

WEB SERVICES SECURITY: A PROPOSED
ARCHITECTURE FOR INTERDOMAIN TRUST

RELATIONSHIP

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

Izmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Selim L. Y. HENDRICKSON

November 2006
�ZM�R

 ii

We approve the thesis of Selim L Y HENDRICKSON

Date of Signature

……………………………………………… 27 November 2006
Asst. Prof. Dr. Tu�kan TU�LULAR
Supervisor
Department of Computer Engineering
�zmir �nstitute of Technology

……………………………………………… 27 November 2006
Assoc. Prof. Dr. Ahmet KOLTUKSUZ
Department of Computer Engineering
�zmir �nstitute of Technology

……………………………………………… 27 November 2006
Prof. Dr. �aban EREN
Department of Computer Engineering
Ege University

……………………………………………… 27 November 2006
Prof. Dr. Kayhan ERC�YE�
Head of Department
�zmir �nstitute of Technology

…………………………………………..
Assoc. Prof. Dr. Semahat ÖZDEM�R

Head of Graduate School

 iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Assistant Professor

Tu�kan TU�LULAR for not only teaching me everything I know, but also for assisting

me with every aspect of my life. I also would like to thank Associate Professor Ahmet

KOLTUKSUZ for teaching me to search for different angles in every subject. I would

like to offer many thanks to my dear friend and biggest support Fatih ALGAN for

everything he has done for me. I’m grateful to all the talented, hard working engineers I

had the privilege of working with in the past four years. Last but not the least, I would

like to thank my mother not because she has been putting up with me all my life but

because I love her madly.

 iv

ABSTRACT

WEB SERVICES SECURITY: A PROPOSED ARCHITECTURE FOR

INTERDOMAIN TRUST RELATIONSHIP

 Web services technology is vulnerable to security threats similar to other

technologies which are based on communication over internet. Some applications

working over internet typically require strong authentication. The security requirements

of a scenario may involve interdomain authentication mechanisms. These domains may

be operating using different technologies.

 In order to enable such scenarios, we leverage existing approaches with

emerging standards and propose an architecture. Our proposed architecture takes

advantage of XML technology and emerging SAML standard. The most important aim

of the proposed architecture is platform indepedence.

 Our proposed architecture includes a Security Token Service and a protocol for

communication between token requesters, consumers and issuers. Although, the exact

flow of execution depends on the scenario, we believe our approaches can be used as

common ground for implementation.

 v

ÖZET

WEB SERV�SLER� GÜVENL���: ÇALI�MA ALANLARI ARASI

GÜVEN �L��K�S� �Ç�N B�R M�MAR� ÖNER�S�

 Web Servisleri teknolojisi internet üzerinden ileti�ime dayanan di�er teknolojiler

ile aynı güvenlik tehditlerine açıktır. �nternet üzerinden çalı�an kimi uygulamalar güçlü

kimlik do�rulamasını talep ederler. Bir senaryonun güvenlik talepleri, çalı�ma alanları

arası kimlik do�rulama mekanizmalarına ihtiyaç duyabilir. Bu çalı�ma alanları farklı

teknolojiler kullanarak çalı�ıyor olabilir.

 Bu tip senaryolara imkan sa�lamak amacıyla, varolan yakla�ımları yeni

geli�mekte olan standartlarla birle�tirip bir mimari öneriyoruz. Önerdi�imiz mimari

XML teknolojilerinden ve geli�mekte olan SAML standardından faydalanmaktadır.

Önerilen mimarinin en temel amacı platform ba�ımsızlı�ıdır.

 Önerilen mimari bir güvenlik jetonu servisi ve jetonu talep edenler, kullananlar

ve yayınlayanlar arasındaki ileti�imi sa�lamak için bir protokolü içerir. Senaryoların

kesin akı�ı duruma ba�lı olarak de�i�ebilir, ancak inancımız yakla�ımlarımızın

uygulama geli�tirmek için bir temel olarak kullanılabilece�i yönündedir.

 vi

TABLE OF CONTENTS

LIST OF FIGURES... ix

CHAPTER 1. INTRODUCTION... 1

CHAPTER 2. WEB SERVICES... 2

2.1. Introduction to Web Services .. 2

2.2. A Short History of Web Services .. 2

2.2. Web Services Protocol Stack... 3

2.3. Web Services Architectural Models .. 5

2.3.1. The Message Oriented Model .. 6

2.3.2. The Service Oriented Model .. 6

2.3.3. The Resource Oriented Model ... 6

2.3.4. The Policy Model ... 6

2.4. Advantages and Disadvantages of the Web Services Technology 7

2.5. An Evaluation of the Current Architecture... 8

CHAPTER 3. WEB SERVICES SECURITY... 9

3.1. A Security Primer ... 9

3.2. Web Services Security Exposures .. 10

3.3. Security Measures for Web Services .. 11

3.3.1. General Effect of Security on Information Systems..................... 11

3.3.1.1. Security Effect on System Capacity.................................... 11

3.3.1.2. Security Effect on Performance .. 12

3.3.2. Web Services Security Approaches .. 12

3.3.2.1. Security Policies .. 12

3.3.2.2. Message Level Security .. 13

3.3.2.3. Transport Level Security... 14

3.3.3. Web Services Security Technologies ... 14

3.3.3.1. XML Signature and XML Encryption 15

3.3.3.2. Web Services Security .. 15

3.3.3.2.1. Advantages of WS-Security 16

3.3.3.2.2. Evolution of WS-Security Specification 16

 vii

3.3.3.2.3. Web Services Security Model Framework.............. 17

3.3.3.2.4. WS-Security Example ... 18

3.3.3.2.4.1. Authentication .. 20

3.3.3.2.4.2. Integrity .. 21

3.3.3.2.4.3. Confidentiality.. 24

3.3.3.2.5. Scenarios ... 25

3.3.3.2.5.1. Direct Trust Using Username/

Password and Transport-Level

Security... 26

3.3.3.2.5.2. Direct Trust Using Security Tokens......... 26

3.3.3.2.5.3. Security Token Acquisition...................... 27

3.3.3.2.5.4. Firewall Processing 28

3.3.3.2.5.5. Issued Security Token 29

3.3.3.2.5.6. Enforcing Business Policy 29

3.3.3.2.5.7. Web Client Communicating Through

a Middle-Tier Application to a

Service.. 30

3.3.3.2.5.8. Mobile Clients .. 31

CHAPTER 4. CASE STUDY.. 33

4.1. Problem Definition .. 33

4.2. Real Life Scenario ... 34

4.3. Motivation.. 34

4.4. Architecture ... 35

4.4.1. Participants ... 36

4.4.2. SAML Token Profile.. 37

4.4.3. Web Services Trust .. 37

4.4.4. Token Request and Issuance .. 37

4.4.5. Overview of Key Exchange ... 38

4.5. Design .. 38

4.5.1. Process Step 1 – The Client Requests an SAML Token from

the Identity STS.. 40

4.5.2. The STS Processes the RST and Sends a Response..................... 41

 viii

4.5.3. The client requests an SAML token from the Credit Rating

STS... 45

4.5.4. The Credit Rating STS Processes the RST and Sends a

Response... 46

4.5.5. The client sends a request to the bank service 46

4.5.6. The Service Processes the Request and Sends a Response.......... 46

CHAPTER 5. CONCLUSION.. 48

REFERENCES.. 49

APPENDICES

APPENDIX A. GLOSSARY.. 50

 ix

LIST OF FIGURES

Figure Pages

Figure 2.1 Basic operation of Web Service Entities .. 4

Figure 2.2 Web Services Stack .. 5

Figure 3.1 Web Services Scenario with No Security ... 10

Figure 3.2 Point-to-point vs. End-to-end Security ... 13

Figure 3.3 Evolution of WS-Security Specification... 16

Figure 3.4 Web Services Security Specifications .. 18

Figure 3.5 SOAP Message Security with WS-Security ... 19

Example 3.1 SOAP message without WS-Security... 19

Example 3.2 SOAP Message with Authentication .. 20

Example 3.3 SOAP Message with Integrity .. 23

Example 3.4 SOAP Message with Confidentiality.. 25

Figure 3.6 Web Services Security and Existing Transport Security

Mechanisms .. 26

Figure 3.7 Direct Trust between Two Parties .. 27

Figure 3.8 Security Tokens by Reference .. 27

Figure 3.9 Firewall Processing SOAP Messages ... 28

Figure 3.10 Simple Authentication by a Trusted Third Party 29

Figure 3.11 An Example in Enforcing Policies.. 30

Figure 3.12 Web Client Communicating Through a Middle-Tier Application

to a Service.. 31

Figure 3.13 Mobile Clients Accessing a Service Through Gateways........................ 32

Figure 4.1 Credit Application Scenario.. 34

Figure 4.2 The Protocol Stack of the Architecture... 36

Figure 4.3 Scenario Flow ... 39

Figure 4.4 Sequence Diagram of the Scenario ... 40

Example 4.1 RST Message Example... 41

Example 4.2 Sample SAML Token ... 44

 1

CHAPTER 1

INTRODUCTION

 Web services technology, which enables disparate systems to interoperate at a

high level with ease, lacked a common framework for security. Although some attempts

have been made to solve this problem, most of these attempts bring a solution using

variations of technologies already in use. These techniques, which are actually proven in

the field, do not fit with the interoperable and loosely coupled nature of Web services

technology. The new emerging Web Service Security (WS-Security) standard, along

with other extensions of the WS-* group of technologies aims this lack of a common

security framework.

 The Web Services Security standard is formed by independent organizations

backed by big vendors of the industry such as IBM, Microsoft, RSA, and Verisign.

Although, some alignment in vision has been achieved, in practice there is still a hot

debate. This debate, although a good thing for advancement of technology, results in a

slow penetration of technology. Proven products leveraging these technologies are still

missing.

 This thesis aims to provide an understanding of this new technology and

proposes architecture for a custom scenario, which we believe is comprehensive and

extensible. The design and architecture of the case study examined in this thesis, is

implemented using a mix of several Web services security specifications. Although

there are alternative specifications still competing to become de facto standards, we

believe our selection of specifications had recently gained momentum and success in

becoming a de facto standard in the near future. The architecture proposed in this thesis,

can be extended to achieve to enable larger scenarios or can be downsized and used

partially for more common smaller use cases.

 2

CHAPTER 2

WEB SERVICES

2.1. Introduction to Web Services

 This chapter introduces Web Services, a technology that enables an application

to invoke another application over the Internet leveraging the existing standards and

protocols. The formal definition for Web Services as defined by W3C is:

A Web Service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web Service

in a manner prescribed by its description using SOAP-messages, typically conveyed

using HTTP with an XML serialization in conjunction with other Web-related standards

“(WEB_1 2006)”.

 During the development of this technology, focus was put on making functional

building blocks accessible over standard Internet protocols that are independent from

platforms and programming languages. Therefore, different software systems, running

on different platforms, developed using different technologies can interact if they

leverage Web Services technology. These systems can be new applications or existing

legacy systems wrapped around with an additional layer to make them Internet-enabled.

As a consequence of this, applications which has become services, can rely on and

cooperate with each other to achieve new goals.

2.2. A Short History of Web Services

 With the spread of Internet, it became clear that the infrastructure that was

introduced by Internet could be used not just to retrieve information that was to be

presented using a browser (called human-to-application, H2A applications). Rather,

there was also an increased demand for application-to-application (A2A)

communication using the existing technologies. Existing protocols were used in order to

achieve this goal. However, not long after, it became obvious that existing protocols fell

 3

short of accomplishing this goal. The HTTP protocol does not provide for complex

applications that arise from A2A scenarios.

 In late 1999, an XML based protocol, namely the SOAP protocol was published

by the Microsoft Corporation, which could be used for A2A scenarios. IBM

Corporation started supporting the SOAP protocol in early 2000 followed by the public

acceptance of SOAP by the industry. In May, 2000 the SOAP protocol was submitted to

the W3C Consortium and in June, 2003 it was released as a W3C Recommendation.

Numerous other protocols for supporting and extending Web Services

development have been published. Some of the most important protocols are, WDSL,

UDDI, and the WS-* suite of protocols. We will be examining the WSDL and UDDI

protocols briefly in the next section, and WS-Security protocol, which is part of the

WS-* suite of protocols, in the fourth chapter.

2.2. Web Services Protocol Stack

Web Services are a set of protocols based on XML. The following protocols

formed the initial specification for the Web Services. The lifecycle for a general web

service life cycle scenario is presented in Figure 2.1.

Simple Object Access Protocol (SOAP) – The formal set of conventions governing the

format and processing rules of a SOAP message. These conventions include the

interactions among SOAP nodes generating and accepting SOAP messages for the

purpose of exchanging information along a SOAP path “(WEB_1 2006)”.

Web Services Description Language (WSDL) - WSDL or Web Services Description

language is an XML format for describing network services as a set of endpoints

operating on messages containing either document-oriented or procedure-oriented

information. The operations and messages are described abstractly, and then bound to a

concrete network protocol and message format to define an endpoint. Related concrete

endpoints are combined into abstract endpoints (services). WSDL is extensible to allow

description of

endpoints and their messages regardless of what message formats or network protocols

are used to communicate “(WEB_1 2006)”.

 4

Universal Discovery, Description, Integration (UDDI) – UDDI is the technical

foundation for publication and discovery of Web Services implementations both within

and between enterprises “(WEB_2 2006)”.

Figure 2.1 – Basic operation of Web Service Entities

 These standards have effectively become de facto standards, with effectively

universal acceptance and widespread implementation by vendors. However, to improve

the security and reliability of Web Services and to address more complex business

scenarios, a wide range of additional protocols have since been proposed. Some of these

protocols have been standardized, and some are in the process of being standardized.

There also some subjects still lacking any common consensus. This stack of

technologies is presented in Figure 2.2. A Categorization Web Services standards is as

follows;

1. Description and discovery

2. Messaging

 5

3. Management

4. Business Processes

5. Transactions

6. Security

Figure 2.2 Web Services Stack

2.3. Web Services Architectural Models

 Web Services Architecture has four basic models. Each model is named after

what may be viewed as the key concept of that model. The four models are:

1. The Message Oriented Model

2. The Service Oriented Model

3. The Resource Oriented Model

4. The Policy Model

 6

2.3.1. The Message Oriented Model

 The Message Oriented Model focuses on messages, message structure, and

message transport without particular reference as to reasons for the messages, nor to

their significance. Specifically, in this model, we are not concerned with any semantic

significance of the content of a message or its relationship to other messages. However,

the Message Oriented Model does focus on the structure of the messages, on the

relationship between message sender and receivers and how messages are transmitted.

2.3.2. The Service Oriented Model

 The Service Oriented Model focuses on aspects of service, action and so on.

While clearly, in any distributed system, services can not be adequately realized without

some means of messaging, the converse is not the case: messages do not need to relate

to services.

 The Service Oriented Model makes use of meta-data which is a key property of

Service Oriented Architectures. This meta-data is used to document many aspects of

services: from the details of the interface and transport binding to the semantics of the

service and what policy restrictions there may be on the service.

2.3.3. The Resource Oriented Model

 The Resource Oriented Model focuses on resources that exist and have owners.

Resources are a fundamental concept that underpins much of the Web and much of Web

services; for example, a Web service is a particular kind of resource that is important to

this architecture.

2.3.4. The Policy Model

 The Policy Model focuses on constraints on the behavior of agents and services.

We generalize this to resources since policies can apply equally to documents (such as

descriptions of services) as well as active computational resources.

 7

The Policy Model focuses on those aspects of the architecture that relate to

policies and, by extension, security and quality of service. Security is fundamentally

about constraints; about constraints on the behavior on action and on accessing

resources. Similarly, quality of service is also about constraints on service. In the PM,

these constraints are modeled around the core concept of policy; and the relationships

with other elements of the architecture. Thus the PM is a framework in which security

can be realized.

2.4. Advantages and Disadvantages of the Web Services Technology

 Compared to other technologies for building distributed systems, The Web

Services technology naturally has advantages and disadvantages. The keen focus on

leveraging existing infrastructure during the initial design phase of the technology

provides the foundation for its advantages, while its test based nature results in both

some of the advantages and disadvantages.

 Web Services provide interoperability between various software applications

running on disparate platforms/operating systems. Web services use open standards and

protocols. Protocols and data formats are text-based where possible, making it easy for

developers to comprehend. XML is the agreed upon data format universally used by

Web Services implementations. Its text based nature is not actually a requirement as

commonly mentioned but rather a choice of serialization mechanism. However,

regardless of the serialization mechanism, the data format specified by the XML Infoset

is universally the same, thus enabling interoperability across platforms.

 Web Services technology utilizes the HTTP protocol, therefore, can work

through many common firewall security measures while other forms of RPC may often

be blocked. This is an important advantage of the technology from a systems

management and security point of view.

 Web Services are loosely coupled thereby facilitating a distributed approach to

application integration. Loosely Coupled systems are considered useful when either the

source or the destination computer systems are subject to frequent changes.

 On the other hand, Web Services technology suffers from the fact that it is

relatively a new technology. Important standards such as transactions are currently

nonexistent or are very immature, compared to mature distributed computing standards

 8

such as CORBA. This is likely to be a temporary issue, since most vendors have

committed to the Web Services technology around two main organizational bodies,

namely the W3C and OASIS. Lacking standards are in the process of creation.

 Another drawback of Web Services might be its poor performance compared to

other distributed computing approaches. This is a common problem with text based

encoding approaches. Although XML does not consider conciseness or efficiency of

parsing among its goals, new standards such as the XML Infoset provides other viable

alternatives by describing XML in terms of abstractions. Consequently, binary

serialization of XML documents becomes an equally valid alternative. Also SOAP

MOTM standard promises to improve the wire efficiency of XML.

2.5. An Evaluation of the Current Architecture

 We believe the architecture proposed by the W3C working group substantially

meets the requirements for a complete distributed system with the exception of security

and privacy. Although there exists substantial material that lays the foundation for

addressing these, there is definitely room for more work.

 9

CHAPTER 3

WEB SERVICES SECURITY

3.1 A Security Primer

 Since the early days of the Internet as a universal network open to anyone,

secure information exchange has been a concern. While it is worth noting that there is

no absolute security, without an appropriate level of security, the commercial

exploitation of the Internet would not be feasible. While defining a security model, how

data flow through an application and over a network to meet the requirements defined

by the business without exposing the data to any risk must be shown.

 There are seven requirements that must be addressed by a general security

framework as defined by the ISO Security Standard:

1. Identification: The party accessing the resource is able to identify itself to

the system.

2. Authentication: Authentication is the process of validating the user, whether

a client is valid in a particular context. A client can be an end user, a machine or an

application.

3. Authorization: Authorization is the process of checking whether the

authenticated user has access to the requested resource.

4. Integrity: Ensure that the information will not be changed, altered, or lost in

an unauthorized or accidental manner.

5. Confidentiality: No unauthorized party or process can access or disclose the

information.

6. Auditing: All transactions are recorded so that problems can be analyzed

after the fact.

7. Non-repudiation: Both parties are able to provide legal proof to a third party

that the sender did send the information, and the receiver received the identical

information. Neither involved side is unable to deny.

Some classifications also include availability to be a part of the schema above

schema meaning that hostile attack can not achieve denial-of-service by allocating too

many system resources. In this dissertation, we will not deal with this security aspect.

 10

3.2 Web Services Security Exposures

 Web Services security is one of the most important Web Services subjects.

When using Web Services, similar security exposures exist as for other Internet,

middleware-based applications and communications. To demonstrate the Web Services

security exposures, we are going to explain several major risk factors for a system with

no security. Most common security risks has been depicted in Figure 3.1.

Figure 3.1 Web Services Scenario with No Security

Spoofing – no authentication: An attacker could send a modified SOAP

message to the service provider, pretending to be a legitimate user, to get confidential

information, or to perform unauthorized acts. By applying authentication to the Web

Service, this security exposure can be eliminated.

Tampering – no integrity: The soap message is intercepted between the Web

Service client and the server. An attacker could modify the message en-route and since

there is no integrity constraint, the Web Service server does not check if the message is

 11

valid and will accept the modified transaction. By applying a confidentiality mechanism

to the Web Service, this security exposure can be eliminated.

Eavesdropping – no confidentiality: An attacked could intercept the SOAP

message and read all contained information. Because the message is not encrypted,

confidential information can be obtained by the attacker. This exposure exists since the

message is sent in plain text. By applying a confidentiality mechanism, this security

exposure can be eliminated.

3.3. Security Measures for Web Services

 When enabling security for any application, the real challenge is in

understanding and assessing the risk involved and applying the appropriate measures.

For Web Services, knowing what security technology exists today, tracking new

emerging standards, and understanding how they will be used to offset the risk is

crucial.

3.3.1. General Effect of Security on Information Systems

 The more security mechanisms implemented, which increases the security

effect, the more influence on other non-functional requirements is given. Therefore,

when designing a Web Services security solution, one has to keep in mind that security

has an impact on several non-functioning requirements.

3.3.1.1. Security Effect on System Capacity

 Any applied security mechanism has an impact on system resource usage, such

as processor and memory usage. Therefore, when planning a Web Service environment,

the required security overhead must be considered in the capacity and volume planning.

 The non-functional requirements, capacity and volume, cover for example the

number of concurrent users, and the number of transactions per second. This has

influence on the required system infrastructure in terms of hardware and network.

 12

3.3.1.2. Security Effect on Performance

 Security mechanisms and functions also impact the applications response time.

When defining the Web Service system response time requirements, one has to mind

that the response time will be affected when applying the security.

 The performance requirement for a system defined the response time for a main

application operation (for example: less than 1 second response time for 90% of all

transactions).

3.3.2. Web Services Security Approaches

 Threats to Web Services involve threats to the host system, the application and

the entire network infrastructure. To secure Web Services, a range of XML-based

security mechanisms are needed to solve problems related to authentication, role based

access control, distributed security policy enforcement, message layer security that

accommodate the presence of intermediaries. Web services implementations may

require point-to-point and/or end-to-end security mechanisms, depending upon the

degree of threat or risk. Traditional, connection-oriented, point-to-point security

mechanisms may not meet the end-to-end security requirements of Web services.

However, security is a balance of assessed risk and cost of countermeasures. Depending

on implementers risk tolerance, point to point transport level security can provide

enough security countermeasures.

3.3.2.1. Security Policies

 Three fundamental concepts related to Web services security exist from the

perspective of Web services architecture: the resources that must be secured, the

mechanisms by which these resources are secured, and policies, which are machine-

processable documents describing constraints on these resources.

 Policies can be logically broken into two main types: permission policies and

obligatory policies. A permission policy concerns those actions that an entity is

permitted to perform and an obligatory policy concerns those actions that an entity is

required to perform. Due to their nature, these two different kinds of policies have

 13

different types of enforcement mechanisms. A permission policy guard mechanism can

be used to verify that a requested action is permitted to be performed by the entity,

while the obligatory guard mechanism can only verify after the fact that an obligation

has not been met. The architecture is principally concerned with the existence of such

guard mechanisms and their role in the architecture.

 Not all guards are active processes. For example, confidentiality of messages is

provided by encryption. The guard here is the encryption itself, although this may be

further backed up by active guards that apply policy.

3.3.2.2. Message Level Security

 Traditional network level security mechanisms such as Transport Layer Security

(SSL/TLS), Virtual Private Networks (VPN), IPSec (Internet Protocol Security), and

Secure Multipurpose Internet Mail Exchange (S/MIME) are point-to-point technologies.

Although these traditional technologies may be used for Web services security, they are

not sufficient for providing an end-to-end security context, ad Web services use a

message oriented approach that enables complex interactions that can include the

routing of messaged across various trust domains.

 Therefore, message level security is important as opposed to point-to-point

transport level security. As can be seen in figure 3.2 below, the security context of

SOAP message is end-to-end. However, there may also be a need for the intermediary

to have access to some information in the message. This is illustrated as a security

context between the intermediary and the original requester agent, and the intermediary

and the ultimate receiver.

Figure 3.2 Point-to-point vs. End-to-end Security

 14

3.3.2.3. Transport Level Security

 HTTP, the most widely used Internet communication protocol, is currently also

the most popular protocol for Web services. HTTP is an inherently insecure protocol

since all information is sent in clear text between unauthenticated peers over an insecure

network. To secure HTTP transport-level security can be used. Transport-level security

is a well known and often used mechanism for securing Internet and Intranet

communications. It is based on Secure Sockets Layer or Transport Layer Security that

works beneath HTTP.

 HTTPS allows client and server side authentication through certificates, which

have been either self-signed or signed by a central agency. HTTPS can be combined

with any part of message level security.

 Although HTTPS does not cover all aspects of a general security framework, it

provides a security level regarding party identification and authentication, message

integrity and confidentiality. SSL can not be applied to other protocols such as JMS.

Using SSL point-to-point security can be achieved.

3.3.3. Web Services Security Technologies

 In Web services, the SOAP envelope is defined in XML, thus, Web services can

use many of the existing XML security technologies and standards, such as XML

encryption and XML Digital Signatures. In addition many new standards such as WS-

Security have emerged. The WS-Security is the cornerstone of all the efforts in pulling

all these requirements together. The abstract of WS-Security specification document

says that “WS-Security describes enhancements to SOAP messaging to provide quality

of protection through message integrity, message confidentiality, and single message

authentication. These mechanisms can be used to accommodate a wide variety of

security models and encryption technologies.”[3] Other technologies in the process of

standardization are XML Key Management Specification (XKMS), Secure Assertion

Markup Language (SAML), Extensible Access Control Markup Language (XACML),

and Identity Federation.

 15

3.3.3.1. XML Signature and XML Encryption

 XML signatures are designed for use in XML transactions. It is a standard that is

jointly developed by W3C and the IETF (RFC 2807 and RFC 3275). The standard

defines a schema for capturing the result of a digital signature operation applied to

arbitrary data and its processing. XML signatures add authentication, data integrity, and

support for non-repudiation to the signed data.

 XML Encryption specifies a process for encrypting the data and representing the

result in XML. The data may be arbitrary data (including an XML document), an XML

element, or XML element content. The result of encrypting data is an XML Encryption

element which contains or references the cipher data.

3.3.3.2. Web Services Security

 The WS-Security specification provides message-level security, which is used

when building secure Web services to implement message content integrity and

confidentiality. The advantage of using WS-Security over using SSL is that WS-

Security can provide message level end-to-end security. This means that security can be

maintained even if the message goes through multiple services, called intermediaries.

Additionally, WS-Security is independent of the transport layer protocol meaning that it

can be used for any Web service binding such as HTTP or RMI.

 The WS-Security specification defines a set of SOAP extensions. The

specification is flexible and is designed to be used as the basis for securing Web

services in a wide variety of security models, including PKI, Kerberos and SSL. It

provides support for multiple security token formats, multiple trust domains, multiple

signature formats, and multiple encryption technologies based on XML signature and

XML encryption to provide integrity and confidentiality.

 The specification includes security token propagation, message integrity, and

message confidentiality. However, these mechanisms by themselves do not address all

the aspects of a complete security solution, therefore, WS-Security represents only one

of the layers in a complex, secure Web services security solution design.

Message integrity is provided by leveraging XML signature in conjunction with

security tokens (which may contain or imply key data) to ensure that messages are

 16

transmitted without modifications. The integrity mechanisms are designed to support

multiple signatures potentially by multiple actors, and to be extensible to support

additional signature formats. The signatures may reference a security token.

Similarly, message confidentiality is provided by leveraging XML Encryption in

conjunction with security tokens to keep portions of SOAP messages confidential. The

encryption mechanisms are designed to support additional encryption technologies,

processes, and operations by multiple actors. The encryption might also reference a

security token “(IBM CORPORATION, 2002)”.

3.3.3.2.1. Advantages of WS-Security

 Multiple parts of a message can be secured in different ways. Multiple security

requirements can be applied, such as integrity on the security token, and confidentiality on

the SOAP body. End-to-end message level security can be provided through any number

of intermediaries. WS-Security works across multiple transports and is independent of the

underlying transport. Authentication of multiple party identities is possible.

3.3.3.2.2. Evolution of WS-Security Specification

Figure 3.3 Evolution of WS-Security Specification

 17

 The first version of WS-Security specification was proposed by IBM, Microsoft,

and Verisign in April 2002. After the formalization of the April 2002 specifications, the

specification was transferred to OASIS consortium.

 In OASIS activities, the core specification and many profiles that describe the

use of a specific token framework in WS-Security have been discussed. The latest

specification and profiles of WS-Security were proposed in March 2004 as an OASIS

standard.

 The latest core specification, Web Services Security: SOAP Message Security

1.0 (WS-Security 2004) was standardized in March 2004. The two profiles, Web

Services Security Username Token Profile, and Web Services Security X.509

Certificate Token Profile 1.0 were standardized at the same time. This evolution is

presented in Figure 3.3.

 There are other token profiles on which OASIS is currently working on:

• Web Services Security: SAML Token Profile

• Web Services Security: Rights Expression Language (REL) Token Profile

• Web Services Security: Kerberos Token Profile

• Web Services Security: Minimalist Profile (MProf)

• Web Services Security: SOAP Message with Attachments (SWA) Profile

3.3.3.2.3. Web Services Security Model Framework

 The WS-Security specification addresses only a subset of security services for

all security aspects. A more general security model is required to cover other security

aspects such as auditing and non-repudiation.

 The Web services security model introduces a set of individual interrelated

specifications to form a layering approach to security. This layered architecture is

presented in Figure 3.4. It includes several aspects of security: identification,

authentication, authorization, integrity, confidentiality, auditing, and non-repudiation.

 18

Figure 3.4 Web Services Security Specifications

These specifications include different aspects of Web services security:

WS-Policy – Describes the capabilities and constraints of the security (and other

business) policies on intermediaries and endpoints (e.g. required security tokens,

supported encryption algorithms, privacy rules).

WS-Trust – Describes a model for trust frameworks that enables Web services to

securely interoperate.

WS-Privacy – Describes a model for how Web services and requesters state

subject privacy preferences and organizational privacy practice statements.

WS-SecureConversation – Describes how to manage and authenticate message

exchanges between parties including security context exchange and establishing and

deriving session keys.

WS-Federation – Describes how to manage and broker the trust relations in a

heterogeneous federated environment including support for federated identities.

WS-Authorization – Describes how to manage authorization and data and

authorization policies.

3.3.3.2.4. WS-Security Example

 This section provides examples of SOAP messages with WS-Security. Using

WS-Security, the authentication mechanism integrity, and confidentiality can be applied

 19

at the message level. As an overview, Figure 3.5 shows an example of Web service

security elements when the SOAP body is signed and encrypted.

Figure 3.5 SOAP Message Security with WS-Security

 Example 3.1 shows the sample SOAP message without applying WS-Security.

As you can see, there is only a SOAP body under the SOAP envelope. Applying WS-

Security, the SOAP security header will be inserted under the SOAP envelope.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header/>
 <soapenv:Body>
 <p821:getDayForecast xmlns:p821="http://bean.itso">
 <theDate>2004-11-25T15:00:00.000Z</theDate>
 </p821:getDayForecast>
 </soapenv:Body>
 </soapenv:Envelope>

Example 3.1 SOAP message without WS-Security

 In the sections that follow, we will show examples with WS-Security applied to

the SOAP message.

 20

3.3.3.2.4.1. Authentication

 In example 3.2, we show a message with authentication. As can be seen, we

have a username and password information as a <UsernameToken> tag in the message

“(OASIS, 2006)”. When the username token is received by the Web service server, the

username and password are extracted and verified. Only when the username and

password combination is valid will the message be accepted and processed at the server.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401 -
wsswssecurity- secext-1.0.xsd">
 <wsse:UsernameToken>
 <wsse:Username>David</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wssusername-
 token-profile-1.0#PasswordText">divaD</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <p821:getDayForecast xmlns:p821="http://bean.itso">
 <theDate>2004-11-25T15:00:00.000Z</theDate>
 </p821:getDayForecast>
 </soapenv:Body>
 </soapenv:Envelope>

Example 3.2 SOAP Message with Authentication

 Using the username token is just one of the ways of implementing

authentication. This mechanism is also known as basic authentication. Any XML based

security token can be specified in the <Security> header. However, binary tokens such

as X.509 certificates, and Kerberos tickets, or other non-XML formats require a special

encoding format for inclusion.

 21

3.3.3.2.4.2. Integrity

 Integrity is applied to the application to ensure that no one illegally modifies the

message while it is in transit. Essentially, integrity is provided by generating an XML

digital signature on the contents of the SOAP message. If the message data changes

illegally, the signature would no longer be valid.

 Example 3.3 shows a sample SOAP message with integrity. Here the message

body part is signed and added to the SOAP security header as signature information.

<saml:Assertion AssertionID="SecurityToken-07dc7c16-9a42-4100-ad21-
13013b975f3c"
MajorVersion="1" MinorVersion="1"
Issuer="http://localhost/SamlSecurityTokenService/SamlTokenIssuer.ashx"
IssueInstant="2005-11-29T22:36:03Z"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
<saml:Conditions NotBefore="2005-11-29T22:36:03Z" NotOnOrAfter="2005-11-
30T02:36:03Z">
<saml:AudienceRestrictionCondition>
<saml:Audience>
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
</saml:Audience>
</saml:AudienceRestrictionCondition>
</saml:Conditions>
<saml:AuthenticationStatement
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2005-11-29T22:36:03Z">
<saml:Subject>
<saml:NameIdentifier
Format="http://schemas.xmlsoap.org/ws/2004/01/Federation/username">RDALAPTOP
02\wse
user</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:holder-ofkey</
saml:ConfirmationMethod>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<xenc:EncryptedKey
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>

Example 3.3 SOAP Message with Integrity

 22

<wsse:KeyIdentifier ValueType="http://docs.oasisopen.
org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soapmessage-
security-
1.0#Base64Binary">aAI1zTqHbhsUN6j2HsIefWcHODs=</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</KeyInfo>
<xenc:CipherData>
<xenc:CipherValue>cSrRHLh8DWeELh5Naf34z515OIs0sw6hp4/zUIOnbOFNj1lxQd
XCTi7z3aaLu4Xi
ws8vF3YdzD9LD/bQ1+QzzI7qcR4eDLNnxjZU87DkCBxI4ygqyB+Mx4J2lKLYl+rxI
OVOVcjbd64/YngQu5
AgZKBxNZv7GIcla0d3Ikebyr4=</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedKey>
</ds:KeyInfo>
</saml:SubjectConfirmation>
</saml:Subject>
<saml:SubjectLocality IPAddress="192.168.0.10" DNSAddress="CLIENTHOST" />
</saml:AuthenticationStatement>
<saml:AttributeStatement>
<saml:Subject>
<saml:NameIdentifier
Format="http://schemas.xmlsoap.org/ws/2004/01/Federation/username">RDALAPTOP
02\wse
user</saml:NameIdentifier>
<saml:SubjectConfirmation>
<saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:holder-ofkey</
saml:ConfirmationMethod>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<xenc:EncryptedKey
xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
<xenc:EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
<KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
<wsse:SecurityTokenReference>
<wsse:KeyIdentifier ValueType="http://docs.oasisopen.
org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soapmessage-
security-
1.0#Base64Binary">aAI1zTqHbhsUN6j2HsIefWcHODs=</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</KeyInfo>
<xenc:CipherData>

Example 3.3 (Continued)

 23

<xenc:CipherValue>cSrRHLh8DWeELh5Naf34z515OIs0sw6hp4/zUIOnbOFNj1lxQd
XCTi7z3aaLu4Xi
ws8vF3YdzD9LD/bQ1+QzzI7qcR4eDLNnxjZU87DkCBxI4ygqyB+Mx4J2lKLYl+rxI
OVOVcjbd64/YngQu5
AgZKBxNZv7GIcla0d3Ikebyr4=</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedKey>
</ds:KeyInfo>
</saml:SubjectConfirmation>
</saml:Subject>
<saml:Attribute AttributeName="group"
AttributeNamespace="http://schemas.xmlsoap.org/ws/2004/01/Federation/group">
<saml:AttributeValue>BUILTIN\Users</saml:AttributeValue>
</saml:Attribute>
</saml:AttributeStatement>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-excc14n#"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#" />
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"
/>
<Reference URI="#SecurityToken-07dc7c16-9a42-4100-ad21-13013b975f3c">
<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#envelopedsignature"
/>
<Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>k2PBIDmwJLlQIh/GA4bVPgk1544=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>CZPQJvc2vpjKyio6EEJTQShHGlJff1hZubOWSDCbRrbSFkK53fOp
9Ugulfel6vvs9y
ZfFJB2ieRAPK3ywUrRWTKvO7vjXP9HRGgrvqGC2PpQNAEYn7ciBkLM+VoJV5v
WfIopVevEYvnxFMFZlJTl
LSOr0n+GWYaZuUYFJECfHaE=</SignatureValue>
<KeyInfo>
<wsse:SecurityTokenReference>
<wsse:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasiswss-
soap-message-security-1.1#ThumbprintSHA1" EncodingType="http://docs.oasisopen.
org/wss/2004/01/oasis-200401-wss-soap-message-security-
1.0#Base64Binary">vLfjdZyxqw+ztcYkVVQX8wyXp5o=</wsse:KeyIdentifier>
</wsse:SecurityTokenReference>
</KeyInfo>
</Signature>
</saml:Assertion>

Example 3.3 (Continued)

 24

 A signature is based on a key that the sender is authorized to have. Unauthorized

sniffers do not have this key. When the receiver gets the message, it too creates a

signature using message contents. Only if the two signatures match does the receiver

honor the message. If the signatures are different, a SOAP fault is returned to the sender.

3.3.3.2.4.3. Confidentiality

 Example 3.4 shows a sample SOAP message with confidentiality. Here, the

message body part is encrypted and a security header with encryption information added.

Confidentiality is the process in which a SOAP message is protected so that only authorized

recipients can read the SOAP message. Confidentiality is provided by encrypting the

contents of the SOAP message using XML encryption. If the SOAP message is encrypted,

only a service that knows the key can decrypt and read the message.

<soapenv:Envelope xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Header>
 <wsu:Timestamp
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-ws
 security-utility-1.0.xsd">
 <wsu:Created>2004-11-26T09:34:50.838Z</wsu:Created>
 </wsu:Timestamp>
 <wsse:Security soapenv:mustUnderstand="1"
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-w
 ssecurity-secext-1.0.xsd">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier
 ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-
 200401-wss-x509-token-profile-
1.0#X509v3SubjectKeyIdentifier">
Vniy7MUOXBumPoH1MNbDpiIWOPA=
 </wsse:KeyIdentifier>

Example 3.4 SOAP Message with Confidentiality

 25

 </wsse:SecurityTokenReference>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>
O+2mTsRjU1iNlwANv1kGdzpkRV1GQc5epAT3p5Eg5UNAJ3H3YAX5VrdgMQmj1
wzdSZLDEzBtcHPJq3c8c0AgmAy9EVdcgXIn/ZeV+80jMDn/HN2HfodYjURtIYBg48
0SSkot0fy+YpBSXNR/MTfs1HT2H/Mjw/CyIbomWdQZHmE=
 </CipherValue>
 </CipherData>
 <ReferenceList>

<DataReferenceURI="#wssecurity_encryption_id_6866950837840688804"/>
 </ReferenceList>
 </EncryptedKey>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <EncryptedData
 Id="wssecurity_encryption_id_6866950837840688804"
 Type="http://www.w3.org/2001/04/xmlenc#Content"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
 <CipherData>
 <CipherValue>
OvLekOlbuZhFBllBNL4Kos195YHwYw0kSbMxkbI2pk7nl17g0prPS2Ba2hyrXHABG
QVmosWpgqt+zijCPHUQCMwmm3qgFraK11DPMmwP94HvgxlgBmPw1Unt+WM4
aKLNrHDnwwcQX5RO7KT+fhFp4wxFEABwfHqzvTGNK3xRwJE=
 </CipherValue>
 </CipherData>
 </EncryptedData>
 </soapenv:Body>
</soapenv:Envelope>

Example 3.4 (Continued)

3.3.3.2.5. Scenarios

 In this section, we present several scenarios that can be enabled using the

mentioned Web Service security specifications. These scenarios can be commonly

encountered in the industry, and present an opportunity for elaborating on the

specifications.

 Note that in the scenario descriptions the use of the term requester is used to

describe the broad variety potential users of a Web service and is not meant to limit the

 26

characteristics of the requester. In scenario figures, the blue boxes represent the service

and the light blue boxes represent security tokens and their identity and delegation

claims.

3.3.3.2.5.1. Direct Trust Using Username/Password and Transport-

Level Security

 This is a very basic example showing how Web services Security can be used

with existing security mechanisms.

Figure 3.6 Web Services Security and Existing Transport Security Mechanisms

 The requester opens a connection to the Web Service using a secure transport

such as SSL or TLS. It sends its request along with a security token that contains its

username and password. The service authenticates the requester, processes the request

and returns the result. In this scenario, the message confidentiality and integrity are

handled using existing transport security mechanisms “(IBM CORPORATION, 2006)”.

3.3.3.2.5.2. Direct Trust Using Security Tokens

 This scenario illustrates the use of a security token that is directly trusted by a

Web service. Here direct trust means that the requester’s security token or its signing

authority is known and trusted by the Web service. This scenario assumes that the two

parties have used some mechanism to establish a trust relationship for use of the

security token. This trust may be established manually, by configuring the application,

or by using secure transport to exchange keys.

 27

Figure 3.7 Direct Trust between Two Parties

 The requester sends a message to a service and includes a signed security token

and provides proof of possession of the security token using, for example, a signature.

The service verifies the proof and evaluates the security token. The signature on the

security token is valid and is directly trusted by the service. The service processes the

request and returns a result. Direct trust assumes that the policies for privacy are well

understood by the parties involved “(IBM CORPORATION, 2006)”.

3.3.3.2.5.3 Security Token Acquisition

 In some cases, the security token used is not passed as part of the message, and

instead a security token reference is provided that can be used to locate and acquire the token.

Figure 3.8 Security Tokens by Reference

 28

 The requester issues a request to the service and includes a reference to the

security token and provides proof-of-possession. The Web service uses the provided

information to obtain the security token from the token store service and validate the

proof. The Web service trusts the security token, so the request is processed and the

response is returned “(IBM CORPORATION, 2006)”.

3.3.3.2.5.4. Firewall Processing

 Firewalls are a critical component of the current Web security architectures,

therefore they should be able to continue enforcing boundary processing rules.

 Figure 3.9 below shows the firewall allowing authorized SOAP messages while

blocking unauthorized requests.

Figure 3.9 Firewall Processing SOAP Messages

 In this scenario the firewall examines the SOAP messages to determine if the

requests is authorized to send messages to the Web service behind itself. It determines

by examining the security token used to sign the message. If the signature is valid, the

signing authority is trusted to, and the token says that it does authorize message inside

the firewall, then the message is allowed. In other scenarios, the firewall can act as a

security token issuing authority and only allow messages that include proof-of-

possession of a security token issued by the firewall “(IBM CORPORATION, 2006)”.

 29

3.3.3.2.5.5. Issued Security Token

 In the first two steps, the requester communicates with a certifying authority to obtain

a signed statement of assertions attesting the requester’s identity. Next the requester sends the

message with the security token and a proof of possession attached to the message. To obtain

an identity security token, requesters may use existing security protocols or they may leverage

the Web services security specifications “(IBM CORPORATION, 2006)”.

Figure 3.10 Simple Authentication by a Trusted Third Party

3.3.3.2.5.6. Enforcing Business Policy

 In many business processes there are specific policies that must be enforced. For

example, a service may require that consumers have a certain rating or recognition with

a specific external party. With web services, these policies can be codified and validated

automatically, simplifying the overall process.

 In this scenario, the Web service enables the service provider to interact with

partners in order to complete business processes. However, the service provider not

only wants to assure of the identity of the requester, but they also want to make sure that

the requester has the external party’s recognition. The requester would go to the external

party and provide its identity security token received from the security token provider in

order to prove that it is recognized by the external party. The requester then would go to

 30

the Web service and provide both tokens and prove its identity and that it is recognized

and has good standing with the external party “(IBM CORPORATION, 2006)”.

Figure 3.11 An Example in Enforcing Policies

3.3.3.2.5.7. Web Client Communicating Through a Middle-Tier

Application to a Service

 Consider an example where we have a web client which communicates with a

middle-tier web application which, in turn securely talks to a Web service in another

domain. The middle-tier web application, which is Web service aware wants to obtain a

security token for the Web client in order to talk to the Web service on behalf of the

Web client.

 To enable this scenario, when the Web client accesses the middle-tier

application it is redirected to an associated identity service for authentication possibly

by basic HTTP authentication mechanism and transport-layer security. Once

authenticated, the request is redirected back to the middle-tier application. The identity

 31

service provides the middle-tier application with a security token asserting the identity

and the delegations possibly by a query string sent via https. The Web server can now

use this token to issue requests to the Web service. The Web service processes the

requests and returns the results to the Web service for possible formatting for display in

a browser “(IBM CORPORATION, 2006)”.

Figure 3.12. Web Client Communicating Through a Middle-Tier Application to a

Service

3.3.3.2.5.8. Mobile Clients

 The flexibility of the Web services approach enables support for multiple

cryptographic technologies providing both strong and performant cryptographic

protection on devices with limited computational and storage capabilities. Similarly it

enables network operators to provide security proxies, such as network gateways, to act

on client’s behalf.

 When a network operator supports mobile clients using Web services security

specifications, they can configure those clients to send requests via the network

operator’s gateway. In this scenario the gateway is a SOAP intermediary that actively

participates in the overall message flow; specifically the network operator is providing a

value-add encryption algorithm designed for mobile devices. The gateway can augment

or change the security tokens and quality of protection of the message. Note that the

flexibility inherent in this Web services security model allows this solution even when

the device is roaming on a foreign network “(IBM CORPORATION, 2006)”.

 32

Figure 3.13 Mobile Clients Accessing a Service Through Gateways

 33

CHAPTER 4

CASE STUDY

4.1. Problem Definition

 Web services typically have large and dynamic requester populations. While

some services allow anonymous access, others require strong user authentication.

Invocation of web services commonly occurs between parties between which there is no

prior relationship and no common security domain. Daily life provides various

examples in which a trust relationship must be formed prior to performance of tasks.

Some examples include, request for verification of identity by a bank prior to opening

an account, verification of citizenship by government before issuing a passport, and

verification of student status by a university library before lending a book.

 Web services operate similarly. If a person would like to make an online

application for credit to a bank, he should provide a security token proving his identity.

A more advanced scenario would be supplying credit status obtained from a

governmental institution which monitors citizen’s credit rating, along with the token-of-

proof of a person’s identity. Such a scenario represents the need for a common protocol

for representing a person’s identity along with various security declarations. Such a

security token must be standards based and should be verifiable by different authorities

in different security domains.

 We propose such an architecture enabling such scenarios in the following

sections of this chapter. Our proposed architecture introduces a concept which is called

Security Token Service which issues security tokens on demand to requesters. Such

tokens may be used for proving identity to other Security Token Services for receiving

additional security tokens proving other information about the requester thus should be

valid across different security domains.

 34

4.2. Real Life Scenario

 The scenario we’re going to use for demonstration of our proposed architecture

is a real-life example of the WS-Security scenario we have explained in section

3.3.3.2.5.6. Our requester is a citizen who would like to apply for a credit account to a

bank. For his application to be honored, the bank requests the applicant to present two

security tokens, one obtained from the government verifying his identity, and another

token from the fictious agency of Board of Credit Rating which rates people’s credit

status. When both tokens are acquired, the requester invokes the banks Web service and

presents these tokens. The bank verifies these tokens and according to the credit rating

of the applicant, and decides to approve the credit request or not.

Figure 4.1 Credit Application Scenario

4.3. Motivation

 All the actors of the scenario might be implemented using different

technologies, and interoperability is required between these platforms. Using a

standards based mechanism for authentication helps ensure interoperability between

 35

different platforms. There is also a need for security tokens that are extensible and

include claims that support additional security functions. The credit rating of the User is

an important piece of information for the Bank Web Service. Using this piece of

information, the service decides to honor the User’s credit request. Thus, this piece of

information is part of the client authorization process on the banking system.

 The environment includes organizational boundaries that are protected by

firewalls. We need security tokens that can traverse these boundaries, including passing

through ports that are commonly enables on firewalls. Also, clients must be able to

obtain security tokens such that services in a different security domain can be accessed

by the token that is issues by the token issuer in its own domain.

4.4. Architecture

 The proposed architecture for this scenario involves 4 parties. The first party is

the requestor which is one of the principal actors of the scenario. The requestor can be

any kind of application designed to invoke operations on Web services. All of the other

parties are Web services. All of the parties are located in a different security domain.

 The communication between parties is performed over HTTP, thus avoiding any

possible problems regarding firewalls. Our choice of Web service implementation

utilizes the classic approach of SOAP over HTTP. We use WS-Security in order to

provide integrity and confidentiality. We used WS-Security SAML token profile for

interoperability between parties with different security requirements. The last

component and the heart of the architecture is WS-Trust technology, which enables us

to build Security Token Services that issue on-demand security tokens that can be used

for authentication and assertion proof on different domains.

 36

Figure 4.2 The Protocol Stack of the Architecture

4.4.1. Participants

Our scenario involves the following participants:

• Client: The client application that provides the user’s credentials for

authentication to obtain a SAML token and presents the SAML token in the request to

the Web service.

• Security Token Service (STS): The STS is the Web service that authenticates

clients by validating credentials that are presented by a client. The STS issues a security

token to a client for successful client authentication.

• Service: The service is the Web service that requires authentication of a client

prior to authorizing the client.

• User: The authenticated user represented in the issued SAML token. In the

SAML token, the authenticated party is referred to as the subject.

In our scenario there are exactly two Security Token Service’s. The first one

STS accepts User credentials and issues the security token which identifies the user to

other parties, and the second one accepts the identity security token, and issues the

credit rating security token.

 37

4.4.2. SAML Token Profile

 SAML (Security Assertion Markup Language) tokens are standards based XML

tokens that are used to exchange security information, including attribute statements,

authentication decision statements, and authorization decision statements “(OASIS,

2006)”. SAML tokens are also extensible, meaning that the schema of the token can be

extended to meet additional requirements. SAML tokens are important for Web service

security. They provide cross-platform interoperability, and a means for exchanging

security information between clients and services that do not reside in the same security

domain.

4.4.3. Web Services Trust

Web Services Trust (WS-Trust) is an extension of the Web Services Security

specification. Web Services Trust Language defines extensions of the WS-Security that

provides methods for issuing and exchanging security tokens. It also defines a way to

establish a trust model “(ANDERSON 2006)”.

 In order to secure communication between two parties, the two parties must

exchange security credentials. However, each party needs to determine if they can

trust the asserted credentials of the other party. The WS-Trust specification defines

extensions to WS-Security for issuing, exchanging, and validating security tokens,

and ways to establish and access the presence of trust relationships “(WEB_3

2006)”.

4.4.4. Token Request and Issuance

SAML tokens are requested by sending a WS-Trust Request Security Token

(RST) message. In the RST message, the STS receives information about the type of

token the client is requesting, the intended target for that token based on the service

to which the client is sending its request message, and the credentials presented for

authentication. In response to an RST, the STS issues a security token in a WS-Trust

Request Security Token Response (RSTR) message. The RSTR contains the

requested security token, and in this implementation, it also includes a proof token

 38

containing a copy of a symmetric key to use when signing and encrypting messages

for the service.

4.4.5. Overview of Key Exchange

Key exchange is the process by which two parties securely establish a secret

key. The secret key can be used as proof-of-possession, or to encrypt and sign

messages. If the client and service have no means to directly exchange keys with each

other in a secure manner, then another party must facilitate the key exchange. In this

implementation, the STS facilitates key exchange between the client and the service by

creating a high entropy symmetric key for both parties.

Each party receives a copy of the symmetric key. The client, as the initiator of

communication with a service, receives a copy of the symmetric key as plaintext,

assuming that communication with the STS is secured. In this scenario, the copy of the

symmetric key is included inside a proof token called a RequestedProofToken. The

service receives a copy of the symmetric key as part of the security token requested by

the client from the STS to communicate with that service. The service's copy of the

symmetric key is encrypted with the public key from its X.509 certificate so only that

service, as the holder of the private key that is paired with the public key, is the only

one capable of decrypting its copy of the symmetric key.

Additionally, the STS signs the security token containing the symmetric key to

establish data integrity and data origin authentication. This mitigates a man-in-the-

middle attack when an attacker substitutes the symmetric key created by the STS with a

key of their own, in an attempt to compromise secure communication between the client

and the service. Also, it binds the identity of the STS to security tokens that it issues, so

that the service has assurance that the token came from a trusted STS.

4.5. Design

There are 6 steps of the implementation:

1. The client requests an SAML token from the Identity STS.

2. The STS processes the RST and sends a response

3. The client requests an SAML token from the Credit Rating STS

 39

4. The STS processes the RST and sends a response

5. The client sends a request to the bank service

6. The service processes the request and sends a response

Figure 4.3 Scenario Flow

 40

Figure 4.4 Sequence Diagram of the Scenario

4.5.1. Process Step 1 – The Client Requests an SAML Token from the

Identity STS

In the first step, the client initializes a username token which would be sent in

plain text. Using the username and password information supplied here, the STS would

be able to authenticate the user. We used plain text, since some directory server

implementations which could be used as data store for client information requires

plaintext passwords for client authentication. We will be using message layer security

before sending the message containing this sensitive information.,

 As the second step, the client initializes an RST message to request a security

token from the STS. The type of token requested, the target of the the token specified as

an endpoint reference, and the lifetime of the requested token is included in the

message. While the client may ask for a desired lifetime, it is up to the the STS to

decide on the lifetime “(ANDERSON, 2005)”.

 41

<wst:RequestSecurityToken
xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <wst:TokenType>http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-
 1.1#SAMLV1.1</wst:TokenType>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Issue
 </wst:RequestType>
 <wst:Lifetime>
 <wsu:Expires>2006-12-08T21:54:46Z</wsu:Expires>
 </wst:Lifetime>
</wst:RequestSecurityToken>

Example 4.1 RST Message Example

<wst:TokenType> element in the RST message, identifies the type of token

requested to be issued. In this example, we ask for a token in conformance with the

SAML token profile. The <wst:Lifetime> element defines the requested lifetime for the

token. The token can be cached depending on the archiecture of the application, and can

be used over multiple requests for its lifetime.

 In step three, the client includes a derived key token in the request message that

is encrypted with a wrapped symmetric encryption key. The wrapped symmetric key is

encrypted with the service’s X.509 certificate public key. This key is referred to as an

encrypted key. Accompanied by a valid UsernameToken, data origin authentication is

provided when the client uses the derived key token to sign the message.

 As the last step, the prepared message is sent to the STS.

4.5.2 The STS Processes the RST and Sends a Response

 Upon receiving the message, the STS decrypts the message. First the symmetric

key is decripted with the STS’s private key. Next the symmetric key is used to decrypt

the derived key that is used to encrypt and sign the rest of the message. The derived key

token, that has been decripted, is used to verify message integrity. Also the information

in the username token included in the message is validated against a data store such as a

directory service.

 Once the credentials are validated, an SAML token is initialized by the STS. The

STS signs the token using its X.509 certificate public key to provide data integrity and

to provide proof that the token was indeed issued by the STS.

 42

<saml:Assertion AssertionID="SecurityToken-07dc7c16-9a42-4100-ad21-13013b975f3c"
 MajorVersion="1" MinorVersion="1"
 Issuer="http://localhost/SamlSecurityTokenService/SamlTokenIssuer.ashx"
 IssueInstant="2005-11-29T22:36:03Z"
 xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <saml:Conditions NotBefore="2005-11-29T22:36:03Z" NotOnOrAfter="2005-11-
 30T02:36:03Z">
 <saml:AudienceRestrictionCondition>
 <saml:Audience>

 http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
 </saml:Audience>
 </saml:AudienceRestrictionCondition>
 </saml:Conditions>
 <saml:AuthenticationStatement
 AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
 AuthenticationInstant="2005-11-29T22:36:03Z">
 <saml:Subject>
 <saml:NameIdentifier
 Format="http://schemas.xmlsoap.org/ws/2004/01/Federation/username">RDAL
APTOP02\wseuser</saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:holder-
ofkey</saml:ConfirmationMethod>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <xenc:EncryptedKey

 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-
1_5" />
 <KeyInfo
xmlns="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasisopen.
 org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1"
 EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soapmessage-security-
1.0#Base64Binary">aAI1zTqHbhsUN6j2HsIefWcHODs=
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>cSrRHLh8DWeELh5Naf34z515OIs0sw6hp4/zUIOnbOFNj1lxQ
dXCTi7z3aaLu4Xiws8vF3YdzD9LD/bQ1+QzzI7qcR4eDLNnxjZU87DkCBxI4ygqyB+Mx4J
2lKLYl+rxIOVOVcjbd64/YngQu5AgZKBxNZv7GIcla0d3Ikebyr4=</xenc:CipherValue>

Example 4.2 Sample SAML Token

 43

 </xenc:CipherData>
 </xenc:EncryptedKey>
 </ds:KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:SubjectLocality IPAddress="192.168.0.10"
 DNSAddress="CLIENTHOST" />
 </saml:AuthenticationStatement>
 <saml:AttributeStatement>
 <saml:Subject>
 <saml:NameIdentifier
 Format="http://schemas.xmlsoap.org/ws/2004/01/Federation/username">RDAL
APTOP02\wseuser
 </saml:NameIdentifier>
 <saml:SubjectConfirmation>
 <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:holder-
ofkey
 </saml:ConfirmationMethod>
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 <xenc:EncryptedKeyxmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 <xenc:EncryptionMethodAlgorithm="http://www.w3.org/2001/04/xmlenc#rsa-
1_5" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasisopen.
org/wss/oasis-wss-soap-message-security-1.1#ThumbprintSHA1"
EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
soapmessage-
security-1.0#Base64Binary">aAI1zTqHbhsUN6j2HsIefWcHODs=
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </KeyInfo>
 <xenc:CipherData>
 <xenc:CipherValue>cSrRHLh8DWeELh5Naf34z515OIs0sw6hp4/zUIOnbOFNj
1lxQdXCTi7z3aaLu4Xiws8vF3YdzD9LD/bQ1+QzzI7qcR4eDLNnxjZU87DkCBxI4yg
qyB+Mx4J2lKLYl+rxIOVOVcjbd64/YngQu5AgZKBxNZv7GIcla0d3Ikebyr4=
 </xenc:CipherValue>
 </xenc:CipherData>
 </xenc:EncryptedKey>
 </ds:KeyInfo>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Attribute AttributeName="group"
 AttributeNamespace="http://schemas.xmlsoap.org/ws/2004/01/Federation/group
">

Example 4.2 (Continued)

 44

 <saml:AttributeValue>BUILTIN\Users
 </saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <ds:CanonicalizationMethod
 Algorithm="http://www.w3.org/2001/10/xml-excc14n#"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
/>
 <SignatureMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-
sha1"/>
 <Reference URI="#SecurityToken-07dc7c16-9a42-4100-ad21-
13013b975f3c">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#envelopedsignature"/>
 <Transform Algorithm="http://www.w3.org/2001/10/xml-exc-
c14n#" />
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"
/>
 <DigestValue>k2PBIDmwJLlQIh/GA4bVPgk1544=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>CZPQJvc2vpjKyio6EEJTQShHGlJff1hZubOWSDCbRrbSFk
K53fOp9Ugulfel6vvs9yZfFJB2ieRAPK3ywUrRWTKvO7vjXP9HRGgrvqGC2PpQNA
EYn7ciBkLM+VoJV5vWfIopVevEYvnxFMFZlJTlLSOr0n+GWYaZuUYFJECfHaE=
</SignatureValue>
 <KeyInfo>
 <wsse:SecurityTokenReference>
 <wsse:KeyIdentifier ValueType="http://docs.oasis-
open.org/wss/oasiswss-
soap-message-security-1.1#ThumbprintSHA1" EncodingType="http://docs.oasisopen.
org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary">
 vLfjdZyxqw+ztcYkVVQX8wyXp5o=
 </wsse:KeyIdentifier>
 </wsse:SecurityTokenReference>
 </KeyInfo>
 </Signature>
</saml:Assertion>

Example 4.2 (Continued)

 45

 The STS generates a high entropy symmetric key that can be used to provide

proof-of-possession to confirm the subject’s identity and provides a key for the client

and serviceto sign and encrypt messages. The symmetric key is a hash computation,

created by the STS using a PSHA1 algorithm. The STS uses an entropy value it

generates, plus an entropy value provided by the client in the RST message as values for

key generation.

 The STS generates the key and encrypts a copy of it with the target service’s

X.509 certificate public key. The STS determines which X.509 certificate it uses to

encrypt the symmetric key from a mapping that it maintains in its configuration file.

This mapping provides traceability from the scope of the security token requested by the

client in the RST message to the SHA1 Thumbprint of the X.509 certificate used for

encrypting token data. The STS includes the encrypted symmetric key as a claim in the

SAML token, and includes a copy of the symmetirc key in a proof token returned back

to the client in the RSTR.

 The STS includes the SAML token and a proof token in a RSTR message back

to the client. The proof token contains a copy of the symmetric key that was added to

the SAML token. Unlike the copy of the symmetric key in the SAML token, the copy in

the proof token is not encrypted using the target services X.509 certificate public

key.Instead, the key in the proof token is plaintext, though the RSTR is secured. The

client caches the proof token to derive encryption and signing keys for securing

messages exchanged with the service.

4.5.3. The client requests an SAML token from the Credit Rating STS

 The SAML token received from the Identity STS is attached to the RST message

which is going to sent to the Credit Rating STS. The client’s copy of the symmetric key

contained in the proof token received with the message is used to derive a signing key

to sign the message. The signing key is created using PSHA1 algorithm which produces

a hash value from the symmetric key, and a concatenation of a label and a nonce. Key

derivation allows fresh key material to be used each time messages are signed to reduce

the success of offline analysis by attackers. Another key is derived from the symmetric

key. The encryption key is used to encrypt sensitive parts of the message such as

message body and signature. The prepared message is sent to the Credit Rating STS.

 46

4.5.4. The Credit Rating STS Processes the RST and Sends a Response

 The message is decrypted as explained in first paragraph of section 4.5.2. The

service computes the derived signing key from the symmetric key in the SAML token

and verifies the message signature. This provides data origin authentication, as it gives

the service assurance that the message was not tampered with during transit, and that it

originated from the client as the holder of the symmetric key included in the SAML

token.

 Next the Credit Rating STS checks the certificate identifier of the X.509

certificate the Identity STS used to sign the SAML token against a list of trusted token

issuers. The Credit Rating STS also verifies that the required parts of the token are

present and the validity period of the token. The service prepares a new extended

SAML token which also includes the credit rating of the user.

 A new RSTR message is prepared as explained in section 4.5.2. This new

message includes the SAML token prepared by the Credit Rating STS. The message is

sent back to the client.

4.5.5. The client sends a request to the bank service

 Upon receiving the RSTS from the Credit Rating STS, the client receives the

second SAML token with the custom assertion of the user’s credit rating. The client

prepares a service request from the bank web service. For preparing this message, the

process explained in section 4.5.3 is repeated only this time the symmetric key prepared

using the information in the second SAML token prepared by the Credit Rating STS is

used. The second SAML token is attached to this message and sent to the bank web

service.

4.5.6. The Service Processes the Request and Sends a Response

 The service computes the derived key used to encrypt the message from the

symmetric key in the SAML token. The derived encryption key is then used to decrypt

the request message signature and body. Next, the service computes the derived signing

 47

key from the symmetric key in the SAML token and verifies the message signature.

This provides data origin authentication, as it gives the service assurance that the

message was not tampered with during transit, and that it originated from the client as

the holder of the symmetric key included in the SAML token.

 The bank web service checks the certificate identifier of the X.509 certificate the

STS used to sign the SAML token against a list of trusted token issuers. If the SAML

token is not signed by a trusted token issuer, an exception is thrown.

 As the last step of the process, the service applies business logic using input

from the SAML token, namely the identity credentials and the credit rating from the

Credit Rating Service to decide on the outcome of the request. The response, signed and

encrypted with keys derived from the symmetric key that the service obtained from the

SAML token is sent back to the client.

 48

CHAPTER 5

CONCLUSION

 With this thesis, we have laid the foundations for a more comprehensive

framework for securing Web services. Our proposed architecture demonstrates an

example of trust brokering for various purposes. The fact that each of the actors are

located in different security domains, can be considered a hint for implementing a

federation framework for service oriented architectures. Also Web services single sign

on can be implemented by caching the received SAML token.

 There are other extension points which are outside the scope of this thesis. One

such extension is implementing secure conversation between actors. Such a need would

arise if the conversation between actors includes more than one interaction. Secure

conversation can be implemented by establishing security context tokens and using

these tokens for securing the conversation.

 Throughout this thesis, we have assumed that the parties involved in the

architecture, knew beforehand the requirements of other actors. This might not be the

case when a large scale service oriented architecture is built. Policy frameworks such as

Web Services Policy technology can be implemented for discovery of requirements of

actors.

 Other extensions such as support for different security tokens like Kerberos

tokens can be added to this architecture for supporting other systems using them can be

also added to this architecture.

 49

REFERENCES

Anderson, S. et al, 2005, Web Services Trust Language (WS-Trust)

Atkinson, B. et al, 2002. “Web Services Security (WS-Security)”, p.2

IBM Corporation, Microsoft Corporation, 2002. Security in a Web Services World: A

Proposed Architecture and Roadmap

OASIS - Organization for the Advancement of Structured Information Standards, 2006.

Web Services Security SAML Token Profile 1.1, p.7

OASIS - Organization for the Advancement of Structured Information Standards, 2006.

Web Services Security Username Token Profile 1.1, p.7

WEB_1, 2006. Web Services Glossary, 06/07/2006, http://www.w3.org/TR/2004/

NOTE-ws-gloss-20040211/

WEB_2, 2006. SoapRPC.com: Glossary, 06/07/2006, http://www.soaprpc.com/

glossary.html

WEB_3, 2006. webservices.xml.com: WS-Trust: Interoperable Security for Web

Services, 06/07/2006, http://webservices.xml.com/pub/a/ws/2003/06/24/ws-
trust.html?page=1

 50

APPENDIX A

GLOSSARY “(WEB_1 2006)”

Access

To interact with a system entity in order to manipulate, use, gain knowledge of,

and/or obtain a representation of some or all of a system entity's resources. [RFC 2828]

access control

Protection of resources against unauthorized access; a process by which use of

resources is regulated according to a security policy and is permitted by only authorized

system entities according to that policy. [RFC 2828]

Access Control Information

Any information used for access control purposes, including contextual

information. [X.812]

Contextual information might include source IP address, encryption strength, the

type of operation being requested, time of day, etc. Portions of access control

information may be specific to the request itself, some may be associated with the

connection via which the request is transmitted, and others (for example, time of day)

may be "environmental". [RFC 2829]

Access Rights

A description of the type of authorized interactions a subject can have with a

resource. Examples include read, write, execute, add, modify, and delete. [WSIA

Glossary]

Actor

A person or organization that may be the owner of agents that either seek to use

Web services or provide Web services.

A physical or conceptual entity that can perform actions. Examples: people;

companies; machines; running software. An actor can take on (or implement) one or

more roles. An actor at one level of abstraction may be viewed as a role at a lower level

of abstraction.

 51

Agent

An agent is a program acting on behalf of a person or organization. (This

definition is a specialization of the definition in [Web Arch]. It corresponds to the

notion of software agent in [Web Arch].)

Anonymity

The quality or state of being anonymous, which is the condition of having a

name or identity that is unknown or concealed. [RFC 2828]

Architecture

The software architecture of a program or computing system is the structure or

structures of the system. This structure includes software components, the externally

visible properties of those components, the relationships among them and the

constraints on their use. (based on the definition of architecture in [Soft Arch Pract])

A software architecture is an abstraction of the run-time elements of a software

system during some phase of its operation. A system may be composed of many levels

of abstraction and many phases of operation, each with its own software architecture.

[Fielding]

Artifact

A piece of digital information. An artifact may be any size, and may be

composed of other artifacts. Examples of artifacts: a message; a URI; an XML

document; a PNG image; a bit stream.

Asynchronous

An interaction is said to be asynchronous when the associated messages are

chronologically and procedurally decoupled. For example, in a request-response

interaction, the client agent can process the response at some indeterminate point in the

future when its existence is discovered. Mechanisms to do this include polling,

notification by receipt of another message, etc.

 52

Attribute

A distinct characteristic of an object. An object's attributes are said to describe

the object. Objects' attributes are often specified in terms of their physical traits, such as

size, shape, weight, and color, etc., for real-world objects. Objects in cyberspace might

have attributes describing size, type of encoding, network address, etc. [WSIA

Glossary]

Audit Guard

An audit guard is a mechanism used on behalf of an owner that monitors actions

and agents to verify the satisfaction of obligations.

Authentication

Authentication is the process of verifying that a potential partner in a

conversation is capable of representing a person or organization.

Authorization

The process of determining, by evaluating applicable access control information,

whether a subject is allowed to have the specified types of access to a particular

resource. Usually, authorization is in the context of authentication. Once a subject is

authenticated, it may be authorized to perform different types of access. [STG]

Binding

An association between an interface, a concrete protocol and a data format. A

binding specifies the protocol and data format to be used in transmitting messages

defined by the associated interface. [WSD Reqs]

The mapping of an interface and its associated operations to a particular concrete

message format and transmission protocol.

See also SOAP binding.

Capability

A capability is a named piece of functionality (or feature) that is declared as

supported or requested by an agent.

 53

Choreography

A choreography defines the sequence and conditions under which multiple

cooperating independent agents exchange messages in order to perform a task to

achieve a goal state.

Web Services Choreography concerns the interactions of services with their

users. Any user of a Web service, automated or otherwise, is a client of that service.

These users may, in turn, be other Web Services, applications or human beings.

Transactions among Web Services and their clients must clearly be well defined at the

time of their execution, and may consist of multiple separate interactions whose

composition constitutes a complete transaction. This composition, its message

protocols, interfaces, sequencing, and associated logic, is considered to be a

choreography. [WSC Reqs]

Component

A component is a software object, meant to interact with other components,

encapsulating certain functionality or a set of functionalities. A component has a clearly

defined interface and conforms to a prescribed behavior common to all components

within an architecture. [CCA T&D]

A component is an abstract unit of software instructions and internal state that

provides a transformation of data via its interface. [Fielding]

A component is a unit of architecture with defined boundaries.

Confidentiality

Assuring information will be kept secret, with access limited to appropriate

persons. [NSA Glossary]

Configuration

A collection of properties which may be changed. A property may influence the

behavior of an entity.

Connection

A transport layer virtual circuit established between two programs for the

purpose of communication. [RFC 2616]

 54

Control

To cause a desired change in state. Management systems may control the life

cycle of manageable Web services or information flow such as messages.

Conversation

A Web service conversation involves maintaining some state during an

interaction that involves multiple messages and/or participants.

Credentials

Data that is transferred to establish a claimed principal identity. [X.800]

Delivery Policy

A delivery policy is a policy that constrains the methods by which messages are

delivered by the message transport.

Digital Signature

A value computed with a cryptographic algorithm and appended to a data object

in such a way that any recipient of the data can use the signature to verify the data's

origin and integrity. (See: data origin authentication service, data integrity service,

digitized signature, electronic signature, signer.) [RFC 2828]

Discovery

The act of locating a machine-processable description of a Web service-related

resource that may have been previously unknown and that meets certain functional

criteria. It involves matching a set of functional and other criteria with a set of resource

descriptions. The goal is to find an appropriate Web service-related resource.

Discovery Service

A discovery service is a service that enables agents to retrieve Web services-

related resource description.

Document

Any data that can be represented in a digital form. [UeB Glossary]

 55

Electronic Data Interchange (EDI)

The automated exchange of any predefined and structured data for business

among information systems of two or more organizations. [ISO/IEC 14662]

Domain

A domain is an identified set of agents and/or resources that is subject to the

constraints of one of more policies.

Encryption

Cryptographic transformation of data (called "plaintext") into a form (called

"ciphertext") that conceals the data's original meaning to prevent it from being known or

used. If the transformation is reversible, the corresponding reversal process is called

"decryption", which is a transformation that restores encrypted data to its original state.

[RFC 2828]

End Point

An association between a binding and a network address, specified by a URI,

that may be used to communicate with an instance of a service. An end point indicates a

specific location for accessing a service using a specific protocol and data format.

[WSD Reqs]

Gateway

An agent that terminates a message on an inbound interface with the intent of

presenting it through an outbound interface as a new message. Unlike a proxy, a

gateway receives messages as if it were the final receiver for the message. Due to

possible mismatches between the inbound and outbound interfaces, a message may be

modified and may have some or all of its meaning lost during the conversion process.

For example, an HTTP PUT has no equivalent in SMTP.

Note: a gateway may or may not be a SOAP node; however a gateway is never a

SOAP intermediary, since gateways terminate messages and SOAP intermediaries relay

them instead. Being a gateway is typically a permanent role, whilst being a SOAP

intermediary is message specific.

 56

Idempotent

Property of an interaction whose results and side-effects are the same whether it

is done one or multiple times. [RFC 2616]

Safe interactions are inherently idempotent.

Identifier

An identifier is an unambiguous name for a resource.

Initial SOAP Sender

The SOAP sender that originates a SOAP message at the starting point of a

SOAP message path.

Integrity

Assuring information will not be accidentally or maliciously altered or

destroyed. [NSA Glossary]

Loose Coupling

Coupling is the dependency between interacting systems. This dependency can

be decomposed into real dependency and artificial dependency:

Real dependency is the set of features or services that a system consumes from

other systems. The real dependency always exists and cannot be reduced.

Artificial dependency is the set of factors that a system has to comply with in

order to consume the features or services provided by other systems. Typical artificial

dependency factors are language dependency, platform dependency, API dependency,

etc. Artificial dependency always exists, but it or its cost can be reduced.

Loose coupling describes the configuration in which artificial dependency has

been reduced to the minimum.

Manageable Service

A Web service becomes a manageable service with additional semantics, policy

statements, and monitoring and control (or management) capabilities (exposed via a

management interface) all for the purpose of managing the service.

 57

Management

The utilization of the management capabilities by the management system in

order to perform monitoring of values, tracking of states and control of entities in order

to produce and maintain a stable operational environment.

Management Capability

Capabilities that a Web service has for the purposes of controlling or monitoring

the service, and that can be exposed to a management system for the sole purpose of

managing the service.

Management Interface

Interface through which the management capabilities of a service are exposed.

Management Policy

Policy associated with a Web service solely for the purpose of describing the

management obligations and permissions for the service.

Management Semantics

The management semantics of a service augment the semantics of a service with

management-specific semantics. These management semantics form the contract

between the provider entity and the requester entity that expresses the effects and

requirements pertaining to the management and management policies for a service.

Message

A message is the basic unit of data sent from one Web services agent to another

in the context of Web services.

The basic unit of communication between a Web service and a requester: data to

be communicated to or from a Web service as a single logical transmission. [WSD

Reqs]

See also SOAP message.

 58

Message Correlation

Message correlation is the association of a message with a context. Message

correlation ensures that the requester agent can match the reply with the request,

especially when multiple replies may be possible.

Message Exchange Pattern (MEP)

A Message Exchanage Pattern (MEP) is a template, devoid of application

semantics, that describes a generic pattern for the exchange of messages between

agents. It describes the relationships (e.g., temporal, causal, sequential, etc.) of multiple

messages exchanged in conformance with the pattern, as well as the normal and

abnormal termination of any message exchange conforming to the pattern.

See SOAP message exchange pattern (MEP).

Message Receiver

A message receiver is an agent that receives a message.

Message Reliability

Message reliability is the degree of certainty that a message will be delivered

and that sender and receiver will both have the same understanding of the delivery

status.

Message Sender

A message sender is the agent that transmits a message.

Message Transport

A message transport is a mechanism that may be used by agents to deliver

messages.

Non-Repudiation

Method by which the sender of data is provided with proof of delivery and the

recipient is assured of the sender's identity, so that neither can later deny having

processed the data. [INFOSEC Glossary]

 59

Obligation

An obligation is a kind of policy that prescribes actions and/or states of an agent

and/or resource.

Operation

A set of messages related to a single Web service action. [WSD Reqs]

Orchestration

An orchestration defines the sequence and conditions in which one Web service

invokes other Web services in order to realize some useful function. I.e., an

orchestration is the pattern of interactions that a Web service agent must follow in order

to achieve its goal.

Permission

A permission is a kind of policy that prescribes the allowed actions and states of

an agent and/or resource.

Permission Guard

A permission guard is a mechanism deployed on behalf of an owner to enforce

permission policies.

Person Or Organization

A person or organization may be the owner of agents that provide or request

Web services.

Policy

A policy is a constraint on the behavior of agents or person or organization.

Policy Guard

A policy guard is a mechanism that enforces one or more policies. It is deployed

on behalf of an owner.

Principal

A system entity whose identity can be authenticated. [X.811]

 60

Privacy Policy

A set of rules and practices that specify or regulate how a person or organization

collects, processes (uses) and discloses another party's personal data as a result of an

interaction.

Provider Agent

An agent that is capable of and empowered to perform the actions associated

with a service on behalf of its owner — the provider entity.

Provider Entity

The person or organization that is providing a Web service.

Protocol

A set of formal rules describing how to transmit data, especially across a

network. Low level protocols define the electrical and physical standards to be

observed, bit- and byte-ordering and the transmission and error detection and correction

of the bit stream. High level protocols deal with the data formatting, including the

syntax of messages, the terminal to computer dialogue, character sets, sequencing of

messages etc. [FOLDOC]

Proxy

An agent that relays a message between a requester agent and a provider agent,

appearing to the Web service to be the requester.

Quality Of Service

Quality of Service is an obligation accepted and advertised by a provider entity

to service consumers.

Reference Architecture

A reference architecture is the generalized architecture of several end systems

that share one or more common domains. The reference architecture defines the

infrastructure common to the end systems and the interfaces of components that will be

included in the end systems. The reference architecture is then instantiated to create a

 61

software architecture of a specific system. The definition of the reference architecture

facilitates deriving and extending new software architectures for classes of systems. A

reference architecture, therefore, plays a dual role with regard to specific target software

architectures. First, it generalizes and extracts common functions and configurations.

Second, it provides a base for instantiating target systems that use that common base

more reliably and cost effectively. [Ref Arch]

Registry

Authoritative, centrally controlled store of information.

Requester Agent

A software agent that wishes to interact with a provider agent in order to request

that a task be performed on behalf of its owner — the requester entity.

Requester Entity

The person or organization that wishes to use a provider entity's Web service.

Safe

Property of an interaction which does not have any significance of taking an

action other than retrieval of information. [RFC 2616]

security administration

Configuring, securing and/or deploying of systems or applications enabling a

security domain.

Security Architecture

A plan and set of principles for an administrative domain and its security

domains that describe the security services that a system is required to provide to meet

the needs of its users, the system elements required to implement the services, and the

performance levels required in the elements to deal with the threat environment. A

complete security architecture for a system addresses administrative security,

communication security, computer security, emanations security, personnel security,

and physical security, and prescribes security policies for each. A complete security

architecture needs to deal with both intentional, intelligent threats and accidental threats.

 62

A security architecture should explicitly evolve over time as an integral part of its

administrative domain's evolution. [RFC 2828]

Security Auditing

A service that reliably and securely records security-related events producing an

audit trail enabling the reconstruction and examination of a sequence of events. Security

events could include authentication events, policy enforcement decisions, and others.

The resulting audit trail may be used to detect attacks, confirm compliance with policy,

deter abuse, or other purposes.

Security Domain

An environment or context that is defined by security models and a security

architecture, including a set of resources and set of system entities that are authorized to

access the resources. One or more security domains may reside in a single

administrative domain. The traits defining a given security domain typically evolve over

time. [RFC 2828]

Security Mechanism

A process (or a device incorporating such a process) that can be used in a system

to implement a security service that is provided by or within the system.

Security Model

A schematic description of a set of entities and relationships by which a

specified set of security services are provided by or within a system. [RFC 2828]

Security Policy

A set of rules and practices that specify or regulate how a system or organization

provides security services to protect resources. Security policies are components of

security architectures. Significant portions of security policies are implemented via

security services, using security policy expressions. [RFC 2828]

Security Policy Expression

A mapping of principal identities and/or attributes thereof with allowable

actions. Security policy expressions are often essentially access control lists. [STG]

 63

Security Service

A processing or communication service that is provided by a system to give a

specific kind of protection to resources, where said resources may reside with said

system or reside with other systems, for example, an authentication service or a PKI-

based document attribution and authentication service. A security service is a superset

of AAA services. Security services typically implement portions of security policies and

are implemented via security mechanisms. [RFC 2828]

Service

A service is an abstract resource that represents a capability of performing tasks

that form a coherent functionality from the point of view of providers entities and

requester entities. To be used, a service must be realized by a concrete provider agent.

WSDL service: A collection of end points. [WSD Reqs]

See Web service.

Service Description

A service description is a set of documents that describe the interface to and

semantics of a service.

Service Interface

A service interface is the abstract boundary that a service exposes. It defines the

types of messages and the message exchange patterns that are involved in interacting

with the service, together with any conditions implied by those messages.

A logical grouping of operations. An interface represents an abstract service

type, independent of transmission protocol and data format. [WSD Reqs]

Service Intermediary

A service intermediary is a Web service whose main role is to transform

messages in a value-added way. (From a messaging point of view, an intermediary

processes messages en route from one agent to another.) Specifically, we say that a

service intermediary is a service whose outgoing messages are equivalent to its

incoming messages in some application-defined sense.

See SOAP intermediary.

 64

Service Provider

See provider agent and provider entity. See also the discussion about service

provider in [WS Arch].

Service Requester

See requester agent and requester entity. See also the discussion about service

requester in [WS Arch].

Service Role

An abstract set of tasks which is identified to be relevant by a person or

organization offering a service. Service roles are also associated with particular aspects

of messages exchanged with a service.

Service Semantics

The semantics of a service is the behavior expected when interacting with the

service. The semantics expresses a contract (not necessarily a legal contract) between

the provider entity and the requester entity. It expresses the effect of invoking the

service. A service semantics may be formally described in a machine readable form,

identified but not formally defined, or informally defined via an out of band agreement

between the provider and the requester entity.

Service-Oriented Architecture

A set of components which can be invoked, and whose interface descriptions can

be published and discovered.

Session

A lasting interaction between system entities, often involving a user, typified by

the maintenance of some state of the interaction for the duration of the interaction.

[WSIA Glossary]

Such an interaction may not be limited to a single connection between the

system entities.

 65

SOAP

The formal set of conventions governing the format and processing rules of a

SOAP message. These conventions include the interactions among SOAP nodes

generating and accepting SOAP messages for the purpose of exchanging information

along a SOAP message path.

SOAP Application

A software entity that produces, consumes or otherwise acts upon SOAP

messages in a manner conforming to the SOAP processing model.

SOAP Binding

The formal set of rules for carrying a SOAP message within or on top of another

protocol (underlying protocol) for the purpose of exchange. Examples of SOAP

bindings include carrying a SOAP message within an HTTP entity-body, or over a TCP

stream.

SOAP Body

A collection of zero or more element information items targeted at an ultimate

SOAP receiver in the SOAP message path.

SOAP Envelope

The outermost element information item of a SOAP message.

SOAP Fault

A SOAP element information item which contains fault information generated

by a SOAP node.

SOAP Feature

An extension of the SOAP messaging framework typically associated with the

exchange of messages between communicating SOAP nodes. Examples of features

include "reliability", "security", "correlation", "routing", and the concept of message

exchange patterns.

 66

SOAP Header

A collection of zero or more SOAP header blocks each of which might be

targeted at any SOAP receiver within the SOAP message path.

SOAP Header Block

An element information item used to delimit data that logically constitutes a

single computational unit within the SOAP header. The type of a SOAP header block is

identified by the fully qualified name of the header block element information item.

SOAP Intermediary

A SOAP intermediary is both a SOAP receiver and a SOAP sender and is

targetable from within a SOAP message. It processes the SOAP header blocks targeted

at it and acts to forward a SOAP message towards an ultimate SOAP receiver.

SOAP Message

The basic unit of communication between SOAP nodes.

SOAP Message Exchange Pattern (MEP)

A template for the exchange of SOAP messages between SOAP nodes enabled

by one or more underlying SOAP protocol bindings. A SOAP MEP is an example of a

SOAP feature.

SOAP Message Path

The set of SOAP nodes through which a single SOAP message passes. This

includes the initial SOAP sender, zero or more SOAP intermediaries, and an ultimate

SOAP receiver.

SOAP Node

The embodiment of the processing logic necessary to transmit, receive, process

and/or relay a SOAP message, according to the set of conventions defined by this

recommendation. A SOAP node is responsible for enforcing the rules that govern the

exchange of SOAP messages. It accesses the services provided by the underlying

protocols through one or more SOAP bindings.

 67

SOAP Receiver

A SOAP node that accepts a SOAP message.

SOAP Role

A SOAP node's expected function in processing a message. A SOAP node can

act in multiple roles.

SOAP Sender

A SOAP node that transmits a SOAP message.

State

A set of attributes representing the properties of a component at some point in

time.

Synchronous

An interaction is said to be synchronous when the participating agents must be

available to receive and process the associated messages from the time the interaction is

initiated until all messages are actually received or some failure condition is determined.

The exact meaning of "available to receive the message" depends on the characteristics

of the participating agents (including the transfer protocol it uses); it may, but does not

necessarily, imply tight time synchronization, blocking a thread, etc.

System Entity

An active element of a computer/network system. For example, an automated

process or set of processes, a subsystem, a person or group of persons that incorporates

a distinct set of functionality. [RFC 2828]

Transaction

Transaction is a feature of the architecture that supports the coordination of

results or operations on state in a multi-step interaction. The fundamental characteristic

of a transaction is the ability to join multiple actions into the same unit of work, such

that the actions either succeed or fail as a unit.

 68

Ultimate SOAP Receiver

The SOAP receiver that is a final destination of a SOAP message. It is

responsible for processing the contents of the SOAP body and any SOAP header blocks

targeted at it. In some circumstances, a SOAP message might not reach an ultimate

SOAP receiver, for example because of a problem at a SOAP intermediary. An ultimate

SOAP receiver cannot also be a SOAP intermediary for the same SOAP message.

Usage Auditing

Service that reliably and securely records usage-related events producing an

audit trail enabling the reconstruction and examination of a sequence of events. Usage

events could include resource allocation events and resource freeing events.

Web Service

There are many things that might be called "Web services" in the world at large.

However, for the purpose of this Working Group and this architecture, and without

prejudice toward other definitions, we will use the following definition:

A Web service is a software system designed to support interoperable machine-

to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in

a manner prescribed by its description using SOAP-messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards.

