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Yakın-Enfraruj Spektroskopisi

metotları kullanılarak alkol, asit, ester 

Bunlar, Genetik Ters En küçük Karele

Bileşenler Regresyonu (PCR) ve Kısm

çok değişkenli kalibrasyon metodudu

incelenmiştir. Bu esterleşme reaks

bütilasetat oluşum reaksiyonlarıdır. Ör

örnek iki kez ölçülmüş ve 4000 – 100

spektrumları elde edilmiştir. Bu 8

kullanılmış; 30 tanesi test amacı ile ay

bileşen için bir çok kalibrasyon mod

kalibrasyon hatası (SEC) ve standard 

çok değişkenli kalibrasyon metodu kar

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 E OF CONTENTS 

ÖZ 

 (NIR) ve dört farkli çok değişkenli kalibrasyon

ve su karışımlarının eş zamanlı tayinleri yapılmıştır.

r Yöntemi (GILS), Genetik Regresyon (GR), Temel

i En Küçük Kareler Yöntemi (PLS) kullanılan dört

r. Dört değişik esterleşme reaksiyonu bu amaçla

iyonları metilasetat, etil asetat, propilasetat ve

nek seti 40 adet dörtlü karışım içermektedir. Her bir

00 cm–1 aralığında 80 adet yakın-enfraruj absorbans

0 spektrumdan 50 tanesi kalibrasyon seti için

rılmıştır. Her bir esterleşme reaksiyonundaki her bir

eli oluşturulmuştur. Her bir model için standard

tahmin hatası (SEP) hesaplanmış ve kullanılan dört

şılaştırılmışıtır.  
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CHAPTER 1 

INTRODUCTION 
 

The analytical chemists need measuring in order to quantify different matter in our 

daily life. In chemical analysis it is often difficult to find ideal measurements. The 

challenge today is how to detect smaller and smaller analyte signals and separate the net 

signals from background and noises. Due to the phenomena in the samples themselves, 

the data may be affected by the chemical or physical interferences. Traditional analytical 

method contains a chain in which samples are brought to the laboratory for separation, 

extraction, preparation and finally determination [1] (Figure 1.1).  

 

 

Figure 1.1.The analytical chain. 
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While this chain is still employed, the modern era of automation and computer 

power has resulted in tremendous improvements. This development has given new 

phenomena to process monitoring by using fiber optic sensors etc… On-line, at-line, in-

line monitoring… In the last years, industrial analytical chemists have mostly used on-line 

monitoring measurements. 

These improvements are helping the analytical chemist in various steps of this 

chain. Minimizing the sample preparation, and the determination time are the few 

examples of these improvements. Because during the process we do not have any time for 

cleaning or standardizing our samples in the laboratory 

Monitoring usually contains long analysis terms and correlations. Working with 

process monitoring, enormous data are obtained from the measurement results. In practice 

an alternative approach is often needed to use and interpret all the information stored in 

our database. One of them is the use of models based on statistical principles. The data 

processing and modeling can be quickly done at the same time using these principles by 

the help of modern powerful computers. Despite this quick analysis of the measurement 

results, there are some limitations in the model building. In model construction in order to 

find the best model requires a lot of trials that cause cost and time. In addition, the error 

approach is necessary and very important to analytical chemist to find out the best model. 

In spite of those disadvantages models are extremely valuable and gives enormous 

information about figures of merit for the user. An attempt to explain the value of 

establishing mathematical relationships is given by the Figure 1.2. A model calculating 

the slopes of the lines between the black and white stripes would quickly reveal that the 

lines really are parallel or not, only by visual inspection. Optimally a model can be used 

for objective numerical interpretations and precise predictions over time, with the only 

requirement of fast inexpensive, and non-hazardous measurements as model input data.  
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Figure 1.2.Are the horizontal lines are parallel or do they slope? 

 

Nowadays, for these and many other reasons modern monitoring schemes that are 

based on models are used. Especially Near-Infrared Spectrometers are the most widely 

used instruments for these analyzing systems. 

Aim of the study: 

The aim of this project is to investigate the possibility of analyzing the complex 

mixtures of carboxylic acids, alcohols, esters and water by using near infrared 

spectroscopy and multivariate calibration methods (GR, GILS, PCR, and PLS) and also to 

investigate the possibility of developing calibration models for the solutions of these 

compounds. Due to this reason, the performance of these calibration methods in 

developing these models were investigated and they were compared with each other. 

Later on, it will be searched if it were possible to use the obtained models to measure 

these compounds in their real process (ex; in industrial process) 
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CHAPTER 2 

NEAR-INFRARED SPECTROSCOPY 

2.1 DESCRIPTION OF THE INFRARED REGION 

In the electromagnetic spectrum, infrared region has a wide wavelength range 

compared to the other regions. It starts from around 780 nm and ends up to the 1 x 106 

nm. Because of that, this region is divided into three groups according to the requirements 

that change from instruments and the applications. Table 1.1 shows the wavelength range 

of these different infrared regions. [1] 

 

Table 2.1. The corresponding wavelengths of the IR regions 

Name of the region Wavelength range (nm) Wavelength number (cm – 1) 

Near–Infrared (NIR) 780–2500 12.800-4000 

Mid–Infrared (MIR) 2500–50.000 4000-200 

Far–Infrared (FIR) 50.000–1 x 106 200–10 

 

Generally mid–infrared (MIR) is used for both qualitative and quantitative 

analysis in analytical chemistry. Especially organic molecules are widely detected in this 

region; since each functional group in the molecule has unique information in this region, 

which is called fingerprint. Also each molecular group has sharp absorption bands. 

Organometallic or inorganic molecules are qualitatively analyzed in the far–infrared (FIR) 

region due to the metallic band in these compounds. However near–infrared (NIR) 

spectrometry is used for quantitative analysis of complex mixtures by the help of 

computers and mathematical methods that are based on statistics.  

In infrared spectroscopy the constituents or the molecules can be detected as: 

Light from a spectrometer is directed to strike a complex mixture consisting of one or 

more types of molecules. Molecules absorb the radiation of the energy to be excited it to 

the vibrational or rotational states. During this motion, a change in the dipole moment is 

required for the selection of the absorption bands. Therefore diatomic molecules such as 

H2, N2, and O2 cannot absorb the IR radiation. Table 2.2 shows the molecular interactions 

associated with the infrared regions. [2] 
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Table 2.2. The molecular interactions associated with the infrared regions. 

Name of region Characteristics Measured 

NIR Overtone & combination bands of fundamental molecular vibrations 

MIR Fundamental molecular vibrations 

FIR Molecular rotations 

 

2.2 THEORY OF NEAR-INFRARED SPECTROSCOPY 

 

The near-infrared region composes around 780 nm to 2500 nm. In this region, as 

shown above, the absorption bands are due to the overtones (780 to 1800 nm) and 

combination (1800 to 2500 nm) bands of fundamental mid-IR molecular vibrations. [2-5] 

The energy transition occurs between the ground state and the second or third excited 

vibrational states.  

Harmonic oscillator can explain the vibrations in infrared spectroscopy. A 

disturbance of one atom along the axis of the spring results in a vibration called a simple 

harmonic motion. In Figure 2.1, the vibration of a single mass attached to a spring that is 

hung from an immovable object is shown. 
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Figure 2.1. Simple harmonic motion. 

 

Using Hooke’s Law, the restoring force F is proportional to the displacement, 

which is shown by y.  

kyF −=          2.1 

where k is a force constant. It depends on the bond order.  

By the help of the second laws of Newton the natural frequency for the diatomic 

molecule as: 

µπν k
2

1=         2.2 

where k is a force constant again and µ is a reduced mass shown by: 

21

21

mm
mm

+
⋅

=µ         2.3 

where 21 ,mm are the masses of atom that are in a diatomic molecule involved in a 

vibration.  
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Figure 2.2: Energy diagram of vibrational modes. 

 

If the diatomic molecule shows an ideal harmonic oscillator the potential energy 

is, 

2

2
1 kyE =          2.4 

The parabola in Figure 2.2 shows that the potential energy is a maximum when the 

spring is stretched or compressed to its maximum aptitude A and decreases to zero at the 

equilibrium position. However, the equations above do not completely describe the 

behavior of the system; since the quantized nature of molecular vibration energies does 

not appear. Rearranging and developing these equations give the potential energy as: 

µπ
khvE

22
1






 +=        2.5 
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where h is Planck constant and v is the vibrational quantum number, which can take only 

positive integer values including zero.  

By rearrangement of equation 2.2 and 2.5: 

νhvE 




 +=

2
1

        2.6 

is obtained. Thus only discrete energy levels would be allowed. The separation 

between levels would be: 

νhE =∆          2.7 

According to the quantum mechanical selection rules, transitions between more 

than one vibrational state are forbidden for such an ideal harmonic oscillator. Therefore 

only the fundamental vibrations occur and there would be no near infared spectrum. 

However, molecules are not ideal oscillators and vibrations in real molecules. 

They show anharmonic oscillator. At higher vibrational states, departures from harmonic 

behaviour occur. When a molecule contains a high level of potential energy, it has a 

tendency to dissociate and can no longer return to its equilibrium position by a restoring 

force. (Figure 2.2). There are two types of anharmonicity that affect the vibrations, 

namely mechanical anharmonicity, and electrical anharmonicity. [4] Mechnical 

anhrmonicity is observed, when the potential energy is as a function of displacement has 

terms third or higher order.Electrical anharmonicity is observed if the dipole moment of 

the vibration is nonlinearly related to the displacement of the vibration.  

The energy values of the anharmonic oscillator are provided by the following 

equation: 

.........
2
1

2
1

2
1 32

+




 ++





 +−





 += vyhvxhvhE ννν   2.8 

where x and y are the anharmonicity constants. The more important consequence 

of anharmonicity is that it allowes transitions between more than one vibrational state and 

leads the absorption of NIR radiation by molecules. 

Combination bands in NIR spectrum consists of strecthing and bending 

combinations. Strecthing vibrations occur at higher energy levels and they are either 

symmetric or asymmetric. Bending vibrations occur at high wavelengths and they are in-
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plane or out-of-plane. In-plane bending consists of scissoring and rocking, out-of-plane 

bending consists of twisting and wagging. From the higher wavelengths to the lowest 

wavelengths strecthing, in-plane bending (scissoring), out-of-plane bending (wagging); 

twisting and rocking occur 

For a given molecule many overtones and combination bands occur in NIR 

region.Therefore NIR spectra are very complex because of the overlapping bands. In 

qualitative analysis it is less useful than the mid-IR region. However in quantative 

analysis it is more conventional by the help of multivariate calibration methods.  

 

2.3 INSTRUMENTATION OF NEAR-INFRARED SPECTROSCOPY 

 

A wide variety of NIR instruments have been designed and great improvements 

have been made in the last 50 years. There has been a reduction in instrument noise, and 

along with noise reduction improvements have been made in accuracy and sensitivity. 

Simple filter spectrometers to high speed Fourier transform spectrometers have been 

manufactured for many applications. According to their properties, NIR instruments can 

be categorized into two classes, dispersive instruments, and Fourier-Transform 

instruments. [6] 
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2.3.1 Dispersive Instruments: 

 

UV–visible instruments are generally designed to cover the wavelength range 

from 780 to 2500 nm and they are called UV-visible-NIR spectrophotometers; since UV-

visible and NIR infrared spectrometers show similarities in the optical elements. Most 

NIR instruments have detector both reflectance and transmittance measurements together. 

Therefore it allows the analysis of both solid and liquid samples easily. Dispersive 

instruments depend on the monochromator type. (Figure 2.3) Holographic gratings have 

replaced the old mechanically grooved and replicated gratings, since the holographic 

gratings have fewer detect, anomalies and greater throughput across the entire NIR 

spectrum. They are produced by photoetching process, and manufactured easily because 

they are economical. [6]  

 

Figure 2.3: Schematic representation of a NIR spectrometer. 
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Tungsten-halogen lamps with quartz envelopes are usually used as source for the 

NIR instruments. These lamps provide high-energy output over the 360–3000 nm region. 

In addition they can be used for a long time; because the halide inside the lamp envelope 

performs a bathing action that keeps the quartz window cleaner than it is possible with 

ordinarily evacuated tungsten lamps. More expensive xenon discharge lamps can also be 

used as a source. In recent years lasers and light-emitting diodes have been started to use. 

[7] 

Sample handling is relatively easier in the NIR region than in the mid-IR range. 

Sample cells are made from quartz or fused silica. Their pathlengths vary between 1mm 

to 10 cm. 

Detectors are designed for two aims. First one is for reflectance measurements and 

the second one is for transmittance measurements. For this purposes silicon sensors, lead 

sulfide (PbS), antimony sulfide (Sb2S3), lead selenide (PbSe), and bismuth sulfide (Bi2S3) 

have been used. In some cases gallium arsenide (GaAs) detectors are used, but small 

surface areas of such detectors do not lend themselves to integration of diffusely reflected 

light. [6] 

 

2.3.2 Fourier Transforms Instruments 

 

Fourier Transform near-infrared (FT-NIR) instruments have been commercially 

available for several years. Michelson interferometer, Fabry–Perot based interferometer or 

common type of interferometer-based instruments are the most widely used types in the 

instrument design. [6] The Michelson interferometer-based instruments are usually called 

multiplex spectrometers in which all wavelengths of the radiation from source are 

observed simultaneously. Therefore this type instruments has a very high speed and 

signal-to-noise ratio (S/N). The Michelson interferometer contains a beam splitter and two 

plane mirrors, one fixed and one movable mirror. After a beam of polychromatic radiation 

is passed through a sample cell, it is split into two equal power beams, one of them 

directed to the fixed mirror and the other is to the movable mirror. After reflection from 

the plane mirrors, the beams are recombined and sent to the detector. And the variations 
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in the intensities of the combined beams can be measured as a function of pathlength 

differences.  

The Fourier transform is applied for signal processing in multiplex instruments to 

convert time domain spectra into the frequency domain. Figure 2.4 shows an artificial 

interferogram and its wavelength domain spectrum. Therefore they are called Fourier 

transform instrument. This property gives some advantages to this instrument: The first 

advantage is, the large light flux reaching to the detector since there are no entrance slits. 

Using interferometer leads wavelength accuracy and precision that are providing high 

signal to noise ratio (S/N). And the last one is, all the wavelengths of the radiation from 

the source are recorded simultaneously. Thus an entire spectrum can be recorded in a 

second. This extremely high speed can be also used for signal averaging, which also 

provides a better S/N ratio.  

 

Figure 2.4: Simplified block diagram of a Michelson Interferometer-based Fourier 

Transform Near–Infrared Spectrometer  
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2.4 ADVANTAGES OF NEAR-INFRARED SPECTROSCOPY 

 

Near–Infrared spectroscopy has numerous advantages over the traditional infrared 

analysis methods.[7] 

All organic compounds absorb in NIR region, but not strongly. It gives good 

sample penetration for the NIR light and makes Beer’s Law useful for NIR region. Longer 

pathlenghts can be used for the liquid analysis. Wide slits monochromators, efficient 

detectors, bright sources and high throughput optics provide high S/N ratio that gives 

effectiveness for the NIR spectrum. The reproducibility of intensity measurements is on 

the order of micro absorbance units; since the intensity of NIR bands is less than the mid-

IR bands. It is very rapid analysis, since it does not need necessarily sample preparation. 

Because of the glass optics, grating spectrometers are relatively cheap among the other IR 

instruments. The sensitivity of NIR instruments is increasing and the dedection limit is 

decreasing, as little as 0.001 to 1% when ideal conditions exist. One can determine as 

many components in the samples as there are spectrally independent wavelengths. This 

number is commonly around ten.  
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CHAPTER 3 

MULTIVARIATE CALIBRATION METHODS IN 

SPECTROSCOPY 

3.1 INTRODUCTION 

Spectroscopy is a branch of analytical chemistry that gives both quantitative and 

qualitative information about a sample of interest. Since spectroscopic analysis is based 

on indirect measurements, it requires a calibration process. The word “Calibrate” in daily 

life means to determine the inner diameter or capacity of a gun or some other cylinder. 

However in quantitative analysis the word “CALIBRATE” is used for empirical data and 

prior knowledge for determining how to predict unknown quantitative information from 

available measurements with some mathematical transfer function [8]. In this context, 

calibration is one of the key steps associated with the many biological, industrial and 

environmental materials.  

In the past, data acquisition and analysis were often time-consuming and tedious 

activities in analytical laboratories. Advances in instrumentation and computing have 

allowed analytical chemists to collect huge amounts of data on a wide variety of problems 

of interest and to construct a calibration model for instrument. However more data do not 

necessarily mean more information. Only when the data are interpreted and put to use, 

they become valuable to the chemist and to society in general, then the data become 

information. For this reason, the data analysis or methods helped to broaden to use of 

analytical techniques for difficult problems.  

In the simplest conditions, a model such as  

baxy +=         3.1 

has been used to express the relationship between a single measurement (y) from 

an instrument and the level (x) of the analyte of interest. Instrumental measurements are 

obtained from species in which the amount of the analyte has been determined by some 

independent and inherently accurate results assay. [9, 10] Instrumental measurements and 

results from the independent assays are used to construct a model that relates the analyte 
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level to the instrumental measurements. Then, this model is used to predict the analyte 

levels of future samples based on the instrumental measurements.  

In general calibration models are divided into two types: 

1. Univariate Calibration  

2. Multivariate Calibration 

Multivariate analysis is a collection of powerful mathematical and statistical tools 

that can be applied to chemical analysis when more than one measurement is acquired for 

each sample. To understand the evolution of multivariate calibration methods; it is useful 

to review the univariate calibration methods and its limitations.  

3.2 UNIVARIATE CALIBRATION METHODS 

In general univariate calibration methods involve the use of a single measurement 

from an instrument. It also requires the signal from instrument only depends on the 

analyte of interest without interference. [9] 

The calibration in these methods is emphasized into two steps: (Figure 3.1) 

1. Calibration 

2. Prediction 

 

Figure 3.1: A schematic diagram of the calibration and prediction process. 
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In the first step (calibration), indirect instrumental measurements are obtained 

from the species whose concentrations have been determined by another independent 

method. The set of instrumental measurements and results from the analyte referred the 

calibration or training set. These are used to construct a model that relates the amount of 

analyte to the instrumental measurement. In general, this step is the most time-consuming 

and expensive part of the overall calibration procedure because of the preparing of 

reference samples.  

Next the model developed in the calibration step combined with the measurement 

of a new species to predict the analyte level or amount. The prediction step is illustrated in 

Figure 3.2. 

Figure 3.2: A calibration graph generated by simple linear least squares for a set of 

sample. 

 

For a univariate calibration model, the response of the instrument, s, at a fixed 

frequency is related to the analyte concentration, c, by the calibration function defined as: 

( ) secfs +=         3.2 

where es is the error associated with the instrument response. In spectroscopy, the 

relationship described by f(c) is assumed to be linear according to the Beer’s law.  
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The two most common method of modeling are the classical and inverse methods 

when the assumption for the linear relationship between instrument response and analyte 

concentration holds true. [9] 

 

3.2.1 Classical Univariate Calibration 

 

In the classical univariate calibration method, the expressed statistical model can 

be shown as: 

iii ecbba ++++++++==== 10        3.3 

where ai and ci are the instrument response and analyte concentration, respectively for the 

ith sample of m calibration standards. The measurement error associated with ai is 

represented by ei. In ideal case there is no error associated with the instrumental response. 

Therefore the solution of the Equation 3.3 simply gives a straight line. That is b0 and b1 

are the intercept and slop of the line. However; there is no such ideal case in real world 

samples or applications and there is always some sort of error associated with 

instrumental response or in the concentration values. Therefore, the traditional 

quantitative spectroscopic analysis methods begin with plotting the instrument responses 

against the analyte concentration for a set of m calibration standards. Then, b0 and b1, 

which produces a straight line that is best fit to the plotted data, are estimated using 

methods of least squares. The method of least squares minimizes the sum of the squares 

(SS) of the residuals for all the points in the classical univariate calibration method. The 

SS of the data set can be defined by rearranging Equation 3.3 for m calibration standards 

as: 

(((( ))))
2

1
10

1

2 ∑∑∑∑∑∑∑∑
========

××××−−−−−−−−========
m

i
ii

m

i
i cbbaeSS        3.4 

To minimize SS, partial derivatives of SS needs to be taken with respect to each of 

the two parameters that are being estimated and resulting expressions are set to zero. [11, 

12] 

 

 



 

 

 

27 

Thus: 

( )( ) 012
1
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=

m

i
ii

o

cbba
b
SS

    3.5 

and 

(((( )))) (((( )))) 02
1

10
1

====−−−−⋅⋅⋅⋅××××−−−−−−−−====
∂∂∂∂
∂∂∂∂ ∑∑∑∑

====
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m

i
ii ccbba

b
SS

     3.6 

 

After dropping 2 and –1 from Equations 3.5 and 3.6, the solutions of b0 and b1 can 

be obtained by solving normal equations: 

( ) 0cbba
m

1i
i1oi =×−−∑

=
      3.7 

and 

( ) 0cbbcac
m

1i

2
i10iii =−−∑

=
      3.8 

These equations then become; 
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i10 acbmb        3.9 
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m

1i
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m
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m
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2
i1i0 accbcb      3.10 

The solution of these equation produces the least squares estimated values of b0 

and b1: 
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and 

cb̂ab̂ 1o −=         3.12 
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where a and c are the mean values of instrumental responses and analyte concentrations 

for m calibration samples. Now the estimated calibration equation can be written as: 

cb̂b̂â 10 +=         3.13 

and then concentration of an unknown sample can be calculated by; 

1

ou
u b̂

b̂ac −=         3.14 

where cu is unknown analyte concentration and au is instrument response for that sample. 

The correlation coefficient (R2) is a numerical measure that express the strength of the 

linear relationship between c and a and can be defined as: 

( )

( )∑

∑

=

=

−

−
= m

1i
i

m

1i
i

2

aa

aâ
R         3.15 

This equation produces a unit free number. The values for R2 range from 0 to1 and 

it should as close as 1, possible.  

 

3.2.1.1 Matrix Algebra Applied to Simple Linear Regression 

 

Univariate calibration method can also be described in matrix notation. Then the 

equation becomes as: 

aeCa += β         3.16 

where a is the mxl vector of instrument responses, C is the mx2 matrix of analyte 

concentrations, β is the 2xl vector of regression parameters (b0 and b1) and ea is the mxl 

matrix of the errors associated with a or residuals that are not fit by the model. Note that 

the first column of the C matrix is a vector of ones, which is necessary to estimate b0 

when the multiplication is performed.  

The two normal Equations 3.5 and 3.6 given in previous section can be 

represented in matrix form as: 
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(((( )))) aCCC ⋅⋅⋅⋅′′′′====⋅⋅⋅⋅⋅⋅⋅⋅′′′′ ββββ        3.17 

Then least squares solution to Equation 3.17 during calibration is: 

(((( )))) aCCC ⋅⋅⋅⋅′′′′⋅⋅⋅⋅⋅⋅⋅⋅′′′′==== −−−−1β̂βββ        3.18 

where β̂ is the 2x1 vector of least square estimate parameters b0 and b1 with the sum of 

squared residuals not fit by the model being minimized. Once the parameters are 

estimated, then the concentration of an unknown sample can be calculated by the equation 

3.14. 

 

3.2.2 Inverse Univariate Calibration 

 

The second univariate calibration method is called as the inverse method that 

assumes inverse Beer’s law. The modeling can be implied as: 

ii10i eappc +⋅+=        3.19 

where ei is the error associated with the reference value ci. In the calibration step, the 

model parameters (p0 and p1) are estimated by the method of least squares described in 

classical univariate calibration. The following equations represent the estimated model 

parameters that are the slope and the intercept of the calibration line.  

m
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
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



−

=      3.20 

and 

ap̂cp̂ 10 ⋅−=         3.21 

where a and c are the mean values of instrumental response and analyte concentrations 

for m calibration samples. Now the estimated calibration equation can be written as: 

ap̂p̂ĉ 10 ⋅+=         3.22 
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In the prediction step, concentration of unknown sample can be calculated by: 

u1ou ap̂p̂c ⋅+=        3.23 

where cu is unknown analyte concentration and au is instrument response for that sample. 

Univariate calibration methods offer simplicity for certain types of applications 

where selective measurements can be found or when the analyte contains no interferences. 

However, their applications are limited due to the shortcomings of the single 

measurement based analysis. First of all, interference free systems are rarely encountered 

in real applications and concentrations of the interfering species are usually unknown. To 

make matters worse, the amounts of the interfering species in samples are not always the 

same. Also a large amount of noise associated with the instrument response at selected 

wavelength results in poor calibration. Another problem with the use of univariate 

calibration methods is lack of constant baseline for every measurement.  

Although the predictions obtained by classical and inverse method will be 

different for a given example, in many cases these differences are insignificant. The 

choice of particular univariate calibration method depends on whether the reference 

values of calibration standards or the instrument responses are more precise.  
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3.3 MULTIVARIATE CALIBRATION METHODS 

 

There is a need for improved quantitative information in science and technology. 

According to this purpose, multivariate calibration is a general selectivity and reliability 

enhancement tool. [8] It is applicable to determination of major constituents as well as 

minor components and other qualities, and for a very wide range of instrument types. It 

includes transformations of measurements into informative results. Calibration establishes 

this transformation.  

The multivariate calibration means determining how to use many measured 

variables simultaneously for quantifying some target variable. For example, the measured 

variables could be chromatographic or spectroscopic measurements, and the target 

variable could be analyte concentration. [8] 

The reasons for using multivariate calibration methods besides the traditional 

methods are given below:  

If the constituent interacts with the other constituents in the samples or the 

solvents, the spectrum of the analyte in the complex samples may be different from the 

spectrum of the analyte in pure form. So, calibrating the analyte in isolated, purified 

model systems may be used a little; it will have to be done empirically on realistic 

samples from the actual process. But there are some problems: The analyte may not be 

stable and/or homogenous, and the measurements may be contaminated by the 

interferences. This means that there is a need of multivariate calibration methods.[8] 
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3.3.1 Interferences and Measurement Errors 

 

In the real world it is very difficult to find the ideal measurements of the 

selectivity enhancement tool for the analyte that are interested. There will be some 

interferences or errors in the sampling method and analysis of sample.  

a) In the Figure 3.3 there is a sample analyzed in a high-precision instrument. This 

measurement produces a selective measurement that is linearly related to the 

concentration of the analyte. There is no error and any interference. [8] 

 

 

Figure 3.3. An ideal measurement. 

 

b) In the Figure 3.4, the instrumental measurement is not selective for the analyte, 

and the instrument response is non-linear. There might be interferences in the sample. The 

nonlinearity originates from the change in the concentration of constituents and the 

change in the levels of the interferents. [8] 

Sample

Instrument

y

k

yk

x = conc



 

 

 

33 

 

 

Figure 3.4. Nonlinear results for the measurements.  

 

c) Traditionally, interferences had to be removed physically to ensure selectivity: 

Cleaning, standardizing and diluting each sample prior to single-channel measurement. 

The calibration is limited to the “linear range” and only narrow range of the instrument 

scales could be used. (Figure 3.5) Hopefully the data from new samples contain no 

unexpected trouble. [8] 

 

 

Figure 3.5. Traditional selectivity enhancement.  
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d) With multivariate calibration methods, interferences and individual non-

linearities represent fewer problems. The cleaning, standardizing and diluting are more or 

less replaced by mathematical modeling of multi channel measurements. This process 

removes interference effects, extends the linear range of the calibration and allows 

automatic outlier detection if new samples contain unaccepted trouble. (Figure 3.6) [8] 

 

 

Figure 3.6.A selectivity enhancements by multivariate calibration method. 

 

3.3.1.1 Chemical Interferences: 

 

“Chemical interferences” is used to describe the systematic errors, which are come 

from the other components in the mixture or by chemically induced variations in the 

sample. [8] In real world, most of the samples contain more than one constituent; 

especially biological samples. Many constituents may affect the nature of the sample and 

the measurements of the sample. The main aim of the measurement is finding the 

relationship between the response and concentration according to the Beer law, since all 

the analytical chemists try to find the simple measurement way to obtain the sufficiently 

selective result for the analyte.  
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Figure 3.7.a shows the absorbance spectra of an analyte under the room conditions 

at various concentrations. The height of peaks depends on the concentration of the 

analyte. The calibration curve is obtained by plotting the absorbance value versus the 

concentration value. (Figure 3.7.b) For this kind of well behaved data, univariate and 

multivariate calibration methods give away the same prediction ability and high precise 

results. 

 

Figure 3.7. No interference problems. a) A spectra of an analyte at various 

concentrations. b) Univariate calibration curve.  

 

If the interferents are in the sample mixture, multivariate calibration methods give 

outlier warnings, which is not the case of univariate calibration methods. Figure 3.8.a 

shows overlapping spectrum and in this spectrum, the absorbances of the analyte will not 

be proportional to the concentration of the sample. Therefore the calibration curve will not 

be a straight line and the prediction ability will get worse. (Figure 3.8.b) Traditionally, 

interferent should be removed or an interference–free wavelength must be found for 

plotting the calibration curve. If there is not enough time, to get the desired selectivity in 

the results, interferents should be removed mathematically, which is the case of the 

multivariate calibration methods.  
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Figure 3.8.Chemical interferences from other constituents. a) Spectra of a multi 

component mixture that have overlaps; b) Univariate calibration curve.  

 

Also some variations in the sample spectrum will change the precision of results. 

For example, the sample preparation condition is very important, since it may change the 

spectra of the analytes that we are interested in. Again, if there is not enough time for 

extra sample preparation, it can be changed mathematically using multivariate calibration 

methods.  

 

3.3.1.2 Physical Interferences: 

 

“Physical Interferences” means systematic errors in quantitative determination of a 

chemical constituent caused by physical effects rather than the effect of other chemical 

constituents with similar instrument response. [8] 

The physical phenomena in the samples can affect the measured signal strongly. 

To get the desired selectivity, such effects can be compensated mathematically. Figure 

3.9.a illustrates one common type of physical interference due to the samples, namely that 

of light scattering in spectroscopy. The spectra include the baseline, analyte peak and the 

solvent peaks. It is strongly affected by light scattering. Figure 3.9.b shows the calibration 

line of the analyte that obtained from a univariate calibration method. To correct it, the 

baseline peak should be first subtracted from each spectrum in a way that is a primitive 
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multivariate calibration method. By using multivariate calibration methods there is no 

extra prior sample preparation.  

Figure 3.9: Physical interference from the sample: a) spectra of samples with 

baseline and solvent peak; b) calibration curve obtained from a univariate calibration 

method.  

 

Another example of physical interference originating from the sample is the 

temperature effect on the analysis. Today it is well known in that the water absorption 

peaks in the near-infrared range is affected by temperature. 
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Chemical or physical interferences are not the only interferences in the 

measurement procedure. It should be concerned that the systematic errors are due to the 

way of the measurement made. Also problems of human mistakes must be taken into the 

consideration, especially in routine analysis, where each sample cannot be given too much 

attention. Univariate calibration methods cannot correct for such effects, multivariate 

calibration methods, it is possible to build a ‘bridge’ across such discontinuities. With 

them, many types of the sample abnormalities or instrumental problems can automatically 

be detected as outliers. These methods are: 

• Classical Least Squares (CLS) 

• Inverse Least Squares (ILS) 

• Principle Component Analysis (PCA) 

• Principal Component Regression and Partial Least Squares (PCR &PLS) 

• Genetic Regression (GR) 

• Genetic Classical Least Squares (GCLS) 

• Genetic Inverse Least Squares (GILS) 

• Genetic Partial Least Squares (GPLS) 
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3.2 CLASSICAL LEAST SQUARES 

 

This method assumes that the modeling is based on Beer’s Law. With this law, the 

absorbance at each frequency is proportional to the analyte concentrations. [9,10,13,14] It 

defines a relationship between four different variables: 

• the spectral response ( Aλ)  

• the constituent absorptivity constant (ε λ) 

• the pathlength of light (b) 

• the constituent concentration (c) 

The goal of spectroscopic quantitative method is solving for the absorptivity 

constants. However, if the pathlength of the samples is kept constant then Beer’s law can 

be written as: 

CKA λλ =          3.24 

In this notation K is a combination of the absorptivity coefficient and pathlength. 

If we have a single sample this equation can be solved easily. Only the absorbance 

of the sample is measured, then with known concentration, the value of Kλ is calculated. 

For predicting the concentration of an unknown sample calculating is as simple as 

measuring absorbance at the same wavelength. Finally arranging the Equation 3.24, the 

unknown concentration can be calculated as:  

λ

λ

K
AC =          3.25 

Due to the limitations of noise, instrument error, sample handling error, and many 

other possibilities; it is the best way to measure the absorbances of a series of samples and 

calculate the slope of the best line through all the data points. Just like the univariate 

calibration.  

If we have a sample with two constituents then the problem will become more 

complex. In mathematical solution the number of mathematical equations should equal to 

the number of the unknown variables. In this case it is necessary to have two equations.  

a,a CKA
11

×= λλ        3.26 
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b,b CKA
22

×= λλ        3.27 

where the Aλ1, Aλ2 are the absorbances of constituents at two different wavelengths; Ca, Cb 

are the concentrations of the constituents in the sample; and Ka,λ1, Kb,λ2 are the 

absorptivity constants for the two constituents at the indicated wavelengths. Two different 

solutions can be applied for this process. The first one is based on the assumption that 

does not include any interference. By it, the solutions of equations become simple and 

independent from each other. Since bands are well resolved. (Figure 3.10) 

 

Figure 3.10. Hypothetical spectra of two different pure constituents A and B and a 

mixture of the two. 

 

The second one is based upon another assumption, which includes interferences. 

That means the constituents in the sample have similar properties. (Figure 3.11) 
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Figure 3.11. Hypothetical spectra of two alternative pure constituents, A and B, and 

a mixture of the two. 

 

In this case the bands of the constituents spectra overlap and the equations must be 

solved simultaneously for both A and B. This solution can be done only taking the 

advantage of Beer’s law; the absorbances of constituents at the same wavelength are 

additive. Thus the equations of two constituents for a single spectrum; 

b,baa1 CKCKA
11

×+×= λλλ      3.28 

a,abb2 CKCKA
22

×+×= λλλ      3.29 

In the assumption there is no error in the measurements and in the predictive 

ability of the equations, these equations are used to predict unknowns. In real world it is 

impossible to find samples, there is always an error. Thus the error should be in problem 

solution. 

111
ECKCKA b,baa1 λλλλ +×+×=    3.30 

222
ECKCKA b,ba,a1 λλλλ +×+×=    3.31 

Eλ1 and Eλ2 are the spectral residual errors that are not fit by the model. In these 

conditions when two constituents samples were studied, errors were zero to obtain best 

line for the calibration model. However, with all the calibration models, Classical Least 
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Squares requires a lot of training samples with multiple constituents to build an accurate 

calibration model. With it, it is possible to build model simultaneously for all samples.  

More than two constituents or wavelengths are getting the problem harder. An 

efficient way to solve it is matrix mathematics. It has also many calculations, but the 

importance of this way is its suitability for computers.  

In matrix terms the Equations 3.30 and 3.31 can be formulated as: 

2
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λ +=
      3.32 

or more simply  

EKCA +=         3.33 

If this model extended to more complex mixture, it is should be as: 
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+=   3.34 

where A is the mxn matrix of spectral absorbances (calibration spectra), K is the lxn matrix 

of absorptivity-pathlength constants, c is the mxn matrix of the constituent concentrations, 

and E is the mxn matrix of spectral errors or residuals not fit by the model. The subscripts 

indicate the dimensionality of matrix; m is the number of samples, n s the number of the 

data points (wavelength) used for calibration and l is the number of constituents in the 

sample mixtures.  

Using matrix algebra, it is simple to solve the Equation 3.32 with computers. The 

first step to build model and find the best fit least squares line for the data is finding the 

value of the K. K represents the matrix of pure component spectra at unit concentration 

and unit pathlength. If the K matrix is solved; it can be used to predict concentrations of 

unknown samples. It can be showed simply as: 

1CAK −×=         3.35 

However, to calculate the inverse of a matrix requires that the matrix must be 

square. It means the calibration set has the same number of samples as constituents, but 
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practical it is not true. For best representation of the true calibration equation more 

samples should be used. Therefore an alternative solution is required.  

1TT )CC(CAK −××=       3.36 

This solution is a “pseudo-inverse” of C matrix. CT is the transpose of the C matrix 

and “-1” refers the inverse of eqution. 

This method is known as K matrix or Classical Least Squares (CLS). Also it can 

be considered as factor analysis method since the spectral absorbances matrix is 

represented as the product of two smaller matrices C and K. 

Classical Least Square is a full-spectrum method therefore it can provide 

significant improvements in precision, allow simultaneous fitting of spectral base lines 

and make available for examination and interpretation least squares estimated pure-

component spectra and full-spectrum residuals. One interesting side of this property is 

that if the entire spectrum is used for calibration, the rows of K matrix are spectra of the 

absorptivities for each of the constituents. These will like similar to the pure component 

spectra.  

In spite of these advantages, this technique has one major disadvantage. It requires 

knowing the complete composition (every constituents) of the calibration mixtures and 

predicted (unknowns) must be mixtures of the exactly the same constituents. If the 

concentration of any constituents accepted as an outlier the predicted absorbance will be 

incorrect. Therefore, CLS can be applied to only the samples in which constituents’ 

concentration well known. [15] In addition, there must be no interference in the sample. If 

there is, the K matrix will not be reflecting the absorptivities of the constituents and the 

predictions of unknowns. The CLS can be applied to the samples that contain only 

minimal or no inter constituents. Therefore it performs efficiently for gas–phase’s 

samples.  
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3.3 INVERSE LEAST SQUARES 

 

In real world the constituents of the samples interfere with each other and the 

exact composition of sample cannot be known. So the CLS cannot be applicable. To 

eliminate the disadvantage of Classical Least Squares, the Inverse Least Squares (ILS) 

assumes that the responses of the samples depend on the concentration. It accepts that the 

Beer’s law can be taken inversely. Therefore the equation rearranged by taking the 

advantage of algebra. There are two solutions: The one is: 

b
AC
λ

λ

ε
=          3.37 

And the other is combining the absorptivity coefficient and the pathlength in a 

single constant.  

EPAC += λ         3.38 

In this equation C is the mxl matrix of constituent concentrations, A is the mxn 

matrix of spectral absorbances, P is the nxl matrix of the unknown calibration coefficients 

relating the l component concentrations to the spectral intensities, and E is the mxl vector 

of random concentration error or residuals that are not fit by the model. Since the model 

error is presumed to be error in the component concentrations, this method minimises the 

squared errors in concentration during calibrations. Consider the following equations: 

a,a,aa EPAPAC
2211

+×+×= λλλλ     3.39 

b,b,bb EPAPAC
2211

+×+×= λλλλ     3.40 

by these equations, if the constituents of sample does not known exactly, the 

matrix of coefficients can still be calculated correctly.  

This model known, as Inverse Least Squares (ILS) or Multiple Linear Regression 

(MLR) or P matrix and it seem as a best approach for the quantitative analysis. There is 

no need to recognise every components in the sample. Again like CLS, p matrix of 

absorbances is not square the “pseudo-inverse” must be used.  

1TT )AA(ACP −××=       3.41 
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Notice that the ILS is different from the CLS. The inverse representation of Beer’s 

law has given a significant advantage. “The analysis based on this model is invariant with 

respect to the number of chemical constituents.” With this assumption the model also can 

be reduced for one component at a time.  

eApc +=         3.42 

where c is the mx1 vector of concentrations of the constituents, p is the nx1 vector of 

calibration coefficients, and e is the mx1 vector of concentration results not fit by the 

model. That means, if one constituent in the sample is known, the model can be applied to 

the all samples of interested. During the calibration step, the least squares estimate of p is: 

( ) cAAAp̂ T1T ×= −
       3.43 

where p̂ is the estimated calibration coefficients. Once p̂ is calculated then the 

concentration of the analyte of interest can be predicted with the equation below: 

p̂aĉ T ×=          3.44 

where ĉ  is the scalar estimated concentration and a is the spectra of the unknown sample.  

This model seems to be best modelling technique in all words. Since it can build 

models accurately when only the one component is known in the sample. The only 

requirement is selecting wavelengths that correspond to the absorbances of the desired 

constituents.  

Unfortunately the ILS calibration has some drawbacks. Due to the dimensionality 

of the matrix equations, the number of selected wavelengths cannot exceed the number of 

training samples that are occurred the calibration set. But in theory it should be possible to 

measure many more training samples to allow for additional wavelengths. However the 

absorbances in a spectrum tend to all increase or decrease together the concentrations of 

the constituents in the sample mixture and that is caused a new problem, which is called 

collinearty. This effect causes the mathematical solution to become less stable for the 

each constituent. Another problem with adding more wavelengths to the model is an 

effect known as over fitting. Generally it improves the prediction ability of the model. 

However when too much information in the spectrum is used to calibrate, the model starts 
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to include spectral noise, which is unique to the training set and the prediction accuracy 

for unknown samples.  

In the ILS the wavelength selection is very important. For this reason many 

sophisticated algorithms are used to choose the “best” set of the wavelengths that 

represent the each constituent in the sample mixture. In spite of these disadvantages, ILS 

allows the calibration of very complex mixtures since only knowledge of constituents of 

interest is required and it is relatively fast.  

 

3.4 THE EIGENVECTOR QUANTITATION METHODS  

 

In real samples, there are many different variables that make a spectrum. These 

are: 

• the constituents of sample 

• inter-constituent interactions 

• instrument variations (i.e., detector noise) 

• changing environmental conditions that affect the baseline and absorbance 

• differences in sampling handling  

Even with all these complex changes occurring, there should be finite number of 

these variations when the spectral data are occurring. Hopefully the largest variations in 

the calibration set would be the concentrations of the constituents of the mixtures in the 

spectrum. If it was possible to calculate a set of “variation spectra” that represented the 

changes in the absorbances at all the wavelengths in the spectra, then this data could be 

used instead of the raw spectral data for building the calibration model. The “variation 

spectra” could be used to reconstruct the spectrum of sample by multiplying each one by a 

different constant scaling factor and adding the results together until the new spectrum 

closely matches the unknown spectrum. Each spectrum in the calibration set would have a 

different set of scaling constants for each variation since all the concentrations of the 

constituents are different. Therefore, the fraction of each spectrum that must be added to 

construct the unknown data should be related to the concentration of the constituents. The 

“variation spectra” are often called eigenvectors or spectral loadings or loading vectors or 
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principle components or factors. The scaling constants used to reconstruct the spectra are 

generally known as scores.  

The eigenvectors must relate to the concentrations of the constituents that make up 

the samples, since they came from the original calibration data.  

The calculated scores are unique to each separate principle component and 

training spectrum, and can be used in place of absorbances. Since the representation of the 

mixture spectrum is reduced from many wavelengths to a few scores as shown in Figure 

3.12. This method is combining both the CLS and ILS methods together in the same 

calculation. Since it is better than the classical models in the meaning of accuracy and 

robustness.  

 

Figure 3.12. PCA breaks the spectral data into most common spectral variations 

(factors, eigenvectors, loadings) and the corresponding scaling coefficients (scores) 

 

The trick in using these models comes from the calculation of the eigenvectors. 

These models are based on the concentration predictions and changes in the data, not the 

absolute absorbance measurements that are used in all Classical models.  

In order to calculate the PCA model, the spectral data must change in some way. 

To accomplish this it is the best way to vary the concentration of the constituent. Since 

there can be problem with collinearty. For example, if the concentrations of the two 

constituents present always in same ratio, the model will detect only one constituent not 

two. Also not only the concentration of the constituents if the absorbance peak of the A 

increase or decrease when constituent B also increases or decreases, only one variation 
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will be detected and this is the changes in the mixture of A and B. Therefore, it is very 

important to have randomly concentration ratios in the mixtures.  

 

3.5 PRINCIPLE COMPONENT ANALYSIS AND PRINCIPLE 

COMPONENT REGRESSION  

 

One way to calculate all possible variation in the spectra is Principle Component 

analysis (PCA). It requires a group of training spectra that represents the composition of 

the sample that is interested in. The main property of this set is it should contain the range 

of expected for the unknown samples.  

PCA is effectively process elimination. By this property, it is possible to create a 

set of eigenvectors (principle components) that are presentation of the changes in the 

absorbances. When the training data set has been fully processed by the PCA algorithm, it 

is reduced to two main matrices: the eigenvectors and the scores. The matrix 

representation shown as: 

AEFSA +⋅=         3.45 

where A is mxn matrix of spectral absorbances, S is mxh matrix of score values for all of 

the spectra, and F is an hxm matrix of eigenvectors. The EA mxn matrix is the error or 

spectral residuals that are not fit by the model. The dimensions of the matrices are 

representative of the data they hold; m is the number of samples (spectra), n is the number 

of the data points (wavelength) used for calibration, and f is the number of eigenvectors.  

The model equation should look familiar, and in fact it is very similar to the CLS 

model for the spectra. However, the spectral data is not constructed from the 

concentrations and absorptivity coefficient spectra. And there is no limit to the number of 

the wavelengths that can be used; so all the data up to the entire spectrum can be included 

in the model. The concentrations matrix C has not played a role in the calculations at all. 

Therefore, PCA cannot be used alone as a model for predicting constituent concentrations.  

The eigenvectors are represented the spectral variations that are common to all the 

calibration data. The F matrix from PCA performs a similar task to the K matrix in the 

CLS model; it stores the constituent spectral data. However this does not mean the rows 
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of F matrix are the spectra of the pure constituents because they are not. On the other 

hand, the scores in the S matrix are unique to each calibration spectra and as a spectrum it 

is represented by a collection of absorbances at a series of wavelengths. Just like classical 

models it is possible to regress C against the scores S. In this case, the regression 

technique from the ILS model is the best choice. Since, there is no priori knowledge of the 

complete sample composition and some robustness in the original calibration mixtures. 

The model equation then will become: 

CESBC +⋅=         3.46 

where C is the mxn matrix of constituent concentrations, B is an mxh matrix of the 

regression coefficients, and S matrix is the scores from the PCA model. m is the number 

of the constituents that are used in the calibration set, n is the number of the samples 

(spectra), and h is the number of eigenvectors. As with ILS, the B coefficients matrix can 

be solved by the regression: 

( ) T1T CSSSB −⋅=        3.47 

Thus the name of this type of this regression called is Principle Component 

Regression (PCR), since it combines both PCA and ILS to solve the calibration equation 

for the model. By rearranging the model, a single unified equation will come up to 

represents PCR model.  

TAFS =         3.48 

It is not necessary to use pseudo-inverse of the F to solve this equation. Since the 

F matrix is a special type of matrix that is called orthonormal matrix. When this matrix is 

multiplied by it’s own transpose, the identity matrix is the result. Multiplying any matrix 

by the identity matrix is the same as multiplying a single number by one; the result is 

always the number again.  

Finally by combining the concentration equation with scores equation, the final 

PCR model equation emerges: 

C
T EBAFC +=        3.49 

The PCR model is not completely free of problems. Since PCR is a two-step 

process; PCA eigenvectors and scores are calculated and then the scores regressed against 
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the constituent concentrations using a regression method similar to ILS. N the first step, 

PCA calculates the factors and/or scores independtly of any knowledge of the 

constituents’ concentrations. Hopefully the variation spectra are the results of the 

constituents’ concentrations but there is no guarantee.  

 

3.6 PARTIAL LEAST SQUARES 

 

Partial Least Squares (PLS) is another method that also calculates the variations in 

the spectra. It is soft modeling techniques in which the data are decomposed into new 

variables that are linear combinations of the original data. This new variable is named as 

principal components or factors and therefore, PLS is often called factor methods. The 

way in which the new variables are created can be visualized for a two dimensional 

system. If the instrument responses for a set of m samples at two wavelengths (n=2) are 

plotted against each other, a new axis is formed in the direction that represents maximum 

variability of the data. This new axis is called first principle component or first 

eigenvector. If all the samples fall on this new axis, then all of the variations can be 

described using only one eigenvector. [26] Otherwise a second eigenvector can be found 

that is perpendicular or orthogonal to the first eigenvector. The second one describes the 

maximum amount of residuals, not fit by the first one, in the data set and so on. If more 

than two wavelengths are included in instrument response matrix, the plotting space 

becomes multidimensional and several eigenvector can be found, each one successfully 

accounting for the maximum possible amount of remaining variability and each 

orthogonal to others. In general, the number of principle component or factor that can be 

generated is less than or equal to the number of sample. [16] 

PLS is full-spectrum method so it retains the full spectrum advantages of CLS. 

However, al of the component concentrations need to be known because, both the PLS 

can perform the analysis one component at a time while avoiding the ILS wavelength 

selection problems. PLS and PCR differ in the way the matrix of the spectra decomposed 

into two smaller matrices. In the PCR, decomposition is performed independently of 

analyte concentration whereas in the PLS, the concentration information is used to extract 
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factors. Therefore, the PLS method is expected to provide better calibration models and 

prediction. [17] The model for either the PLS is described as: 

AETBA ++++====         3.50 

where A is the same before, B is a hxn matrix of basis vectors or loading spectra. T 

is an mxh matrix of intensities or scores in the new coordinate system defined by the h 

loading vectors. EA is now the mxn matrix if spectral residuals not fit by the model. The 

difference between CLS and these factor methods is that the loading vectors in B are not 

pure component spectra but they are linear combinations of the original calibration 

spectra. Also the intensities in the new coordinate system are no logger constrained to the 

concentrations as were in CLS, but modeling can be done to relate the scores in T to the 

component concentrations. The number of basis vectors, h, to represent original 

calibration spectra is determined by an algorithm during the calibration step.  

The spectral intensities in the new coordinate system can be related to the 

concentrations of the analyte with an ILS model given by: 

ceTvc +=         3.51 

where c is the mxl vector of component concentrations, v is the hxl vector of 

coefficients which relate spectral intensities to the component concentration and ec is the 

mxl vector of errors in reference values of the component that is being analyzed. The 

least-squares solution for v is similar to the Equation 3.43 in ILS, however, since the 

columns of the T matrix are orthogonal, inversion of the diagonal (TT T) matrix is trivial. 

The estimate of v vector is given as: 

( ) cTTTv̂ T1T
h

−=        3.52 

where hv̂  is the least-squares estimate of v. The T and B matrices are calculated in a 

stepwise manner (one vector at a time) until the desired model has been obtained. As 

mentioned earlier, PLS and PCR differ in the way they generate T and B matrices. In the 

PCR model, NIPALS (nonlinear iterative partial least squares) algorithm developed by 

Wold [20] is used. The NIPALS algorithm extracts the full spectrum loading vectors 

without using concentration information in the decomposition of spectral matrix A. 

Therefore; the prediction of component concentrations is expected to be poorer that the 
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results obtained by PLS which applies a modified version of NIPALS algorithm. [16] This 

modified version of the algorithm uses concentration information in the process of 

obtaining loading vectors thereby resulting in a generator predictive ability.  

There are two PLS methods that are available today in the analysis of complex 

chemical mixtures. These are called PLS1 and PLS2 methods. In the PLS1 method, the 

analysis performed one component at a time and other component concentrations not 

included in the model building step. This is the most commonly used form the PLS 

method and it is reported that the predictions obtained with PLS1 are better that those 

obtained PLS2. It is suggested that PLS2 algorithm should be used for qualitative 

application.  

Before applying the factor based methods to the data, it is common practice to do 

some sort of data pretreatment such as mean centering and scaling. [21] The mean 

centering is usually applied to both calibration spectra and corresponding analyte 

concentrations in which the average concentrations for the component of interest are 

subtracted from each spectrum and from given component concentrations, respectively. 

After the data pretreatment, a CLS calibration model is selected for the analysis of one 

component at a time. Then the PLS1 algorithm starts with the calculation of the estimated 

first weighed loading vector, hŵ , by setting h to 1. This is done with the method of least 

squares and is given by: 

( ) 1TT
h cccAŵ −=         3.53 

where hŵ  is an nxl vector representing the first order approximation of the pure 

component spectra for the component that is being analyzed. This weighted loading 

vector is then used to form the score vector ht̂ , with an ILS prediction model. The method 

of least squares is used to regress A on hŵ  which produces the first estimated ht̂  vector as 

given: 

hh ŵAt̂ =          3.54 

With a linear least-squares regression, this score vector can be related to the 

component concentrations. The scalar regression coefficient, hv̂ , is estimated by: 
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( ) 1
h

T
h

T
hh t̂t̂ct̂v̂

−
=        3.55 

The least-square estimated regression coefficient is later used to obtain 

concentration residuals. In order to eliminate collinearty problems, the PLS loading 

vector, hb̂ , is now calculated with a new model for A. Once again the method of least 

squares is used to find estimated b vector by: 

( ) 1
h

T
h

T
hh t̂t̂At̂b̂

−
=        3.56 

where hb̂  is an nx1 vector. It is now possible to calculate the first PLS approximation to 

the calibration spectra by multiplying the score vector ( ht̂ ) with transpose of PLS loading 

vector ( T
hb̂ ). The first residual matrix is calculated by subtracting the PLS approximation 

matrix from A matrix. The residuals in concentration vector calculated in a similar 

manner where scalar regression coefficient ( hv̂ ) is multiplied with score vector and this 

product is subtracted from original concentration vector. The following equations provide 

residuals in both A and c. 

T
hhA b̂t̂AE −=         3.57 

and 

hhc t̂v̂ce −=         3.58 

This is the end of the first iteration in the calibration step. This is the process is 

repeated for a desired number of loading vectors by incrementing h, substituting EA for A 

and ec for concentration in the first CLS calibration model at the beginning of the 

algorithm. 

The prediction step of PLS1 algorithm involves the calculation of final calibration 

coefficients, bf, which have the dimension of an original spectrum. Once the bf is 

calculated, it is possible to calculate the concentration of a new sample using the average 

concentration of the analyte and its spectra. The following equations show the prediction 

step in PLS1. 

( ) v̂ŴB̂Ŵb
1T

f
−

=         3.59 
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where Ŵ  and B̂  contains individual hŵ  and hb̂  vectors, respectively and v̂  is formed 

from individual regression coefficients ( hv̂ ) The final prediction equation is then given as: 

o
T cbfaĉ +=         3.60 

where ĉ  is the predicted unknown sample c a is the spectrum of that sample and c0 is the 

average concentration of calibration samples.  

The process of determining the optimal number of PLS factors may vary from 

algorithm. The cross-validation approach is one of the methods for this. [22] For m 

calibration spectra, the PLS1 algorithm is performed on m-1 spectra and the left out 

spectrum is used to validate the model. This process is repeated until each spectrum is left 

out once in the calibration set. The predicted concentration for each left out sample is then 

compared with their original values and the prediction error sum of the squares (PRESS) 

is calculated for each added factor. The PRESS is a measure of how well a particular 

model fits the calibration data and given by: 

( )
2m

1i
icĉPRESS ∑

=

−=        3.61 

where ci is the reference (known) concentration of the ith sample and concentration is the 

predicted concentration of the ith sample for m calibration standard.  

It is not the minimum PRESS value, however, that is used for the selection of 

optimal number of PLS factors since this may lead to over fitting resulting in a poorer 

prediction. Therefore a comparison needs to be done between two models that contain h 

and h+1 factors. Here, the better model is the one with smaller number of factors where 

the difference between the two PRESS values is determined by the F test to be significant. 

Figure 3.13 is an example of the determination of the optimal PLS factors. In this example 

the optimum number of factor is 6.  
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Figure 3.13: The graphic of PRESS to Factor Number 

 

Although factor based calibration methods (PLS and PCR) eliminate most of the 

shortcomings of the hard modeling multivariate calibration methods such as CLS and ILS, 

they are much more complicated in terms of the mathematics involved in the 

decomposition of spectral matrix and obtaining basis vectors.  

 

3.7 GENETIC REGRESSION 

 

In principle, the performances of each calibration method are differentially 

affected by each underlying factors. Briefly CLS is a multivariate least-square procedure 

based on Beer’s law. The CLS model accounts for errors in the spectral measurements. 

CLS can accommodate spectral intensities at all frequencies for all calibration samples. 

All overlapping spectral components should be known for optimal performance of CLS. 

By being a full-spectrum method, CLS has the ability to achieve improved precision since 

there is signal-averaging effect when many or all the spectral intensities are included in 

the analysis. ILS is a least-squares method that uses the inverse of Beer’s law as its model. 

The ILS model accounts for errors in the reference concentrations. ILS is a frequency-

limited method and, therefore, is not capable of the precision improvements of CLS from 

Factor = 6 

PRESS 

Factor 
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signal averaging of multiple intensities. However, ILS can often be a useful method even 

if only one component is known for the calibration samples.  

PLS and PCR are both factor-based methods that are capable of being full-

spectrum methods. Like ILS, PLS and PCR can be employed when only one component is 

known in the calibration samples. Both PLS and PCR methods factor the spectral data 

calibration matrix into the product of two smaller matrices. This amounts to a data 

compression step where the intensities at all frequencies used in a new full-spectrum 

coordinate system. This new coordinate is composed of loading vectors that can be used 

to represent the original spectral data. The intensities in the new full-spectrum coordinate 

system are then used in a model where concentration is presumed to be a linear function 

of these intensities. Thus PLS and PCR are methods that concerned with modeling both 

spectra and concentrations during calibration. PCR performs the factoring of the spectral 

data matrix without using information about the concentrations. Therefore, there is no 

guarantee that the full-spectrum basis vectors that are associated with PCR are relevant 

for concentration prediction. On the other hand PLS performs the spectral factoring trying 

to account for the spectral variation while assuring that the new basis vectors relate to the 

calibration concentrations. Thus, the PLS sacrifices some fit of the spectral data relative to 

PCR in order to achieve better correlations to concentrations during predictions. [23]  

In recent years, a new approach to the calibration has been reported where a 

genetic algorithm is used to optimize several linear regression models. [44-48] This new 

method is called Genetic Regression (GR) and is considered to be a hybrid calibration 

method since it uses full-spectrum information and obtains a single score for each 

constituents in the calibration samples. GR performs the calibration process with this 

score using simple linear regression. The idea behind genetic regression is simple to 

understand and apply but as powerful as any other multivariate calibration methods in the 

analysis of samples with multiple constituents. 
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3.7.1 Genetic Algorithms 

 

Genetic Algorithms (GA) are global search and optimization methods based on the 

principles of natural evolution and selection as developed by Darwin. [49] For thousands 

of years, human beings have tried to answer the ultimate questions “why, how, and when 

did life exactly start on the earth” and produced several hypothesis. According to the 

Darwin’s theory of evolution “struggle for life and survival of the fittest ”, individuals 

better fitted to the environment they live in more likely survive and breed, thus passing 

their genetic information to their offspring. Individuals who are not fit and unable to adapt 

will eventually be eliminated from the population. This process progresses slowly over a 

long period of time (or may never end) through generations and the species will evolve 

into better and fit forms.  

In the last couple of decades, scientists have been trying to take advantages of the 

natural evolutions as an improvement concept in the process of solving large-scale 

optimization problems. In the 1960’s biologists have begun to perform the simulation of 

genetic systems experiments with computer. The pioneering work in genetic algorithms 

was done by Holland who developed a GA in his research on adaptive systems in the 

early 1960’s and is considered the father of the field. [30] Over the years, GA’s have 

received increasing attention and have been applied to large number of global 

optimization problems in many areas of applied science. [30-39] Lucaiasius and Kateman 

pioneered the first applications of genetic algorithms to calibration problems in analytical 

chemistry in the late 1980’s [40,41] Since then, there have been several applications of 

GA’s to wavelength selection [22,23,42-48] and calibration transfer problems in 

spectroscopy. [24-26] 

Computationally the implementation of a typical GA is quite simple and consists 

of five basic steps including initialization of gene population, evolution of the population, 

and selection of the parent genes for breeding and mating, crossover and mutation, and 

replacing the parents with their offspring. These steps have taken their names from the 

biological foundation of the algorithm.  

A gene is a potential solution to a given problem. The exact form of a gene may 

vary from application to application and depends upon the problem being investigated. In 
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this study, the term gene is used to describe a collection of wavelength pairs combined 

with simple mathematical operator (+, ×××× , –, and /) and each gene produces a score, which 

relates the instrument response to the constituent concentration. The term population is 

used to describe the collection of individual genes in the current generation. In order to 

evaluate each gene’s success in the prediction of analyte concentration, a fitness function 

such as the inverse of standard error of calibration (SEC) and standard error of prediction 

(SEP), which are the derivatives of standard deviation, is used 

 

3.7.2 Genetic Regression 

 

Genetic regression is an implementation of a GA for selecting wavelengths and 

mathematical operators to build calibration models. GR is a hybrid calibration method, 

which optimizes simple linear regression models through an evolving selection of 

wavelengths and simple mathematical operators. (+, ×××× , –, and /). The advantage of GR is 

that it uses a simple underlying model that is easy to understand and explain while 

applying the optimization power of a GA. GR follows the same basics 

initialize/breed/mutate/evaluate algorithm as other GA’s but differs in the way it encodes 

genes. Most GA’s use a bit field representation for encoding the gene to simplify 

computer manipulation. The GR algorithm used here has a simple structure consisting of a 

wavelength pair and a mathematical operator. The implementation of GR consists of five 

basic steps as in most GA’s shown in Figure 3.14 
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Figure 3. 14. Flow chart of the Genetic Regression (GR) program. 

3.7.2.1 Initialization 

 

The initialization step randomly creates the first generation of genes with a fixed 

population size. Although random initialization helps to minimize bias and maximize the 

number of possible recombination, GR is designed to select initial genes in somewhat 

biased random fashion in order to start with genes better suited to the problem than those 

that would be randomly selected. Biasing typically done with a function, which is 

orthogonal to the fitness function used to evaluate and rank genes later. This becomes 

very important when the search space (spectra in case) contains in large regions, which do 

not contain any useful information. However this biasing must not be too strict in order to 

avoid being trapped in a local maximum and to ensure a large variance in the initial genes. 

The size of the gene pool is a user-defined parameter in the GR. Though it is possible to 

optimize the population size, no extensive study was done for this purpose other than 

testing various values and observing how they affect the quality of the results. It is 

important to note that the larger the population size, the no longer the computation time. 
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An improvement in the diversity with a large number of genes results in lower 

computation speed.  

In the initial gene pool, a gene consists base pairs between 2 and 50. A minimum 

of base pairs is a requirement for GR to allow mating and upper limit was set 50 to speed 

up the initialization. A base pair contains two randomly selected wavelengths and a 

randomly selected mathematical operator to combine these wavelengths. Each base pair is 

then added to give a score as shown: 

( ) ( ) ( )876484178241795468545248 AAAAAAS −+−+×=   3.62 

where S is so-called genetic score of the gene, A is the absorbance measured at the 

indicated wavelength. Figure 3.12 shows the schematic representation of a final best gene, 

for the prediction of a constituent in a mixture of a sample. 

 

Figure 3.12. The schematic representation of a final best gene, for the prediction of a 

constituent in a mixture of a sample. 
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3.7.2.2 Evaluate and rank the population 

 

This step involves the evaluation of the genes using fitness function, which is the 

inverse of standard error of calibration (SEC), followed by ranking process from the gene 

whose fitness is the highest to the one that has the lowest fitness. Here, a score is against 

known concentrations using simple least squares in the model-building step. The SEC is a 

derivative of the standard error (SE), which is calculated: 

( )
df

cĉ
SE

m

1i

22
ii∑

=

−
=        3.63 

where ic and iĉ  are the known and predicted analyte concentrations for m samples 

respectively, and df is the degrees of freedom in the calculations given by: 

kmdf −=         3.64 

where k is the number of parameters extracted from the data set. For a calibration data set 

where a linear model assumed, there are only two parameters to be extracted including 

slop of the line and the intercept. In this case the degrees of freedom would be equal to m–

2. If the df term is replaced by m – 2 in the Equation 3.63, it becomes standard error of 

calibration (SEC) as given: 

( )
2m

cĉ
SEC

m

1i

2
ii

−

−
=

∑
=        3.65 

The success of each gene is measured by its fitness value, which is obtained by 

taking the inverse of SEC (Fitness = 1/SEC) 
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3.7.2.3 Selection of the genes for breeding 

 

This step is the basic principle of natural evolution is put to work for GR as in all 

GA’s. It involves the selection of the parent genes from the current population for 

breeding according to their fitness value. The goal is to give higher chance to those genes 

with fitness so that only the best performing members of the population will survive in the 

long run and will be able to pass their information to the net generations. Here, it is 

expected that the genes  

Better suited for the problem will generate even better offspring. The genes with 

the low fitness values will be given lower chance to breed and hence most of them will be 

unable to survive. There are number of selection methods that can be used for parent 

selection49 Top down selection is one of the simplest methods for parent selection. After 

genes are ranked in the current gene pool, they are allowed to mate in a way that the first 

gene mates with the second gene, third one with the forth one and so on. All the members 

of the current gene are given a chance to breed.  

Roulette wheel selection method, which is used in GR, is the one where the chance 

of selecting gene is directly proportional to its fitness. In this method, each slot in the 

roulette wheel represents a gene. The gene with the highest fitness has the biggest slot and 

the gene with the lowest fitness has the smallest slot. Therefore, when the wheel is spun, 

there is a higher chance of being selected for a gene with high fitness than for a gene with 

a low fitness. There will also the genes, which are selected multiple times and some of the 

genes will not be selected at all and will be thrown out from the gene pool. After all the 

parent genes are selected, they are allowed to mate top-down, whereby the first gene (G1) 

mates with the second gene (G2). G3 with G4 and so on until all the genes mates. Since no 

ranking is done for the roulette wheel selected genes, the genes with low fitness have a 

chance to mate with better performing genes, thus resulting in an increased possibility of 

recombination.  
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3.7.2.4 Crossover and Mutation 

 

The genetic algorithm does most of its work in the breeding/mating step. The step 

involves breaking the genes at random points and cross-coupling them as illustrated in the 

following example: 

Here the first part of S1 is combined with the second part of the S2 to give the S3, 

likewise the second part of the S2 to give S4. This process is called single point cross over 

and it is the one used in GR. There are also another types of cross over methods such as 

two points cross over and uniform cross over, each having their advantages and 

disadvantages. In the uniform case, each gene is broken at every possible point and many 

possible combinations are possible in the mating step, thus resulting in more exploitation. 

However, it is more likely to destroy good genes. Single point cross over will not provide 

different offspring if both parent genes are identical, which may happen in the roulette 

wheel selection, and broken at the same point. To avoid this problem, two points cross 

over, where each gene is broken in two points and recombined, can be used. Single point 

cross over generally does not disturb a good gene but it provides as many recombinations 

as other types of cross over schemes. Also mating can increase or decrease the number of 

base pairs in the offspring. 
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Mutation, which introduces random deviations into the population, was also 

introduced into the GR during the mating step at a rate of 1% as is typical in GA’s. 

Replacing one of the base pairs in an existing gene with a randomly generated new base 

pair usually does this. Mutation allows the GR to explore the search space and incorporate 

new material into the genetic population. It helps keep the search moving and can eject 

GR from a local minimum on the response surface. However, it is important not to set 

mutation rate too high since it may keep the GA from being able to exploit the existing 

population. 

 

3.7.2.5 Replacing the parent genes by their offspring 

 

After crossover, the parent genes are replaced by their offspring and the offspring 

are evaluated. The ranking process based on their fitness values follows the evolution 

step. Then the selection for breeding/mating starts all over again. This is repeated until a 

predefined number of iterations are reached.  

At the end, the gene with the lowest SEC (highest fitness) is selected for model 

building, which is done by simple least squares. This model is used to predict the 

concentrations of component being analyzed in the validation (test) sets. The success of 

the model in the prediction of the validation sets are evaluated using standard error of 

prediction (SEP) which is calculated as: 

(((( ))))
m

cc
SEP

m

i
ii∑∑∑∑

====

−−−−
==== 1

2ˆ
       3.66 

where m is now denotes the number of validation samples. 
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3.7.2.6 Termination 

 

The termination of the algorithm can be done in many ways. The easiest way is to 

set predefined iteration number for the number of breeding/mating cycle. However no 

extensive statistical test has been done to optimize it, though it can also be optimized. 

Because the random processes are heavily involved in the GR as in all the GA’s, 

the program has been set to run any number times for each component in a given multi-

component mixture. The best run, i.e. the one generating the lowest SEC for the 

calibration set and at the same time produced SEP’s for validation sets that are in the same 

range with SEC was subsequently selected for evaluation and further analysis. 

GR has some major advantages over classical univariate and multivariate 

calibration methods. It is a hybrid calibration method in which it uses full spectra 

information and reduced it to a singe score to build simple calibration models. First of all, 

it is as simple as univariate calibration in terms of the mathematics involved in the model 

building and prediction steps, but at the same time it has the advantages of the 

multivariate calibration methods since it uses the full spectrum to extract genetic scores. It 

automatically corrects baseline fluctuations with the use of simple mathematical operators 

while forming the base pairs. Also no data pretreatment is necessary before calibration, 

which saves the extra time in the data processing and it can use the data that are collected 

at different wavelength intervals. 

Another big advantage of the GR is that it can be used as a multi-instrument 

calibration method or so-called calibration transfer without any further change on the 

collected on multiple instruments into a singe calibration set as if they were all collected 

on a single instrument and uses this model in the prediction of analyte concentrations 

whose spectra were collected on several different instruments.  
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3.9 GENETIC INVERSE LEAST SQUARES (GILS) 

 

The major drawback of the CLS is that all of the interfering species must be 

known and their concentrations included in the model. This need can be eliminated using 

the inverse least squares (ILS) method, which uses the inverse of Beer’s Law. In the ILS 

method, concentrations of an analyte are modeled as a function of absorbance 

measurements as mentioned previously. Because modern spectroscopic instruments are 

very stable and provide excellent signal-to-noise (S/N) ratios, it is believed that the 

majority of errors lie in the reference values of the calibration sample, not in the 

measurement of their spectra.  

The major disadvantage of ILS can be seen in Equation 3.41 where the matrix, 

which must be inverted, has dimensions equal to the number of wavelengths in the 

spectrum and this number cannot exceed the number of calibration samples. This is a big 

restriction since the number of wavelengths in a spectrum will generally be more than the 

number of calibration samples and the selection of wavelengths that provide the best fit 

for the model is not a trivial process. Several wavelength selection strategies, such as 

stepwise wavelength selection and all possible combination searches, are available to 

build an ILS model that fits the data best. Here we used the same genetic algorithm by 

GCLS described later to build genetic inverse least squares (GILS) models with one 

difference. This difference is in the way the mating and single point crossover operations 

are carried out. Because the number of wavelengths is restricted in response matrix A in 

the ILS, the size of the largest gene is restricted to one less than the number of calibration 

samples in the concentration vector. However, if the single point crossover is set to take 

place in any point of a gene, then the mating step could produce new genes that have a 

larger number of wavelengths than the number of calibration samples even though all the 

genes in the initial gene pool were set to have smaller number of wavelengths than the 

size of the concentration vector. In order to avoid this problem, the crossover operation is 

only performed in the middle of each gene in GILS so that the new generations will never 

have larger sizes than the number of calibration samples. The rest of the algorithm is the 

same as the one used in GCLS. The genetic algorithm of GCLS can be described as: 
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In the initialization step, an even number of genes are formed from full a spectral 

data matrix and each gene are used to form a CLS model. These models are then 

evaluated and ranked using the fitness function described in GR. The roulette wheel 

method is then used to select the gene population for breeding. After the selection 

procedure is completed, the selected genes are allowed to mate top-down without ranking 

whereby the first gene mates with second gene and third one with fourth one and so on as 

described in above with one difference. Since the genes used in GCLS are only vector of 

wavelengths and contains no base pairs as described in GR, for each gene a random 

number is generated between 1 and the length of the gene and the single point crossover 

process is performed using this number. After crossover, the parent genes are replaced by 

their offspring and the offspring are evaluated. The ranking process is based on their 

fitness values and follows the evaluation step. Then the selection for breeding/mating 

starts all over again. This is repeated until a predefined number of iterations are reached. 

During the each iteration the best gene with the lowest SEC is stored in order to compare 

it with the best gene of the next generation. If the next generation produces a better gene 

then it is replaced with the older one; otherwise the old one kept for further iterations.  At 

the end, the gene with the lowest SEC is selected for model building. This model is used 

to predict the concentrations of component being analyzed in the validation (test) sets as 

described in GR. Another difference between GR and GCLS is that there is no mutation 

step in GCLS. 
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CHAPTER 4  

EXPERIMENTAL SECTION 

4.1 ESTERIFICATION REACTIONS 

The aim of this project is to investigate the possibility of analyzing the complex 

mixtures of carboxylic acids, alcohols, esters and water by using near infrared 

spectroscopy and multivariate calibration methods (GR, GILS, PCR, and PLS) and also to 

investigate the possibility of developing calibration models for the solutions of these 

compounds. Due to this reason, the performance of these calibration methods in 

developing these models were investigated and they were compared with each other. 

Later on, it will be searched if it is possible to use the obtained models to measure these 

compounds in their real processes (for ex; in industrial process) 

As seen above these constituents are the component of the esterification reactions. 

Esterification reactions are the reaction between the carboxylic acids and the alcohols. 

They are based on condensation reaction. Figure 4.1 illustrates the esterification reaction: 

[50] 

 

 

Figure 4.1. General reaction of esterification 

 

These reactions are extremely slow without catalysts. Because of this reason these 

reaction are realized in the presence of homogeneous and/or heterogeneous catalysts. 

Mineral acids such as sulphuric acid, and organic acids such as p-toluene-sulphonic acid 

are the examples of homogenous catalysts and cation-exchange resins such as Amberlyst-

15 or Dowex 50W are the examples of the heterogeneous catalysts. However 

homogeneous catalysts have not been used as much as in the chemical industry. Their 

separation from the product is very difficult and it needs expensive process constructions; 

since these are highly corrosive. Nowadays in many chemical processes heterogeneous 

catalysts are being used or planned to be used because of the following advantages: a) 

they eliminate the corrosive environment, b) the catalyst from the reaction mixture can be 
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removed by decantation or filtration, c) the purity of the products is higher since the side 

reactions can be eliminated or are less significant. [51,52] 

The reaction mixtures contain organic materials, which are analyzed by titration, 

gas chromatography (GC) or liquid chromatography (LC). However it is not possible to 

measure the concentration values of all compounds by one method. For instance, water 

cannot be determined using GC. At least titration and chromatographic methods must be 

used to determine all of them. These methods are time-consuming and not reliable for the 

researchers. Recent advances in the instrumentation and multivariate calibration methods 

have increased the use of Near-Infrared Spectroscopy (NIR). And it has also been used for 

on-line or in-line monitoring when it is equipped with fiber-optic probes. And also in NIR 

collecting the data takes only seconds. 

Many research workers have studied esterification of carboxylic acid with alcohol 

in the presence of homogeneous and/or heterogeneous catalysts. For the kinetic reaction 

many esterification reactions were investigated. [51-55] Problems seen in developing 

calibration models for complex systems are the chemical correlation and problems 

originating from different interferences in the obtained spectroscopic data. Because of this 

reason, it was investigated to remove the possible correlations and interferences to 

develop the most appropriate calibration models that can be used in real samples.  

4.2 INSTRUMENTATION 

 

In this project the spectra were collected with a FTS–3000 NIR spectrometer. 

(Bio–Rad, Excalibur, Cambridge, MA) This spectrometer was equipped with Tungsten – 

Halogen lamp as a source, Calcium Fluoride (CaF2) as a beam splitter, and Lead Selenide 

(PbSe) as a detector. The samples were contained in Infrasil quartz cell with a pathlength 

of 2 mm and the data collections were done between the 4500–10000 cm –1. Resolution 

was optimized to the 16 cm –1 and 64 scans were done. Duplicate measurements were 

done for each sample and background was taken as an empty infrasil quartz cell.  
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4.3 DATA ANALYSIS 

 

The spectra were transferred to a separate PC after collection on the instrument 

and MS Excel (Microsoft Office 200, Microsoft Corporation) was used to prepare text 

files that are required for the methods used in this study. The new genetic algorithms 

based multivariate calibration methods (GR, and GILS) were written in MATLAB 

programming language using Matlab 5.3 (MathWorks Inc, Natick, MA) and PLS and 

PCR methods were taken commercially from Grams/32. 

4.4 DESIGNS OF THE DATA SETS 

 

Four sets that have 40 samples were prepared with carboxylic acids, alcohols, 

esters and water. The range of concentrations each constituent in the sets were in the 

range of 0 – 86 % for acid, 0 – 80 % for alcohol, 0 – 14 % for the water, and 0 – 66.4 % 

for esters by volume. These sets were the preparation of the methyl acetate, ethyl acetate, 

propyl acetate and buthyl acetate, respectively. In all process, the same values were taken. 

Table 4.1 and Table 4.2 show the concentration of he each constituent for the each set.  
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Table 4.1: Concentration profiles for calibration set. All concentrations are given in 

grams. (SN: Sample number, Acac: Acetic acid, Alc: Alcohol, Est: Ester, and W: Water.) 

 

 

 

 

 

 

 

SN W Alc Est Acac
1 1.75 9.53 1.84 8.89
2 1 9.30 11.55 2.37
4 3 4.54 7.35 7.99
5 0.5 3.26 15.23 5.14
8 0.63 14.65 7.88 0.88
9 1.75 10.70 5.78 4.94
10 1.25 4.65 3.94 11.85
11 2.25 6.51 4.20 9.28
13 1.5 13.25 4.46 3.95
14 0.25 8.14 6.30 7.90
15 2.5 4.65 4.20 10.67
17 3.25 8.14 6.56 5.33
20 0.5 8.37 5.25 8.30
21 1.75 7.21 2.36 10.47
24 3.4 8.32 2.26 8.30
25 0.3 3.44 20.48 1.19
28 1 10.00 4.46 7.11
29 2.9 15.35 4.04 1.38
31 1 4.42 4.90 11.52
33 0.62 0.47 16.67 6.32
34 1.7 5.95 16.62 0.85
36 2.63 0.70 11.68 8.30
37 2.26 7.85 10.55 3.36
39 2 6.51 9.98 5.14
40 0.87 5.70 6.43 9.39
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Table 4.2: Concentration profiles for prediction set. All concentrations are given in grams. 

(SN: Sample number, Acac: Acetic acid, Alc: Alcohol, Est: Ester, and W: Water.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SN W Alc Est Acac
3 2 9.53 3.15 7.70
6 2.5 4.65 8.40 7.51
7 0.75 6.98 4.46 9.88
12 1.12 6.98 6.17 8.30
16 1 5.12 6.56 9.68
18 2.38 6.16 11.81 3.75
19 1.63 9.53 11.15 1.98
22 1.37 8.72 7.49 5.62
23 0.8 7.21 3.15 10.63
26 1.25 10.00 3.68 7.51
27 1.05 8.56 3.41 9.09
30 1.3 2.33 15.80 4.86
32 0.25 6.98 11.81 4.74
35 1.33 5.70 2.72 11.81
38 2.73 10.55 5.39 4.58
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CHAPTER 5 

RESULTS AND DISCUSSION 
All samples were analyzed using NIR spectrometer and the data were collected for 

the prediction. Each set corresponding to the esterification reaction was divided into two 

sets: One was for calibration and the other was for prediction. Calibration set contained 50 

spectra of 25 samples and prediction set contained 30 spectra of 15 samples. These 

samples which were in calibration or prediction set were chosen randomly. We only paid 

attention on calibration set because the samples have maximum and minimum 

concentration value, were in this set. Concentrations of all constituents were predicted 

using PCR, PLS, GR, and GILS. The unit of concentration was taken as grams.  

In the NIR spectral region the absorbance bands are often broad and overlapping. 

The NIR spectral changes that result from the varying concentration of the compounds in 

the esterification reaction mixture are difficult to interpret visually. The figures 5.2 to 5.5 

show the spectra of pure components and their mixtures for each esterification reactions.  

 

Figure 5.1. NIR absorbance spectra of each esterification process 
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From these spectra, it is evident that each constituent exhibits very similar spectral 

characteristics, which makes it necessary to use a multivariate calibration method to 

resolve the mixtures of these compounds. As seen from spectra, generally, the alcohols 

and acids’ bands overlap esters’ bands around 5900 cm-1. Only the water band at 5200 

cm–1 can be interpreted visually. There is no spectral disturbances in the spectra therefore 

preprocessing of the data is not required. Due to this reason, the performance of these four 

calibration methods in developing these models were investigated and they were 

compared with each other. 

The PLS and PCR regression calibration models for each reactions were first 

calculated using cross–validation. And all data was mean–centered not scaled. Cross 

validation attempts to emulate predicting “unknown” samples by using the training set 

data itself. There are two main advantages of cross–validation methods. The first is 

estimation of the performance of the model. Since the predicted samples are not same as 

the samples used build the model. The second benefit of cross–validation is better outlier 

detection since each sample is left out of the models during the cross–validation process. 

On the other hand, it is a very time–consuming process. Mean centering translates the 

collection of data to the origin of multivariate space where analysis will be performed. It 

also removes the need for an intercept from the regression model. Since fewer terms in the 

regression model may need to be estimated and estimated analyte concentrations may be 

more precise following mean centering of the data. More of the information content of a 

data set can usually be described with a simpler model if the data is mean centered. The 

major effect of mean–centering is removing the broad sloping background from the data 

collection. Also PLS–1 algorithm (one component at a time) was used here. Using by 

these methods the standard error of calibration (SEC) was found between 0.0994 to 

0.2497 grams and standard error of prediction (SEP) was found between the 0.08115 to 

0.3157 grams  

Genetic Regression (GR) is a hybrid calibration between univariate and 

multivariate calibration techniques in which it optimizes simple linear regression models 

through an evolving selection of wavelengths and simple mathematical operators (+, -, *, 

/). It is also used a full-spectrum of each sample. In this regression, data are not mean 

centered but cross-validated. It is a hybrid calibration method that uses the full spectral 
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information and reduces it to a single score upon which simple calibration models are 

built. First of all, it is as simple as univariate calibration in terms of the mathematics 

involved in the model building and prediction steps, but at the same time it has the 

advantages of the multivariate calibration methods since it uses the full spectrum to 

extract genetic scores. It automatically corrects baseline fluctuations with the use of 

simple mathematical operators while forming the base pairs. Note that no data 

pretreatment is necessary before calibration, which saves the extra time in the data 

processing. Using by these methods the standard error of calibration (SEC) was found 

between 0.1049 to 0.6249 grams and standard error of prediction (SEP) was found 

between the 0.0980 to 0.3157 grams  

Genetic Inverse Least Squares (GILS) is new method. As it was explained above 

ILS uses the inverse Beer’s Law and it can build the model if only one constituent is 

known in the samples. The only requirement is selecting the wavelengths that correspond 

to the absorbances of the desired constituents. However, the number of selected 

wavelengths can not be exceed the number of training samples that are occurred in the 

calibration set; due to the matrix dimensionality. If the training sample numbers are 

increased; additional wavelengths can be selected. However it causes collinearity and 

overfitting which affects the precision of the model. GILS is a modified version of the 

original ILS method in which a small set of wavelengths is selected from a full spectral 

data using a genetic algorithm. The algorithm used to select the optimum number of 

wavelengths in GILS is quite similar to the GR algorithm, but differs in the way it 

encodes the gene. In GILS, the term ‘gene’ describes a vector whose elements are 

randomly selected wavelengths. And the mating and single point crossover operations are 

carried out in the algorithm. Because the number of wavelengths is restricted in response 

matrix in the ILS, the size of the largest gene is restricted to one less than the number of 

calibration samples in the concentration vector. However, if the single point crossover is 

set to take place in any point of a gene, then the mating step could produce new genes that 

have a larger number of wavelengths than the number of calibration samples even though 

all the genes in the initial gene pool were set to have smaller number of wavelengths than 

the size of the concentration vector. In order to avoid this problem, the crossover 

operation is only performed in the middle of each gene in GILS so that the new 
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generations will never have larger sizes than the number of calibration samples. Using by 

these methods the standard error of calibration (SEC) was found between 0.0569 to 

0.2105 grams and standard error of prediction (SEP) was found between the 0.09181 to 

0.3214 grams  

Overall data results are shown in Tables 5.1 to 5.4 for each esterification reactions. 

These results are obtained after several regressions were done. Then using predicting 

values, the actual values of each component were plotted against these predicted values 

and we seen the calibration plots. These plots are shown in Figures 5.2 to 5.17. 

 

Table 5.1 The SEC. SEP, and R2 results for all the components and all the methods for 

methyl acetate process.  

 

 

 

 

Name of Method Components SEC SEP R2 (SEC) Factor Number

Acetic Acid 0.1923 0.2026 0.9969 6

PLS Methanol 0.1933 0.1081 0.9979 7

Methyl Acetate 0.2342 0.2153 0.9974 6

Water 0.0999 0.0811 0.9898 4

Acetic Acid 0.1181 0.068 0.997 11

PCR Methanol 0.1871 0.1975 0.9974 11

Methyl Acetate 0.2425 0.2228 0.9977 11

Water 0.1937 0.0986 0.9866 11

Acetic Acid 0.162 0.2139 0.9978

GILS Methanol 0.1075 0.1991 0.9992

Methyl Acetate 0.2435 0.2775 0.9972

Water 0.0712 0.0918 0.9945

Acetic Acid 0.2617 0.2172 0.9942

GR Methanol 0.6249 0.3661 0.9734

Methyl Acetate 0.3637 0.2568 0.9948

Water 0.1225 0.098 0.984
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Table 5.2. The SEC. SEP, and R2 results for all the components and all the methods for 

ethyl acetate process.  

 

 

 

 

 

 

 

 

 

 

 

 

Name of Method Components SEC SEP R2 (SEC) Factor Number

Acetic Acid 0.1739 0.2194 0.9975 4

PLS Ethanol 0.2349 0.1813 0.9961 6

Ethyl Acetate 0.2497 0.3157 0.9976 16

Water 0.124 0.139 0.9837 7

Acetic Acid 0.1885 0.2151 0.9971 10

PCR Ethanol 0.2766 0.1675 0.9942 10

Ethyl Acetate 0.4505 0.2555 0.9922 10

Water 0.1352 0.1496 0.9807 10

Acetic Acid 0.1064 0.1716 0.999

GILS Ethanol 0.1125 0.2292 0.9991

Ethyl Acetate 0.2105 0.2292 0.9983

Water 0.1053 0.1477 0.988

Acetic Acid 0.2891 0.2634 0.9929

GR Ethanol 0.4255 0.2744 0.9875

Ethyl Acetate 0.6648 0.6332 0.983

Water 0.1224 0.098 0.984
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Table 5.3. The SEC. SEP, and R2 results for all the components and all the methods for 

propyl acetate process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name of Method Components SEC SEP R2 (SEC) Factor Number

Acetic Acid 0.0732 0.1518 0.9995 12

PLS Propanol 0.084 0.1338 0.9995 12

Propyl Acetate 0.1654 0.1456 0.9989 11

Water 0.0938 0.2826 0.9905 4

Acetic Acid 0.089 0.1484 0.9993 19

PCR Propanol 0.0847 0.1369 0.9995 19

Propyl Acetate 0.1762 0.1662 0.9988 19

Water 0.1181 0.2967 0.9855 19

Acetic Acid 0.0847 0.1644 0.9994

GILS Propanol 0.0913 0.1735 0.9994

Propyl Acetate 0.1768 0.1735 0.9994

Water 0.0569 0.2812 0.9965

Acetic Acid 0.2589 0.2163 0.9943

GR Propanol 0.5438 0.5028 0.9797

Propyl Acetate 0.4406 0.4111 0.9924

Water 0.1049 0.2791 0.9882
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Table 5.4. The SEC. SEP, and R2 results for all the components and all the methods for 

buthyl acetate process.  

 

 

 

 

 

 

 

 

 

Name of Method Components SEC SEP R2 (SEC) Factor Number

Acetic Acid 0.1957 0.2542 0.9967 6

PLS Propanol 0.1579 0.1895 0.9987 7

Propyl Acetate 0.1821 0.1656 0.9987 7

Water 0.2109 0.0924 0.9526 4

Acetic Acid 0.1542 0.1699 0.9978 10

PCR Propanol 0.1542 0.1699 0.9984 10

Propyl Acetate 0.2228 0.2051 0.9981 10

Water 0.1702 0.1024 0.9748 10

Acetic Acid 0.1608 0.3214 0.9978

GILS Propanol 0.1615 0.221 0.9988

Propyl Acetate 0.1615 0.2561 0.999

Water 0.0656 0.0736 0.9953

Acetic Acid 0.1782 0.2247 0.9973

GR Propanol 0.5516 0.5308 0.9792

Propyl Acetate 0.3864 0.3354 0.9942

Water 0.1409 0.0696 0.9785
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Figure 5.2. Calibration plots obtained with GILS for methyl acetate process  

 

Figure 5.3. Calibration plots obtained with GR for methyl acetate process 
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Figure 5.4. Calibration plots obtained with PLS for methyl acetate process 

 

 

Figure 5.5. Calibration plots obtained with PCR for methyl acetate process. 
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Figure 5.6. Calibration plots obtained with GILS for ethyl acetate process. 

 

 

Figure 5.7. Calibration plots obtained with GR for ethyl acetate process. 

 

 

 

 

 

Acetic  Acid

S E C =0.1064
S E P =0 .1716

R 2 = 0 .999

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Actua l V a lues (g r)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C alib ratio n P red iciton

E th an o l

S E C =0.1125
S E P =0.2292

R 2 = 0 .9991

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

Actua l V a lues  (g r)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C alib ration P red ic iton

E thy l Aceta te

S E C =0.2105
S E P =0 .2700

R 2 = 0.9983

0
2

4
6
8

10
12

14
16
18

20
22

0 2 4 6 8 10 12 14 16 18 20 22

Actual V a lu es  (g r)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C a lib ra tio n P red ic tion

Water

SEC =0.1053
SEP=0.1477

R2 = 0.988

0

1

1

2

2

3

3

4

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Actual Values (gr)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C alibration Prediction

Acetic Ac id

S E C =0.2891
S E P=0 .2634

R 2 = 0.9929

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

Actual V a lues (g r)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C a lib ration P red iction

E thy l Aceta te

S E C =0.6648
S E P =0 .6332

R 2 = 0.983

0
2
4
6
8

10
12
14
16
18
20
22

0 2 4 6 8 10 12 14 16 18 20 22

Actual V a lu es  (g r)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C a lib ra tio n P red ic tion

W ater

S E C =0.1224
S E P =0.0980

R 2 = 0.984

0

1

1

2

2

3

3

4

4

0 0.5 1 1.5 2 2.5 3 3.5 4

Actual V alues (gr)

P
re

di
ct

ed
 V

al
ue

s 
(g

r)

C a libration P rediction

E thano l

S E C =0.4255
S E P=0 .2744

R 2 = 0 .9875

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18
Actu al V a lues  (g r)

P
re

di
ct

ed
 V

al
u

es
 (g

r)

C a lib ra tio n P red ic ito n



 

 

 

83 

 

Figure 5.8. Calibration plots obtained with PLS for ethyl acetate process. 

 

 

Figure 5.9. Calibration plots obtained with PCR for ethyl acetate process. 
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Figure 5.10. Calibration plots obtained with GILS for propyl acetate process. 

 

Figure 5.11. Calibration plots obtained with GR for propyl acetate process. 
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Figure 5.12. Calibration plots obtained with PLS for propyl acetate process. 

 

 

Figure 5.13. Calibration plots obtained with PCR for propyl acetate process. 
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Figure 5.14. Calibration plots obtained with GILS for butyl acetate process. 

 

 

Figure 5.15. Calibration plots obtained with PCR for butyl acetate process. 
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Figure 5.16. Calibration plots obtained with PLS for butyl acetate process. 

 

 

Figure 5.17. Calibration plots obtained with GR for butyl acetate process. 
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Among these plots and tables, it is seen that PLS and GILS are best regression 

methods; since they have minimum SEC value and best regression coefficient. And also 

when they tested they were shown to have the minimum SEP value. As we said above, the 

aim of this study is to find the best regression method for esterification process. To 

accomplish this aim the condition of homogeneity of two regression methods can be 

checked with the F-statistical test. The theoretical value for one-tailed test and calculated 

F values for each esterification process are shown in Table 5.5 

 

Table 5.5. The results of F-test for each esterification reactions.  

 

According these results, we concluded that these methods could be used 

monitoring the esterificaton process.  

 

 

 

 

 

 

 

 

 

 

 

 

Constituent F F Critical one-tail Constituent F F Critical one-tail
Water 0.97 0.62 Water 0.97 0.62

Metanol 1.00 1.61 Etanol 1.03 1.61
Methyl Acetate 1.00 0.62 Ethyl Acetate 0.99 0.62

Acetic Acid 1.00 1.61 Acetic Acid 0.98 0.62

Constituent F F Critical one-tail Constituent F F Critical one-tail
Water 1.00 0.62 Water 0.96 0.62

Propanol 1.00 0.62 Butanol 0.99 0.62
Propyl Acetate 0.99 0.62 Butyl Acetate 0.99 0.62

Acetic Acid 1.00 1.61 Acetic Acid 1.00 0.62

Methyl Acetate Ethyl Acetate

Propyl Acetate Butyl Acetate
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Chapter 6 

CONCLUSION 
 

The ability to build calibration models using collected NIR absorbance spectra has 

been successfully demonstrated with GILS, GR, PCR, and PLS. Several calibration 

methods were built. For all esterification process SEC and SEP values were calculated. 

The lowest SEC and SEP are selected for the best calibration model. Also actual vs. 

predicted values plots` regression coefficients values should be equal or closed to 1. The 

best results are obtained from GILS and PLS compared to the other methods. For GILS, it 

may be explained with the fact that ILS can be powerful multivariate calibration method 

when accompanied with proper wavelength selection methods. And it is also indicated 

that there is no interference in our sample.  
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