absolutely co-complement module.



Chapter 2

PRELIMINARIES

2.1 Isomorphism Theorems

Let R be a ring with identity 1 and M be an abelian group. Suppose there
is a function f : R x M — M (we will denote f(r,m) by rm) where r € R and
m € M. Then M is called a left R-module (or briefly a module) if the followings

are satisfied.

1. r(m+n) = rm+ rn for every r € R and m,n € M
2. (r+s)m=rm+ sm for every r,s € R and m € M
3. (rs)m = r(sm) for every r,s € R and m € M

4. 1-m = m for every m € M.

If the function f : M x R — M (mr € M) with similar conditions are
given we will have right R-module. If M is a left R-module, right S-module and
(rm)s = r(ms) for every r € R, m € M, s € S then M is called an R-S-module
or bimodule.

A subset N of an R-module M is called a submodule if N itself is a module
with respect to the same operations. Notation: N < M.

Basic information about modules can be found in [3]. Throughout this

study we will use the following definitions, theorems and propositions.

Definition 2.1.1. Let M be module and let N be a submodule of M. The set of
cosets M /N = {x+ N|z € M} is a module with respect to the addition and scalar
multiplication defined by (x+ N)+ (y+ N)=(z+y)+ N, r(r+N)=rz+ N.
This module M/N is called a factor module of M by N.

Definition 2.1.2. If M and N are two modules then a function f : M — N is a
homomorphism in case for all v, s € Rand m,a € M f(rm+sa) =rf(m)+sf(a).



Definition 2.1.3. A homomorphism f : M — N is called an epimorphism in

case it is onto. It is called a monomorphism in case it is one to one.

Definition 2.1.4. Kernel of f: Ker f = {m € M|f(m) =0} < M.
Image of f: Tm f = {f(m)jm € M} < N.
So f is an epimorphism if and only if Im f = N, and it can be easily

verified that f is a monomorphism if and only if Ker f = 0.

Definition 2.1.5. A homomorphism f is called an isomorphism if it is both an

epimorphism and a monomorphism (i.e. it is a bijection).

Definition 2.1.6. If NV is a submodule of M then the inclusion mapi: N — M
is a monomorphism also called the natural embedding of N in M with image N.
Let N be a submodule of M then the mapping o : M — M/N from M onto
the factor module M /N defined by o(m) =m + N, m € M is called the natural
(canonical) epimorphism of M onto M/N. Clearly Kero = N

Theorem 2.1.7. Fundamental Homomorphism Theorem

Let M and N be left modules and f: M — N be a homomorphism, then
M/Ker f = Im f

In particular if f is an epimorphism then M/ Ker f = N.

Proof. Define f: M/K — N (where K = Ker f) by f(m + K) = f(m).

m+ K =n+ K impliesm —n € K, so f(m —n) =0, then f(m) = f(n).

Thus f is well-defined.

Also f((m+ K)+ (n+ K)) = f((m+n) + K) = f(m+n) = f(m) + f(n) =
fim+ K)+ f(n+ K).

fr(m+K))=flrm+ K) = f(rm) =rf(m) =rf(m + K).

So f is a homomorphism.

If f(m+ K)= f(n+ K) then f(m) = f(n) = f(lm—n)=0=m-n€ K =
m+ K =n+ K = f is one-to-one.

At last for every n € N we have n = f(m) = f(m + K) = f is onto.

So f is an isomorphism. O

Theorem 2.1.8. Second Isomorphism Theorem

If N, K are submodules of M, then

(N + K)/K = N/(N N K)
4



Proof. Define f: N — (N + K)/K by f(n) =n+ K.

Since (n+ k) + K =n+ K = f(n), f is an epimorphism.
Kerf={neNne K} =NnNK.

So by Fundamental Homomorphism Theorem N/(NNK) = (N + K)/K. O

Theorem 2.1.9. Third Isomorphism Theorem
If K < N < M, then
(M/K)/(N/K) = M/N

Proof. Define f: M/K — M/N by f(m+ K)=m+ N.

Suppose that m; + K = my + K then m;y —my € K < N = m; —my € N =
my+ N =my+ N.

Hence f is well-defined.

Also f(r(mq + K) + s(me + K)) = f((rmy 4+ sma) + K) = (rmg + smg) + N =
r(mi+N)+s(me+N)=rf(mi+ K)+sf(my+ K), i.e. fisahomomorphism.
Since for all m + N € M/N we have f(m + K) =m + N, f is an epimorphism.
Kerf={m+ K|me N} =N/K.

So by Fundamental Homomorphism Theorem (M/K)/(N/K) = M/N. O

Lemma 2.1.10. Modular Law
Let N, K, L be submodules of a module M and K < N, then

NN(K+L) =K+ (NNL)

Proof. Any x from N N (K + L) can be represented as z = n = k + [ for some
neN,ke K,and [ € L. Since K < N, k€ N. Therefore [ =n—ke& NNL.
Thus v =k +1 € K+ (NN L). Converse is obvious. O

Definition 2.1.11. Let {N;};c; be a family of submodules of a module M. M
is the internal direct sum of submodules N; if every element m € M can be

uniquely represented as m = > n;; n; € N;.

el
Proposition 2.1.12. M =@ N, if and only if M = > N; and N;N (> N;) =0
il il i#j

for every i € I.

Proof. (=) 1)For every m € M we have m = > n; € Y N;;, = M C > N, =
il i€l il

iel



2)Let x =n; = > n; € N;N > N, then by uniqueness of representation

i#i i
z=mn; =0.
(<) Vm € M =3 N;, m = n;. To prove uniqueness let m = > n; = > n,.
i€l iel i€l i€l
For every i € I we have n; —n, = Z(n]—n;) ENNN)=0=n;=n,. O

i#j i#J
Definition 2.1.13. Let {N;}; be a family of modules. The cartesian product
H N; is a module relative to the addition and scalar multiplication defined by
Z(enll) + (m;) = (n; + m;) and r(n;) = (rn;), n;,m; € N;; r € R. This module is
called the direct product of the modules N;. The subset @ N; = {(n;)|n; =0 for
all but finite number of ¢ € I} is called the external direzcetlsum of modules N;.

Definition 2.1.14. If M = N & K then N, K are called direct summands of M.

2.2 Exact Sequences

Definition 2.2.1. A sequence

fn—l

fn
S : e ——> n—lﬁMnHMn—l—l*)"‘

of modules {M,, },,cz and homomorphisms { f,, },ez is called an ezact sequence if

foralneZ Imf, 1 =Kerf,.

Definition 2.2.2. An exact sequence of the form

is called a short exact sequence.

Theorem 2.2.3. For a short exact sequence

the following conditions are equivalent.

1. There is a homomorphism h : B — A such that ho f = 14.
2. Im f is a direct summand of B i.e. B=1m f & L for some L < B.

6



3. There is a homomorphism e : C — B such that goe = 1¢.

Definition 2.2.4. If any of the conditions of this theorem is satisfied the short
exact sequence

0 A B C 0

is said to be a splitting short exact sequence.

Remark 2.2.5. If
0 A B C 0

1s splitting then B = A @ C.
Definition 2.2.6. Let A and B are modules. The set
Hom(4, B) = {fIf : A — B}

of all module homomorphisms f of A into B is an abelian group under the
addition defined for f,g: A — B by (f +g)(a) = f(a) + g(a). In case the ring
R is commutative, Hom(A, B) can be regarded as a module when tf : A — B
is defined for t € R and f: A — B by (tf)(a) =t(f(a)) for all a € A. That tf
is still a module homomorphism follows from the calculation

(tf)(ra) = t(f(ra)) = tr(f(a)) = ri(f(a)) = r((tf)(a))

which uses the commutativity of R.

Consider the effect of a fixed module homomorphism 5 : B — B’ on Hom(A, B).
Each f : A — B determines a composite o f : A — B’ and fo (f +g) =

B o f+ [og. Hence the correspondence f — o f is a homomorphism
B. : Hom(A, B) — Hom(A, B') (2.1)

of abelian groups. Explicitly, B.(f) = G o f. If § is an identity, so is G, if § is a

composite, so is (3, in detail

(1,3)* = 1HOIn(A,B)a (ﬁ o 5,)* - ﬁ* o 61 (22)

the latter whenever the composite 3 o (' is defined. We summarize (2.1) and
(2.2) by the phrase: Hom(A, —) is a covariant functor.
For the first argument A a reverse in direction occurs. For a fixed module

homomorphism o« : A — A’ each f' : A — B determines a composite

7



ffloa: A — Bwith (f+¢)oa = foa+g oa Hence ff — foa

is a homomorphism
a* : Hom(A’, B) — Hom(A, B)

of abelian groups defined by a*(f') = f'oa. Again (14)* is an identity map. If a :
A— A'and o/ : A’ — A” the composite o’ o« is defined and (o/oa)* = a*oa’™.

Because of this reversal order Hom(—, B) is called a contravariant functor.

Theorem 2.2.7. For any module M and any exact sequence

0 A B C
the following sequence
0 — Hom(M, A) —— Hom(M, B) — Hom(M, C)

15 exact.

Proof. Proof of this theorem can be found in [8]. O
Above theorem states that the functor Hom(M, —) for fixed M turns each

exact sequence into a left exact sequence.

Theorem 2.2.8. For any module M and any exact sequence

A B C 0

the following sequence
0 — Hom(C, M) —— Hom(B, M) — Hom(A, M)

18 exact.

Proof. For proof of this theorem see [8]. O
By the previous theorem, Hom(—, M) carries an exact sequence into a left
exact sequence.

In this thesis without lose of generality, for a short exact sequence

0 A B C 0

we will assume A as a submodule of B.



2.3 Projective and Injective Modules

Definition 2.3.1. A module [ is called injective if for every monomorphism
f A — B and homomorphism g : A — [ there exists a homomorphism
h : B — I such that g = ho f. We can show this by the following commutative

diagram.

For R = Z, i.e. for abelian groups D is injective if and only if D is a
divisible group (Lészl6 Fuchs, [5]), (i.e. for every d € D and non-zero integer n

there is d’ € D such that d = nd’).

Theorem 2.3.2. If D is a divisible abelian group then Homgz (R, D) is an injective
R-module.

Proof. Proof of this theorem is given in [2]. O

Theorem 2.3.3. For every module M there is a monomorphism g : M — I

with an injective module I.

Proof. There is a divisible group D and monomorphism of abelian groups
f:M — D. Then e: M — Hom(R, M) defined by e(m)(r) = rm and

f« : Hom(R, M) — Hom(R, D) are monomorphisms of modules. Now taking

I = Hom(R, D) we will have monomorphism f, oe : M — [ with injective

module I. O
Theorem 2.3.4. For a module I the following statements are equivalent.

1. I 1s injective.

2. Hom(—, 1) is exact.

3. Fvery short exact sequence

18 splitting.



4. 1 is a direct summand of a module of the form Homy(R, D) where D is a

divisible group.

Proof. 1. = 2. Let

0—=A—t B C— 0

be a short exact sequence. Then the sequence
0 —= Hom(C, I) — Hom(B, I) ——~ Hom(A, I)

is exact. It remains only to show that f* is an epimorphism. Let o« € Hom(A, I).
We have a diagram

0—-A-1-p

Since [ is injective, there exists a homomorphism 3 : B — [ such that fof = «

ie. f¥(B)=pPo f=a, € Hom(B,I). So f*is an epimorphism. Thus
0 — Hom(C, I) — Hom(B, I) ——~ Hom(A, I) —=0

is an exact sequence.
2. = 3. Since Hom(—,I) is exact, the homomorphism ¢* : Hom(A4,I) —
Hom(I,I) is an epimorphism. Then 1; € Hom(/, ) there is a homomorphism

h € Hom(A, I) such that g*(h) = 1; = ho g = 1;. So the short exact sequence

0 I A B 0

is splitting.
3. = 4. We know that there is a monomorphism I — Hom(R, D) for some

divisible group D. Then we have a short exact sequence
0——I——- Hom(R, D)——=X—0

By 3) this sequence is splitting Hom(R, D) = I @& X.
4. = 1. By the Theorem 2.3.2 Hom(R, D) is injective. So every direct summand
of Hom(R, D) is injective. Thus I is injective. O

Definition 2.3.5. Let M be a module. An injective module F together with a
monomorphism f : M — FE'is called an injective envelope(hull) of M if Im fIE
and denoted by E(M).

10



Definition 2.3.6. A module P is called projective if for every epimorphism
f A — B and homomorphism g : P — B there exists a homomorphism
h: P — A such that g = foh. We can show this by the following commutative

diagram.

It is well-known that every vector space has a basis. Modules with bases

are free modules.

Theorem 2.3.7. Let F' be a module and X = {xy}aca be a subset of F. Then

the followings are equivalent.

1. Every element a € F' can be uniquely represented as a = > roxq, where
acA
re € R and ro, =0 for almost all o € A.

2. For each o € A the function f, : R — Rx, is defined by fo(r) = rx, is

an isomorphism and F' = @@ Rx,.
acA

Proof. 1. = 2. f, is an epimorphism. If f,(r) = f.(s) i.e. rz, = sz, by
uniqueness of the representation r = s. So f, is 1—1. Thus f, is an isomorphism.

Every element can be uniquely represented as a = > 1,2, € >, Rz, therefore

acA acA
F = @ Rx,.
acA
2221 F=@ Rro=Ya€eF,a= > 1oz, fa= > ror, = > rlx, then
acA acA acA acA
Tala = ThTq. Since f, is 1 — 1 then r, = 1. O

Definition 2.3.8. If F' satisfies the condition of the Theorem 2.3.7 then it is said
to be a free module and X is said to be a basis of F.

The following theorem shows that every function from a basis of a free
module to any module can be uniquely extended to a homomorphism from the

free module.

Theorem 2.3.9. If F' is a free R-module with a basis X then for every function
f X — M, where M is an R-module, there is a unique homomorphism g :

F — M such that g|x = f that is g(x,) = f(z4) for all x, € X.

11



Proof. Define g : F'— M by g(>_ 7a%a) = > Taf(Za). g is a homomorphism
acA acA

and g(zq) = g(1-24) =1 f(za) = f(za) €. glx =f g :F — Misa

homomorphism such that ¢’|x = f then V ) r,z, € F we have ¢/( > raa) =
acA acA
> Tad (Ta) = 32 raf(a) = 32 rag(ra) = 9( 30 Taa) = g=¢ O

acA acA a€A a€A

Corollary 2.3.10. Every free module is projective.

Proof. Let F be a free module with a basis X = {x4}aeca and f : A — B be an
epimorphism and ¢g : FF — B be a homomorphism. Since f is an epimorphism

for each element g(z,) € B there is an element a, € A such that f(a,) = g(z.).

A—B——=0

Define a function h : X — A by h(z,) = a,. By the Theorem 2.3.9 there is a
homomorphism w : F' — A such that u|x = h ie. u(z,) = h(z,) = a,. For

every element Y 7,24 € F, (fou)( %m%) = > raf(u(ra)) = D0 raf(aa) =

acA acA aEA

Yo rag(xa) = g( > raxs) = fou=g. So F is projective. O
acA acA

Lemma 2.3.11. For every module M there is a free module F and an epimor-

phism f: F — M.

Proof. Let X = {&pm}men and F = { > rpa,| where r,, = 0 for almost all
meM

m € M}. Define addition and multiplication by > rpx, + Y. r o, =

meM meM

S (rm A7 )xm and s( Y] Tpxm) = >, ($Tm)Tm. Then F is a free module

meM meM meM

with basis X' = {1-z,,}. ReallyV > r,x, € F can be uniquely represented as

meM

> rmTm = Y. Tm(l-x,). Define a function g : X — M by g(z,,) = m. By

meM meM

the Theorem 2.3.9 there is a homomorphism f : F — M such that f(x,,) = m,

Vm € M. So f is an epimorphism. O
Now we can formulate the following equivalent conditions for projective

modules.

Theorem 2.3.12. For a module P the following conditions are equivalent.

1. P 1s projective.

12



2. Hom(P, —) is ezact.
3. Every exact sequence of the form

0 A B P 0

15 splitting.

4. P is a direct summand of a free module, i.e. FF'= P @ N for some free

module F'.

Proof. 1. = 2. Let
f

0—=A—"1>B-2-0C— 50

be an exact sequence. Then the sequence
0 — Hom(P, A) —*~ Hom(P, B) %~ Hom(P, C)

is exact. It remains to show that g. is an epimorphism. Let o € Hom(P,C).

Since P is projective, there is a homomorphism (3 : P — B such that go f = «

g, la
l«/
B—2sA——>0

i.e. 38 € Hom(P, B) such that g.(3) = go 8 = a. So g, is an epimorphism.
2. = 3. Let
0 A B P 0

be exact. By 2) the sequence
0 —— Hom(P, A) — Hom(P, B) —> Hom(P, P) —0

is exact. So f, is an epimorphism. For 1p € Hom(P, P) there is a € Hom(P, B)

such that f.(a) = 1p = foa = 1p. So the sequence

0 A B P 0

is splitting.
3. = 4. By the Lemma 2.3.11 there is an epimorphism f : ' — P from a free

module F. Then we have the following short exact sequence

P

00— Ker f--—>F

13



By 3) this sequence is splitting. So F' = Ker f @& P.
4. = 1. Follows from the Proposition 2.3.13. O

Proposition 2.3.13. A direct sum P = @ P, of modules { P, }aca is projective

acA
if and only if each P, is projective.

Proof. This proposition is proved by R. Alizade & A. Pancar in [2]. O

2.4 Proper Classes

Sometimes it is convenient to study some homological properties with
respect to some class of short exact sequences. Of course the class must satisfy

some conditions. This leads to proper classes of short exact sequences.

Definition 2.4.1. Let A be a class of short exact sequences of modules

We assume that A is closed under isomorphisms: if £ = E’, then £ € A &
E' e A If E € A, we say that f is an A-monomorphism (f € A,,) and g is
an A-epimorphism (¢ € A.). A is said to be a proper class if it satisfies the
following conditions:

P1. Every splitting short exact sequence is in A;

P2. The composition ho f of two A-monomorphisms h, f is an .A-monomorphism
if it is defined;

P2'. The composition u o g of two A-epimorphisms g, u is an A-epimorphism if
it is defined;

P3. 1If ho f is an A-monomorphism and A is a monomorphism then f is an A-
monomorphism;

P3. If uo g is an A-epimorphism and ¢ is an epimorphism then u is an A-

epimorphism.

14



Let A denote a proper class of R-modules.

Definition 2.4.2. An R-module P is said to be A-projective if it is projective

with respect to all short exact sequences in A, that is, every diagram

E: 0 A B C 0eA

can be embedded in a commutative diagram by choosing an R-module homo-

morphism h : P — B properly; equivalently,
Hom(P,E) : 0— Hom(P, A)—> Hom(P, B)—%~ Hom(P, C')—0

is exact for every

E:0—=A-J1-B % 0 .9

in A. The class of all A-projective modules is denoted by 7(.A).

Definition 2.4.3. An R-module [ is said to be A-injective if it is injective with

respect to all short exact sequences in A, that is, every diagram

C 0eA

can be embedded in a commutative diagram by choosing an R-module homo-

morphism h : B — I properly; equivalently,
Hom(E, I) : 0—= Hom(C, I)—— Hom(B, I)~%~ Hom(A, I)—=0

is exact for every

E:0—=A-J1-B % 0 .9

in A. The class of all A-injective modules is denoted by ¢(.A).
For the study of proper classes it is useful to define some notions which

have no nontrivial analogs for the class of all short exact sequences.

Definition 2.4.4. An R-module C is said to be A-coprojective if every short
exact sequence of R-modules with the term prior to the last 0 being C' is in A,
that is, every short exact sequence of R-modules of the form

f

0 A B—2-(C 0
isin A.
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Definition 2.4.5. An R-module A is said to be A-coinjective if every short exact
sequence of R-modules with the term after the first 0 being A is in A, that is,

every short exact sequence of R-modules of the form

0—>A—LsB2e0—s0
is in A.
Definition 2.4.6. For a class M of modules M, 7=*(M) denotes the smallest
proper class A for which each M € M is A-projective, i.e.
7' (M) = {E| Hom(M, E) is exact forall M € M}

Definition 2.4.7. For a class M of modules M, :=*(M) denotes the smallest
proper class A for which each M € M is A-injective, i.e.

171 (M) = {E|Hom(E, M) is exact forall M € M}

2.5 Pullback and Pushout Diagrams

We will use pullback and pushout diagrams for some following proofs. So
we here will define pullback and pushout of a diagram and show their existence
and uniqueness for R-modules. Extended information about these are given by

R. Alizade in [1] and L.R.Vermani in [13].

Definition 2.5.1. An R-module G together with homomorphisms v : G — A
and 0 : G — B is said to be a pullback of the pair of homomorphisms o : A —
Cand §: B — C if,

(i) the following diagram is commutative

a—= A (2.1)

5i la

B 7> C
(ii) if the following diagram is commutative

ey (2.2)

g la

B?C
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then there is a unique homomorphism 6 : G’ — G such that the diagrams

G/L)G G/LG
[ Lo
A B

are commutative i.e. yo# =+ and o0 = §'. Also (2.1) is said to be a pullback

diagram.

Theorem 2.5.2. Existence of Pullback
Given the homomorphisms o : A — C and 3 : B — C there is a pullback G.

Proof. Given a, (3 define G as the submodule of the direct sum A @® B consisting
of all (a,b) with a(a) = B(b) i.e. G = {(a,b) € A® Bla(a) = ((b)} and let
v:G — Aand § : G — B be the corresponding projections :y(a,b) = a
and 0(a,b) = b. Then (2.1) will obviously be commutative. Assume (2.2) is
a commutative diagram and define 6 : G' — G as 0(¢") = (7/(¢'),d'(¢')) for
g € G'. Since (ao”)(¢) = (6 00d)(¢) by commutativity of (2.2), we have
(7v'(9'),9'(¢")) € G. Evidently, (yo0)(¢g') =~'(¢') and (606)(g') = &'(¢') for every
g € G, s0 0 is of the stated kind. Kery = {(a,b) € G|y(a,b) = 0} = {(a,b) €
A® Bla=0,5(0) =a(a) =0} ={(0,b)|b € Ker 3} = 0@ Ker 5. So we have

Kery =0@® Ker 3 (2.3)

Similarly, Kerd = Ker a & 0. Therefore, if §' : G’ — G, also satisfies yo §/ = +/
and 0o’ = ¢’, then y(0—0") = 0 = §(6—0') and hence Im(0—6') C KeryNKerd =
0. This shows that § — ¢ = 0 and @ is unique. O

Theorem 2.5.3. Uniqueness

This pullback G is unique up to isomorphism.

Proof. Let G be another pullback of the homomorphisms o : A — C and
B : B — C with homomorphisms 7 : G — A and 6 : G — B. So G has the
same properties which are stated in the Definition 2.5.1. Then we have unique
homomorphisms 6 : G — G and § : G — G such that Yo =7, 606 = 4,
and o =+,600=0. Hence yo (fof) =~ and do (fof)=4. On the other
hand, yo0 1g =7 and 6 o 1 = §. By uniqueness of the homomorphisms in (2.2)

6060 =1¢g. Similarly, 0o 6 = 15. So 0 is an isomorphism. O
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Theorem 2.5.4. If in the pullback diagram (2.1), (5 is a monomorphism, then
so is . If B is an epimorphism, then so is y; and ¢ induces an isomorphism

Ker~y = Ker 3, so we have the following commutative diagram with exact rows:

E:0——Kervy G

s
K 7
3 % ‘ l
»

E :0—Kerp B C 0

where §' = O|kery. The short exact sequence E is splitting if and only if there

exists a homomorphism k : A — B such that o = (3 o k.

Proof. Since G is unique up to isomorphism, and moreover Im~ and Ker~y is
unique up to isomorphism, it suffices to prove the statement for G as constructed
in the proof of Theorem 2.5.2. By equality (2.3) Kery = 0® Ker§ = 0 if g is
a monomorphism. If § is an epimorphism, then for every a € A there is b € B
such that 3(b) = a(a). Then (a,b) € G and 7(a,b) = a, so 7 is an epimorphism
by equality (2.3) Kery = 0 @ Ker 8 = Ker 3, hence the restriction of projection
0" to Ker~y is an isomorphism.

Now let F be splitting by Theorem 2.2.3 there is a homomorphism 7' : A — G
such that v o~ = 14. Since a oy = (04, for the homomorphism k = § o' :
A — B we have ao (yoy') = o (do~). Therefore, a« = 3o k.

On the other hand if we have a homomorphism « : A — B with a = (§ o &,
the function v : A — G defined by +'(a) = (a,k(a)) is well-defined (since
a(a) = (B o k)(a) and (a,k(a)) € G) homomorphism. For every a € A,(y o
v)(a) = 7(a,k(a)) = a, hence v o~ = 14 and by the Theorem 1.3.3. F is
splitting. O

Definition 2.5.5. An R-module G together with homomorphisms v: A — G
and ¢ : B — G is said to be a pushout of the pair of homomorphisms o : C — A
and 0 : C — B if,

(i) the following diagram is commutative

C—=A (2.4)
B ¥
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(ii) if the following diagram is commutative

C——=A
5} lv'

BT>G/

(2.5)

then there is a unique homomorphism 6 : G — G’ such that the diagrams

A B
lv\\\v/ la\\\él
Gl Gt

are commutative i.e. oy =~"and fod =¢". Also (2.4) is said to be a pushout

diagram.

Theorem 2.5.6. Existence of Pushout
Given the homomorphisms o : C — A and 3 : C' — B there is a pushout G.

Proof. Starting with «, 3 define G as the quotient module of A & B by the
submodule H of the elements of the form (a(c), —5(c)) for ¢ € C, and let v :
A — G and § : B — G be the maps induced by the injections v(a) = (a,0)+H,
d(b) = (0,b) + H. Then (v o a)(c) = (§ o B)(c) for every ¢ € C and (2.4)
is commutative. If (2.5) is a commutative diagram define § : G — G’ as
0((a,b)+H)=7"(a)+0'(b). If (a,b)+H = (a’,V')+ H, that is (a,b) — (', V') € H,
then a —a' = a(c),b — 0 = —f(c) for some ¢ € C. Since 7' o = ¢’ o 3, we have
V(@) + 8(b) = 7/(@) + (7 0 a)(c) + F(¥) — (5 0 B)(c) = (@) + F(Y), 0 0 is
well-defined. It is readily seen that o~y =1~/ 0o =¢'.

If0oy=1+"606=¢ forsomed :G— G’ then (0 —0")y=0=(0—6) and
for every (a,b) + H € G we have (6 — ¢')((a,b) + H) = (0 — 0')(y(a) + 6(b)) =
(0 —0)y(a)+ (0 —0)0(b) = 0. Therefore & — #" = 0 and @ is unique. O

Theorem 2.5.7. Uniqueness

This pushout G is unique up to isomorphism.

Proof. An argument analogous to Theorem 2.5.3 establishes the uniqueness of

G. O
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Theorem 2.5.8. If in the pushout diagram (2.4) « is an epimorphism, then
so is 0; if a is a monomorphism, then so is 0 and 7y induces an isomorphism
v o A/Ima — G/Imd. So we have the following commutative diagram with
exact rows:
E':0 C—2>A—"=A/Ima—-0
BL " ! l” lv’
»

E:0 B——>G—=G/Imé —0

where 1, Ty are natural projections, 7' (a + Ima) = y(a) + Imd. The short exact
sequence E is split if and only if there exists a homomorphism k : A — B such

that 0 = k o a.

Proof. 1f « is an epimorphism, for every a € A there is a ¢ € C with «a(c) = a.
Then for every element (a,b) + H we have (a,b)+ H = (a —a(c),b+ ((c))+ H
0,0+ B(c)) + H=46(b+ 5(c)). Hence 6 is an epimorphism.

Let a be a monomorphism. Ker d consists of all b € B for which 6(b) = (0,b) € H,

i.e. there is a ¢ € C' with a(c) = 0 and —f3(c) = b. Since « is a monomorphism,
c=0and b= F(0) =0. So Kerd =0 and ¢ is a monomorphism.

If F is splitting, there is ¢/ : G — B with 0’ 00 = 15. Since j o f = v o a, for
the homomorphism xk = ¢’ oy we have ¢’ o (6o f) = o (yoa), or B =koa.

If there is a homomorphism x : A — B with § = koa, define the homomorphism
'+ A® B — B by ¢§"(a,b) = k(a) +b. For every (a(c),—f(c)) € H we
have §"(a(c),—0(c)) = (ko a)(c) — B(c) = 0. Hence there exists a unique
homomorphism ¢’ : G — B such that ¢'((a,b) + H) = (¢’ o7)(a,b) = 6" (a,b) =
w(a) +b. Clearly, (6’0 0)(b) = §((0,b) + H) = x(0) + b = b for every b € B. So
0’0 = 1p and F is splitting. O
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2.6 Small Submodules

The most important notion in the study of supplements is the small sub-

module.

Definition 2.6.1. A submodule N of a module M is called superfluous or small
if there is no proper submodule K of M such that N + K = M. Equivalently
N + K = M implies that K = M. It is denoted by N < M.

Some of properties of the following proposition can be found in [7]

Proposition 2.6.2. Let M be a module

1. If K <N <M and K is small in N then K is small in M.

2. Let N be a small submodule of a module M, then any submodule of N is

also small in M .

3. If K is a small submodule of a module M and K s contained in a direct

summand N of M then K is small in N.
4. K< M and N < M iff K+ N < M.
5. If K <N <M, then N< M iff K <M, NNK < M/K.
6. Finite sum of small submodules N; of M is a small submodule of M.

7. Let f : M — N be a homomorphism of modules M and N, let K be a
submodule of M. If K is a small submodule of M, then f(K) is a small
submodule of N.

Proof. 1. Let K + L = M for a submodule L of M.
N=NNM = NN(K+L)= K+(NNL). Since K issmallin N, N = NNL
so N<L K<Nand N <Lso K < L. Therefore M = K +L = L.
Thus K < M.

2. Let K be a submodule of N and K + L = M for a submodule L of M.
Since K < N, N+ L = M and also since N < M, L=M. So K < M.
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3. K < N< MK KM and M = N & L for a submodule L of M. Let
K +U = N for a submodule U of N. M = N+ L = K + U + L since
K< M M=U+LandUNL<NNL =0 implies UNL = 0 so
M=U®L N=NNM=NNnUeL)=U®(NNL)=U. So K < N.

4. (:>) Let (K + N)+ L = M for some L < M. Since K + (N + L) =
N)+ L =M and K < M, we have N + L = M. Since N < M,

(K

L=M.

(<) K<K+N<Mby?2) K< M. Similarly N < K + N < M by 2)

N < M.

5. (=) Since N <« M by 2) K < M. Suppose that N/K + X/K = M/K
where X/K is a submodule of M/K, then N + X = M by assumption
X =M ie X/K=M/K.

(<) Let N+ X = M then (N+X)/K =M/K ie. NNK+(X+K)/K =
M/K or N+ X + K = M. Since N < M we have X + K = M. Now
K < M implies X = M.

6. Let N => N, and let Ny +---+ N, + X = M for some X < M. Since
i=1

N, < M, Ny+ (No+---+ N, +X) =M then No+---+ N, + X =M

continuing in this way we obtain NV,,+X = M and since N, < M, X = M.

7. Suppose that f(K)+L = f(M) for some L < f(M). Then f~!(f(K)+L) =
FYHAER) + fYL) = f7Y(f(M)) = M and therefore M = K + Ker f +
fYL) =K+ f7Y(L). Since K < M, f~Y(L) = M, hence f(f~'(L)) =
f(M) implies that LN f(M) = f(M). So L = f(M).
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2.7 Essential Submodules

The notion of essential submodule plays a key role in the study of com-

plements. Some of the following propositions are given in [4] and [11].

Definition 2.7.1. A submodule N of an R-module M is said to be essential (or
big) in M, if N N K # 0 for every non-zero submodule K of M. In other words
NNK =0= K =0. Notation: N <M.

Proposition 2.7.2. Let K and N be submodules of M. Then

I. NIM <& NNRm#0O for all0 #m e M.

2. Given K <N, KM << KN and N < M.
3. FN<M then NN K <K.

4. KM and NIM <& NNK <M.

5. Given K C N if NJK A<M/K the N <M.

6. If M =@ M; and N; < M; for each i € I then @ N; < M.

i=1 i=1

Proof. 1. (=) We know that N <M. 0 #m € M = 0# Rm < M and since
N < M then NN Rm # 0.
(<) Let NN K = 0 for some K < M. Suppose K # 0 i.e. there is a
non-zero element x € K. By the condition dr € R such that 0 # rx € N.
Since x € K re € K so 0 # rz € NN K = 0. Contradiction. So K = 0.

2. (=) Let T < N such that KNT =0. Clearly T < N < M =T < M.
Since K <M then KNT =0=T=0= KIN. Let S < M such
that NNS=0. KNS<NNS=0= KNS =0. Since K <M then
S=0= NJIM.

(<) Let KNL=0forsome L <M= KN(LNN)=0. Since K IN
and LNN <N, LNN =0 andsince NIM, L=0. So KIM.

3. Let (NNK)NT =0 forsomeT < K <M. NN(KNT)=0. Since NIM
and KNT <M, KNT=0.Since KNT=T,T=0=NNKJK.

23



4. (=)Let (NN K)NT =0 for some T < M = NN (KNT) = 0. Since
N<M, KNT=0andalso K<<M,T=0= NNK <M.
(<) NN K < N < M. Since NNK <M by 2), N<M. Similarly
NNK<K<M. Since NNK IM by 2), KIM.

5. Let NNT =0forsome T’ <M = [(NNT)+ K|/K =0= N/Kn (T +
K)/K =0 since N/JK A M/K,(T+K)/K=0=T+K=K =T =0.

6. Suppose (N7 @ No) N K = 0 and assume K # 0. 30 # =z € K, x €
My ® My = x = my + mg since K # 0 at least one of my, my # 0. Say
my # 0. Since Ny < M; by 1) there is r € R such that 0 # rm; € Nj.
rr = rmy 4+ rmg if rmy € Ny thenrz € (N Noy) N K =0=rz=0=
rmy = 0. Contradiction. If rmg ¢ Ny since No I M, = Js € R such that
0 # smg € Ny. stz = srmy + srmg € (N1 @ No) N K =0 = srmg = 0.

Contradiction. Thus K =0 = Ny & Ny < M; & Ms.
]

We can characterize essential submodules in the language of the elements

and ideals.

Proposition 2.7.3. A submodule N of an R-module M 1is essential in M if and
only if for all 0 # m € M and for the ideal (N : m) of R, (N : m)m # 0.

Proof. (=) Let N < M. We know for all 0 # m € M, Rm NN # 0 = 30 #
rmeN=0#re(N:m)=(N:m)#0=(N:m)m#D0.

(<) Forall0 #m e M, (N :m)m # 0= 30 #r € (N :m) < R such that
0#rmeN=RmNN#0=NJIM. O

Definition 2.7.4. Let M be an R-module. A submodule K of M is said to be
closed in M if K has no proper essential extension in M i.e. if L is a submodule

of M such that K < L then K = L.

Definition 2.7.5. Let M be a module. A submodule N of module M is said to
be a complement of a submodule L of M ift NN L =0 and N is maximal with
respect to this property.

Example 2.7.6. If M = N@ K then K is a complement of N. Really NNK =0
and if for some 7" < M, K < T such that N 0T = 0 then by modular law
T=TN(NeK)=Ke(NnT)=K=T.
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Complements always exist, moreover we have the following theorem.

Theorem 2.7.7. Existence of Complements
Let L, N be submodules of a module M with L "N = 0. Then there exists a
complement K of N such that L C K.

Proof. Let ' = {T < M|L <T and NNT =0}. T' # () since L € T'. Let Q be
any chain in T, that is VU,V € Q either U <V or V< U. Put W= |J U.

UeQ
1) Let z,ye Wandx € U € Q, y € V € Q since (2 is a chain either U <V or
VLU Lt U< Vthenzx,yecVandV<M=Vrsec Rre+syeV <M=
W < M.

2) Forevery U € Q, L<U=Le |JU=W =L <W. For ever U € Q,

Uen
NNU=0=Nn(UU)=0=NnW=0=Wel.
Uen
3) Forevery U € Q, U < |J V =W = Wis an upper bound for €.

VeQ
By Zorn’s Lemma there is a maximal element K in I' which is a complement of

N containing L. O

Proposition 2.7.8. If K is a complement of N in M then N & K < M.

Proof. Let 0 # m € M. (N®K)NRm # 0or (N® K)nRm = 0. If
(N & K)N Rm = 0, then for every n = k+rm € NN (K + Rm) we have
rm=n—k¢& (N+K)NRm=0. Therefore rm =0andn=~k e NNK =0,
son =0. Thus NN (K + Rm) = 0, but it contradicts the maximality of K. So
(N @ K)N Rm # 0. O

Proposition 2.7.9. If L is a complement of K in M then E(M) = E(L)®E(K).

Proof. We know that K L <M = K LIMIEM) = K& LIEM).
KeL<EK®L) <EM)=EK®&L)IE(M). Since E(K & L) is injective,
it is a direct summand, E(M) =E(K & L)®oT = EKo L) NT=0=T =
0= E(M)=E(K®L) = E(K)® E(L). O

Proposition 2.7.10. If L is a complement of K in M then L = E(L) N M,
where E(L) is injective envelope of L.
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Proof. Clearly L < E(L)N M. On the other hand L N [(E(L) N M) N K] <
LNK =0. But L <E(L), therefore (E(L) N M)N K = 0. By maximality of L
we have L = E(L) N M. O

The following proposition shows that complements coincide with closed

submodules.

Proposition 2.7.11. Let K be a submodule of an R-module M. K 1is closed in

M < K is a complement of some submodule N of M.

Proof. (=) Suppose that K is closed. Suppose H < M such that K C H
and H NN = 0. Let L be a submodule of H such that K N L = 0 then
KN(L&N)=0=N=L@&Nie. L=0= K <Hso K =H. Thus K is a
complement of N in M.

(<) Suppose that K < K’ < M. Since K is a complement of some submodule
Nin M, (KK'OCN)NK =K'Nn(NNK)=0. Then KN N < K', K <K’ implies
K'N' N = 0. By maximality of K with respect to property K N N = 0 we have
K = K'ie. K is closed in M. O

Proposition 2.7.12. Let L, K, N be submodules of an R-module M with K C L.
Then

1. There exists a closed submodule H of M such that N < H.

2. The submodule K s closed in M if and only if whenever Q < M such that
K CQ then Q/K <M/K.

Proof. 1. By Zorn’s Lemma there exists H < M maximal in the collection of

submodules V' of M with H < V. Clearly H is closed.

2. (=) Let Q< M, K C Q. Let P be a submodule of M such that K C P

and (Q/K)N(P/K)=0= K =QnP<P, (It N <M then NNK <K).
Since K is closed K =P = P/K =0= Q/K < M/K.
(<) Q/K <4 M/K for every essential submodule () containing K. Suppose
K < L. Let T be a complement of K in M = KT <M = (KaT)/K <
M/K. Bt LNT =0= (KeT)/K)n(L/K)=[(Ka®T)NL|/K =
K@ (TNL)/K=0= K =L = K is closed.
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Proposition 2.7.13. If A < B < C and A is a complement in C then A is also

a complement in B.

Proof. Let A be a complement of a submodule K of C'. Then by the definition
AN K =0 and A is maximal with respect to this. Suppose that A < A’ < B
and AN(KNB)=0=ANK=0=A=A = Aisacomplement of K N B
in B. O

Lemma 2.7.14. Let N, K, L be submodules of an R-module M such that KNL =
N and K+ L =M. If N is a complement in K and N <L, then K < M 1i.e.

<
N —

L
compl l
M

K =

Proof. Suppose that (K : m)m =0 for 0 # m € M with m = k+1, where k € K
and [ € L. We want to show that N <N + Rk = Nj.
(0:m) = (K :m) = (N : 1)

Let r € (K :m). Since (K :m)m =0,rm=0=r € (0:m).

So (K :m) C (0:m). Weknow that (0:m) C (K :m). Thus (0:m) = (K : m).
re(K:m)=re(0:m)=rm=0,sincem=~k+1l,rk=—-rle KNL=
N=rle N=re(N:l)=(K:m)C(N:I).
se(N:l)=sleN=sm=sk+sle K+ N=K=s¢e(K:m)=

(N :1) C (K :m). Thus (N :1) = (K :m).

Let x =n+rk € Ny, where n € N, k € K, r € R, such that vk ¢ N = rm =

rk+rl=rk+n+ri+n=x+10.
—— =

x U
I'¢g N: Ifl' e Nthenrle N=re(N:l)=(0:m)=rm=0=rk=—-rlc

KNL=N = rk & N contradiction.

(0:rm) C (N :x):

se€0:rm)= (sryim=0=sre€ (0:m)=(N:1l)=srl € N, st = —sl' =
sn—srle N=se (N:xz)= (0:rm)C (N :x).

(0:rm) = (N:1l):

se€0:rm)=srm=0=sr+sl'=0=sv=—sl'=sn—srl € N =
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se(N:U).

se(N:lI')=sle N=srl—sne N=sre(N:l)=(0:m)=srm=0=

s e (0:rm).

(N :U)'"#0 (since NIL, "¢ N=3se (N:1I')=(0:rm) such that

sl #0=>s2#4#0= (N:2)cr #0=>NIN, < K=N=N,=keN=

m € L.

(K:m)=(N:l)=(N:k+1)=(N:m)= (N:m)m#0. Contradiction.

So (K : m)m # 0. O
The following theorem allows to use the properties of proper classes for

the study of complements.

Theorem 2.7.15. (Generalov, [6]) The class
C={0 A B C 0]|A is a complement of some K in B}

1S a proper class.

Proof. P1.1If a short exact sequence 0 A B C 0 is splitting then

B=A&C, ie. Aisacomplement in B. So every splitting exact sequence is in
C.

P2. Let f: A— B and g: B — C be C-monomorphisms. We want to show
that go f is a C-monomorphism. In other words A < B < C, A is a complement
in B and B is a complement in C. We want to show that A is a complement in

C. We can draw the following diagram:

0 0
0 A corfnpl B/A 0
I g | compl
0 S CJA—0
C/B = C/B
0 0

Suppose A <A, < C = A< A; N B since A is a complement in B, A;N B = A.
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Take By = B + A;.

g

A Ay
compll l
B—— B + Al

By Lemma 2.7.14 BB+ A;. BisacomplementinC = B = B+A; = A; <B.
Since A < A; and A is a complement in B, A = A;.

P2 Suppose K < A< B. Let 0 : B — B/K and 7 : B/K — B/A be C-
epimorphisms we want to show that & o ¢ is a C-epimorphism. That is as it can
be seen on the following diagram we want to show that if K is complement in B

and A/K is a complement in B/K then A is a complement in B.

0 0
0 K A A/K 0
I compl? compl
0——>K " p—"~B/K —(
B/A - BJA
0 0

Suppose A < C' < B. Since K is a complement in B, K is a complement in
C. So K is closed in C. We know by the Proposition 2.7.12 If K is closed
in C' then whenever A < C then A/K < C/K. Since A/K is a complement in
B/K,A/K = C/K so A= C. Hence A is a complement in B.

P3. Let ho f be a C-monomorphism and A be a monomorphism. We want to

show that f is a C-monomorphism.
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0 A con;pl? B/A 0
l h
0—> A0 C CJA—0
C/B - C/B
0 0

Let AN K =0 and A is a maximal with respect to this for some submodule K
of C'. We know this by the Proposition 2.7.13. Thus f is a C-monomorphism.
P3" Let u o g be a C-epimorphism and ¢ be an epimorphism. We want to show

that u is a C-epimorphism.

0 0
0 A K K/A 0
| compl compl?
0 A B—=B/A——=0
uog u
B/K = BJ/K
0 0

Since uo g is a C-epimorphism, K is a complement in B. We will show that K /A
is a complement in B/A. Let K NT = 0 and K be a maximal with respect to
this property for some submodule T'of B. KN (T +A)=A+(KNT)=A=
K/ANn(T+A)/A=0.

Suppose K/A < K'/A< B/A and K'/JAN (T + A)/A = 0.

K <g Y K'JA). g {(K'JAN(T+A) = A+ (g Y K'/A)NT) = A= g 1 (K'/JA)N
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T<A<K= g K'/ANT<KNT=0.
Since K is maximal, g '(K'/A) = K = g7 '(K/A) = K'/A = K/A. Thus K/A
is closed in B/A. Hence K/A is a complement in B/A. O
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Chapter 3

ABSOLUTELY SUPPLEMENT MODULES

3.1 Absolutely Supplement Modules

Let M be a module. A submodule N of module M is called a supplement
of a submodule L of M if N + L = M and N is minimal with respect to this

property.

Proposition 3.1.1. (Wisbauer, [12]) N is a supplement of L in M if and only
fN+L=Mand NONL < N.

Proof. (=) Let N be a supplement of L in M. Then we know that M = N+ L and
N is minimal with respect to this property. For K < N let N = K + (N N L).
By Modular Law N = K+ (NNL) = NN (K + L) that is N < L + K.
M =N+ L =L+ K. By minimality of N we have K = N.
(<) Let M = L+ K for some submodule K of N. N =NNM=NN(K+L)=
K+ (NNL). Since NNL <« N, K =N. So N is minimal with respect to
N+L=M. O
Unlike complements, supplements need not exist always, but supplements

give a proper class as well as complements.

Theorem 3.1.2. (Generalov, [6]) The class
S=10 At.p2.¢ 0|A is a supplement in B}

18 a proper class.

Proof. P1. If a short exact sequence

0 A B C 0

is splitting then A is a supplement in B. So every splitting exact sequence is in

S.



P2 et a: A— Band §: B — C be S-monomorphisms. We must show

that (o v is an S-monomorphism. We can draw the following diagram:

0 0
0 A p B/A—=0
I B | suppl
0 A S;’:i” C/A 0
c/B = C/B
0 0

Let A be a supplement of a submodule K of B and B be a supplement of a
submodule N of C.

A+(K+N)=(A+K)+ N=B+N=C

Let [AN (K 4+ N)] + X = A for some submodule X of A. Then
[AN(K+N)|+ X+ K=A+K=B.
AN(K+N)|+X+K+N=B+N=C= X+K+ N =C. Since B is
a supplement of N in C then X + K = B=[AN(X+K)|]=ANB=A=
(X +(ANK)=A. Since ANK < A, X =A. So AnN(K+ N) < A. Thus A
is a supplement of a submodule (K + N) in C.

P2 . Let o: B— B/K and §: B/K — B/A be S-epimorphisms. We want

to show that 3 o « is an S-epimorphism. We can use the following diagram:
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0 K A A/K 0
Il suppl? suppl
0 suppl °. B/K 0
Boa B
B/A = BJ/A
0 0

Let K be a supplement of a submodule X of B and A/K be a supplement of a
submodule Y/K of B/K where K <Y < B. We have an exact sequence

0—=(ANY)/K—>A/K—2>B/Y —=0

Since A< B,a+ K+—a+Y and Kerg = (ANY)/K.

be B=A+Y =b+Y =a+y+Y =a+Y =7(a+K). So 7 is an epimorphism.
K+X=B=Y=K+(XNY)=A+Y = A+K+(XNY) = A+(XnNY) = B.
Now we will show that AN (X NY) <« A.

o:A/(KNX)— B/(XNY)

B/(XNY) = [A+(XNY)]/(XNY) =2 A/(ANXNY). Since (KNX) < (ANXNY),
we can define an epimorphism A/(KNX) — A/(ANXNY)=B/(XNY). So
o is an isomorphism.

o K/(KNX)2(K+X)/X =B/X
B:B/(XNY)=Y/(XNY)®X/(XNY) where since X + K = B and K <Y,
X +Y = B. Also by the second isomorphism theorem Y/(X NY) = B/X and
X/(XNY)=B/Ysofp:B/(XNY)=B/X®&B/Y.

v A/(KNX) =K+ (AnX)]/(KNX)=2K/(KNX)® (ANX)/(KNX).
Since (ANX)/(KNX)=ANX)/(ANXNK)=[K+(AnX)|/K = A/K,
v A/(KNX)=2K/(KNX)® A/K.

Now it can be seen that

c=ptola®v) oy

and so ¢ is a minimal epimorphism.
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Thus Kero = (ANXNY)/(KNX) < A/(KNX).

We know that

(KNX) < (ANXNY) <A KNX < Aand (ANXNY)/(KNX) < A/(KNX).
Hence (AN X NY) <« A.

P3. Let « : A — B and §: B — (C be monomorphisms and 3 o a be an
S-monomorphism. We want to show that « is an S-monomorphism. We can

draw the following diagram:

0 0
0 A su};pl? B/A 0
l B
(L, Gy p—
C/B - C/B
0 0

Let A be a supplement of a submodule K of C. Then A+ K = C and ANK < A.
B=BNC=BN(A+K)=A+(BNK).

AN(BNK)< (ANK)< A= AN(BNK) < A. Thus A is a supplement of a
submodule BN K of B.

P3. Let a: C — C/A and 3 : C/A — C/B be epimorphisms and [ o o be
an S-epimorphism. We want to show that (3 is an S-epimorphism. We can draw

the following diagram:
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0 A B B/A 0
I suppl suppl?
0 A C——=CJA—=0
Boa B
/B = C/B
0 0

Let B be a supplement of a submodule N of C.Then B+ N = C' and BNN < B.
C/A=a(C)=a(B+N)=a(B)+a(N)=B/A+ a(N).
B/ANa(N)=«a(BNN): a(BNN)C B/ANa(N).

an) =ab) e a(B)Na(N)=alb—n)=0=b—n=acA=n=>b—ac
BNN=a(n) €a(BNN). Soa(B)Na(N)=a(BNN) < a(B). O

Definition 3.1.3. A module M is called absolutely supplement if it is a supple-

ment submodule of every module containing M.

Proposition 3.1.4. For a module M the followings are equivalent

1. M is an absolutely supplement module.
2. M 1s a supplement in every injective module I containing M.

3. M is a supplement in its injective envelope E(M).

Proof. 1. = 2. 1t is clear by the Definition 3.1.3.

2. = 3. If M is a supplement in every injective module containing M and since
E(M) is an injective module containing M, M is a supplement submodule of
3. = 1. Let M be a submodule of a module N, E(M) is an injective envelope of
M; f: M — N and g : M — E(M) be inclusion maps. Then we have the

following diagram:
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!

0 M N
g /
E(M)

By (2) M is a supplement submodule of E(M). Let M be a supplement of K in
E(M). Then M+ K = E(M) and MONK < M. M = g(M) = ho f(M) < h(N),
therefore by Modular Law h(N) = M + (K N h(N)). Let n € N. Then h(n) =
m + h(ny) where m € M, h(ny) € KN h( ) with n; € N. Since the diagram is
commutative, m = g(m) = h(f(m)) = h(n) = m+ h(n1) = h(f(m)) + h(n1) =
h(f(m)+mn1) = h(n—f(m)—n) =0=>y=n—f(m)—n; € Kerh < h 1K) =
n=m+n+yeM+h'(K)=N=M-+h'(K). Now to prove that M
is a supplement of A~'(K) in N it remains to show that M N A} (K) < M.
MO E) = fFH(f(M)n a7 (K)) = M0 f7HhH(K)) = Mng {(K) =
g MNK)=MNK < M. O

Proposition 3.1.5. Every finite direct sum of absolutely supplement modules is

an absolutely supplement module.

Proof. Let S7 and Sy be absolutely supplement modules. Since S; is absolutely
supplement, 57 is a supplement submodule of every injective module containing
Sp. Similarly S5 is a supplement submodule of every injective module containing
Ss. Let S7 be a supplement submodule of an injective module I; and Sy be a
supplement submodule of an injective module I,. That is for suitable modules
Ky <ILand Ky < I5; Si+ Ki =1 and SN K; <€ 51, So + Ky = I, and
Sy N Ky < Sy, We will show that S; @ .95 is a supplement submodule of I1 & I
(Direct sum of finite number of injective modules is an injective module). S; &
So+ K1+ Ky = I} & I,. We must show that (51 @ S2) N (K + K) < 516 S, Let
x € (S1+52)N(K 1+ K3) = x = s1+82 = k1 +ko where s1 € S, 59 € So, ky € K7,
ko € Ko =x=51—ki=ky—so=axecliNlhb=0=2=0= 351 =k, S =ky =
x € (SINKY)+(S2NKy) = (S1+52)N(K1+Ks) < (S1NK7)+(S2NKy) < S1+5s.
Since S1NK; < Sy and SoNKy < Sy = (S1B5)N(K 1+ Ks) < S1852 = S18S,
is a supplement of Ky + K, in I; & I;. by the Proposition 3.1.4 S; @& S, is an

absolutely supplement module. O

37



Proposition 3.1.6. If S| is a supplement in I; then S; is a supplement in Iy B 1.

Proof. Let Sy be a supplement of K7 in I;. We will show that S; is a supplement
of Ky+Lin 1@l Si+ K1+, =L+ . Leta € S\N(K1+1) = a=s=k+x
where se S, ke Kij,velhbh=0r=s—k=xeSi1+Ki=L=xelLNl=
O=z=0=>a=s=k=>ac S NK; =S5 NK +1L)=5SNK <5 soS5

is a supplement submodule of I1 & I». O

Proposition 3.1.7. Every supplement submodule of an absolutely supplement

module is absolutely supplement.

Proof. Let M be an absolutely supplement module and N be a supplement sub-
module of M. Since M is a supplement in its injective envelope E(M), N is a
supplement in E(M) by Theorem 3.1.2. We can assume that the injective en-
velope E(N) of N is contained in E(M). Then again by Theorem 3.1.2 N is
a supplement in E(N). Now by Theorem 3.1.4 N is an absolutely supplement

module. 0

Corollary 3.1.8. Every direct summand of an absolutely supplement module is

an absolutely supplement module.

Proof. Let M be an absolutely supplement module and K be a direct summand
of M. Let for a suitable submodule T" of M, M = K @&T". Since M is absolutely
supplement by Proposition 3.1.4, M is a supplement submodule of its injective
envelope E(M). Now it is sufficient to show that K is a supplement submodule

of its injective envelope E(K). O

Proposition 3.1.9. For a submodule N of a module M if N and M/N are
absolutely supplement then M is absolutely supplement.

Proof. Since N is an absolutely supplement module, N is a supplement in ev-
ery module containing it and since M/N is an absolutely supplement module,
M/N is a supplement in every module containing it. So we have the following

commutative diagram with exact rows and columns.
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0 N M M/N ——0
Il suppl? suppl
0 . B(M) ——=— E(M)/N —0
Boa B

Where E(M) is an injective envelope of M, a and [ are two S-epimorphisms so
by Theorem 3.1.2 (o« is an S-epimorphism i.e. M is a supplement in its injec-
tive envelope E(M). Thus by Proposition 3.1.4 M is an absolutely supplement

module. OJ

3.2 Absolutely Co-supplement Modules

Definition 3.2.1. If for all short exact sequences

0 T X M 0

T is a supplement submodule of X then M is called an absolutely co-supplement

module.

Proposition 3.2.2. For a module M the following conditions are equivalent

1. M s an absolutely co-supplement module i.e. for all short exact sequences

0 T X M 0

T is a supplement submodule of X.

2. There exists a short exact sequence

0 N P M 0

with a projective module P such that N is a supplement submodule of P.
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Proof. 1. = 2. There is a short exact sequence

0 N P M 0

with a projective module P (see e.g. [2] or [9]). By (1) N is a supplement
submodule of P.
2. = 1. Let

0 T X—2=M 0

be a short exact sequence. By (2) there is a short exact sequence

0—>N—sP- 2o M0

with a projective module P such that N is a supplement submodule of P. By
Theorem 2.5.4 we have the following commutative diagram with exact rows and

columns.

0 0
N = N
f
0 T Y P 0
I h g
0 T X =M 0
0 0

Since P is projective [ is a splitting epimorphism. Then by Theorem 3.1.2
soh = gof is an S-epimorphism. Again by Theorem 3.1.2 s is an S-epimorphism.
It means that T is a supplement submodule of X. O

Example 3.2.3. Every projective module is absolutely co-supplement. Really

let P be a projective module. Then we know that every short exact sequence

ending with P is splitting. Since the class S = {0 Al.p ¢ 0]A

is a supplement in B} is a proper class, every splitting short exact sequence is in

S. Thus P is an absolutely co-supplement module.

40



Proposition 3.2.4. If M, and My are absolutely co-supplement modules then
My & My is absolutely co-supplement.

Proof. Since M; is an absolutely co-supplement module by the previous propo-

sition there exists a short exact sequence

0 Ny P M, 0

with Py is projective and P;/N; = My, such that N; is a supplement submodule
of P, and similarly since M is an absolutely co-supplement module there exists

a short exact sequence

0 Ny Py M, 0

with P, is projective and P,/Ny = My, such that Ny is a supplement submodule

of P,. Now there exists a short exact sequence
0—>N1 @ N2—>P1 @ P2—>M1 @ M2—>O

with P, @ P; is projective (direct sum of projective modules is projective) and
(PL®Py)/(N1®Ny) = My @ Ms, such that Ni@® N, is a supplement in Py @ P;,. Let
N1 be a supplement of a submodule K5 of P i.e. Ni+K; = Py and NiNK; < Nj.
Ny + Ky + P, = P, + P,. Now we want to show that Ny N (K + P») < Nj.

Let a € NN (K1 + P) =a=n=k+xforsomen € Ny, k€ Ky, z € P, =
r=n—-keNNNKi=P=zePNPkh=0=a=n=k=>ac N\NK, =
NN (Ky+ P) = NynN K; < N;. Thus Ny is a supplement of a submodule
K, + P, of P, & P,. Similarly, N, is a supplement submodule of P, & P,. So it
can be proved by similar way as in the last part of proof of Proposition 3.1.5 that

N; @ N, is a supplement submodule of P, & Ps. O

Corollary 3.2.5. Every finite direct sum of absolutely co-supplement modules is

absolutely co-supplement.

An arbitrary factor module of an absolutely co-supplement module need

not be absolutely co-supplement, but we have the following proposition.

Proposition 3.2.6. If M s an absolutely co-supplement module and N 1is a

supplement submodule of M then M/N is also absolutely co-supplement.
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Proof. If N is a supplement in M then

0— NN~ M/N—=0 €S

On the other hand since M is an absolutely co-supplement module, by the Propo-

sition 3.2.2 there exists a short exact sequence

0 K P M 0

with a projective module P such that N is a supplement in P. Then we have

the following diagram.

0 0
K = K
0 suppl? gof M/N 0
f l
0 suppl M g M/N S
0 0

where T' = Ker(g o f). Now f and g are S-epimorphisms, therefore g o f is also
an S-epimorphism since S is a proper class (see Theorem 3.1.2). It means that

there is a short exact sequence

0—>T—>P—>M/N—>0€S

Thus by Theorem 3.2.2 M /N is also an absolutely co-supplement module. O
The following proposition shows that absolutely co-supplement modules

are closed under extensions.

Proposition 3.2.7. For a module M, if a submodule N and a quotient module

M/N of M are absolutely co-supplement, then M is also absolutely co-supplement.
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Proof. Let

0 A C M 0

be any short exact sequence. We have the following diagram with exact rows and
columns.

0 0
A A
f | suppl suppl?
0 suppl

WL (> M/N —0

0 N M M/N —0

Since N is absolutely co-supplement, A is a supplement in B and since M /N is
absolutely co-supplement, B is a supplement in C'. Then by Theorem 3.1.2 A is

a supplement submodule of C'. Thus M is absolutely co-supplement. U
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Chapter 4

ABSOLUTELY COMPLEMENT MODULES

4.1 Absolutely Complement Modules

Definition 4.1.1. A module M is called absolutely complement if it is a com-

plement submodule of every module containing M.

Theorem 4.1.2. (Sharpe, [9]) If I be an injective module then I is a direct

summand of every extension of itself.

Proof. Let M be an extension of I. Since [ is an injective module, we have the

following diagram.

such that # oi = 1;. Let m € M = 6(m) € I so that 6(m) = 6(6(m)) =
m—6(m) € Kerd = m € I + Ker0 = M =1+ Kerf. But I NKerf = 0 so
M = 1@ Kerf. O

Corollary 4.1.3. Fvery injective module is absolutely complement.

Proof. Really since an injective module is a direct summand of every extension
of itself, it is a complement in every extension of itself. O
The following proposition shows that there are no non-trivial absolutely

complement modules.

Proposition 4.1.4. For a module M the followings are equivalent

1. M 1is an absolutely complement module.



2. M 1s a complement in every injective module I containing M.
3. M is a complement in its injective envelope E(M).

4. M s an injective module.

Proof. 1. = 2. 1t is clear by the definition of absolutely complement modules.

2. = 3. If M is a complement in every injective module containing M and since
E(M) is an injective module containing M, M is a complement submodule of
3. = 4. If M is a complement in its injective envelope F(M) then M is closed in
M = E(M). So there is no proper essential extension of M in E(M). Also we
know that M < E(M). Thus M = E(M) i.e. M is an injective module.

4. = 1. Since every injective module is absolutely complement, M is an absolutely

complement module. O

Corollary 4.1.5. Every complement submodule of an injective module is injec-

tive.

Proof. Let M be a complement submodule of an injective module I. Then the
injective envelope E(M) is a direct summand of I, therefore M is a complement
submodule of E(M). By Proposition 4.1.4 (3. = 4.), M is an injective module.

O

Proposition 4.1.6. For a submodule N of a module M if N and M/N are

absolutely complement then M is absolutely complement.

Proof. Since N is an absolutely complement module, N is a complement in ev-
ery module containing it and since M /N is an absolutely complement module,
M/N is a complement in every module containing it. So we have the following

commutative diagram with exact rows and columns.
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0 N M M/N ——0
I compl? compl
0 M B(M) ——— E(M)/N —0
Boa B

Where E(M) is an injective envelope of M, o and [ are two C-epimorphisms so
by Theorem 2.7.15 (o« is a C-epimorphism i.e. M is a complement in its injec-
tive envelope E(M). Thus by Proposition 4.1.4 M is an absolutely complement

module. OJ

4.2 Absolutely Co-complement Modules

Definition 4.2.1. If for all short exact sequences

0 T X M 0

T is a complement submodule of X then M is called an absolutely co-complement

module.

Proposition 4.2.2. For a module M the following conditions are equivalent

1. M is an absolutely co-complement module i.e. for all short exact sequences

0 T X M 0

T is a complement submodule of X.

2. There exists a short exact sequence

0 N P M 0

with a projective module P such that N is a complement submodule of P.
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Proof. 1. = 2. is clear.
2. = 1. Let

0 T X M 0

be any short exact sequence. The short exact sequences

0 N P M 0

and

0 T X M 0

together with pullback diagrams (see 2.7) give the following commutative diagram

with exact rows and columns.

Since P is projective, the epimorphism g is splitting. By Theorem 2.7.15 C is a
proper class, therefore hoe = fog is a C-epimorphism. Again since C is a proper

class h is a C-epimorphism, i.e.

0 T X M 0ecC

So M is an absolutely co-complement module. O

Example 4.2.3. Every projective module is absolutely co-complement. Really,

if P be a projective module then every sequence ending with P is a splitting

short exact sequence. Since the class C = {0 A B C 0]A is a
complement of some K in B} is a proper class, these short exact sequences are

in C it means that projective modules are absolutely co-complement.
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Corollary 4.2.4. Fvery free module is an absolutely co-complement module.

Absolutely co-complement modules are not closed under factor modules

in general but we have the following proposition.

Proposition 4.2.5. If M is an absolutely co-complement module and N is a

complement submodule of M, then M /N s absolutely co-complement.

Proof. 1f M is an absolutely co-complement module then by the Proposition 4.2.2

there exists a short exact sequence

f

0 K P M 0

with ap projective module P such that K is a complement in P. Also we have a

short exact sequence

0—>N—>M—2M/N—=0

such that N is a complement in M, that is f and g are C-epimorphisms. We
know that the composition go f of two C-epimorphisms is a C-epimorphism. Thus

there exists a short exact sequence

0——T—=P—LL N /N—0

with a projective module P such that 7" is a complement in P. Hence M/N is
an absolutely co-complement module. O
The following proposition shows that absolutely co-complement modules

are closed under extensions.

Proposition 4.2.6. For a module M, if a submodule N of M and the quo-
tient module M /N are absolutely co-complement, then M is also absolutely co-

complement.

Proof. Let

0 A C M 0

be any short exact sequence. We can use the following diagram:
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A = A
compl | f compl?
0——= B 0 M/N —0
I
0—>N—>M—>M/N—>0
0 0

Since N is absolutely co-complement, A is a complement in B, M /N is absolutely
co-complement, therefore B is a complement in C'. Then by Theorem 2.7.15 A

is a complement submodule of C'. So M is absolutely co-complement. O
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