

SERVICE-ORIENTED INTEGRATION

 OF

INFORMATION SYSTEMS

FOR

LOGISTICS MANAGEMENT

A Thesis Submitted to

the Graduate School of Engineering and Sciences of

İzmir Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Software

by

Şevket ÇETİN

December 2013

İZMİR

We approve the thesis of Şevket Çetin

Examining Committee Members:

Asst. Prof. Dr. Tolga AYAV

Department of Computer Engineering, Izmir Institute of Technology

Asst. Prof. Dr. Tuğkan TUĞLULAR

Department of Computer Engineering, Izmir Institute of Technology

Asst. Prof. Dr. Derya BİRANT

Department of Computer Engineering, Dokuz Eylül University

 5 December 2013

Asst. Prof. Dr. Tolga AYAV

Supervisor, Department of Computer Engineering

Izmir Institute of Technology

Prof. Dr. İ. Sıtkı AYTAÇ

Head of Department of Computer

Engineering

Prof. Dr. R. Tuğrul SENGER

Dean of Graduate School of

Engineering and Sciences

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my advisor Asst. Prof.

Dr. Tuğkan TUĞLULAR for the continuous support of my study and research, for his

patience, motivation, enthusiasm, and immense knowledge. His leadership helped me in

all study and writing my thesis.

I want to thank to manager of Bimar cooperation Murat ÖZEMRE for his

support on thesis project.

I wish to express my sincere thanks to my friend and project partner Dilek TİTİZ

for his support and friendship during thesis work.

Also I would like to thank to Asst. Prof. Dr. Tuğkan TUĞLULAR and Bimar

Cooperation. With their help, this project case study work is submitted as a SANTEZ

project with project number 00933-STZ.2011-1.

I also want to thank to developers of Bimar; Murat FERUZ, Engin GÜRAY,

Kerim ÖNDER and Uğur DOĞAN for their helps about technical details during thesis

study.

iv

ABSTRACT

SERVICE-ORIENTED INTEGRATION OF

INFORMATION SYSTEMS FOR LOGISTICS

MANAGEMENT

Developments in information technology have become more crucial for

corporate firms and businesses. They make use of this technology to manage business

processes and it is one of the most invested domains by corporations. As technical

infrastructures of companies improve, the number of enterprise-oriented and special

software developed for business processes increase, too. With the augmentation of

cooperation between companies and incorporated business processes, in time, a need for

integration emerges for the applications running in diverse infrastructures and

technologies.

Logistics business processes are a part of a business domain where there are

multiple areas of study such as railway, seaway, road transportation and depot, and

where multiple companies and a high number of customer needs are managed.

Integrations between companies should be quick, reliable, easily-adaptable to changing

business processes is a crucial requirement. As integrations play a significant role in the

management of process, the correct establishment of the integration architecture,

convenience for follow-ups and management are critical for the flow of business

processes related to the monitoring of the possible problems.

 The main point of this thesis is based on a need for a software infrastructure that

will enable integrations to work together. Thus, by getting integrations to utilize

service-based architecture, to react quickly to changing business processes and customer

needs, it is aimed to provide management and for exception monitoring. That’s why I

focused on integration of service-based information systems for logistics management

in my thesis.

v

ÖZET

LOJİSTİK YÖNETİMİ İÇİN SERVİS TABANLI

BİLGİ SİSTEMLERİ ENTEGRASYONU

 Son yıllarda bilgi teknolojilerinin gelişmesi, kurumsal firmalar ve işletmelerin iş

süreçlerinin yönetebilmek için kullandıkları ve yatırım yaptıkları alanlardan birisidir.

Şirketlerin teknik altyapılarını geliştirmesiyle birlikte, iş süreçlerine özel yazılımlar,

kurumlarınaa yönelik geliştirilen uygulamaların sayısı artmaktadır. Kurumlar ve

işletmelerin birbirleriyle ilişkileri ve birleştirilen iş süreçleri nedeniyle farklı altyapı ve

teknolojilerdeki bu uygulamaların entegrasyonu ihtiyacı ortaya çıkmaktadır.

 Lojistik iş süreçleri de kara, deniz, hava, demir yolu, depo gibi fazla sayıda

çalışma alanı içeren, farklı firma ve fazla sayıda müşteri taleplerinin yönetildiği bir iş

alanıdır. İş süreçlerinin kompleks, birlikte çalışılan firma ve kurum sayısının çok olması

sebebiyle entegrasyonu yapılacak uygulamarın sayısı da oldukça fazladır. Bu

entegrasyonların hızlı, güvenilir, değişen iş süreçlerine çabuk adapte olması ise kritik

bir gereksinimdir. Sürecin yönetilmesinde entegrasyonların rolü büyük olduğundan,

entegrasyon mimarisinin doğru kurulması, izleme ve yönetimin rahat yapılabilmesi,

oluşabilecek hataların takibi iş akışlarının düzenli olarak çalışması açısından kritiktir.

 Tez kapsamını da lojistik iş süreçleri için entegrasyonların birlikte çalışmasını

sağlayan bir yazılım altyapı gereksinimi tezin ana oluşturmuştur. Bu sayede

entegrasyonları servis tabanlı mimari'nin avantajlarından faydalanmış, değişen iş

süreçlerine ve müşteri taleplerine hızlı cevap verme, entegrasyonların yönetimi ve süreç

içinde yaşanan hataların takibi için gerekli çözümü sağlayacaktır. Bu sebeple lojistik

yönetimi için bilgi sistemlerinin servis tabanlı entegrasyonu bu tezin konusunu

oluşturmaktadır.

vi

TABLE OF CONTENTS

LIST OF FIGURES…………………………………………………………...

LIST OF TABLES…………………………………………………………….

CHAPTER 1. INTRODUCTION……………………………………………..

CHAPTER 2. REVIEW OF LITERATURE………………………………….

CHAPTER 3. BACKGROUND………………………………………………

 3.1. Enterprise Application Integration…………………………...

 3.1.1. Reasons for Integration of Information Systems………...

 3.1.2. Enterprise Integration Challenges………………………..

 3.1.3. Benefits of Enterprise Application Integration…………..

 3.1.4. Types of Enterprise Application Integration……………..

 3.1.4.1. File Transfer………………………………………….

 3.1.4.2. Shared Database……………………………………...

 3.1.4.3. Remote Procedure Invocation………..………………

 3.1.4.4. Messaging……………………………………………

 3.1.5. Topologies of Enterprise Application Integration………...

 3.1.5.1. Point to Point Topology ……………………………….

 3.1.5.2. Hub and Spoke Topology ……………………………..

 3.1.5.3. Bus Topology…………………………………………..

 3.2. Enterprise Service Bus……………………………………….

 3.3. Software Products For Enterprise Application Integration…

 3.3.1. BizTalk Server…………………………………………...

 3.3.2. Enterprise Service Bus Toolkit…………………………..

 3.4. Container Logistics Business Process………………………..

CHAPTER 4. METHODOLOGY…………………………………………….

CHAPTER 5. PROPOSED SERVICE ORIENTED INTEGRATION OF

x

xii

1

4

8

8

9

10

11

12

12

14

16

17

18

18

20

21

22

25

26

28

32

34

vii

LOGISTICS INFORMATION SYSTEMS…………………………………...

CHAPTER 6. CASE STUDY in BİMAR…………………………………….

 6.1. Service Oriented Integration Framework with ESB Toolkit…

 6.2. Service Oriented Integration of Logistic Processes..................

 6.3. Integration Management in SOA based ESB Framework……

CHAPTER 7. CONCLUSION……………………………………………….

CHAPTER 8. FUTURE WORK……………………………………………..

REFERENCES……………………………………………………………….

APPENDIX A. BUSINESS PROCESSES ANALYSIS……………………..

41

48

50

53

55

58

60

61

64

viii

LIST OF FIGURES

Figure Page

Figure 3.1. Enterprise Integration Systems………………………………...

Figure 3.2. Integration by File Transfer……………………………………

Figure 3.3. Integration by Shared Database………………………………..

Figure 3.4. Integration by Remote Procedure Invocation………………….

Figure 3.5. Integration by Messaging………………………………….......

Figure 3.6. Point to Point Topology……………………………………......

Figure 3.7. Hub and Spoke Topology……………………………………...

Figure 3.8. Bus Topology…………………………………………………..

Figure 3.9. Overview of Enterprise Service Bus……………………….......

Figure 3.10. BizTalk……………………………………………………….

Figure 3.11.BizTalk Server Architecture…………………………………..

Figure 3.12. Microsoft ESB Toolkit……………………………………….

Figure 3.13. ESB Toolkit Architecture…………………………………….

Figure 3.14. ESB Toolkit Sample Message Flow………………………….

Figure 3.15. Container Logistics Business Process………………………..

Figure 3.16. Container group For Arkas Logistics………………………...

Figure 4.1. Containers Logistic Depot Business Process Analysis………..

Figure 4.2. File groups between Depot, Agency and Port…………………

Figure 4.3. Integration Point between Depot and Agency…………………

Figure 4.4. SOA Based Integration Infrastructure…………………………

Figure 5.1. Hub and Spoke Architecture Diagram…………………………

Figure 5.2. BizTalk integration with static configuration……………........

Figure 5.3. Enterprise Service Bus Toolkit………………………………...

Figure 5.4. Itinerary design and service list………………………………..

Figure 5.5. Service Definition in ESB.Config……………………………..

Figure 5.6. Dynamic Configuration in Business Rule Engine……………..

Figure 5.7. Dynamic Resolution with Resolver Framework……………….

Figure 5.8. Classic vs. Proposed Integration Solution……………………..

Figure 6.1. ESB Toolkit infrastructure with custom framework…………..

9

13

15

16

17

19

20

22

24

26

27

29

30

32

33

33

36

37

38

39

42

43

43

44

45

46

47

47

49

ix

Figure 6.2. SOA based ESB Services……………………………………...

Figure 6.3. SOA based ESB Toolkit framework…………………………...

Figure 6.4. Container logistics integration list……………………………..

Figure 6.5. Integration and exception tracking…………………………….

51

53

55

57

x

 LIST OF TABLES

Table Page

Table 6.1. Integration to work with custom framework………………..

Table 6.2. List of merged integrations………………………………….

Table 6.3. BizTalk vs. SOA based framework comparison………….....

54

55

57

1

CHAPTER 1

 INTRODUCTION

 In today’s world, it has been an ordinary fact that all enterprises around the

world cooperate with each other. This has become a necessity for them to grow, to be

successful in the market, thus to increase their profits.

With the increasing number of companies working together, that the processes

run in cooperation plays a much more important role because with cooperation and

partnership, a flexible action area and more advantages for the company are obtained.

That’s why management departments in companies aim to increase the number of

providers and the enterprises that they will cooperate with in order to get a wider

business network.

 Integration between companies plays an important role for healthy processes

carried out in cooperation and for the companies to communicate with each other.

Considering this, to achieve cooperability of different software used in a single

enterprise, dozens of integrations need to be defined and managed. This is only possible

with an integration infrastructure that can provide an optimum solution and adapt to

different technological infrastructures of the enterprises.

 Amongst each other, integration architectures can work in different topologies

according to their diverse working principles and architectures. In this study, the aim is

to use message-based integration architecture which will provide the optimum solution.

 The focal point of this study is a Service-based Integration Infrastructure for

information systems of the logistics processes where there is multiple companies work

together and business processes are complicated. This joint study by Izmir Institute of

Technology, by Arkas which is a logistics company and by Bimar managing the IT

processes of Arkas has been accepted as a Sanayi Tezleri Programı (SAN-TEZ) project.

With this study, an integration infrastructure that will enable cooperation with logistics

business processes aims a Business Activity Framework allowing the management of

business data.

 With this architecture, shared business processes that Arkas Company, which is

in the container logistics sector, carries out with other enterprises and providers will be

2

co-operable and monitorable. Thus, their cooperation level which now cannot be

improved due to this technological infrastructural short-coming will increase and the

sector will be more efficient and more dynamic.

 Container Logistics Sector manages transportation activities in many mods

(seaway, road, railway, air, depot, port, etc.). Since the number of shipping areas and

options is high, the number of cooperating enterprises and providers is also supreme. A

shipment or transportation action is realized as a business process to which more than

one enterprise contributes. In order for business processes to run healthily, integration

should be manageable and monitorable.

 However, high number of integrations is one of the crucial parameters for the

solution of the problem because the integrations examined in the study work as different

integrations although they represent the same processes and use similar data. This

situation increases the cost both during the development and the following maintenance

and support processes of the integrations. Furthermore, increasing number of

integrations affect customer satisfaction with regards to follow-ups and maintenance

problems.

With the integration infrastructure developed in this study, the problems

aforementioned and the exceptions ensuring these problems will be monitorable from a

single point. It will easier to detect and to deal with the occurring problems and also

more convenient to determine which problems are critical. Thus, this study aims to

provide a solution to the relating problems with an architecture that will enable

enterprises to communicate with each other during these processes. The main approach

used to create this architecture was Enterprise Service Bus architecture (ESB) which

supports Message Based Middleware and Service Oriented Architecture (SOA) features.

SOA architecture is an approach where logic and infrastructure resources are organized

as services for business processes and accessed through mutual message exchange. By

utilizing SOA properties with this architecture, the aim is to provide integration of

complex business processes with reusable services. The route to solution is through

integration services developed as agile, flexible and quick to respond changing business

flows and customer needs.

For the services targeted within the scope of the study, a Microsoft product,

BizTalk integration server and ESB Toolkit which is released for ESB architecture

support will be used. Although BizTalk integration server used in Bimar Company is

message-based as the working principle, it cannot make use of SOA architecture

3

properties. The increasing number of integrations, changing business processes and

integrations needed to be developed enhances the complexity of the present system.

This increasing complexity costs more time and money to companies and complicates

the solutions to the occurring problems.

In the thesis, the aim is to provide a service-based integration of logistics

information systems through analyses of container logistics processes, data modeling

and through a software infrastructure which the integration can cooperate with. The

advantages provided with this study are the following.

 Realization of integrations in a service-oriented architecture.

 Reduction in the number of present integrations and providing a reusable

infrastructure for new integrations.

 Reduction in time spent on development and maintenance

 Providing a service infrastructure for the follow-up of integrations and the

problems arisen in the business processes.

 Providing an integration which is more agile for changing business processes

and customer needs.

4

CHAPTER 2

REVIEW OF LITERATURE

 The rise of cooperation between companies and enterprises that develop

information technologies infrastructure has brought about a need for communication for

the applications that work in different infrastructures. With the increasing number of

diverse applications, a lot of efforts have been put into to improve communication and

cooperation atmosphere, to reduce management costs and to optimize all processes.

Research on these topics is outlined below.

 The study which was explained in the article An Integration Research on

Service-oriented Architecture (SQA) for Logistics Information System by Luyang

Zhang, Jiaqi Li, Ming Yu focuses on the management of container logistics business

processes with ESB that supports a SOA-based architecture. Here they determined that

this was the most effective methodology for the integration solutions of service-based

architectures. Container logistics business processes have a huge area of business and

within themselves they contain diverse enterprise applications and business processes.

That’s why, he mentions about an emerging need for the applications from different

platforms to work in an integrated way. In this integration architecture, this

methodology was used for ESB application: each running present application is

integrated to the system as one web-service, as applications added as we-services can

operate on their own, they obtain a reusable property and can adapt more to changing

business processes. Not a single application will directly communicate with another,

but the integrations will be realized on ESB backbone. In this solution offer, up to 60%

reduction in development costs is reported thanks to ESB architecture and service usage

[25].

In their article Research and Application of the ESB Based on Agent in the

Integration of the MIS in Power Plant, Fei and Shufen propose to use ESB and SOA

architecture in management information systems of power plants for example. In these

management systems, system integration is targeted by forming a ESB backbone for the

domain which consist of a financial system, a human resources management system, a

5

production management system, a scheduling management system, material and

equipment management systems [26].

 Furthermore in this system integration, first of all, present systems are

determined as services and are included in the system. Through a different approach,

systems that should be integrated with each other can work under sub-ESBs by utilizing

more ESB structure. In this way, applications running only under its sub-ESB

architecture check the incoming requests in sub-ESB for the first time and sends them to

request agent ESB to find the responsive service if the response does not returns. An

ESB structure that supports SOA architecture can also be used for different purposes

e.g. for common platforms in schools as explained in the article Research on

application of Web based ESB in School Common Data Platform. The usage of web

services are realized within ESB, data interchange between different departments are

provided on Web Services Description Language (WSDL). Heterogeneous systems that

are outside the school applications are adapted to ESB with adapters which need to be

developed. As various protocols are supported, adapters to be implemented can also be

used in different protocols. In this study, integration or data resemblance is not checked,

yet each of end-point is included in the system as an integration point [27].

 One of the methods for the management of business process solutions and

management of integrations is explained in this study by Rajini and Bhuvaneswair. As

explained in Service Based Architecture for Manufacturing Sector, architecture was

designed consisting of five layers and each layer manages a part of the process:

Presentation Layer where other layers put user products and services into the system,

Business Process Layer which manages business processes where all enterprises or

applications connect to the system, Business Service Layer which connects business

processes with integration layer, Integration Layer which handles service integration,

routing and transformation processes; and Data Layer where data used by the services

are stored and where physical resources that can be accessed on the Internet are located.

With this architecture, the aim was to resolve process integrations with service-based

architecture, However, there is not a systems present to deal with exception or

integration monitoring [28].

 Operating Enterprise Application Integration with Enterprise Service Bus was

studied in Research of Enterprise Application Integration (EAI) Based-on ESB by Tao,

and Wu. The article explains that applications under EAI-ESB approach communicate

with each other through an architecture consisting of eight steps. These steps are:

6

Message construction, Messaging channels, Listener, Decryptor, Validator, Enricher,

Transformer and Router. Moreover, here it is explained that exceptions have two

different exception handling strategies: First strategy is the exception handling

occurring in the connection points of the end-points. Second one is the exception

handling on the basis of applications which components, namely, business processes

work with. Exception framework and service which I applied in my thesis, enables the

use of exception handling infrastructure for both strategies [29].

 Container logistics business processes can be analyzed in a way to be able to

work in SOA architecture, as it was done in the study by Wolfgang Seiringer. In his

article Service-oriented Analysis of Logistics Services, and the attempts to explain with

which methods business processes are defined as services. There two service definitions

according to study, first of which is Web-Service standard WDSL and second one

define service from three points of view: Service value independent of technology,

service offering and service process. In the service analysis of container logistics

domain, the methodology how to determine the similarities between the entities that are

defined as service value was explained. This methodology involves two steps: first

being the determining and analysis of the present services and the second one being

entity similarity study and service modeling [30].

 The concept of agility has also been influential in determining dynamic routing

processes. Yo and Yan, in their article, Towards the Integration of Enterprise Service

Bus with Universal Description Discovery and Integration (UDDI) Server: A Case

Study suggest that the agility concept which ESB benefits from the advantages of SOA

architecture can be developed to enable dynamic and in run-time routing for the routing

process within the architecture. In this methodology, business processes are managed in

Business Layer, and there is a UDDI server in the integration layer. ESB uses UDDI

server for message routing. In this way, with proxy server, ESB sends a request to

UDDI server for message routing it receives and incoming request includes the address

to which the message leads. Thus, this enables an agile infrastructure in rum-time,

providing dynamic routing. In our study, UDDI infrastructure is present in ESB.

However, in the case study of Bimar, we used Business Rule Engine infrastructure for

dynamic routing [31].

When the studies conducted are examined, it is seen that a solution is targeted

for the integration of applications and the management process of these applications.

For solving the diverse business flows and related problems, service-based architecture

7

use is suggested. In other studies parallel with this thesis, integrations are aimed through

reusable services, and Enterprise Service Bus architecture are used in different ways to

provide solutions to the problems. In order to provide a quick solution to monitorability

and possible problems, exception handling is engaged in ESB architecture. Like the

studies carried out before, in this study, utilizing the SOA advantages, an effective

solution is targeted on ESB architecture, furthermore, launching a product which will

provide follow-up and control with regards to service and business flows is aimed.

8

CHAPTER 3

BACKGROUND

3.1. Enterprise Application Integration

 Enterprise Application Integration (EAI) enables various software systems or

applications to intercommunicate. Furthermore, subsystems are put together with the

help of enterprise application integration, and they act as a single system. Thus they are

able to function as a coordinated, whole body. These applications may be available out

in the market for private usage, or they might as well be developed by the company

itself.

 The concept of integration of enterprise application is the direct result of the

communication challenge that enterprises or companies needed to intercommunicate.

The communication in question does have to be directed towards a business goal and it

has to be attained regardless of temporal and special features of the applications as itwas

nicely put by Samtani and Sadhwani as “the process of creating an integrated

infrastructure linking disparate systems, applications, and data sources within a

corporate enterprise” [1].

 EAI is a six step process: The first step is the receiving the message, then this

message is altered, and translated. The fourth step is the routing of the message.

Directing of the message to the desired spot and business process management are the

last two steps. The temporal process of the delivery of the messages is dependent on the

businesses.

9

Figure 3.1. Enterprise Integration Systems

3.1.1. Reasons for Integration of Information Systems

 With the advent of computationalization and with the structural challenges

faced, organizations have depended on information systems, these organizations, in

time, came up with particular individual systems, which meant that these systems were

bound to be different from one another [2].

 At first, ERP (enterprise resource planning) vendors succeeded in providing

extensive business applications, yet with the rise of technology, the number of

supplier/vendor companies and the number of companies that were involved in in-house

development has risen, and naturally along with these, so has the number of the systems

that have been developed by these companies, thus making these systems insufficient

thereby creating a need for integration.

 These systems in question include a number of applications which are

customized according to the purpose they serve for and are designed to operate in

various operating system platforms or media. Yet, these systems are formed in a way

that they can only address to the particular tasks in a particular area. Hence in time

focusing on their functionality has culminated in the creation of “islands of

applications”, disconnecting the systems from each other as Sawhney explains [3].

10

 It is essential that these applications should be integrated with each other and

this is only possible with supporting common business processes and data sharing

amongst the applications. However, the integration has to sustain an effective, safe data

exchange between applications used by the enterprises. With the integration of these

systems, the integration that is possible between other service providers and the clients

has the potential to bring about a wider area of actions and the advantage of competition

for the companies [4]. Focal point in this thesis, container logistic information systems,

is a perfect example for distributed applications and different platforms. Different

business processes have to be in operation all together and supplier company systems,

other in-house services or major billing systems like SAP need to be present in business

processes. These two factors require integrity of reliable and stable integrations.

3.1.2. Enterprise Integration Challenges

 It is a strenuous task to integrate enterprise applications and distributed systems

because these systems are seen as a very valuable investment both financially and with

regard to the amount of data they contain for the company, hence, making it almost

impossible to alter them with newer systems [5].

 Enterprise integration has to be constructed in a way that can handle numerous

applications operating on various platforms in various places. Enterprise application

integration suites are provided by software vendors and these suites enable integration

between different languages and platforms, and connect to numerous business

applications. Nevertheless, the technical base renders only a small amount of the

challenges faced in the integration process which goes beyond corporate and technical

issues.

 Corporations are usually required to alter their policies when it comes to

enterprise integration. Corporate applications are usually concentrated on a particular

functional realm. Customer Relationship Management (CRM), Billing, Finance or

Logistic Information Systems that is the focal point of my thesis are main examples.

Effective enterprise integration is possible only with intercommunication between

numerous computer systems and also with communication created between business

units and IT departments. Applications are not controlled one by one by integration

11

application groups since each and every application becomes a member of a body of an

integrated applications and services.

 An application might have a wide range of functionality i.e. a payment system

application, thus it needs to provide an interface enabling communication between all

vendors also to fulfill customer needs, yet integration brings about extensive

ramifications on the businesses. When an integration solution is adopted into one of the

most important business processes like payment system functions, solution affects

progress of the whole business. A failure in an integration solution may lead to lost

orders, misrouted payments as most importantly customer dissatisfaction, thus costing

businesses millions of dollars.

 When developing integration solutions, developers generally face numerous

challenges one of which is their limited control on the applications that participate in the

system. Some of those applications might be packaged or may just be used for a long

time and hard to alter, which makes them very hard to adapt to an integration solution.

Yet it is often easier to implement a part of the solution within the application

nevertheless it is very probable that all integration objectives, especially ones that are

very hard to adapt to applications, might not be reached. As the systems improve and

new platforms, services and applications emerge in the market, the number of

incompatible areas or points in the integration process will continue to increase, thus

making it impossible to change all the failed points in the integration process and to

make them compatible again.

 Although there is a huge demand for integration solutions, only a handful of

standards are seen as legitimate in the domain. XML, XSL and Web services can be

demonstrated as the most advanced steps towards standardized features for integration

solutions. However, with the advances in technology, changing frameworks and newly-

emerging channels of communication conduce to advances in the integration

infrastructures/frameworks for the applications.

3.1.3. Benefits of Enterprise Application Integration

 Using EAI applications share data and process without changing the applications

and their data structure which cost effective [6] EAI enables access to real-time

synchronous and asynchronous data between different systems and applications. It also

12

helps creation of more usable applications by increasing performance in the

implementations of business processes, and provides data integrity, hence reducing the

cost of development and maintenance of a new application since it enables applications

to run independently from each other.

 Integration with corporations providing more corporate and commercial

infrastructure in the market enables flexibility helps the maximization of corporate

profits by responding consumer needs faster because it is always easier and quicker to

integrate existing applications rather than develop new ones, reducing the “time to

market” span for the work done.

3.1.4. Types of Enterprise Application Integration

 There are several ways to integrate applications. Each integration approach has

its advantages onto others considering the criteria for integration. Although there are

numerous approaches, it is more useful to classify them under four main groups [32].

File Transfer: Each application produces data which is to be shared, used and processed

by other applications.

Shared Database: Each application stores the data which is to be relayed to the shared

database.

Remote Procedure Invocation: Some procedures are displayed in each application in

order to invoke the applications remotely and each application invokes those to run

behavior and exchange data.

Messaging: Each application connects to a system of messaging, and exchange data and

invokes behavior by using messages.

3.1.4.1. File Transfer

 Applications used by an enterprise are generally built with/in different languages

and platforms. There are typically numerous software dealing with various tasks

assigned by the enterprise. What leads to this multi-polarity in software can be summed

up in a variety of reasons: The enterprise makes package purchases that are developed

outside, the technology advances at such a rate that leads to discrepancies between the

systems built at different times and there is the human factor: systems are developed by

13

different people whose capabilities and choices affect the overall approaches to the

development of new applications.

Figure3.2. Integration by File Transfer [32]

 Various applications are written in various languages and established according

to various platforms, along with the expectations that the application is developed upon.

Establishing a link between this kind of applications require a profound understanding

of how those applications interact together on both a business level and a technical

level. To be able to grow this understanding, at first one need to know how the

applications work, yet this has to be done in a minimal way so as to eschew confusion.

After analyzing how the applications work, there needs to be a medium for the

applications to interact with each other, which can be achieved through a common data

transfer regardless of the language and the platform, yet seeming natural to the

applications in question. This process needs to be attained with the minimum number of

software and hardware, along with the applications that are already used by the

enterprise. One of those common applications is the universal storage mechanism

present in any enterprise. The basic approach would be the integration of the

applications that utilize files. Each application has to produce files that have the

information which is processed by the other applications. The transformation of those

files into various formats is done by the integrators. The files are produced at a routine

fashion depending on the business trajectory, yet the essentiality of the whole point lies

beneath the format used for the files. Generally the out coming data out of an

application is not exactly the same with the data required by the other application, thus

making the processing phase crucial at this point, yet in order for the data to be

processed, the data should be developed in a way that the processing tools could work

on it as well. Considering all the procedure, standard file formats have had to adapt to

14

differentiating needs. Mainframe systems mostly use data feeds that are based on the

file system formats of COBOL. UNIX systems, however, use text based ones. There has

recently been a trend to use XML.

 An advantage of using files is that integrators do not have to know anything

about the internals of an application. The file is usually provided by a team working on

the application. The content and the format of the file are determined according to the

needs, if a package is used, however, options are limited. The integrators make the

transformations needed by other applications, or they just let the receiving applications

decide how to handle and read the file. Therefore differentiating applications are

separated from each other and each application is capable of conducting internal

changes in a free fashion without manipulating other applications as long as they relay

the same data in files the same format. Hence, the files come to be the interface of each

application. [32]

 File Transfer is a simple process partly because of the fact that there is no

requirement for extra tools or integration packages, yet meaning that developers have to

do the most of the work by themselves. The file names should be unique, so the writer

of them has to have a strategy. Also, an application among others should be selected to

know when a file is old and no longer needed, and to execute the deletion of those old

files. A locking mechanism or a timing adjustment should be introduced, too, in order to

prevent a reading of a file while it is being written by another application. Unless all

applications are able to access to the same disk, an application has to act to carry a file

from one disk to another. The longer the process of transferring files takes, the more

probable that there will be problems because of inconsistencies.

3.1.4.2. Shared Database

 Sharing data between applications is possible by file transfer, yet it may lack

proper timing, which is quintessential in integration. If the alterations made do not reach

quickly to other applications, the incorrect timing might lead to disruption in

applications. To have the most up-to-date data is the key point because it is seen as

reliable and error-free.

15

 Updated are helpful to handle inconsistencies. The more synchronization in the

system means the least possible errors to clear up. However, despite the updates, there is

still a possibility of problems.

Figure 3.3. Integration by Shared Database [32]

 In file transfer data format may not be well kept thoroughly, causing problems.

In fact, in the integration process, many of the problems result from the fact that data

are seen differently by different applications. Slight business issues may have a

profound effect. Thus central data storage is indispensable for applications so that they

can access to any shared data from a single spot. Hence, integrating applications by

getting them to share their data in a single database is useful and practical.

 Only if all applications are connected to the same database that it is possible to

accept that the data is consistent all the time. If a single piece of data is updated from

different sources at the same time, transaction management systems can deal with it

easily and as the temporal gaps between the updates are tiny; errors are much easier to

spot and to fix.

 SQL-based relational databases have been commonly used and this has made

shared database much simpler. Nearly all application development platforms are able to

collaborate with SQL thus there is often no need to be concerned about various file

formats and if everyone uses the same database, there cannot be problems in semantic

dissonance. Thus, dealing with any possible problems becomes much easier before the

software goes there may still be problems, it is always much easier to solve them before

the software goes live and start to fetch huge chunks of inconsistent data. [32]

 If the shared database is used by multiple applications and these applications try

to read and to alter the same data, this may well cause conflicts and deadlocks because

each application, while it is accessing a particular data, keeps other applications away

16

from using the same data. Thus, if applications are present across multiple computers, it

should be ensured that the data from the database is obtained locally yet this

complicates the decision on which computer to store all the data. Hence a database that

is dispersed among computers can develop locking errors and of course a failure in

operability and performance.

3.1.4.3. Remote Procedure Invocation

 An essential part of integration across applications is the sharing of data made

possible by File Transfer and Shared Database, yet this may not be sufficient. A change

in a data might mean that change is also to be done in other applications, too. For

example, changing an address might seem like a minor alteration, yet it may spark legal

processes to consider other rules in different legal jurisdiction.

Figure 3.4. Integration by Remote Procedure Invocation

 For an application to invoke such processes in others entails it to know the

internals of other applications, which reflects the classic issues in the design of the

applications. Encapsulation – one of the most powerful structuring control systems in

application design – makes it possible for applications to store their data in a closed way

with the help of a function called interface. Thus, when the data is changed, it is feasible

to intercept changes in it to perform actions the applications have to do . Shared data –

sustaining a huge, encapsulated data schema- makes this more complicated. For File

transfer, it lets an application to respond to changes while processing a file, yet in the

end, the process takes much more time. Changes in an application might trigger an

alteration in the database, which might render a ripple effect across all applications.

17

Hence, the systems that use Shared Database are not flexible to changes in the database,

which basically come to mean that application development may not be shaped

according to the demands of the business.

 Wrapping the data facilitates solving semantic dissonances. Multiple interfaces

might be appointed to the same data for applications to read it in their own way. Even

updates might make use of interfaces, enabling numerous points of view rather than

associational views. Yet, integrators do not often include transformation components,

forcing the each application to intermediate the interfaces with their neighbors. Remote

Procedure Invocation is well-known to software developers as they are accustomed to

procedure calls.

3.1.4.4. Messaging

 File Transfer and Shared Database allow applications to sharing of data but not

functionality. Remote Procedure Invocation provides functionality yet it pairs the

application so tightly in the process. However; Remote Procedure Invocation looks like

a practical choice but applying a model for a specific application onto the integration of

applications has its drawbacks one of which is the problems resulting from distributed

development and in spite of the fact that remote procedure calls may resemble local

calls, they behave differently and are much slower, which increases the possibility of

failures. Messaging enables packet transferring much more often, in a quick, reliable,

asynchronous way and in formats that can be altered. [32]

 Transferring data by messaging asynchronously can deal with the problems

which occur in distributed systems. Both systems do not have to be ready

simultaneously. Moreover, developers admit that with asynch communication , a remote

application is slower thus promoting designs that are prone to do lots of local work and

relatively less re-more work.

18

Figure 3.5. Integration by Messaging [32]

 If File Transfer is used, messaging enables decompounding as well, in which

case the forms of the messages can be altered on the way unknown to the sender and the

receiver. Decompounding enables sending messages to numerous receivers and picking

one of possible receiver.

 Sending tiny messages in a more often fashion enables applications to cooperate

behaviorally while sharing data. If a process needs to be launched once an insurance

claim is received it is turned into a message right away as soon as a single claim comes

in. Request of information and reply are made quickly. This cooperation is not fast as it

is in Remote Procedure Invocation, yet the caller does lose any time by stopping as the

message is in process and a reply reaches the destination.

 Being able to send as many messages as possible in Messaging minimizes the

inconsistencies that File Transfer fails to cope with. However; there still can be some

lag problems in the systems not being updated simultaneously. People in the software

business do not know much about the asynchronous design, thus resulting in different

rules and techniques.

 Changing the format of messages enables much more room for decompounding

for applications, which is not the case in Remote Procedure Invocation and File

Transfer.

3.1.5. Topologies for Enterprise Application Integration

 EAIs are middleware software systems that help different systems communicate

with each other. When examined the application schema of these systems, it is

observable that there are three basic topologies. In my thesis, I will touch upon the

19

advantages and disadvantages of these three topologies: Point-to-point topology which

was firstly used and seen as the most basic solution, hub-and-spoke topology

administered from a system that is center of integrations and last but not least, bus

topology which is the architecture of enterprise service bus.

3.1.5.1. Point to Point Topology

 Most of integration projects are the results of the need for communication

between two systems. The most practical way of providing this communication is to

utilize Point-to-Point Connection. In point-to-point connection only one receiver get

one particular message providing that the system knows where that particular message

to be delivered. The sending system usually has to transform the message into the

format which could be understood by the receiving point.

Figure 3.6. Point To Point Topology

 In point-to-point connections, the addresses of all nodes or points that need to be

linked are determined by the system. If there are changes in target addresses or protocol

details, an update is required for the systems. Furthermore, if the integration network

grows larger and at the same time changes become recurrent, it is likely that operational

cost of maintaining system adopting this approach becomes notable.

 In most of the integration projects, data is expected to be transformed between

the source system and the target system. Moreover, developers sometimes may want to

20

make use of some conditional logic while customizing message routing. In point-to-

point connections, a duplication of aforementioned logic is present on each server in

need of transformation and routing yet writing a duplication code might be costly, hard

to maintain and to test [15].

Advantages

 Integration is the simplest of all and tightly bound

 Enables better integration with small number of systems.

Disadvantages

 There is limited flexibility and constant need for updates.

 The more integration points to take care of the more complex it gets.

3.1.5.2. Hub and Spoke Topology

 In Hub-and-Spoke topology, there is a centralized broker which is called a hub

and there are adapters, namely, spokes which enable applications to connect the Hub

and they convert the formats of the application data to that of the Hub recognizes, or

vice versa. The Hub deals with all messages, their transformation processes into the

format that destination application understands and the routing. Spokes get data from

the origin application as relay messages to the Hub, then the Hub passes those messages

to a subscribing adapter and it send those over to the target application.

Figure 3.7. Hub and Spoke Topology

21

 To create a central location for control, hub topology is very helpful and the

source sends the messages to the central hub. Hub topology is very effective provided

that business events are not dependent and if a single vendor provides the Message

Oriented Middleware (MOM). The source application here forms a message in a

particular format and the hub re-forms and sends it to the spokes linked to the hub [16].

Advantages

 Enables integrations via central management.

 Less complexity compared to point to point.

 Business process is controlled and mapping in data layer is provided

 There is more scalability.

Disadvantages

 All system is susceptible to single point of failure.

 There is limited scalability for technologic infrastructure

 The available hubs cannot generally deal with the incoming transaction duties

from other sources except the middleware they work on.

 Integration processes with multiple sources and destinations are hard to manage.

 In need of a database, processing or routing bottlenecks crowd the hub since

volumes grow and integration rules get more complex.

3.1.5.3. Bus Topology

 Messages from source applications are put onto a system-wide logical software

bus that other applications can access. That’s why, bus topology is beneficial for

relaying information to multiple destinations. Messages on the bus can be particularly

subscribed by multiple applications and the data relay may not have to pass through the

central switching point, which is possible only in publish and subscribe middleware.

The glitch of bottlenecks is, however, overcome by bus topology.

22

Figure 3.8. Bus Topology

 A central messaging bus is utilized for the distribution of messages by bus

architecture and the messages are published by applications to the bus using adapters.

The message bus takes these messages to the subscribing applications which contain

adapters taking the messages and re-forming them into the required format [33].

Advantages

 Enables integration of loosely coupled services.

 Enables infrastructure for shared communication

 Service Meditation

Disadvantages

 It is hard to control all messages on bus

 It is hard to adapt systems to loosely coupled services

 Latency period is increased compared to point-to-point integrations

3.2. Enterprise Service Bus

 Before touching upon the definition of Enterprise Service Bus (ESB), it is

essential to clarify what Service Oriented Architecture (SOA) is and what features it

provides since ESB is the message-based integration architecture containing SOA

features and supporting its infrastructure. Agility, Flexibility and Reusability, basic

features of SOA, form the foundation of the advantages provided by the ESB

23

architecture. These three are the features that are targeted and benefitted as much as

possible by the infrastructure that is the focal point in my thesis.

 SOA can also be seen as an architectural format that backs weakly coupled

services in providing flexibility in businesses in a way that enables interoperability in an

multiple-technology environment. SOA is comprised of a complex group of business-

aligned services enabling the actualization of adaptable and customizable business

processes by utilizing interface-based service descriptions [7].

 The aim of getting SOA to deepen IS and business activity, and to ameliorate IT-

business alignment in multi-atmosphere business conditions is not very explicit in the

definition. SOA differs from other ITs in that it accentuates more on IS agility thus

ameliorating business agility. The closer the link between IT and business, the more

quickly an organization can act to alter IS applications according to business needs.

 SOA provides methods for systems development and integration where systems

group functionality around business processes and package these as an interoperable

service [8]. An organization can make use of these services by re-using them or these

might also be commercially on the market. Thus, SOA separates functions into distinct

units, or services, which developers make accessible over a network in order that users

can combine and reuse them in the production of business applications. [9]Between

these services, there is always a strong communication which consists of data exchange,

and enables coordination of an activity processed in two or more services. Data transfer

between reusable services and cross domains is easily achieved. Reusable services

reduce integration costs in SOA architecture and facilitate the integration of end points

to the system. Many end points in SOA architecture contain single service availability

for use. That’s why each implemented service is designed and developed independent of

business flows, other enterprises or technologies. Services which are on SOA

architecture and can be called from more than one place, by increasing the reusability,

become available for the use of multiple external systems at the same time, and enable

updating of the changes on the whole system with a single move when there is a need

for change.

 In order to elaborate more, it is useful to define Enterprise Service Bus first.

Enterprise Service Bus (ESB) is a platform that gather messaging, web services, data

transformation and intelligent routing in a way that links numerous different

applications across an organization and its partners and coordinate them while keeping

transactional integrity. It makes use of the features provided by Service Oriented

24

Architecture (SOA), Enterprise Application Integration (EAI), Business-to-Business

(B2B), and web services, thus making itself an integrated platform enabling essential

interaction and communication services that complicated software applications need via

an event driven and standards-based messaging engine, or bus, built with middleware

infrastructure product technologies [10]. By insulating the link established among a

service and a transport medium, it is utilized to realize the needs of service-oriented

architecture (SOA) [11].

Figure 3.9. Overview of Enterprise Service Bus [34]

 In this way, interoperability among diverse situations is achieved with the help

of using a service-oriented model. Despite being thought to be linked to concepts like

integration and mediation, ESB, in a way, merges integration and application server

product categories. One ground-braking features of ESB is that it is able to virtualize

services. A service container of ESB holds a service and isolates it from its protocols,

methods of invocation, method exchange patterns, quality of service needs and other

infrastructure concerns.

 Furthermore, ESB is able to supply a kind of abstract stratum for an established

enterprise messaging system enabling integrators to employ the advantages of

messaging without writing down any codes. An ESB is based on basic functions parted

as primary parts with distributed deployment and collaboration as opposed to the

techniques utilized by traditional enterprise application integration (EAI). In addition,

25

flexibility and multiple transport media capability are supported by structural

constituents of ESB. Basic features that need to be provided by ESB architecture are

[35]:

 Supporting the ability to invoke services

 Employing routing through dynamic mechanisms

 Sustaining service mediation

 Supporting messaging and some other features which might also be beneficial.

 Being weakly coupled and changing to event needs

 Supporting WS-* standards

 Sustaining quality in service management

 Providing process orchestration

 With the features it provides, ESBs are developed versions of message-based

EAI systems. Enabled by SOA architecture, they aim to minimize integration

difficulties and to reduce improving costs. The features above are the ones which will

facilitate the integration of complex business processes that need solutions in different

domains. The need for ESBs has arisen in time to tackle with the challenges in hub or

point-to-point frameworks which are mentioned in integration typologies.

 The main reason behind the ESB pattern is, however, to establish a framework

which enables developing service-focused applications that are capable of overcoming

challenges in the early phases in the integration process. This is possible by

concentrating the logic from each group of end-points into a centralized stratum, a

connection per service. ESB pattern is different from EAI which was founded on a

centralized stratum that it focuses on dynamic execution. Since business requirements

change in time, software has to change according to those requirements, thus making

extensibility very essential. The rationale behind the ESB pattern is that it could provide

effective changes according to business needs in a fashion which makes a focused,

loosely-coupled, dynamic layer available for the management of integrations. In this

way, the software is a lot easy to handle and maintain, enabling the business to increase

value by reducing the operating costs and the time needed for fixes [12].

26

3.3. Software Products for Enterprise Application Integration

 Enterprise Application Integration products are widely used in information

technology. Some parts of these are open-source and free products and may be

improved. Mostly used ones of these products are, BizTalk Server, Sonic ESB, Mule

ESB and Oracle Enterprise Service Bus. In my thesis, i worked with BizTalk server and

a toolkit of it Enterprise Service Bus Toolkit.

3.3.1. BizTalk Server

 BizTalk Server, however, is an integration server developed for the integration

of corporate applications. It enables communication between end-point applications in

multiple platforms and works fully integrated with other Microsoft products, despite

without providing hardware infrastructure. According to Microsoft, BizTalk is the

number-one integration solution and value leader worldwide. These customers trust

BizTalk for solutions such as payment processing, supply chain management, business-

to-business interactions, real-time decision making, and reporting [13].

Figure 3.10. BizTalk [36]

27

 With its first versions, BizTalk has adopted Hub & Spoke architecture and

integrations it provides have the characteristics of this architecture. Whereas Hub

&Spoke architecture has the aforementioned advantages, there are some drawbacks

emerge in time. BizTalk server acts as a management tool on the central server and

makes integration flow possible between multiple points.

 BizTalk is a Microsoft product and works in an integrated way with the other

products the company provides. It enables development and service of integration along

with operating systems, databases and development tools; however, it is not possible to

use it on its own. It is dependent upon Windows Server operating system and SQL

Server Database. BizTalk also allows developing and running of orchestrations for the

management of business processes and provides solutions to connect multiple different

platforms and systems such as SAP. BizTalk, however, is not a product that can be

configured in runtime, that’s why it cannot fully support some of SOA features. All

configuration is made in development time so any change in business process needs a

development, build and deployment process again.

Figure 3.11. BizTalk Server Architecture [37]

28

 It can be seen in Figure 3.11, all configuration in BizTalk determined in

development process. When it is examined a message flow during BizTalk, the steps in

message flow are [37],

 A message included in a Receive Location that is statically configured in

BizTalk. This location can be FTP Server directory, Web Service URL,

Database table or etc.

 Incoming message pass through a appropriate pipeline which process incoming

message to its schema defined in BizTalk

 Transformation process executed with a Map over incoming Message.

 Message is inserted to Message Box Database

 Business Logic is process if it is developed in design time in Orchestration

 Incoming message is routed by a send pipeline with appropriate Send Adaptor to

statically configured end point location

 In the process flow it is seen that, service oriented architecture capabilities is

missing in BizTalk Server message processing flow. Hence, Microsoft released a

product over BizTalk which provides main SOA advantages in EAI.

3.3.2. Enterprise Service Bus Toolkit

 ESB Toolkit is, on the other hand, is a compound of tools implementing ESB

architecture of Microsoft and developed on a BizTalk Server product which provides

customers with the advantages that ESB brings about. According to Microsoft, ESB

Toolkit is a collection of tools and libraries that extend BizTalk Server 2010 capabilities

of supporting a loosely coupled and dynamic messaging architecture [14].

 ESB Toolkit works as an intermediary between services and their consumers and

enables fast mediation between them along with providing utmost adaptability at run

time. BizTalk ESB Toolkit 2.1 reduces complexities in the composition of service

endpoints and management of interactions between services.

29

Figure 3.12. Microsoft ESB Toolkit [38]

 As mentioned earlier in ESB definition, SOA infrastructure is one of the basic

features provided for ESB. Basic features of ESB and opportunities it provides are as

follows.

 Endpoint run-time discovery and virtualization: Virtualization of end-points and

actualization in run-time.

 Loosely coupled service composition: Enabling access to servers from every

location and dynamic use of these servers which do not have direct connection.

 Dynamic message transformation and translation. Dynamic transforming of

messages and their interpretation.

 Dynamic routing. Run-time, content-based, itinerary-based, or context-based

message routing.

 Extensibility. Provides multiple extensibility points to extend functionality for

endpoint discovery, message routing, and additional BizTalk Server adapters for run

time and design time [14].

30

 How ESB Toolkit achieves to provide SOA advantages? Considering into

architecture of ESB Toolkit, there is a Abstraction layer over BizTalk Services. In case

of study section, it is declared on architecture which services are used and improved.

Figure 3.13. ESB Toolkit Architecture [38]

 A generic service of ESB Toolkit provides dynamic resolution of maps and end

point to route. Each service is a key for SOA infrastructure. ESB Guideline explaining

frameworks and services as,

 The Resolver and Adapter Provider Framework provide a comprehensive,

pluggable architecture for dynamically resolving endpoint information and BizTalk

Server 2010 map types. It uses extensible components, which allow developers to

change the behavior to suit their own requirements and extend the mechanism to

support alternative resolution and routing methods [23].

 Resolver service: This service allows external consumer programs to leverage

the resolution mechanism. The Resolver service can be used to abstract service

registry access and make it broadly available in a heterogeneous environment.

 On-ramp service: This service provides a means for Web service consumers to

send messages to the ESB. Web service SOAP headers become message context

31

properties as the message passes through a context setting component in a

receive pipeline.

 Transformation service: This service allows non-BizTalk applications to access

and leverage the BizTalk transformation engine. Specifically, it allows access to

all Web service consumers including those not running on the Microsoft

platform. There, we use transformation engine to run BizTalk maps, through

different integrations. So, the service provides reusable service via SOA

infrastructure.

 Exception Management service: By publishing the fault schema using the

default BizTalk schema publishing mechanism, this service enables consumers

to submit messages so that non-BizTalk can participate in the ESB exception

management scheme. This Service has both BizTalk supported solution and a

Web Service implementation that can be used from different applications from

different platforms.

 BizTalk Operations service: This service returns information about the current

state of BizTalk artifacts. These services are available to implement a service-

oriented solution through ESB Toolkit. ESB toolkit is the alternative way to

define post-production or runtime configurations which were not able to be done

with BizTalk Server. This ability supports the advantages of Service Oriented

Architecture that are defined above.

 These ESB Toolkit services are used within a integration in ESB and message

flow is processed by these services. In ESB Toolkit message flow configurations can be

gather runtime by Resolver and Adaptor.

32

Figure 3.14. ESB Toolkit Sample Message Flow

 Message processing in ESB Toolkit is provided by service consuming in run-

time. Services uses resolver and adaptor framework which explained above. Compared

to BizTalk Server message processing, Resolver and Adaptor Framework give ability to

resolve configuration of services during run-time.

3.4. Container Logistics Business Process

 Container logistics management is a supply chain management component that

is used to meet customer demands through the planning, control and implementation of

the effective movement and storage of related information, goods and services from

origin to destination. Container logistics management helps companies reduce expenses

and enhance customer service [24]. It includes lots of vendors and partner.

33

Figure 3.15. Container Logistics Business Process [19]

 There are multiple dimensions how to examine and categorize container logistics

which primarily focuses on transportation and can roughly be divided into sub-

categories three of which will be studied in this thesis. These are: Road transportation,

rail transportation and maritime transportation.

 In container logistics, the most crucial point of transportation is the shipping

container. All products from different sectors are transported in containers. As will be

used frequently in the thesis, some explanations are useful before delving into the

subject.

 Container : Container is a single rigid receptacle without wheels that is used for

the transport of goods

Figure 3.16. Container group For Arkas Logistics

34

 Road transportation: Transportation of containers via road systems in logistical

business processes. Depots play an important role in this kind of transportation.

 Rail transportation: In rail transportation, containers are transported by freight

trains. Despite being cheaper and more sufficient, rail transportation may not

always be useful in direct, to-the-point shipments, thus making road

transportation an essential step in the process.

 Maritime transportation: Maritime transportation is the way of transporting

containers with ships and this usually takes place intercontinental, hence, ports

are essential parts of this method of transportation. Containers transported via

road are brought to ports, transported onto relevant vessels. However, containers

dismounted off the ships and related checks are, too, considered within this

process.

 Agency: Agencies are establishments that follow up the business, establish

communication between depots, ports and ship owners, and manage the

transportation processes in accordance with the demands from companies.

Container logistics in agencies play a crucial role in the process and are a part of

the integration processes.

35

CHAPTER 4

METHODOLOGY

 In this part, it will be elaborated on this thesis and will be explained the business

domains and processes within which some studies have been done and will be continued

with a business strategy.

 After explaining the advantages and disadvantages of the integration models and

their development, it will be elaborated on how ESB architecture is applied in this field

and on its application methodology. The most crucial factor in the process is the

grouping and modeling of integrations in business processes. Reducing the number of

integrations is the primary determinant for my thesis to reach its target.

 The domain that is utilized was container logistics business processes. As there

are numerous different business flows and platforms in container logistics business

processes, the number of running integrations is relatively high and the processes

functioning in each integration differ from each other. The fact that each integration

represent a different process results from the usage of integration architecture.

 Lack of modeling in business flows

 lack of application of integrations which are designed to operate together

 Need for maintenance and for new integrations after the application of point-to-

point integration system with BizTalk Server increases the complexity of a

working system.

Another problem in container logistical processes which is within the domain of thesis

is the high number of companies that are in cooperation. While the multiplicity of

present integrations makes the process more complex, one of the parameters that render

solutions harder to attain is the increase in the number of cooperating partner

companies. The need to cooperate with different companies in the same process,

changes in details within the business logic requires more and more integration, thus

posing an obstacle to the simplification of the integration processes. That’s why,

different companies have their own particular technological infrastructure and cannot be

expected to show the same traits similar to each other, yet companies may have to take

part in a business process with various technological infrastructures upon which

36

divergent operating systems, platforms or different applications are present. At this

point, with the process taken into consideration with a larger general view, a need to

form an infrastructure that can work with different technologies arises.

 However, to establish this infrastructure, it is important to determine common

integration points, to centralize processes and to make sure that integration

infrastructure can be developed.

That’s why, the methodology taken towards this goal is as follows.

 On the container logistical domain at which our company worked with Bimar,

there were around 200 working integrations and in time this number increases,

as aforementioned. These integrations take place mostly between DEPOT,

AGENCY and PORT.

 By analyzing the business processes for these integrations, then forming a model

by generalizing the processes on swim lane diagrams, present integrations are

demonstrated on these models. Below there is a sample of business process

analysis. (See Appendix 1-9 for the rest of business processes analysis).

Figure 4.1. Containers Logistic Depot Business Process Analysis

 While modeling, integrations are divided into sub-groups in terms of business

logic they work with and of input/output data types.

37

Figure 4.2. File groups between Depot, Agency and Port

 In order for business processes to work sufficiently, the incoming and outgoing

data pose an essential role. Data or information should be entrusted to those who

must have knowledge of it for its necessary usage. If you go backwards from

usage to the need, then you may discover what is needed in order to start,

continue or complete a business process [19].

 By utilizing the Formal Concept Analysis method, the aim was to simplify the

integration processes. The purpose of FCA, according to Ganter and Wille [20]

is to support the user in analyzing and structuring a domain of interest. Such a

38

method allows us to automatically obtain similarity scores without relying on

human domain expertise [21].

 FCA here is intended to be applied onto domain knowledge. Inputs and outputs

of each business process are present in that domain. In this way similarities of

input and output will be seen and an integration point will emerge.

 With FCA method, by clustering input/output or business processes, integration

points have been determined within the business processes of which inputs and

outputs are similar or bear a high amount of resemblance.

Figure 4.3. Integration Point between Depot and Agency

 Integration similarity method by data comparison is used in another article [30],

that service data is declared as an entity and service entities compared to clarify

a service model.

 For present integration working in determined spots and for similar integrations

which can be added onto relevant business processes, the aim was merging for

the grouped integrations.

39

 Reduction in the need of new and present integrations is targeted by means of

grouped integrations in terms of processes and of integrations considered to be

merged according to their input/output similarities.

 Merged integrations are processed by reusable custom services that provide

integration tracking and exception handling in message flow.

 In [29] exception management is divided into 2 categories. First of them aims to

handle exceptions while message acquired by system. The other one aims to

handle exception inside system that message is being process according to

business logic.

 Proposed solution in this thesis contains both of the categories. While incoming

message is accepted by system it is tracked by exception handler and log

services. Also, while message is being processed in business logic components it

is being handled for possible exceptions.

 Along with the methodology pursued, container logistical processes of road, sea

and road transportation is analyzed, the processes for which the integrations are

prepared are determined and on the analysis files formed integration points are

indicated.

 With the help of integration merging study, by implementing an infrastructure

availability which grouped business processes can work with, present integrations are

merged. The proposed infrastructure schema can be seen below,

Figure 4.4. SOA Based Integration Infrastructure

40

Outcome of this study will be later explained in the next and in the case study with the

benefits of the infrastructure framework written.

41

CHAPTER 5

PROPOSED SERVICE ORIENTED INTEGRATION OF

LOGISTICS INFORMATION SYSTEMS

 It has become a commonly used middleware infrastructure with the advantages

of Enterprise Service Bus and with its support of SOA architecture. As IT managers

develop their SOA plans they often come to the conclusion that infrastructure software

is needed to fulfill their objectives for flexibility, robustness and control. The ESB has

emerged as the pre-eminent form of SOA infrastructure software [22].

 ESB provides a standart based integration infrastructure that combines

messaging, transformaton, routing, exception handling and monitoring. Besides these ,

as explained in SOA advantages, ESB provides agile, flexible and combination of

loosely coupled services.

 Each service may be a processing part or end point in ESB system. These

services give a flexible runtime environment for business process management. Each

ESB vendor does not need to know the details of ESB services, so details can be

gathered in runtime. Furthermore, each running service configuration can be modified

in runtime and this configuration does not need a server or an application restart. This

function gives a stimulus to agile business changes and approves the feature of SOA

agility.

 All the services in bus works as loosely coupled, easy to be configured in

runtime, and reusable in ESB environment. Another critical issue about services in

architecture is monitoring and exception handling. Service details, exception handling

and exception analysis are needed to control business process flow over integrations.

 Since integrations in operation are those which utilize P2P infrastructure, there is

a need to adapt domain analysis and designated integration points to ESB architecture,

and to form the software framework after the need for the domain. The problems of

BizTalk integration infrastructure and the features of service-based ESB architecture

that we present are designated below.

 Since ESB Toolkit is a whole set of components working on BizTalk product,

some of its services uses BizTalk artifects. During the development of software

42

infrastructure, some of the present BizTalk services, ESB toolkit components were

developed and new services are put into infrastructure use. Now, I will try to elucidate

present-day BizTalk architecture, advantages of ESB compared to BizTalk and the steps

to adapt the integration group operating in BizTalk architecture into the ESB toolkit

infrastructure.

 Arhcitecture of BizTalk relies on Hub & Spoke which is a point to point

integration solution between cross platforms which can be seen in Figure 5.1. Through

Hub & Spoke arhcitecture nature, its needs a centrailized system to supply integration

connectivity.

Figure 5.1. Hub and Spoke Architecture Diagram

In BizTalk environment, integration needs to be configured with certain parameters.

Each end-to-end connectivity provided by BizTalk has a certain receive and end

locations, a specific orchestration for business process management. Each integration

has its own particular schemas and maps that can be processed through orchestrations if

needed. Therefore, in case of a new integration demand, developers also have to prepare

integration specific schemas, orchestrations, and business processes (orchestrations) and

unique locations for receive and send. In Figure 5.2, static configuration for integrations

is visualized.

43

 Figure 5.2. BizTalk Integration with static configuration

ESB Toolkit is a Microsoft Product is an architectural pattern for Microsoft

Company to implement SOA based solutions. By adopting SOA based solutions over

ESB Toolkit Microsoft provided to have advantages of using service-oriented

architecture.

Figure 5.3. Enterprise Service Bus Toolkit [39]

SOA-based connectivity between cross platform applications supports flexible, agile

environment with reusable services. ESB toolkit provides these advantages via

abstraction of BizTalk components that are adequated to be implemented with SOA

44

properties. ESB Toolkit has a list of reusable services, components, frameworks that

BizTalk integration can be modified into an Enterprise Service Bus solution.

 Itinerary Creation

 Itinerary is the core component of ESB Toolkit architecture. It defines

the message flow through Service Bus. The idea of itinerary is not to exclude

business logic. For that, we have service composition capabilities using BizTalk

orchestrations. The goal and appropriate use for an itinerary is a simpler series

of steps, not a complete process. So, the first step is to create the itinerary for our

message processing mechanism. This itinerary will include the service list that

incoming message will be processed through.

 Figure 5.4. Itinerary design and service list

 Using Itinerary Services

 To implement a SOA based solution via ESB toolkit, it must be designed

within itinerary to use which of services to be executed during message life

cycle. ESB Toolkit supports two types of services: Messaging Service and

Orchestration Services.

o Messaging Service is a component that is called by pipeline that receives

the message. The dispatcher component of calling pipeline processes the

list of services that are message based and are attached to the incoming

message. Two services are built in messaging service inside toolkit

which is Transformation And Routing Service. These services can be

45

increased by implementing new Message Based Services. I added three

custom messaging services to adapt ESB Toolkit services to service

based container logistics information framework. These three services

are message based services, can be used in itinerary designer and

processed in pipelines.

o Orchestrations are Business Process Management tools for BizTalk

server and almost every integration needs these components to provide

connectivity. However ESB Toolkit is a service oriented platform based

on service consumption. It is not useful with implementing business

logic through connectivity and integration. Microsoft gives the ability to

add a custom orchestration to be used inside toolkit as a service. After

orchestration is deployed to BizTalk Admin Console, its assembly

information needs to be inserted to ESB.Config file as a new service. In

this way, that custom orchestration can be seen and used in itinerary

designer.

Figure 5.5. Service Definition in ESB.Config

 Schema Usage

 Incoming message needs to be matched with a schema that is deployed to

BizTalk Server to be processed inside ESB Toolkit. To combine more than one

integration into a SOA based solution, it is a better way to use single schema. By

using single schema we can provide a content based resolution with Resolver

Framework. With single message, we can use its content to define which map to

transform and which end point to be routed at runtime.

46

ESB toolkit provides main advantages of Service-Oriented Architecture. After

converting BizTalk integration we hope to have these benefits in our solution. Thereby

run-time configuration, loosely coupled integration pattern and reusable services have a

significant place in service oriented environment that need to be take into consideration.

To achieve these main goals, ESB toolkit provides framework and services. Their

ability to support run-time configuration is provided by Resolver Service and Dynamic

Ports. In itinerary designer and BizTalk components, Resolver framework is an agent to

get configuration parameters.

Figure 5.6. Dynamic configuration in Business Rule Engine

The first thing that can be implemented is a dynamic itinerary resolution. The

best practice for itineraries is, for every type of a message, there must be a single

itinerary. In our work ‘Arles Codeco Solution’ we have a single itinerary but we did not

use dynamic itinerary selection. It is possible to use it with Resolver Framework by

selecting itinerary according to incoming message schema type or schema context.

47

Figure 5.7. Dynamic Resolution via Resolver Framework

The second one is using Resolver Framework for Transformation and Routing

Services. These services are reusable components of ESB Toolkit. For combining three

integration into one ESB Solution, Transform Service with Resolver Service is used to

decide which map to execute. Content of the schema consists of an id and according to

that id; transform service gets a map name from ResolverFramework. By this way,

Transformation service provided reusability and Resolver framework gives chance to

have agility to urgent changes. And also, adding new services to itinerary or new maps

to be used provides flexibility to our solution. So our solutions for both BizTalk and

ESB Toolkit can be structured in Figure 5.8 below,

Figure 5.8. Classic vs. Proposed Integration Solution

48

CHAPTER 6

CASE STUDY in BİMAR

 In this chapter It will be tried to explain the studies carried out in Bimar which

performed the container logistics business integrations of the studies in real sector

which were planned and touched upon in earlier chapters.

 By adapting the present integrations onto the ESB Toolkit infrastructure, it was

aimed to get benefit from the advantages of the SOA architecture which ESB applies

and supports.

 Integrations carried out within ESB Toolkit enable integration management with

flexible, loosely-coupled and reusable services. It aims to circumvent repetitions of

development, building and deployment processes which are called "hard-coded" as in

classical BizTalk integrations and where all configurations are defined as static, and in

which developers have to deal with during a change.

 Within the company there are approximately 200 integrations in operation. After

the domain and data analyses of these integrations, transferring the grouped integration

clusters into ESB architecture as designated in previous chapter, new services created

during these improvements and BizTalk ESB Toolkit components will be explained.

Another crucial issue for the company and the real sector is the need for monitoring and

exception which emerge after integration and process become more complex. This was

implemented in production servers along with updated and improved integrations and

was prepared to be put into production. Designed in accordance with ESB and SOA

infrastructures, exception management and monitoring services work in harmony with

the definitions of reusability, agility and flexibility which are the three basic features

aforementioned in my thesis.

 In the studies conducted, all relevant features of ESB Toolkit are utilized,

integrations are applied as both orchestration-based and message-based. By activating

the exception handling and portal usage, a new feature that is not provided by the

present BizTalk architecture is obtained. Furthermore, resolvers providing dynamism

and adapter infrastructures, along with exception capturing mechanisms and

management portal, enable a rich platform. In figure below, it is seen that which

49

components are used and developed in ESB Toolkit infrastructure. In figure 6.1

highlighted components of framework has been reused, developed and improved in

custom framework services. Custom components for BizTalk Receive and Send ports

are included in framework. Generated ESB based integration solutions consumes s ESB

Toolkit core services, itinerary services also uses business rule engine, transformation

engine and resolver-adaptor framework.

 The studies and developments conducted within the domain of Enterprise

Service Bus architecture will be elaborated on under the chapters below.

Figure 6.1. ESB Toolkit infrastructure with custom framework [40]

 Within the scope of framework studies, for integrations that will be implemented

in ESB architecture, development of Custom Services, how services should be

developed and the purpose they serve for are explained. Framework software providing

SOA architecture features, running container logistics business processes and enabling

the development of new integrations in the face of domain needs with minimum effort

has been developed.

 In Integration Studies sub-chapter, improvements to run integrations with newly-

developed ESB framework and integration details are further explained.

50

 In Integration Management sub-chapter, however, how created framework

services and running integrations work and controlled, the developments directed

towards the end users are explained.

6.1. Service Oriented Integration Framework with ESB Toolkit

For integrations to run in ESB toolkit architecture, the need for interoperability,

exception management, logging, integration status checking led to the need for

developments on infrastructural basis. Since Exception Management and Portal

infrastructures, features of ESB Toolkit, do not fully meet the needs, a brand new

service and infrastructure software which would integrate with the exception

management and the integration monitoring databases within Bimar was developed in

accordance with ESB infrastructure.

The infrastructure used in classic integration management was realized in ESB

platform as well. As this framework uses BizTalk Integration principles as running

logic, integrations have been made to adapt it ESB Toolkit infrastructure. The details of

this implementation are below.

Since Enterprise Service Bus architecture is a message-based architecture, message-

based services have been developed. The one utilized in Microsoft platform, however,

technically enables development of both message-based and orchestration-based

services. Nevertheless, for Microsoft, orchestration tool was developed as message-

based services since it was designed for the management and development of business

logic, promising low quality service in terms of reusability.

Within ESB, it is possible to transform messages with a custom messaging service

and to check whether it is a valid or correct message, or to enable handling of a set of

processes suitable for the business flow.

To develop a message-based custom service in ESB Toolkit architecture, it is

necessary to define a class applying an interface called ImessagingService. Via this

class interface, 2 methods are implemented and 2 features are added to the class. To

explain these methods briefly:

Execute: the part where which processes the service is responsible for carrying out

within the method is coded. Within this method, the message is processed and the

processed message is sent back, which is the most crucial part of the written service.

51

ShouldAdvanceStep : The method which designates whether a processed message

will be processed by the next service in the itinerary list. Boolean return type true,

however, if the return Boolean value is true, calling pipeline component put the next

services on the itinerary into execution and message continues to be processed. If the

service returns false on this method, service does not operate the next service. Some

properties to be briefly touched upon in this class are:

Name : Service name seen on the itinerary. When the created service is defined in

ESB.config file, it needs to share the same name with the property defined within the

class.

SupportDissassemble : It designates whether the service written with this property

support disassemble property or whether it enables multiple resolvers to operate or not.

Custom services are developed with the aim of exception management and logging.

Services, as aforementioned, operate as message-based. All services can be called upon

on the itinerary and the itinerary can be used during designing. Performed services can

be categorized into 3 sub-groups: Exception handling transformation service, services

opening and closing registry for logging. In figure 6.2 it is seen that, custom services

are used in an itinerary. These services are executed in ESB while message is processed.

Besides, custom services are built as reusable components, which any other itineraries

can include. Each message inside framework can be logged, transformed and any

occurring exceptions during message processing are kept in exception database.

Figure 6.2. SOA based ESB Services

52

Log Registry Service: Through Log Registry Service, before a message received into

an integration running on ESB toolkit is processed, a new registry is created for it to be

logged in the framework. The registry here is started according to the GUID data of the

itinerary which belongs to the message. Having been under registry, message continues

to be processed by the following services. While Log Registry Service is dependent

upon orchestration objects working for the message in the infrastructure which is

developed for classic BizTalk integration, log service developed for ESB is totally

different from this operating mechanism.

 Operating message-based, ESB toolkit deals with services one by one with the

help of dispatcher tool on BizTalk pipeline. This makes it impossible for orchestration

objects to emerge in BizTalk infrastructure, thus it is necessary to use ESB toolkit

itinerary features to save the messages. These data are captured during message flow

and saved in the database in the infrastructure via log registry service.

Exception Handling Transform Service: Classic BizTalk integrations within Bimar

encounter many exceptions during message transforms. During this process, exception

handling and registry, continuation of the process are crucial for integrations. With this

custom service, Transform Service within ESB has been developed to handle exceptions

and these exceptions are kept in registry in accordance with the message and its

itinerary GUID.

Transform used by ESB Toolkit service works similar to a service. The difference

is, during the transform process, if the scripts used in the called map encounter an

exception, exception objects in the script are firstly handled by core transform service of

the ESB Toolkit, then by the transform exception handling service of the framework we

developed. In this way, a healthy processing continuum will be sustained for the map

called in transform service, message will not suffer from an exception, and occurring

exceptions will be saved in control. After the exceptions are saved, messages can be

viewed and exception details are accessible.

Log Close service: With this service, messages passing through intermediary services

without any exceptions are registered as “successful” as they pass through the

integration process without any glitch. This service is usually the last service of the

itinerary file created for a message. If the previous services operated and the last

operating service is Log Close service, this means that other services work without an

exception and the message of Log Close service at that time is added to the system as

“successful”. If, before this service, there may be a glitch in services in itinerary e.g.

53

Transform Exception Handling, that service will automatically handle the exception and

add the message registry to the system as “Exception”. Services sustain integration

management by operating on ESB toolkit infrastructure and services.

Figure 6.3. SOA based ESB Toolkit Framework

Seen from the figure 6.3, SOA Based ESB Toolkit Framework provides custom

components for container logistics information systems. Custom pipelines enables to

process Electronic Data Interchange For Administration, Commerce and Transport files

(EDIFACT). Exception handling, integration tracking and monitoring features is

supplied by log start and log stop services. Input file is processed by custom pipelines

and executed in custom ESB services.

6.2. Service Oriented Integration of Logistic Processes

For the integrations realized within Bimar, framework support is utilized. These

integrations work between different companies and systems located in logistical

domain. In the table below, you can see on which domain the integrations run,

integration code which takes a unique value and provides follow-ups of the integration

within Bimar and the target/source systems of the integrations. Last column

demonstrates which integration works with which ESB type in the newly-developed

ESB architecture. Here is the list of the integrations:

54

Table 6.1. Integrations to work with custom framework

Integration

type

Integration

Code

Source

System

Target

System

ESB Type

Depot ENT0000177 EDS YNA Orchestration

Seaway-Depot ENT0000187 YNA EDS Orchestration

Port - Seaway ENT0000171 Yılport YNA Orchestration

Port - Seaway ENT0000171 Yılport YNA Message-based

Port - Seaway ENT0000040 Navis YNA Orchestration

Port - Seaway ENT0000040 Navis YNA Message-based

Roadway ENT0000014 YNA Catlogic Orchestration

Port - Agency ENT0000067 Arles BSA Message-based

Port - Agency ENT0000165 Arles HAPAG Message-based

Port - Agency ENT0000208 Arles MSC Message-based

Port - Agency ENT0000050 Arles Navis Message-based

Port - Agency ENT0000173 Arles Marport Message-based

Port - Agency ENT0000056 Arles YNA Message-based

 These integrations and the present ones have been grouped and started to run as

a single integration. In this way multiple integrations work as single integration.

Incoming and Outgoing point in ESB infrastructure have been reduced to single point.

Integrations ENT0000165, ENT0000050 and ENT0000208 are good examples for this.

Three different integrations running here have been grouped according to their data and

process similarity and re-factored to run as a single integration, thus reducing the

incoming and outgoing channel to a single one, and made to co-run thanks to the

framework.

 Merged integrations have been changed as Message-based and optimized in a

way to enable multiple processes through a single integration. The use of Business Rule

Engine Tool made dynamic end-point resolving possible. With the help of business

rules which enable 3 different integrations to work as single ESB integration, and

differentiate present integration processes, processes have become manageable. Being

independent of code and integration design, business rules ensured ESB architecture to

55

access these rules in run-time and run them, hence enabling application of the agility

concept. For instance, whereas a change happening in the end-point that a file should

reach requires a change in the end point definition which is bound as static in classic

BizTalk integration process, and then taking it on build, deploy and production. A

change by means of business rules, however, is just saved, run in run-time by ESB and

is immediately taken into production. At the same time, the processes of taking it on

build deploy and production server is not needed.

 Container logistics process integrations merged and adapted to ESB framework

with custom services. In Table 6.1 full list of integrations are seen that is worked on

custom framework. Total number of integrations 13, merged number of integrations is

8. In Table 6.2 merged integrations are listed, and Table 6.3 is the list of integrations

that is adapted to custom framework without merging with other integrations.

Table 6.2. List of merged integrations

Integration

type

Integration

Code

Source

System

Target

System

Port - Seaway ENT0000171 Yılport YNA

Port - Seaway ENT0000040 Navis YNA

Port - Agency ENT0000067 Arles BSA

Port - Agency ENT0000165 Arles HAPAG

Port - Agency ENT0000208 Arles MSC

Port - Agency ENT0000050 Arles Navis

Port - Agency ENT0000173 Arles Marport

Port - Agency ENT0000056 Arles YNA

Integrations that are not merged are included to system that uses custom services of

framework. They behave as a ESB integration, use custom log and transformation

services, support dynamic routing and runtime configuration but lack of similarity about

input and output files or business logic, prevent them to be merged with other

integrations.

6.3. Integration Management in SOA based ESB Framework

Owing to services developed for ESB toolkit and the used framework, a healthy

infrastructure for the integration management has been prepared and infrastructural

56

improvements have been done for crucial problems like file follow-up and exception

management.

Integrations run on ESB Toolkit have become easy to follow-up through a central

system. Written custom services made it possible to monitor the integration process in

the control mechanism.

ESB toolkit integrations have started to be logged on the basis of itinerary and

registered as singular logs according to their itinerary GUID. A healthy start in

integration, running transform service in a exception-tolerating fashion, and finding no

exceptions during message processing enabled a successful registry log. On a contrary

situation, message will be saved in the system as exception.

In the figure below, there is a list of integrations demonstrating that the running

integrations on ESB server are under control of the developed infrastructure.

Figure 6.4. Container logistic integration list

 Each integration definition work with a itinerary file that belongs to itself and it

is logged as single according to the itinerary GUID given to this itinerary in run-time.

With the help of logging, it is possible to know if the messages coming to the

integration processes are processed as “successful” or “fail” and to see the exception

details of the failed integrations. The system, also, enables display of original files by

recording all incoming messages or it may as well send a “fail” message to ESB again

for processing.

 Next image shows that integration management is enabled with the registry

system provided by this infrastructure. With features like message follow-up, exception

monitoring, it is possible to monitor ESB Toolkit integration processes.

57

Figure 6.5. Integration and exception tracking

 As seen in integration follow-up screen, ENT0000256 coded integration

messages are run on itinerary file named ArlesItinerary. With all messages processed

successfully, infrastructure developed to adapt the ESB makes it possible to observe

technical data such as message size data, input and output time and processing time by

the user and the developer. In the “Details” form below, it is possible to see the

exceptions occurring in the messages.

Table 6.3. BizTalk vs. SOA based framework comparison

 Thesis Service Oriented

Integration Infrastructure

BizTalk Integration

Infrastructure

Reusable Services YES NO

Dynamic Routing YES NO

Exception Handling YES NO

Exception Monitoring YES NO

Integration Tracking YES PARTIALLY

 Within the framework of the developed software, creating manageable, easy-to-

follow-up, recordable integration of applications have been successful. The fact that the

framework written on ESB toolkit is a widely-used structure is also a factor facilitating

the realization of the targets.

58

CHAPTER 7

CONCLUSION

The focal point of thesis is service-based information systems for container

logistics processes management. Thesis aims to tackle one of the most intricate business

processes and corporate applications, that is, integration of applications and it tries to

provide a solution infrastructure suitable to integration management. Study has been

realized within Bimar Company which manages the business processes of Arkas in this

domain.

First of all, after the analysis of business processes that are active in different

domains by different companies, integration points based on this analysis were

determined. A study was carried out to transfer the determined integrations to service-

based architecture. With the advantages provided by the service-based architecture, a

reusable, agile integration architecture that could optimize complicated business

processes was obtained.

 These studies were conducted on BizTalk Server, a product by Microsoft used at

Bimar and on other Microsoft products. While existing integrations were on Hub and

Spoke architecture that does not support integration optimization, they were transferred

to ESB Toolkit by Microsoft and this enabled them to utilize the advantages of SOA

architecture.

BizTalk Server was a good solution for a small number of integrations and for

simple business processes, yet it did not yield the necessary performance in the

complicated systems that work with different enterprises, like container logistics

processes. SOA-based services defined in ESB Toolkit were, however, created with an

agile infrastructure for quickly-changing business processes. Moreover, new services

that could be added for the different enterprises with different technologies were

provided with a flexible infrastructure. That the custom services could be used in all

integrations without any configuration was an advantage brought by the reusability

feature.

 Moreover, with regards to exceptions and the monitoring of integrations, new

services were written for an efficient process. For a healthy process, follow-up for

59

integrations is as crucial as the monitoring and analysis of exceptions possible in

business logic within integrations. In real life, those kinds of exceptions are possible to

come across and to overcome this, the follow-up for exceptions are provided within

ESB architecture.

 To sum up, two of the recent needs and problems of business world, integration

and management of business processes acquires an optimized structure in line with the

targets determined in this thesis. The advantages provided by SOA and ESB

architecture were utilized and a developable infrastructure was put into operation. With

the architecture developed, exception and integration management was supported and

the aimed service-oriented integration infrastructure for container logistics management

was realized.

60

CHAPTER 8

FUTURE WORK

Container logistic integration framework handles exception monitoring,

handling and integration tracking with custom ESB services. Reusable flexible and agile

integration platform provides an optimum infrastructure for integration management.

Business changes, existing integration merging and possible problems in container

logistics can be maintained with less cost with custom ESB services. In addition to

provided solution, an improvement can be done for maintaining business changes.

Agility term of SOA is provided with run time configuration inside ESB

services. Resolver Adaptor Framework, Business Rule Engine usage is the key of

supporting agility. Business changes and critical exceptions require minimum time cost

and quick problem solution for a reliable communication. Therefore, usage of Business

Rule Engine can be configured for also system users but also developers. In case of a

critical problem or sudden change in business logic, system users can edit business rules

and edited rules can be used in production environment without deployment process.

This improvement increases system efficiency and remove bottleneck for integration

management.

61

REFERENCES

[1] Samtani, G. and Sadhwani, D., EAI and web service: easier enterprise application

integration? http://www.webservicesarchitect.com/content/articles/

samtani01print.asp

[2] Cummins, F. (2002), Enterprise Integration, New York: John Wiley.

[3] Sawhney, M. (2001), ‘Don’t Homogenize, Synchronize’,Harvard Business Review,

July-August 2001.

[4] DAVENPORT, T.H., 1993, Process Innovation: Reengineering Work through

Information Technology,Harvard Business School Press,Boston, ABD.

[5] Brodie, M. and Stonebraker, M. (1995), Migrating LegacySystems, Morgan

Kaufmann Publishers, San Francisco,CA.

[6] David S. Linthicum (1999), Enterprise Application Integration, Addison Wesley.

[7] Arsanjani, A.; Borges, B.; and Holley, K. Service-oriented architecture: Components

and modeling can make the difference. Web Services Journal, 9, 1 (2004), 34–38.

[8] Newcomer, E., and Lomow, G. Understanding SOA with Web Services. Boston:

AddisonWesley, 2004.

[9] Bell, (2008), M. Service-Oriented Modeling: Service Analysis, Design, and

Architecture, Wiley

[10] Chappell, David (2004). Enterprise Service Bus. O'Reilly Media, Inc.

[11] http://www.techopedia.com/definition/5229/enterprise-service-bus-esb, last

accessed on October 1st, 2013.

[12] http://www.microsoft.com/en-us/download/details.aspx?id=14293, last accessed on

October 8th, 2013.

[13] http://www.microsoft.com/en-us/biztalk/what-is-biztalk.aspx, last accessed on

October 8th, 2013.

[14] http://msdn.microsoft.com/en-us/biztalk/dd876606.aspx, last accessed on October

8th, 2013.

[15] http://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-

ch05_pointtopointconnection, last accessed on October 8th, 2013.

[16] http://www.poltman.com/en/technical-information/eai/topologies, last accessed on

October 15th, 2013.

http://www.techopedia.com/definition/5229/enterprise-service-bus-esb
http://www.microsoft.com/en-us/download/details.aspx?id=14293
http://www.microsoft.com/en-us/biztalk/what-is-biztalk.aspx
http://msdn.microsoft.com/en-us/biztalk/dd876606.aspx
http://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-
http://www.poltman.com/en/technical-information/eai/topologies

62

[17]

http://www.goldstonetech.com/investor%20info/white%20papers/EAI%20Overvi

ew.pdf, last accessed on October 15th, 2013.

[18]

http://ggatz.com/images/Enterprise_20Integration_20_20SOA_20vs_20EAI_20vs

_20ESB.pdf, last accessed on October 15th, 2013.

[19] Tuğlular, T., Titiz Avcı, D., Çetin, Ş., Dağhan, G., Özemre, M., Oysal, T., “An

Approach to Find Integration and Monitoring Points for Container Logistics

Business Processes”, 2012, The Fourth International Conferences on Advanced

Service Computing, SERVICE COMPUTATION 2012, Nice, France

[20] B. Ganter and R. Wille, “Formal Concept Analysis: Mathematical Foundations”,

Springer, Berlin, 1999.

[21] A. Formica, “Concept similarity in Formal Concept Analysis: An information

content approach”, Knowledge-Based Systems, 21(1), pp. 80–87, 2008.

[22] Enterprise service bus allows IT to adapt to a fast-changing business

environment. By: Huizen, Gordon Van, Computer Weekly, 00104787, 3/22/2005

[23] BizTalkESBToolkitDocs

http://www.microsoft.com/enus/download/details.aspx?id=11847, last accessed :

29.10.2013

[24] http://www.techopedia.com/definition/13984/logistics-management, last accessed

on November 5st, 2013.

[25] Zhang, L., Li, J., Yu, M., "An Integration Research on Service-oriented

Architecture (SQA) for Logistics Information System", 2006, IEEE International

Conference on Service Operations & Logistics & Informatics; 2006, p1059-1063,

5p

[26] Fei, Z., Shufen, Liu., "Research and Application of the ESB Based on Agent in the

Integration of the MIS in Power Plant", 2010, pp. 250-3. Publisher: Piscataway, NJ

USA ; Beijing China: IEEE Country of Publication: USA

[27] Jan, Jiang and others, "Research on application of Web based ESB in School

Common Data Platform ", 2009, 4th International Conference on Computer Science

& Education

[28] Rajini, N., Bhuvaneswari, T. 2010 , International Journal on Computer Science and

Engineering Vol. 2 Issue 6, p1980-1983

[29] Wu, J., Tao, X., "Research of Enterprise Application Integration Based-on

ESB",2010, 2nd International Conference on Advanced Computer Control

[30] Seiringer, W., 2009, "Service-oriented Analysis of Logistics Services", Logistics

and Industrial Informatics, 2009. LINDI 2009. 2nd International

http://www.goldstonetech.com/investor%20info/white%20papers/EAI%20Overview.pdf
http://www.goldstonetech.com/investor%20info/white%20papers/EAI%20Overview.pdf
http://ggatz.com/images/Enterprise_20Integration_20-_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://ggatz.com/images/Enterprise_20Integration_20-_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://www.techopedia.com/definition/13984/logistics-management
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5258565
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5258565

63

[31] Yu, D., Yan, D., 2011, "Towards the Integration of Enterprise Service Bus with

UDDI Server: A Case Study", International Conference on System Science and

Engineering, Macau, China

[32] Hohpe, G., Woolf, B., (2003), Enterprise Integration Patterns, Addison Wesley

[33] http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf

last accessed on September 28th, 2013.

[34] http://integrella.com/what-is-soa/, last accessed on October 20th, 2013.

[35] http://en.wikipedia.org/wiki/Enterprise_service_bus, last accessed on October 20th,

2013.

[36] http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-

server-seen-by-the-programmers-eyes/, last accessed on November 1st, 2013.

[37] http://www.comelio.com/en/business_solutions/integration/biztalkserver, last

accessed on November 1st, 2013.

[38] http://msdn.microsoft.com/en-us/library/ff699598.aspx, last accessed on November

1st, 2013.

[39] http://msdn.microsoft.com/en-us/library/ee236726(v=bts.10).aspx, last accessed on

November 1st, 2013.

[40] http://www.mikethearchitect.com/2009/06/microsoft-esb-toolkit.html%20, last

accessed on November 1st, 2013.

http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf
http://integrella.com/what-is-soa/
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-server-seen-by-the-programmers-eyes/
http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-server-seen-by-the-programmers-eyes/
http://www.comelio.com/en/business_solutions/integration/biztalkserver
http://msdn.microsoft.com/en-us/library/ff699598.aspx
http://msdn.microsoft.com/en-us/library/ee236726(v=bts.10).aspx
http://www.mikethearchitect.com/2009/06/microsoft-esb-toolkit.html

64

APPENDIX A

BUSINESS PROCESSES ANALYSIS

Figure A.1. Integration Data Similarity Comparison

65

Figure A.2. Agency - Importation Business Process

66

Figure A.3. Agency - Exportation Business Process

67

Figure A.4. Railway Business Process

68

Figure A.5. Terminal – Container Entrance Business Process

69

Figure A.6. Terminal – Loading/unloading Business Process

70

Figure A.7. Highway Business Process

71

Figure A.8. Depot Invoice Process

72

Figure A.9 Depot Business Process

 (cont. on next page)

73

Figure A.9 Depot Business Process (cont.)

 (cont. on next page)

74

Figure A.9 (cont.)

	1.Kapak_1
	2.kapak_2
	3.approval_3
	4.abstract_4
	5.TezContent_4

