SERVICE-ORIENTED INTEGRATION
OF
INFORMATION SYSTEMS
FOR
LOGISTICS MANAGEMENT

A Thesis Submitted to
the Graduate School of Engineering and Sciences of
Izmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
MASTER OF SCIENCE

in Computer Software

by )
Sevket CETIN

December 2013

iZMiR



We approve the thesis of Sevket Cetin

Examining Committee Members:

Asst. Prof. Dr. Tolga AYAV
Department of Computer Engineering, 1zmir Institute of Technology

Asst. Prof. Dr. Tugkan TUGLULAR
Department of Computer Engineering, 1zmir Institute of Technology

Asst. Prof. Dr. Derya BIRANT
Department of Computer Engineering, Dokuz Eyliil University

5 December 2013

Asst. Prof. Dr. Tolga AYAV
Supervisor, Department of Computer Engineering
Izmir Institute of Technology

Prof. Dr. I. Sitki AYTAC Prof. Dr. R. Tugrul SENGER
Head of Department of Computer Dean of Graduate School of
Engineering Engineering and Sciences



ACKNOWLEDGEMENT

Foremost, | would like to express my sincere gratitude to my advisor Asst. Prof.
Dr. Tugkan TUGLULAR for the continuous support of my study and research, for his
patience, motivation, enthusiasm, and immense knowledge. His leadership helped me in
all study and writing my thesis.

I want to thank to manager of Bimar cooperation Murat OZEMRE for his
support on thesis project.

I wish to express my sincere thanks to my friend and project partner Dilek TITIZ
for his support and friendship during thesis work.

Also 1 would like to thank to Asst. Prof. Dr. Tugkan TUGLULAR and Bimar
Cooperation. With their help, this project case study work is submitted as a SANTEZ
project with project number 00933-STZ.2011-1.

I also want to thank to developers of Bimar; Murat FERUZ, Engin GURAY,
Kerim ONDER and Ugur DOGAN for their helps about technical details during thesis
study.



ABSTRACT

SERVICE-ORIENTED INTEGRATION OF
INFORMATION SYSTEMS FOR LOGISTICS
MANAGEMENT

Developments in information technology have become more crucial for
corporate firms and businesses. They make use of this technology to manage business
processes and it is one of the most invested domains by corporations. As technical
infrastructures of companies improve, the number of enterprise-oriented and special
software developed for business processes increase, too. With the augmentation of
cooperation between companies and incorporated business processes, in time, a need for
integration emerges for the applications running in diverse infrastructures and
technologies.

Logistics business processes are a part of a business domain where there are
multiple areas of study such as railway, seaway, road transportation and depot, and
where multiple companies and a high number of customer needs are managed.
Integrations between companies should be quick, reliable, easily-adaptable to changing
business processes is a crucial requirement. As integrations play a significant role in the
management of process, the correct establishment of the integration architecture,
convenience for follow-ups and management are critical for the flow of business
processes related to the monitoring of the possible problems.

The main point of this thesis is based on a need for a software infrastructure that
will enable integrations to work together. Thus, by getting integrations to utilize
service-based architecture, to react quickly to changing business processes and customer
needs, it is aimed to provide management and for exception monitoring. That’s why I
focused on integration of service-based information systems for logistics management

in my thesis.



OZET

LOJISTIK YONETIMI ICIN SERVIS TABANLI
BILGI SISTEMLERI ENTEGRASYONU

Son yillarda bilgi teknolojilerinin gelismesi, kurumsal firmalar ve isletmelerin is
siireclerinin yonetebilmek i¢in kullandiklar1 ve yatirim yaptiklar1 alanlardan birisidir.
Sirketlerin teknik altyapilarini gelistirmesiyle birlikte, is siireglerine 6zel yazilimlar,
kurumlarmaa yonelik gelistirilen uygulamalarin sayist artmaktadir. Kurumlar ve
isletmelerin birbirleriyle iliskileri ve birlestirilen is siire¢leri nedeniyle farkli altyap: ve
teknolojilerdeki bu uygulamalarin entegrasyonu ihtiyaci ortaya ¢ikmaktadir.

Lojistik is siirecleri de kara, deniz, hava, demir yolu, depo gibi fazla sayida
caligma alani igeren, farkli firma ve fazla sayida miisteri taleplerinin yonetildigi bir is
alanidir. Is siireclerinin kompleks, birlikte calisilan firma ve kurum sayisinin ¢ok olmasi
sebebiyle entegrasyonu yapilacak uygulamarin sayist da olduk¢a fazladir. Bu
entegrasyonlarin hizli, giivenilir, degisen is siireclerine ¢abuk adapte olmasi ise kritik
bir gereksinimdir. Siirecin yonetilmesinde entegrasyonlarin rolii biiyiikk oldugundan,
entegrasyon mimarisinin dogru kurulmasi, izleme ve yOnetimin rahat yapilabilmesi,
olusabilecek hatalarin takibi is akislarinin diizenli olarak ¢alismasi agisindan kritiktir.

Tez kapsamini da lojistik is siiregleri i¢in entegrasyonlarin birlikte ¢aligmasini
saglayan bir yazilim altyapt gereksinimi tezin ana olusturmustur. Bu sayede
entegrasyonlart servis tabanli mimari'nin avantajlarindan faydalanmig, degisen is
stireclerine ve miisteri taleplerine hizli cevap verme, entegrasyonlarin yonetimi ve siire¢
icinde yasanan hatalarin takibi i¢in gerekli ¢oziimii saglayacaktir. Bu sebeple lojistik
yonetimi igin bilgi sistemlerinin servis tabanli entegrasyonu bu tezin konusunu

olusturmaktadir.



TABLE OF CONTENTS

LISTOF FIGURES. ... X

LIST OF TABLES. ... e, Xii
CHAPTER 1. INTRODUCTION. ...ttt 1
CHAPTER 2. REVIEW OF LITERATURE. ..., 4
CHAPTER 3. BACKGROUND.......tiiiiiiiie e 8
3.1. Enterprise Application Integration....................cooeieinnn 8
3.1.1. Reasons for Integration of Information Systems............ 9

3.1.2. Enterprise Integration Challenges............................. 10

3.1.3. Benefits of Enterprise Application Integration.............. 11

3.1.4. Types of Enterprise Application Integration................. 12

3.1.4.1. File Transfer.........coouvieiiiiiiiiiii e, 12

3.1.4.2. Shared Database............cccoviiiiiiiiiiiiiiiinae, 14

3.1.4.3. Remote Procedure Invocation...............c.coeenene... 16

3.1 4.4, MeSSAING. ...ttt 17

3.1.5. Topologies of Enterprise Application Integration............ 18

3.1.5.1. Point to Point Topology .........cccovvvvviiiiiiiiiiiinnnn.. 18

3.1.5.2. Hub and Spoke Topology ..........ccceeviiiinininininnnn. 20

3.1.5.3. BUS TOPOIOQY.....vinieeiieeeie e, 21

3.2. Enterprise Service Bus............cooiiiiiiiiiiiii 22

3.3. Software Products For Enterprise Application Integration... 25

3.3.1. BizTalk Server.......ccooviiiiiiiiiiiiiiii e 26

3.3.2. Enterprise Service Bus Toolkit....................ooooenie. 28

3.4. Container Logistics Business Process....................ocoeeei 32

CHAPTER 4. METHODOLOGY ...ttt 34

CHAPTER 5. PROPOSED SERVICE ORIENTED INTEGRATION OF



LOGISTICS INFORMATION SYSTEMS. ... 41

CHAPTER 6. CASE STUDY in BIMAR............ccooiiviiiiiiiiiiiieeenn . 48
6.1. Service Oriented Integration Framework with ESB Toolkit... g
6.2. Service Oriented Integration of Logistic Processes.................. 53
6.3. Integration Management in SOA based ESB Framework...... 55
CHAPTER 7. CONCLUSION........ooiiiiiiiiiicc e 58
CHAPTER 8. FUTURE WORK ..........cceiiiiiiiiiiiieeeeeeiiiiiieeeeeeee e, 60
REFERENCES. ... ... 61
APPENDIX A. BUSINESS PROCESSES ANALYSIS..........ooiiinn 64

vii



LIST OF FIGURES

Figure Page
Figure 3.1. Enterprise Integration Systems..............ccovivviieiiiniininnnn, 9
Figure 3.2. Integration by File Transfer.....................oooiiiiiiiin. .. 13
Figure 3.3. Integration by Shared Database.....................cooeivinin.... 15
Figure 3.4. Integration by Remote Procedure Invocation...................... 16
Figure 3.5. Integration by Messaging..........coevveiiiiiiiinieiiieniiereiens 17
Figure 3.6. Point to POINt TOPOology........ouvvriniiiiieiiiieieeeeeeie e, 19
Figure 3.7. Hub and Spoke Topology.........ccoovviiiiiiiiiie 20
Figure 3.8. Bus Topology.......oviuviniiiiiii i, 22
Figure 3.9. Overview of Enterprise Service Bus..............cccooiiiiiiiiinn. 24
Figure 3.10. BizTalK.......c.oiii e 26
Figure 3.11.BizTalk Server Architecture..............coceveviviiiiiinininnnn.. 27
Figure 3.12. Microsoft ESB ToolkKit............coceiiiiiiiiiiiiiieien, 29
Figure 3.13. ESB Toolkit Architecture..............ovvviiiiiiiiiniiienn.n. 30
Figure 3.14. ESB Toolkit Sample Message Flow................ccoevvivnen... 32
Figure 3.15. Container Logistics Business Process..................c......... 33
Figure 3.16. Container group For Arkas LOgiStiCS.............ccccovvviinininnn. 33
Figure 4.1. Containers Logistic Depot Business Process Analysis........... 36
Figure 4.2. File groups between Depot, Agency and Port..................... 37
Figure 4.3. Integration Point between Depot and Agency..................... 38
Figure 4.4. SOA Based Integration Infrastructure.............................. 39
Figure 5.1. Hub and Spoke Architecture Diagram...............ccovevvinennn. 42
Figure 5.2. BizTalk integration with static configuration...................... 43
Figure 5.3. Enterprise Service Bus ToolKit.............coviiiiiiiinninnn 43
Figure 5.4. Itinerary design and service list............ccoviiiiiiniiiniininnnn 44
Figure 5.5. Service Definition in ESB.Config.................ccoiviiiiinni 45
Figure 5.6. Dynamic Configuration in Business Rule Engine................. 46
Figure 5.7. Dynamic Resolution with Resolver Framework................... 47
Figure 5.8. Classic vs. Proposed Integration Solution.......................... 47
Figure 6.1. ESB Toolkit infrastructure with custom framework.............. 49

viii



Figure 6.2. SOA based ESB Services...........

Figure 6.3. SOA based ESB Toolkit framework...........................eee.

Figure 6.4. Container logistics integration list.

Figure 6.5. Integration and exception tracking

51
53
55
57



LIST OF TABLES

Table Page
Table 6.1. Integration to work with custom framework.................... 54
Table 6.2. List of merged integrations................ccooevviiiiiiniinann... 55

Table 6.3. BizTalk vs. SOA based framework comparison................. 57



CHAPTER 1

INTRODUCTION

In today’s world, it has been an ordinary fact that all enterprises around the
world cooperate with each other. This has become a necessity for them to grow, to be
successful in the market, thus to increase their profits.

With the increasing number of companies working together, that the processes
run in cooperation plays a much more important role because with cooperation and
partnership, a flexible action area and more advantages for the company are obtained.
That’s why management departments in companies aim to increase the number of
providers and the enterprises that they will cooperate with in order to get a wider
business network.

Integration between companies plays an important role for healthy processes
carried out in cooperation and for the companies to communicate with each other.
Considering this, to achieve cooperability of different software used in a single
enterprise, dozens of integrations need to be defined and managed. This is only possible
with an integration infrastructure that can provide an optimum solution and adapt to
different technological infrastructures of the enterprises.

Amongst each other, integration architectures can work in different topologies
according to their diverse working principles and architectures. In this study, the aim is
to use message-based integration architecture which will provide the optimum solution.

The focal point of this study is a Service-based Integration Infrastructure for
information systems of the logistics processes where there is multiple companies work
together and business processes are complicated. This joint study by lzmir Institute of
Technology, by Arkas which is a logistics company and by Bimar managing the IT
processes of Arkas has been accepted as a Sanayi Tezleri Programi (SAN-TEZ) project.
With this study, an integration infrastructure that will enable cooperation with logistics
business processes aims a Business Activity Framework allowing the management of
business data.

With this architecture, shared business processes that Arkas Company, which is

in the container logistics sector, carries out with other enterprises and providers will be



co-operable and monitorable. Thus, their cooperation level which now cannot be
improved due to this technological infrastructural short-coming will increase and the
sector will be more efficient and more dynamic.

Container Logistics Sector manages transportation activities in many mods
(seaway, road, railway, air, depot, port, etc.). Since the number of shipping areas and
options is high, the number of cooperating enterprises and providers is also supreme. A
shipment or transportation action is realized as a business process to which more than
one enterprise contributes. In order for business processes to run healthily, integration
should be manageable and monitorable.

However, high number of integrations is one of the crucial parameters for the
solution of the problem because the integrations examined in the study work as different
integrations although they represent the same processes and use similar data. This
situation increases the cost both during the development and the following maintenance
and support processes of the integrations. Furthermore, increasing number of
integrations affect customer satisfaction with regards to follow-ups and maintenance
problems.

With the integration infrastructure developed in this study, the problems
aforementioned and the exceptions ensuring these problems will be monitorable from a
single point. It will easier to detect and to deal with the occurring problems and also
more convenient to determine which problems are critical. Thus, this study aims to
provide a solution to the relating problems with an architecture that will enable
enterprises to communicate with each other during these processes. The main approach
used to create this architecture was Enterprise Service Bus architecture (ESB) which
supports Message Based Middleware and Service Oriented Architecture (SOA) features.
SOA architecture is an approach where logic and infrastructure resources are organized
as services for business processes and accessed through mutual message exchange. By
utilizing SOA properties with this architecture, the aim is to provide integration of
complex business processes with reusable services. The route to solution is through
integration services developed as agile, flexible and quick to respond changing business
flows and customer needs.

For the services targeted within the scope of the study, a Microsoft product,
BizTalk integration server and ESB Toolkit which is released for ESB architecture
support will be used. Although BizTalk integration server used in Bimar Company is

message-based as the working principle, it cannot make use of SOA architecture



properties. The increasing number of integrations, changing business processes and

integrations needed to be developed enhances the complexity of the present system.

This increasing complexity costs more time and money to companies and complicates

the solutions to the occurring problems.

In the thesis, the aim is to provide a service-based integration of logistics

information systems through analyses of container logistics processes, data modeling

and through a software infrastructure which the integration can cooperate with. The

advantages provided with this study are the following.

Realization of integrations in a service-oriented architecture.

Reduction in the number of present integrations and providing a reusable
infrastructure for new integrations.

Reduction in time spent on development and maintenance

Providing a service infrastructure for the follow-up of integrations and the
problems arisen in the business processes.

Providing an integration which is more agile for changing business processes

and customer needs.



CHAPTER 2

REVIEW OF LITERATURE

The rise of cooperation between companies and enterprises that develop
information technologies infrastructure has brought about a need for communication for
the applications that work in different infrastructures. With the increasing number of
diverse applications, a lot of efforts have been put into to improve communication and
cooperation atmosphere, to reduce management costs and to optimize all processes.
Research on these topics is outlined below.

The study which was explained in the article An Integration Research on
Service-oriented Architecture (SQA) for Logistics Information System by Luyang
Zhang, Jiagi Li, Ming Yu focuses on the management of container logistics business
processes with ESB that supports a SOA-based architecture. Here they determined that
this was the most effective methodology for the integration solutions of service-based
architectures. Container logistics business processes have a huge area of business and
within themselves they contain diverse enterprise applications and business processes.
That’s why, he mentions about an emerging need for the applications from different
platforms to work in an integrated way. In this integration architecture, this
methodology was used for ESB application: each running present application is
integrated to the system as one web-service, as applications added as we-services can
operate on their own, they obtain a reusable property and can adapt more to changing
business processes. Not a single application will directly communicate with another,
but the integrations will be realized on ESB backbone. In this solution offer, up to 60%
reduction in development costs is reported thanks to ESB architecture and service usage
[25].

In their article Research and Application of the ESB Based on Agent in the
Integration of the MIS in Power Plant, Fei and Shufen propose to use ESB and SOA
architecture in management information systems of power plants for example. In these
management systems, system integration is targeted by forming a ESB backbone for the

domain which consist of a financial system, a human resources management system, a



production management system, a scheduling management system, material and
equipment management systems [26].

Furthermore in this system integration, first of all, present systems are
determined as services and are included in the system. Through a different approach,
systems that should be integrated with each other can work under sub-ESBs by utilizing
more ESB structure. In this way, applications running only under its sub-ESB
architecture check the incoming requests in sub-ESB for the first time and sends them to
request agent ESB to find the responsive service if the response does not returns. An
ESB structure that supports SOA architecture can also be used for different purposes
e.g. for common platforms in schools as explained in the article Research on
application of Web based ESB in School Common Data Platform. The usage of web
services are realized within ESB, data interchange between different departments are
provided on Web Services Description Language (WSDL). Heterogeneous systems that
are outside the school applications are adapted to ESB with adapters which need to be
developed. As various protocols are supported, adapters to be implemented can also be
used in different protocols. In this study, integration or data resemblance is not checked,
yet each of end-point is included in the system as an integration point [27].

One of the methods for the management of business process solutions and
management of integrations is explained in this study by Rajini and Bhuvaneswair. As
explained in Service Based Architecture for Manufacturing Sector, architecture was
designed consisting of five layers and each layer manages a part of the process:
Presentation Layer where other layers put user products and services into the system,
Business Process Layer which manages business processes where all enterprises or
applications connect to the system, Business Service Layer which connects business
processes with integration layer, Integration Layer which handles service integration,
routing and transformation processes; and Data Layer where data used by the services
are stored and where physical resources that can be accessed on the Internet are located.
With this architecture, the aim was to resolve process integrations with service-based
architecture, However, there is not a systems present to deal with exception or
integration monitoring [28].

Operating Enterprise Application Integration with Enterprise Service Bus was
studied in Research of Enterprise Application Integration (EAI) Based-on ESB by Tao,
and Wu. The article explains that applications under EAI-ESB approach communicate

with each other through an architecture consisting of eight steps. These steps are:



Message construction, Messaging channels, Listener, Decryptor, Validator, Enricher,
Transformer and Router. Moreover, here it is explained that exceptions have two
different exception handling strategies: First strategy is the exception handling
occurring in the connection points of the end-points. Second one is the exception
handling on the basis of applications which components, namely, business processes
work with. Exception framework and service which | applied in my thesis, enables the
use of exception handling infrastructure for both strategies [29].

Container logistics business processes can be analyzed in a way to be able to
work in SOA architecture, as it was done in the study by Wolfgang Seiringer. In his
article Service-oriented Analysis of Logistics Services, and the attempts to explain with
which methods business processes are defined as services. There two service definitions
according to study, first of which is Web-Service standard WDSL and second one
define service from three points of view: Service value independent of technology,
service offering and service process. In the service analysis of container logistics
domain, the methodology how to determine the similarities between the entities that are
defined as service value was explained. This methodology involves two steps: first
being the determining and analysis of the present services and the second one being
entity similarity study and service modeling [30].

The concept of agility has also been influential in determining dynamic routing
processes. Yo and Yan, in their article, Towards the Integration of Enterprise Service
Bus with Universal Description Discovery and Integration (UDDI) Server: A Case
Study suggest that the agility concept which ESB benefits from the advantages of SOA
architecture can be developed to enable dynamic and in run-time routing for the routing
process within the architecture. In this methodology, business processes are managed in
Business Layer, and there is a UDDI server in the integration layer. ESB uses UDDI
server for message routing. In this way, with proxy server, ESB sends a request to
UDDI server for message routing it receives and incoming request includes the address
to which the message leads. Thus, this enables an agile infrastructure in rum-time,
providing dynamic routing. In our study, UDDI infrastructure is present in ESB.
However, in the case study of Bimar, we used Business Rule Engine infrastructure for
dynamic routing [31].

When the studies conducted are examined, it is seen that a solution is targeted
for the integration of applications and the management process of these applications.

For solving the diverse business flows and related problems, service-based architecture



use is suggested. In other studies parallel with this thesis, integrations are aimed through
reusable services, and Enterprise Service Bus architecture are used in different ways to
provide solutions to the problems. In order to provide a quick solution to monitorability
and possible problems, exception handling is engaged in ESB architecture. Like the
studies carried out before, in this study, utilizing the SOA advantages, an effective
solution is targeted on ESB architecture, furthermore, launching a product which will

provide follow-up and control with regards to service and business flows is aimed.



CHAPTER 3

BACKGROUND

3.1. Enterprise Application Integration

Enterprise Application Integration (EAI) enables various software systems or
applications to intercommunicate. Furthermore, subsystems are put together with the
help of enterprise application integration, and they act as a single system. Thus they are
able to function as a coordinated, whole body. These applications may be available out
in the market for private usage, or they might as well be developed by the company
itself.

The concept of integration of enterprise application is the direct result of the
communication challenge that enterprises or companies needed to intercommunicate.
The communication in question does have to be directed towards a business goal and it
has to be attained regardless of temporal and special features of the applications as itwas
nicely put by Samtani and Sadhwani as “the process of creating an integrated
infrastructure linking disparate systems, applications, and data sources within a
corporate enterprise” [1].

EAI is a six step process: The first step is the receiving the message, then this
message is altered, and translated. The fourth step is the routing of the message.
Directing of the message to the desired spot and business process management are the
last two steps. The temporal process of the delivery of the messages is dependent on the

businesses.



Custom Applications

E-Commerce

o
Legacy Applicatiors Applications

m‘; Web Objedts

Client/Server

Applications ..\ﬁe i
- \Q )
\-R ﬁ

Figure 3.1. Enterprise Integration Systems

3.1.1. Reasons for Integration of Information Systems

With the advent of computationalization and with the structural challenges
faced, organizations have depended on information systems, these organizations, in
time, came up with particular individual systems, which meant that these systems were
bound to be different from one another [2].

At first, ERP (enterprise resource planning) vendors succeeded in providing
extensive business applications, yet with the rise of technology, the number of
supplier/vendor companies and the number of companies that were involved in in-house
development has risen, and naturally along with these, so has the number of the systems
that have been developed by these companies, thus making these systems insufficient
thereby creating a need for integration.

These systems in question include a number of applications which are
customized according to the purpose they serve for and are designed to operate in
various operating system platforms or media. Yet, these systems are formed in a way
that they can only address to the particular tasks in a particular area. Hence in time
focusing on their functionality has culminated in the creation of “islands of

applications”, disconnecting the systems from each other as Sawhney explains [3].



It is essential that these applications should be integrated with each other and
this is only possible with supporting common business processes and data sharing
amongst the applications. However, the integration has to sustain an effective, safe data
exchange between applications used by the enterprises. With the integration of these
systems, the integration that is possible between other service providers and the clients
has the potential to bring about a wider area of actions and the advantage of competition
for the companies [4]. Focal point in this thesis, container logistic information systems,
is a perfect example for distributed applications and different platforms. Different
business processes have to be in operation all together and supplier company systems,
other in-house services or major billing systems like SAP need to be present in business

processes. These two factors require integrity of reliable and stable integrations.

3.1.2. Enterprise Integration Challenges

It is a strenuous task to integrate enterprise applications and distributed systems
because these systems are seen as a very valuable investment both financially and with
regard to the amount of data they contain for the company, hence, making it almost
impossible to alter them with newer systems [5].

Enterprise integration has to be constructed in a way that can handle numerous
applications operating on various platforms in various places. Enterprise application
integration suites are provided by software vendors and these suites enable integration
between different languages and platforms, and connect to numerous business
applications. Nevertheless, the technical base renders only a small amount of the
challenges faced in the integration process which goes beyond corporate and technical
issues.

Corporations are usually required to alter their policies when it comes to
enterprise integration. Corporate applications are usually concentrated on a particular
functional realm. Customer Relationship Management (CRM), Billing, Finance or
Logistic Information Systems that is the focal point of my thesis are main examples.
Effective enterprise integration is possible only with intercommunication between
numerous computer systems and also with communication created between business

units and IT departments. Applications are not controlled one by one by integration

10



application groups since each and every application becomes a member of a body of an
integrated applications and services.

An application might have a wide range of functionality i.e. a payment system
application, thus it needs to provide an interface enabling communication between all
vendors also to fulfill customer needs, yet integration brings about extensive
ramifications on the businesses. When an integration solution is adopted into one of the
most important business processes like payment system functions, solution affects
progress of the whole business. A failure in an integration solution may lead to lost
orders, misrouted payments as most importantly customer dissatisfaction, thus costing
businesses millions of dollars.

When developing integration solutions, developers generally face numerous
challenges one of which is their limited control on the applications that participate in the
system. Some of those applications might be packaged or may just be used for a long
time and hard to alter, which makes them very hard to adapt to an integration solution.
Yet it is often easier to implement a part of the solution within the application
nevertheless it is very probable that all integration objectives, especially ones that are
very hard to adapt to applications, might not be reached. As the systems improve and
new platforms, services and applications emerge in the market, the number of
incompatible areas or points in the integration process will continue to increase, thus
making it impossible to change all the failed points in the integration process and to
make them compatible again.

Although there is a huge demand for integration solutions, only a handful of
standards are seen as legitimate in the domain. XML, XSL and Web services can be
demonstrated as the most advanced steps towards standardized features for integration
solutions. However, with the advances in technology, changing frameworks and newly-
emerging channels of communication conduce to advances in the integration

infrastructures/frameworks for the applications.

3.1.3. Benefits of Enterprise Application Integration

Using EALI applications share data and process without changing the applications
and their data structure which cost effective [6] EAI enables access to real-time

synchronous and asynchronous data between different systems and applications. It also

11



helps creation of more usable applications by increasing performance in the
implementations of business processes, and provides data integrity, hence reducing the
cost of development and maintenance of a new application since it enables applications
to run independently from each other.

Integration with corporations providing more corporate and commercial
infrastructure in the market enables flexibility helps the maximization of corporate
profits by responding consumer needs faster because it is always easier and quicker to
integrate existing applications rather than develop new ones, reducing the “time to

market” span for the work done.

3.1.4. Types of Enterprise Application Integration

There are several ways to integrate applications. Each integration approach has
its advantages onto others considering the criteria for integration. Although there are
numerous approaches, it is more useful to classify them under four main groups [32].
File Transfer: Each application produces data which is to be shared, used and processed
by other applications.

Shared Database: Each application stores the data which is to be relayed to the shared
database.

Remote Procedure Invocation: Some procedures are displayed in each application in
order to invoke the applications remotely and each application invokes those to run
behavior and exchange data.

Messaging: Each application connects to a system of messaging, and exchange data and

invokes behavior by using messages.

3.1.4.1. File Transfer

Applications used by an enterprise are generally built with/in different languages
and platforms. There are typically numerous software dealing with various tasks
assigned by the enterprise. What leads to this multi-polarity in software can be summed
up in a variety of reasons: The enterprise makes package purchases that are developed
outside, the technology advances at such a rate that leads to discrepancies between the
systems built at different times and there is the human factor: systems are developed by

12



different people whose capabilities and choices affect the overall approaches to the
development of new applications.

"

IMPORT J APPLICATION B

APPLICATION A { EXPORT } @

Figure3.2. Integration by File Transfer [32]

Various applications are written in various languages and established according
to various platforms, along with the expectations that the application is developed upon.
Establishing a link between this kind of applications require a profound understanding
of how those applications interact together on both a business level and a technical
level. To be able to grow this understanding, at first one need to know how the
applications work, yet this has to be done in a minimal way so as to eschew confusion.
After analyzing how the applications work, there needs to be a medium for the
applications to interact with each other, which can be achieved through a common data
transfer regardless of the language and the platform, yet seeming natural to the
applications in question. This process needs to be attained with the minimum number of
software and hardware, along with the applications that are already used by the
enterprise. One of those common applications is the universal storage mechanism
present in any enterprise. The basic approach would be the integration of the
applications that utilize files. Each application has to produce files that have the
information which is processed by the other applications. The transformation of those
files into various formats is done by the integrators. The files are produced at a routine
fashion depending on the business trajectory, yet the essentiality of the whole point lies
beneath the format used for the files. Generally the out coming data out of an
application is not exactly the same with the data required by the other application, thus
making the processing phase crucial at this point, yet in order for the data to be
processed, the data should be developed in a way that the processing tools could work

on it as well. Considering all the procedure, standard file formats have had to adapt to

13



differentiating needs. Mainframe systems mostly use data feeds that are based on the
file system formats of COBOL. UNIX systems, however, use text based ones. There has
recently been a trend to use XML.

An advantage of using files is that integrators do not have to know anything
about the internals of an application. The file is usually provided by a team working on
the application. The content and the format of the file are determined according to the
needs, if a package is used, however, options are limited. The integrators make the
transformations needed by other applications, or they just let the receiving applications
decide how to handle and read the file. Therefore differentiating applications are
separated from each other and each application is capable of conducting internal
changes in a free fashion without manipulating other applications as long as they relay
the same data in files the same format. Hence, the files come to be the interface of each
application. [32]

File Transfer is a simple process partly because of the fact that there is no
requirement for extra tools or integration packages, yet meaning that developers have to
do the most of the work by themselves. The file names should be unique, so the writer
of them has to have a strategy. Also, an application among others should be selected to
know when a file is old and no longer needed, and to execute the deletion of those old
files. A locking mechanism or a timing adjustment should be introduced, too, in order to
prevent a reading of a file while it is being written by another application. Unless all
applications are able to access to the same disk, an application has to act to carry a file
from one disk to another. The longer the process of transferring files takes, the more

probable that there will be problems because of inconsistencies.

3.1.4.2. Shared Database

Sharing data between applications is possible by file transfer, yet it may lack
proper timing, which is quintessential in integration. If the alterations made do not reach
quickly to other applications, the incorrect timing might lead to disruption in
applications. To have the most up-to-date data is the key point because it is seen as
reliable and error-free.

14



Updated are helpful to handle inconsistencies. The more synchronization in the
system means the least possible errors to clear up. However, despite the updates, there is

still a possibility of problems.

AFPLICATION A ] ‘ APPLICATION B ’ | APPLICATION C

A 4

}-( SHARED DATABASE 04

Figure 3.3. Integration by Shared Database [32]

In file transfer data format may not be well kept thoroughly, causing problems.
In fact, in the integration process, many of the problems result from the fact that data
are seen differently by different applications. Slight business issues may have a
profound effect. Thus central data storage is indispensable for applications so that they
can access to any shared data from a single spot. Hence, integrating applications by
getting them to share their data in a single database is useful and practical.

Only if all applications are connected to the same database that it is possible to
accept that the data is consistent all the time. If a single piece of data is updated from
different sources at the same time, transaction management systems can deal with it
easily and as the temporal gaps between the updates are tiny; errors are much easier to
spot and to fix.

SQL-based relational databases have been commonly used and this has made
shared database much simpler. Nearly all application development platforms are able to
collaborate with SQL thus there is often no need to be concerned about various file
formats and if everyone uses the same database, there cannot be problems in semantic
dissonance. Thus, dealing with any possible problems becomes much easier before the
software goes there may still be problems, it is always much easier to solve them before
the software goes live and start to fetch huge chunks of inconsistent data. [32]

If the shared database is used by multiple applications and these applications try
to read and to alter the same data, this may well cause conflicts and deadlocks because

each application, while it is accessing a particular data, keeps other applications away

15



from using the same data. Thus, if applications are present across multiple computers, it
should be ensured that the data from the database is obtained locally yet this
complicates the decision on which computer to store all the data. Hence a database that
is dispersed among computers can develop locking errors and of course a failure in

operability and performance.

3.1.4.3. Remote Procedure Invocation

An essential part of integration across applications is the sharing of data made
possible by File Transfer and Shared Database, yet this may not be sufficient. A change
in a data might mean that change is also to be done in other applications, too. For
example, changing an address might seem like a minor alteration, yet it may spark legal

processes to consider other rules in different legal jurisdiction.

"y 1 FUNGTION CALL

Y

mMmOoO>=Taom-—=Z—

APPLICATION A APPLICATION B

RESULT

moFEmaom—AZ —

Figure 3.4. Integration by Remote Procedure Invocation

For an application to invoke such processes in others entails it to know the
internals of other applications, which reflects the classic issues in the design of the
applications. Encapsulation — one of the most powerful structuring control systems in
application design — makes it possible for applications to store their data in a closed way
with the help of a function called interface. Thus, when the data is changed, it is feasible
to intercept changes in it to perform actions the applications have to do . Shared data —
sustaining a huge, encapsulated data schema- makes this more complicated. For File
transfer, it lets an application to respond to changes while processing a file, yet in the
end, the process takes much more time. Changes in an application might trigger an

alteration in the database, which might render a ripple effect across all applications.

16



Hence, the systems that use Shared Database are not flexible to changes in the database,
which basically come to mean that application development may not be shaped
according to the demands of the business.

Wrapping the data facilitates solving semantic dissonances. Multiple interfaces
might be appointed to the same data for applications to read it in their own way. Even
updates might make use of interfaces, enabling numerous points of view rather than
associational views. Yet, integrators do not often include transformation components,
forcing the each application to intermediate the interfaces with their neighbors. Remote
Procedure Invocation is well-known to software developers as they are accustomed to

procedure calls.

3.1.4.4. Messaging

File Transfer and Shared Database allow applications to sharing of data but not
functionality. Remote Procedure Invocation provides functionality yet it pairs the
application so tightly in the process. However; Remote Procedure Invocation looks like
a practical choice but applying a model for a specific application onto the integration of
applications has its drawbacks one of which is the problems resulting from distributed
development and in spite of the fact that remote procedure calls may resemble local
calls, they behave differently and are much slower, which increases the possibility of
failures. Messaging enables packet transferring much more often, in a quick, reliable,
asynchronous way and in formats that can be altered. [32]

Transferring data by messaging asynchronously can deal with the problems
which occur in distributed systems. Both systems do not have to be ready
simultaneously. Moreover, developers admit that with asynch communication , a remote
application is slower thus promoting designs that are prone to do lots of local work and

relatively less re-more work.

17



[ APPLICATION A ] [ APPLICATION B ] [ APPLICATION C ]
. ADAPTOR ' . ADAPTOR . . ADAPTOR '
( MESSAGE BUS O
L J

Figure 3.5. Integration by Messaging [32]

If File Transfer is used, messaging enables decompounding as well, in which
case the forms of the messages can be altered on the way unknown to the sender and the
receiver. Decompounding enables sending messages to numerous receivers and picking
one of possible receiver.

Sending tiny messages in a more often fashion enables applications to cooperate
behaviorally while sharing data. If a process needs to be launched once an insurance
claim is received it is turned into a message right away as soon as a single claim comes
in. Request of information and reply are made quickly. This cooperation is not fast as it
is in Remote Procedure Invocation, yet the caller does lose any time by stopping as the
message is in process and a reply reaches the destination.

Being able to send as many messages as possible in Messaging minimizes the
inconsistencies that File Transfer fails to cope with. However; there still can be some
lag problems in the systems not being updated simultaneously. People in the software
business do not know much about the asynchronous design, thus resulting in different
rules and techniques.

Changing the format of messages enables much more room for decompounding
for applications, which is not the case in Remote Procedure Invocation and File

Transfer.

3.1.5. Topologies for Enterprise Application Integration

EAIs are middleware software systems that help different systems communicate
with each other. When examined the application schema of these systems, it is

observable that there are three basic topologies. In my thesis, | will touch upon the

18



advantages and disadvantages of these three topologies: Point-to-point topology which
was firstly used and seen as the most basic solution, hub-and-spoke topology
administered from a system that is center of integrations and last but not least, bus

topology which is the architecture of enterprise service bus.

3.1.5.1. Point to Point Topology

Most of integration projects are the results of the need for communication
between two systems. The most practical way of providing this communication is to
utilize Point-to-Point Connection. In point-to-point connection only one receiver get
one particular message providing that the system knows where that particular message
to be delivered. The sending system usually has to transform the message into the

format which could be understood by the receiving point.

\

C
——
i< Na=

/’

Figure 3.6. Point To Point Topology

In point-to-point connections, the addresses of all nodes or points that need to be
linked are determined by the system. If there are changes in target addresses or protocol
details, an update is required for the systems. Furthermore, if the integration network
grows larger and at the same time changes become recurrent, it is likely that operational
cost of maintaining system adopting this approach becomes notable.

In most of the integration projects, data is expected to be transformed between

the source system and the target system. Moreover, developers sometimes may want to

19



make use of some conditional logic while customizing message routing. In point-to-
point connections, a duplication of aforementioned logic is present on each server in
need of transformation and routing yet writing a duplication code might be costly, hard
to maintain and to test [15].
Advantages

e Integration is the simplest of all and tightly bound

e Enables better integration with small number of systems.
Disadvantages

e There is limited flexibility and constant need for updates.

e The more integration points to take care of the more complex it gets.

3.1.5.2. Hub and Spoke Topology

In Hub-and-Spoke topology, there is a centralized broker which is called a hub
and there are adapters, namely, spokes which enable applications to connect the Hub
and they convert the formats of the application data to that of the Hub recognizes, or
vice versa. The Hub deals with all messages, their transformation processes into the
format that destination application understands and the routing. Spokes get data from
the origin application as relay messages to the Hub, then the Hub passes those messages

to a subscribing adapter and it send those over to the target application.

4 i

Figure 3.7. Hub and Spoke Topology

20



To create a central location for control, hub topology is very helpful and the
source sends the messages to the central hub. Hub topology is very effective provided
that business events are not dependent and if a single vendor provides the Message
Oriented Middleware (MOM). The source application here forms a message in a

particular format and the hub re-forms and sends it to the spokes linked to the hub [16].
Advantages

e Enables integrations via central management.
e Less complexity compared to point to point.
e Business process is controlled and mapping in data layer is provided

e There is more scalability.
Disadvantages

e All system is susceptible to single point of failure.

e There is limited scalability for technologic infrastructure

e The available hubs cannot generally deal with the incoming transaction duties
from other sources except the middleware they work on.

e Integration processes with multiple sources and destinations are hard to manage.

e In need of a database, processing or routing bottlenecks crowd the hub since

volumes grow and integration rules get more complex.

3.1.5.3. Bus Topology

Messages from source applications are put onto a system-wide logical software
bus that other applications can access. That’s why, bus topology is beneficial for
relaying information to multiple destinations. Messages on the bus can be particularly
subscribed by multiple applications and the data relay may not have to pass through the
central switching point, which is possible only in publish and subscribe middleware.

The glitch of bottlenecks is, however, overcome by bus topology.

21



~ ™

o O

Figure 3.8. Bus Topology

A central messaging bus is utilized for the distribution of messages by bus
architecture and the messages are published by applications to the bus using adapters.
The message bus takes these messages to the subscribing applications which contain

adapters taking the messages and re-forming them into the required format [33].
Advantages

e Enables integration of loosely coupled services.
e Enables infrastructure for shared communication
e Service Meditation
Disadvantages
e Itis hard to control all messages on bus
e Itis hard to adapt systems to loosely coupled services

e Latency period is increased compared to point-to-point integrations

3.2. Enterprise Service Bus

Before touching upon the definition of Enterprise Service Bus (ESB), it is
essential to clarify what Service Oriented Architecture (SOA) is and what features it
provides since ESB is the message-based integration architecture containing SOA
features and supporting its infrastructure. Agility, Flexibility and Reusability, basic

features of SOA, form the foundation of the advantages provided by the ESB

22



architecture. These three are the features that are targeted and benefitted as much as
possible by the infrastructure that is the focal point in my thesis.

SOA can also be seen as an architectural format that backs weakly coupled
services in providing flexibility in businesses in a way that enables interoperability in an
multiple-technology environment. SOA is comprised of a complex group of business-
aligned services enabling the actualization of adaptable and customizable business
processes by utilizing interface-based service descriptions [7].

The aim of getting SOA to deepen IS and business activity, and to ameliorate IT-
business alignment in multi-atmosphere business conditions is not very explicit in the
definition. SOA differs from other ITs in that it accentuates more on IS agility thus
ameliorating business agility. The closer the link between IT and business, the more
quickly an organization can act to alter IS applications according to business needs.

SOA provides methods for systems development and integration where systems
group functionality around business processes and package these as an interoperable
service [8]. An organization can make use of these services by re-using them or these
might also be commercially on the market. Thus, SOA separates functions into distinct
units, or services, which developers make accessible over a network in order that users
can combine and reuse them in the production of business applications. [9]Between
these services, there is always a strong communication which consists of data exchange,
and enables coordination of an activity processed in two or more services. Data transfer
between reusable services and cross domains is easily achieved. Reusable services
reduce integration costs in SOA architecture and facilitate the integration of end points
to the system. Many end points in SOA architecture contain single service availability
for use. That’s why each implemented service is designed and developed independent of
business flows, other enterprises or technologies. Services which are on SOA
architecture and can be called from more than one place, by increasing the reusability,
become available for the use of multiple external systems at the same time, and enable
updating of the changes on the whole system with a single move when there is a need
for change.

In order to elaborate more, it is useful to define Enterprise Service Bus first.
Enterprise Service Bus (ESB) is a platform that gather messaging, web services, data
transformation and intelligent routing in a way that links numerous different
applications across an organization and its partners and coordinate them while keeping

transactional integrity. It makes use of the features provided by Service Oriented

23



Architecture (SOA), Enterprise Application Integration (EAI), Business-to-Business
(B2B), and web services, thus making itself an integrated platform enabling essential
interaction and communication services that complicated software applications need via
an event driven and standards-based messaging engine, or bus, built with middleware
infrastructure product technologies [10]. By insulating the link established among a
service and a transport medium, it is utilized to realize the needs of service-oriented
architecture (SOA) [11].

Business Process B2B ERP, CRM, Mobile Portals
Management Interactions Applications

B2 xw W

Enterprise Service Bus

WaWLANAL
woysm

e!ll off WR - L.

Enterprise Legacy J2EE Net
Services data System Applications Application

Figure 3.9. Overview of Enterprise Service Bus [34]

In this way, interoperability among diverse situations is achieved with the help
of using a service-oriented model. Despite being thought to be linked to concepts like
integration and mediation, ESB, in a way, merges integration and application server
product categories. One ground-braking features of ESB is that it is able to virtualize
services. A service container of ESB holds a service and isolates it from its protocols,
methods of invocation, method exchange patterns, quality of service needs and other
infrastructure concerns.

Furthermore, ESB is able to supply a kind of abstract stratum for an established
enterprise messaging system enabling integrators to employ the advantages of
messaging without writing down any codes. An ESB is based on basic functions parted
as primary parts with distributed deployment and collaboration as opposed to the
techniques utilized by traditional enterprise application integration (EAI). In addition,

24



flexibility and multiple transport media capability are supported by structural
constituents of ESB. Basic features that need to be provided by ESB architecture are
[35]:

= Supporting the ability to invoke services

= Employing routing through dynamic mechanisms

= Sustaining service mediation

= Supporting messaging and some other features which might also be beneficial.

= Being weakly coupled and changing to event needs

= Supporting WS-* standards

= Sustaining quality in service management

» Providing process orchestration

With the features it provides, ESBs are developed versions of message-based
EAIl systems. Enabled by SOA architecture, they aim to minimize integration
difficulties and to reduce improving costs. The features above are the ones which will
facilitate the integration of complex business processes that need solutions in different
domains. The need for ESBs has arisen in time to tackle with the challenges in hub or
point-to-point frameworks which are mentioned in integration typologies.

The main reason behind the ESB pattern is, however, to establish a framework
which enables developing service-focused applications that are capable of overcoming
challenges in the early phases in the integration process. This is possible by
concentrating the logic from each group of end-points into a centralized stratum, a
connection per service. ESB pattern is different from EAI which was founded on a
centralized stratum that it focuses on dynamic execution. Since business requirements
change in time, software has to change according to those requirements, thus making
extensibility very essential. The rationale behind the ESB pattern is that it could provide
effective changes according to business needs in a fashion which makes a focused,
loosely-coupled, dynamic layer available for the management of integrations. In this
way, the software is a lot easy to handle and maintain, enabling the business to increase

value by reducing the operating costs and the time needed for fixes [12].

25



3.3. Software Products for Enterprise Application Integration

Enterprise Application Integration products are widely used in information
technology. Some parts of these are open-source and free products and may be
improved. Mostly used ones of these products are, BizTalk Server, Sonic ESB, Mule
ESB and Oracle Enterprise Service Bus. In my thesis, i worked with BizTalk server and
a toolkit of it Enterprise Service Bus Toolkit.

3.3.1. BizTalk Server

BizTalk Server, however, is an integration server developed for the integration
of corporate applications. It enables communication between end-point applications in
multiple platforms and works fully integrated with other Microsoft products, despite
without providing hardware infrastructure. According to Microsoft, BizTalk is the
number-one integration solution and value leader worldwide. These customers trust
BizTalk for solutions such as payment processing, supply chain management, business-
to-business interactions, real-time decision making, and reporting [13].

Parceiro

Figure 3.10. BizTalk [36]

26



With its first versions, BizTalk has adopted Hub & Spoke architecture and
integrations it provides have the characteristics of this architecture. Whereas Hub
&Spoke architecture has the aforementioned advantages, there are some drawbacks
emerge in time. BizTalk server acts as a management tool on the central server and
makes integration flow possible between multiple points.

BizTalk is a Microsoft product and works in an integrated way with the other
products the company provides. It enables development and service of integration along
with operating systems, databases and development tools; however, it is not possible to
use it on its own. It is dependent upon Windows Server operating system and SQL
Server Database. BizTalk also allows developing and running of orchestrations for the
management of business processes and provides solutions to connect multiple different
platforms and systems such as SAP. BizTalk, however, is not a product that can be
configured in runtime, that’s why it cannot fully support some of SOA features. All
configuration is made in development time so any change in business process needs a

development, build and deployment process again.

— | XML EDIor
~——— | FlatFile Message

A

| | Host \
= ‘ L Send Adapter ]
Orchestration
@ Sern lin

L l @

* -

\.11!/ —

Mapping v '

- a8
\ Receive Port /

\K Host

Figure 3.11. BizTalk Server Architecture [37]

27



It can be seen in Figure 3.11, all configuration in BizTalk determined in
development process. When it is examined a message flow during BizTalk, the steps in
message flow are [37],

e A message included in a Receive Location that is statically configured in
BizTalk. This location can be FTP Server directory, Web Service URL,
Database table or etc.

e Incoming message pass through a appropriate pipeline which process incoming
message to its schema defined in BizTalk

e Transformation process executed with a Map over incoming Message.

e Message is inserted to Message Box Database

e Business Logic is process if it is developed in design time in Orchestration

e Incoming message is routed by a send pipeline with appropriate Send Adaptor to

statically configured end point location

In the process flow it is seen that, service oriented architecture capabilities is
missing in BizTalk Server message processing flow. Hence, Microsoft released a

product over BizTalk which provides main SOA advantages in EAL.

3.3.2. Enterprise Service Bus Toolkit

ESB Toolkit is, on the other hand, is a compound of tools implementing ESB
architecture of Microsoft and developed on a BizTalk Server product which provides
customers with the advantages that ESB brings about. According to Microsoft, ESB
Toolkit is a collection of tools and libraries that extend BizTalk Server 2010 capabilities
of supporting a loosely coupled and dynamic messaging architecture [14].

ESB Toolkit works as an intermediary between services and their consumers and
enables fast mediation between them along with providing utmost adaptability at run
time. BizTalk ESB Toolkit 2.1 reduces complexities in the composition of service

endpoints and management of interactions between services.

28



Client systems r
and users ~

Mobile Commerce
Client [ Servers |
Servers

Application
Servers

Enterprise Service Bus

Legacy, mainframe,
Java messaging

and minicomputer
systems, IBM MQ Web Services %3 %& installations
Series, atc.

Database [ Emall .
Servers || Servers |,

Figure 3.12. Microsoft ESB Toolkit [38]

As mentioned earlier in ESB definition, SOA infrastructure is one of the basic
features provided for ESB. Basic features of ESB and opportunities it provides are as
follows.

Endpoint run-time discovery and virtualization: Virtualization of end-points and
actualization in run-time.

Loosely coupled service composition: Enabling access to servers from every
location and dynamic use of these servers which do not have direct connection.
Dynamic message transformation and translation. Dynamic transforming of
messages and their interpretation.

Dynamic routing. Run-time, content-based, itinerary-based, or context-based
message routing.

Extensibility. Provides multiple extensibility points to extend functionality for
endpoint discovery, message routing, and additional BizTalk Server adapters for run

time and design time [14].

29



How ESB Toolkit achieves to provide SOA advantages? Considering into
architecture of ESB Toolkit, there is a Abstraction layer over BizTalk Services. In case

of study section, it is declared on architecture which services are used and improved.

Resotvers () Adapter Providersf...)
Custom Resolver Custom Adapter Provider

Exception Handler or Custom Application

Fault Processor

Resolver Web Service

Transformation Web Service

Figure 3.13. ESB Toolkit Architecture [38]

A generic service of ESB Toolkit provides dynamic resolution of maps and end
point to route. Each service is a key for SOA infrastructure. ESB Guideline explaining
frameworks and services as,

The Resolver and Adapter Provider Framework provide a comprehensive,
pluggable architecture for dynamically resolving endpoint information and BizTalk
Server 2010 map types. It uses extensible components, which allow developers to
change the behavior to suit their own requirements and extend the mechanism to
support alternative resolution and routing methods [23].

e Resolver service: This service allows external consumer programs to leverage
the resolution mechanism. The Resolver service can be used to abstract service
registry access and make it broadly available in a heterogeneous environment.

e On-ramp service: This service provides a means for Web service consumers to

send messages to the ESB. Web service SOAP headers become message context

30



properties as the message passes through a context setting component in a
receive pipeline.

e Transformation service: This service allows non-BizTalk applications to access
and leverage the BizTalk transformation engine. Specifically, it allows access to
all Web service consumers including those not running on the Microsoft
platform. There, we use transformation engine to run BizTalk maps, through
different integrations. So, the service provides reusable service via SOA
infrastructure.

e Exception Management service: By publishing the fault schema using the
default BizTalk schema publishing mechanism, this service enables consumers
to submit messages so that non-BizTalk can participate in the ESB exception
management scheme. This Service has both BizTalk supported solution and a
Web Service implementation that can be used from different applications from
different platforms.

e BizTalk Operations service: This service returns information about the current
state of BizTalk artifacts. These services are available to implement a service-
oriented solution through ESB Toolkit. ESB toolkit is the alternative way to
define post-production or runtime configurations which were not able to be done
with BizTalk Server. This ability supports the advantages of Service Oriented
Architecture that are defined above.

These ESB Toolkit services are used within a integration in ESB and message
flow is processed by these services. In ESB Toolkit message flow configurations can be

gather runtime by Resolver and Adaptor.

31



2. Determine which endpoint I need

3. Route my message
4. Route the response to a second Transform my message
service ' ish

1. Transform my message ’

5. Return the final result to me

Resolve a service end ' ‘
point address for me .

Figure 3.14. ESB Toolkit Sample Message Flow

Message processing in ESB Toolkit is provided by service consuming in run-
time. Services uses resolver and adaptor framework which explained above. Compared
to BizTalk Server message processing, Resolver and Adaptor Framework give ability to

resolve configuration of services during run-time.

3.4. Container Logistics Business Process

Container logistics management is a supply chain management component that
is used to meet customer demands through the planning, control and implementation of
the effective movement and storage of related information, goods and services from
origin to destination. Container logistics management helps companies reduce expenses

and enhance customer service [24]. It includes lots of vendors and partner.

32



Figure 3.15. Container Logistics Business Process [19]

There are multiple dimensions how to examine and categorize container logistics
which primarily focuses on transportation and can roughly be divided into sub-
categories three of which will be studied in this thesis. These are: Road transportation,
rail transportation and maritime transportation.

In container logistics, the most crucial point of transportation is the shipping
container. All products from different sectors are transported in containers. As will be
used frequently in the thesis, some explanations are useful before delving into the
subject.

e Container : Container is a single rigid receptacle without wheels that is used for
the transport of goods

Figure 3.16. Container group For Arkas Logistics

33



Road transportation: Transportation of containers via road systems in logistical
business processes. Depots play an important role in this kind of transportation.
Rail transportation: In rail transportation, containers are transported by freight
trains. Despite being cheaper and more sufficient, rail transportation may not
always be useful in direct, to-the-point shipments, thus making road
transportation an essential step in the process.

Maritime transportation: Maritime transportation is the way of transporting
containers with ships and this usually takes place intercontinental, hence, ports
are essential parts of this method of transportation. Containers transported via
road are brought to ports, transported onto relevant vessels. However, containers
dismounted off the ships and related checks are, too, considered within this
process.

Agency: Agencies are establishments that follow up the business, establish
communication between depots, ports and ship owners, and manage the
transportation processes in accordance with the demands from companies.
Container logistics in agencies play a crucial role in the process and are a part of
the integration processes.

34



CHAPTER 4

METHODOLOGY

In this part, it will be elaborated on this thesis and will be explained the business
domains and processes within which some studies have been done and will be continued
with a business strategy.

After explaining the advantages and disadvantages of the integration models and
their development, it will be elaborated on how ESB architecture is applied in this field
and on its application methodology. The most crucial factor in the process is the
grouping and modeling of integrations in business processes. Reducing the number of
integrations is the primary determinant for my thesis to reach its target.

The domain that is utilized was container logistics business processes. As there
are numerous different business flows and platforms in container logistics business
processes, the number of running integrations is relatively high and the processes
functioning in each integration differ from each other. The fact that each integration
represent a different process results from the usage of integration architecture.

e Lack of modeling in business flows
¢ lack of application of integrations which are designed to operate together
e Need for maintenance and for new integrations after the application of point-to-
point integration system with BizTalk Server increases the complexity of a
working system.
Another problem in container logistical processes which is within the domain of thesis
is the high number of companies that are in cooperation. While the multiplicity of
present integrations makes the process more complex, one of the parameters that render
solutions harder to attain is the increase in the number of cooperating partner
companies. The need to cooperate with different companies in the same process,
changes in details within the business logic requires more and more integration, thus
posing an obstacle to the simplification of the integration processes. That’s why,
different companies have their own particular technological infrastructure and cannot be
expected to show the same traits similar to each other, yet companies may have to take

part in a business process with various technological infrastructures upon which

35



divergent operating systems, platforms or different applications are present. At this
point, with the process taken into consideration with a larger general view, a need to
form an infrastructure that can work with different technologies arises.

However, to establish this infrastructure, it is important to determine common
integration points, to centralize processes and to make sure that integration
infrastructure can be developed.

That’s why, the methodology taken towards this goal is as follows.

e On the container logistical domain at which our company worked with Bimar,
there were around 200 working integrations and in time this number increases,
as aforementioned. These integrations take place mostly between DEPOT,
AGENCY and PORT.

e By analyzing the business processes for these integrations, then forming a model
by generalizing the processes on swim lane diagrams, present integrations are
demonstrated on these models. Below there is a sample of business process

analysis. (See Appendix 1-9 for the rest of business processes analysis).

Report creation If critical product, move to
anather container

Entrance A-B-C-H

oy Conaner Lb Conditonfiote L Damage Exist 7 e SURVEY OPERATION |————— < ISEMPTY The

.

GES =7

NTEGRASYON
= =z =3
17— e——| Il

DECO

Figure 4.1. Containers Logistic Depot Business Process Analysis

e While modeling, integrations are divided into sub-groups in terms of business

logic they work with and of input/output data types.

36



Linaam ACENTE DEPO 5
=
i
=
o =
e E 53
E] E g
[
T
=
£
e
T | _ iy
=] a8 =1
L E E L=
T & %
= =
=] g
2= 3
EE g E
B R
5 g2
S - 2=
E g
H
E 5
=z g £z
EE z =
= a=

Figure 4.2. File groups between Depot, Agency and Port

In order for business processes to work sufficiently, the incoming and outgoing
data pose an essential role. Data or information should be entrusted to those who
must have knowledge of it for its necessary usage. If you go backwards from
usage to the need, then you may discover what is needed in order to start,
continue or complete a business process [19].

By utilizing the Formal Concept Analysis method, the aim was to simplify the
integration processes. The purpose of FCA, according to Ganter and Wille [20]

is to support the user in analyzing and structuring a domain of interest. Such a

37



method allows us to automatically obtain similarity scores without relying on
human domain expertise [21].

FCA here is intended to be applied onto domain knowledge. Inputs and outputs
of each business process are present in that domain. In this way similarities of
input and output will be seen and an integration point will emerge.

With FCA method, by clustering input/output or business processes, integration
points have been determined within the business processes of which inputs and

outputs are similar or bear a high amount of resemblance.

-
[s]
a
w
[a]
4 h CONTAINER
[ beeor \—) MANIFEST INFO —
\ y, ENTRY
A ' |
= - AL
g | =
- =
q
g =
0 g
X = 'E PN
e %M % g Fﬁ;
l: :
A g
P
[G]
= CEs =7
= =  CODECO
L
=
=
w
v
<

Figure 4.3. Integration Point between Depot and Agency

Integration similarity method by data comparison is used in another article [30],
that service data is declared as an entity and service entities compared to clarify
a service model.

For present integration working in determined spots and for similar integrations
which can be added onto relevant business processes, the aim was merging for

the grouped integrations.

38



e Reduction in the need of new and present integrations is targeted by means of
grouped integrations in terms of processes and of integrations considered to be
merged according to their input/output similarities.

e Merged integrations are processed by reusable custom services that provide
integration tracking and exception handling in message flow.

e In [29] exception management is divided into 2 categories. First of them aims to
handle exceptions while message acquired by system. The other one aims to
handle exception inside system that message is being process according to
business logic.

e Proposed solution in this thesis contains both of the categories. While incoming
message is accepted by system it is tracked by exception handler and log
services. Also, while message is being processed in business logic components it
is being handled for possible exceptions.

Along with the methodology pursued, container logistical processes of road, sea
and road transportation is analyzed, the processes for which the integrations are
prepared are determined and on the analysis files formed integration points are
indicated.

With the help of integration merging study, by implementing an infrastructure
availability which grouped business processes can work with, present integrations are
merged. The proposed infrastructure schema can be seen below,

EXCEPTION DATABASE %7 4{ INTEGRATION TRACKING TOOL

EXCEPTION FRAMEWORK

ON-RAMP SELECT TRANSFORMATION
\\\\\\\\\\\\\\\\\ SERVICE ROUTING

(CusTom} | I (CusTOM) SERVICE
! INFRASTRUCTURE 1 —|—>

RESOLVER SERVICE
DYNAMIC — RESOLVER SERVICE RESOLVER SERVICE
CONFIGURATION

BIZTALK DB ‘

»|  RULEENGINEDB

ITINERARY DB ‘

Figure 4.4. SOA Based Integration Infrastructure

23
4

39



Outcome of this study will be later explained in the next and in the case study with the

benefits of the infrastructure framework written.

40



CHAPTER 5

PROPOSED SERVICE ORIENTED INTEGRATION OF
LOGISTICS INFORMATION SYSTEMS

It has become a commonly used middleware infrastructure with the advantages
of Enterprise Service Bus and with its support of SOA architecture. As IT managers
develop their SOA plans they often come to the conclusion that infrastructure software
is needed to fulfill their objectives for flexibility, robustness and control. The ESB has
emerged as the pre-eminent form of SOA infrastructure software [22].

ESB provides a standart based integration infrastructure that combines
messaging, transformaton, routing, exception handling and monitoring. Besides these ,
as explained in SOA advantages, ESB provides agile, flexible and combination of
loosely coupled services.

Each service may be a processing part or end point in ESB system. These
services give a flexible runtime environment for business process management. Each
ESB vendor does not need to know the details of ESB services, so details can be
gathered in runtime. Furthermore, each running service configuration can be modified
in runtime and this configuration does not need a server or an application restart. This
function gives a stimulus to agile business changes and approves the feature of SOA
agility.

All the services in bus works as loosely coupled, easy to be configured in
runtime, and reusable in ESB environment. Another critical issue about services in
architecture is monitoring and exception handling. Service details, exception handling
and exception analysis are needed to control business process flow over integrations.

Since integrations in operation are those which utilize P2P infrastructure, there is
a need to adapt domain analysis and designated integration points to ESB architecture,
and to form the software framework after the need for the domain. The problems of
BizTalk integration infrastructure and the features of service-based ESB architecture
that we present are designated below.

Since ESB Toolkit is a whole set of components working on BizTalk product,

some of its services uses BizTalk artifects. During the development of software

41



infrastructure, some of the present BizTalk services, ESB toolkit components were
developed and new services are put into infrastructure use. Now, | will try to elucidate
present-day BizTalk architecture, advantages of ESB compared to BizTalk and the steps
to adapt the integration group operating in BizTalk architecture into the ESB toolkit
infrastructure.

Arhcitecture of BizTalk relies on Hub & Spoke which is a point to point
integration solution between cross platforms which can be seen in Figure 5.1. Through
Hub & Spoke arhcitecture nature, its needs a centrailized system to supply integration

connectivity.

, S

g

Hub and Spoke

Figure 5.1. Hub and Spoke Architecture Diagram

In BizTalk environment, integration needs to be configured with certain parameters.
Each end-to-end connectivity provided by BizTalk has a certain receive and end
locations, a specific orchestration for business process management. Each integration
has its own particular schemas and maps that can be processed through orchestrations if
needed. Therefore, in case of a new integration demand, developers also have to prepare
integration specific schemas, orchestrations, and business processes (orchestrations) and
unique locations for receive and send. In Figure 5.2, static configuration for integrations

is visualized.

42



.
Static Schema Static Schema Static Schema

[Static Send Port [Static Send Port] [Static Send Port]

LWSDL Schema | LWSDL Schema | LWSDL Schema |

Figure 5.2. BizTalk Integration with static configuration

ESB Toolkit is a Microsoft Product is an architectural pattern for Microsoft
Company to implement SOA based solutions. By adopting SOA based solutions over

ESB Toolkit Microsoft provided to have advantages of using service-oriented

architecture.

=S O 50O

.....................................................................

Java messaging g o ]
systems, IBM MQ Web Services 4§

Legacy, mainframe,
Series, etc.

and minicomputer
installations

Figure 5.3. Enterprise Service Bus Toolkit [39]

SOA-based connectivity between cross platform applications supports flexible, agile
environment with reusable services. ESB toolkit provides these advantages via

abstraction of BizTalk components that are adequated to be implemented with SOA

43




properties. ESB Toolkit has a list of reusable services, components, frameworks that

BizTalk integration can be modified into an Enterprise Service Bus solution.

Itinerary Creation

Itinerary is the core component of ESB Toolkit architecture. It defines
the message flow through Service Bus. The idea of itinerary is not to exclude
business logic. For that, we have service composition capabilities using BizTalk
orchestrations. The goal and appropriate use for an itinerary is a simpler series
of steps, not a complete process. So, the first step is to create the itinerary for our
message processing mechanism. This itinerary will include the service list that

incoming message will be processed through.

TItinerary Designer

BT 0 VR R W R b
_:.g ArlesCodecoRece 42 LogStart 2 | ArlesCodecoTransfi:nl
On-Ramp ~ Messaging Extende : — Messaging Extender
1
i

| Receive Handlers

= Send Handlers

b Y
ArlesCodecoRoute (%

B I ) I )
ItineraryService3 (% |~ Messaging Eviencer ! |~ Messaging Evencer !

O Ramp Evznger ! I|:] ‘ :
| = Resolver I | B Resolver 1

= Resolver [ ! T |
Empty i ArlesCodecoRouteSeled

y I i | ‘

Figure 5.4. Itinerary design and service list

| 15t ArlesCodecosend %) |
| OfRamp

= Send Handlers

| B Receive Handlers

Using Itinerary Services

To implement a SOA based solution via ESB toolKkit, it must be designed
within itinerary to use which of services to be executed during message life
cycle. ESB Toolkit supports two types of services: Messaging Service and
Orchestration Services.

o Messaging Service is a component that is called by pipeline that receives
the message. The dispatcher component of calling pipeline processes the
list of services that are message based and are attached to the incoming
message. Two services are built in messaging service inside toolkit

which is Transformation And Routing Service. These services can be

44



increased by implementing new Message Based Services. | added three
custom messaging services to adapt ESB Toolkit services to service
based container logistics information framework. These three services
are message based services, can be used in itinerary designer and
processed in pipelines.

o Orchestrations are Business Process Management tools for BizTalk
server and almost every integration needs these components to provide
connectivity. However ESB Toolkit is a service oriented platform based
on service consumption. It is not useful with implementing business
logic through connectivity and integration. Microsoft gives the ability to
add a custom orchestration to be used inside toolkit as a service. After
orchestration is deployed to BizTalk Admin Console, its assembly
information needs to be inserted to ESB.Config file as a new service. In
this way, that custom orchestration can be seen and used in itinerary

designer.

ol | B Eastin ‘ B Westinl I B Conten5R4
111 stage="Hone' /> ‘
112 <itineraryService id="cfhed6ci-d85c-44e9-9549-4a7ahf2106¢5" name="Microsoft .Practices.ESB.Services.Transform' type="Microsoft.Practices,ES
113 gtage="All" /»

! <itineraryService id="92d3h293-e6d4-44al-h27d-c42h48aec667" name="Microsoft .Practices ESB.Services.Transform' type="Microsoft.Practices,ESt

i & esheorfy

115 gtage="Hone' />

116 <itineraryService id="977£085£-9£6d-4c18-966£-90hed114£649" name="Microsoft .Practices.ESB.Services.SendPort" type="Microsoft.Practices.ESB.
117 stage="AllReceive' />

<itineraryiervice id="4810569C-8FF2-4162-86CE-47692R084017" name="Microsoft .Practices ESB.Itinerary,Services Broker MessagingBroker' type='Mici
118 <itineraryservice id="48123F9C-8FD2-4134-86CH-47523A084017" name="0rcForItn" type="ItnOrchestration,OrcForItn, ItnOrchestration, Version=1.0.0,
100 1 </itineraryservicesy

Figure 5.5. Service Definition in ESB.Config

e Schema Usage
Incoming message needs to be matched with a schema that is deployed to
BizTalk Server to be processed inside ESB Toolkit. To combine more than one
integration into a SOA based solution, it is a better way to use single schema. By
using single schema we can provide a content based resolution with Resolver
Framework. With single message, we can use its content to define which map to

transform and which end point to be routed at runtime.

45



ESB toolkit provides main advantages of Service-Oriented Architecture. After
converting BizTalk integration we hope to have these benefits in our solution. Thereby
run-time configuration, loosely coupled integration pattern and reusable services have a
significant place in service oriented environment that need to be take into consideration.
To achieve these main goals, ESB toolkit provides framework and services. Their
ability to support run-time configuration is provided by Resolver Service and Dynamic
Ports. In itinerary designer and BizTalk components, Resolver framework is an agent to

get configuration parameters.

‘ Microsoft Business Rule Composer - BIZTALK2010/BIZTALKRULEENGINEDB
Rule Store  Edit Help

FRRN IEIR R R

= RouteBasedOnVYalueOnMessageForKnownType - Version 1.0 - SetWestEndPoint

1] RouteBasedOnValueOnMessageForKnownT ype :J IF
[y Version 1.0 - Deployed "
&) SelEastEndPoint B 8 Conditians

5] SetlUnknownCustomerEndPaint =

2] SelwestEndPain ;|

GlobalBank ESB DynamicResolution.Schemas.NAOrderDoc:tns:OrderDoc/ng:customerName  is equal to GlobalBankiWest

Wvocabular . 12 XML Sche...| () Databases |4 NET Clos.

[ Schemas
= &) NADideDoc.xsd SetEnd Point Outbound Transport Locationto - ClHowTos\OutiWest?%MessagelD%.xml
=B gdecliﬁmewame SetEnd Point Outbound Transport Typeto FILE
EI)

) requestType

Figure 5.6. Dynamic configuration in Business Rule Engine

The first thing that can be implemented is a dynamic itinerary resolution. The
best practice for itineraries is, for every type of a message, there must be a single
itinerary. In our work ‘Arles Codeco Solution” we have a single itinerary but we did not
use dynamic itinerary selection. It is possible to use it with Resolver Framework by

selecting itinerary according to incoming message schema type or schema context.

46



| Ej Configure Pipeline - ItinerarySelectReceivexXml
I

: A pipeline encapsulates a set of operations that must execute in a particular, sequential order. Pipelines often handle file coding or crypting. as well as validation of
| identities. Pipelines can also contain custom operations designed for particular business processes.

E Stage 1: Di: ble - C XML disassembler
AllowlnrecognizedMessage False =1
DocumentSpecMames
EnvelopeSpecNames
RecoverablelnterchangeProcessing False
WalidateDocument False
El Stage 2: ResolveParty - Ci (1): ESB It Sel
IgnoreE morKey False
ItineraryFactKey Resolver._ltinerary
ResolverConnectionString BRI:\\poli 1t Sel Rule:: F
Walidateltinerary False
El Stage 2: ResolveParty - C (2): ESB Di h
Enabled True
Endpoint
MapMName
RoutingServiceName Microsoft. Practices. ESB.Services. Routing
TransformServiceName Microsoft. Practices. ESB.Services. Transform
Walidate True
Help aK I Cancel I

Figure 5.7. Dynamic Resolution via Resolver Framework

The second one is using Resolver Framework for Transformation and Routing
Services. These services are reusable components of ESB Toolkit. For combining three
integration into one ESB Solution, Transform Service with Resolver Service is used to
decide which map to execute. Content of the schema consists of an id and according to
that id; transform service gets a map name from ResolverFramework. By this way,
Transformation service provided reusability and Resolver framework gives chance to
have agility to urgent changes. And also, adding new services to itinerary or new maps
to be used provides flexibility to our solution. So our solutions for both BizTalk and

ESB Toolkit can be structured in Figure 5.8 below,

él

SERES o Schema (2) D”"*‘:‘:ﬂs"“" A A
[ ]

Figure 5.8. Classic vs. Proposed Integration Solution

47



CHAPTER 6

CASE STUDY in BIMAR

In this chapter It will be tried to explain the studies carried out in Bimar which
performed the container logistics business integrations of the studies in real sector
which were planned and touched upon in earlier chapters.

By adapting the present integrations onto the ESB Toolkit infrastructure, it was
aimed to get benefit from the advantages of the SOA architecture which ESB applies
and supports.

Integrations carried out within ESB Toolkit enable integration management with
flexible, loosely-coupled and reusable services. It aims to circumvent repetitions of
development, building and deployment processes which are called "hard-coded"” as in
classical BizTalk integrations and where all configurations are defined as static, and in
which developers have to deal with during a change.

Within the company there are approximately 200 integrations in operation. After
the domain and data analyses of these integrations, transferring the grouped integration
clusters into ESB architecture as designated in previous chapter, new services created
during these improvements and BizTalk ESB Toolkit components will be explained.
Another crucial issue for the company and the real sector is the need for monitoring and
exception which emerge after integration and process become more complex. This was
implemented in production servers along with updated and improved integrations and
was prepared to be put into production. Designed in accordance with ESB and SOA
infrastructures, exception management and monitoring services work in harmony with
the definitions of reusability, agility and flexibility which are the three basic features
aforementioned in my thesis.

In the studies conducted, all relevant features of ESB Toolkit are utilized,
integrations are applied as both orchestration-based and message-based. By activating
the exception handling and portal usage, a new feature that is not provided by the
present BizTalk architecture is obtained. Furthermore, resolvers providing dynamism
and adapter infrastructures, along with exception capturing mechanisms and

management portal, enable a rich platform. In figure below, it is seen that which

48



components are used and developed in ESB Toolkit infrastructure. In figure 6.1
highlighted components of framework has been reused, developed and improved in
custom framework services. Custom components for BizTalk Receive and Send ports
are included in framework. Generated ESB based integration solutions consumes s ESB
Toolkit core services, itinerary services also uses business rule engine, transformation
engine and resolver-adaptor framework.

The studies and developments conducted within the domain of Enterprise

Service Bus architecture will be elaborated on under the chapters below.

ESB Toolkit Core

Rtinerary Services

R . e —
Sesvice
4

uDDI 3.0
Business Rules Engine
Transformation Engine

Orchestration Engine

Receive

BizTalk Pub/Sub
Engine

Figure 6.1. ESB Toolkit infrastructure with custom framework [40]

Within the scope of framework studies, for integrations that will be implemented
in ESB architecture, development of Custom Services, how services should be
developed and the purpose they serve for are explained. Framework software providing
SOA architecture features, running container logistics business processes and enabling
the development of new integrations in the face of domain needs with minimum effort
has been developed.

In Integration Studies sub-chapter, improvements to run integrations with newly-
developed ESB framework and integration details are further explained.

49



In Integration Management sub-chapter, however, how created framework
services and running integrations work and controlled, the developments directed

towards the end users are explained.

6.1. Service Oriented Integration Framework with ESB Toolkit

For integrations to run in ESB toolkit architecture, the need for interoperability,
exception management, logging, integration status checking led to the need for
developments on infrastructural basis. Since Exception Management and Portal
infrastructures, features of ESB Toolkit, do not fully meet the needs, a brand new
service and infrastructure software which would integrate with the exception
management and the integration monitoring databases within Bimar was developed in
accordance with ESB infrastructure.

The infrastructure used in classic integration management was realized in ESB
platform as well. As this framework uses BizTalk Integration principles as running
logic, integrations have been made to adapt it ESB Toolkit infrastructure. The details of
this implementation are below.

Since Enterprise Service Bus architecture is a message-based architecture, message-
based services have been developed. The one utilized in Microsoft platform, however,
technically enables development of both message-based and orchestration-based
services. Nevertheless, for Microsoft, orchestration tool was developed as message-
based services since it was designed for the management and development of business
logic, promising low quality service in terms of reusability.

Within ESB, it is possible to transform messages with a custom messaging service
and to check whether it is a valid or correct message, or to enable handling of a set of
processes suitable for the business flow.

To develop a message-based custom service in ESB Toolkit architecture, it is
necessary to define a class applying an interface called ImessagingService. Via this
class interface, 2 methods are implemented and 2 features are added to the class. To
explain these methods briefly:

Execute: the part where which processes the service is responsible for carrying out
within the method is coded. Within this method, the message is processed and the

processed message is sent back, which is the most crucial part of the written service.

50



ShouldAdvanceStep : The method which designates whether a processed message
will be processed by the next service in the itinerary list. Boolean return type true,
however, if the return Boolean value is true, calling pipeline component put the next
services on the itinerary into execution and message continues to be processed. If the
service returns false on this method, service does not operate the next service. Some
properties to be briefly touched upon in this class are:

Name : Service name seen on the itinerary. When the created service is defined in
ESB.config file, it needs to share the same name with the property defined within the
class.

SupportDissassemble : It designates whether the service written with this property
support disassemble property or whether it enables multiple resolvers to operate or not.

Custom services are developed with the aim of exception management and logging.
Services, as aforementioned, operate as message-based. All services can be called upon
on the itinerary and the itinerary can be used during designing. Performed services can
be categorized into 3 sub-groups: Exception handling transformation service, services
opening and closing registry for logging. In figure 6.2 it is seen that, custom services
are used in an itinerary. These services are executed in ESB while message is processed.
Besides, custom services are built as reusable components, which any other itineraries
can include. Each message inside framework can be logged, transformed and any

occurring exceptions during message processing are kept in exception database.

A A AN S B S . A S S . S

e

1 LogStart 3R 1 ArlesCodecoTransfq 2 nl
i

[l:: =l Resolwver FI [::: =l Resolwer i
l Emp : l ArlesCodecoMapSeledt :
e e e e R !
_______________ . f_________‘:‘u"._______‘

1 LogStop 2] 0 1 ArlesCodecoRoute [ |

i

: =l Resolver F:} : =l Resolwer i

I I

l Emp I l ArlesCodecoRouteSelect  §

T ———————— ———— —ll} i ———— ——— — — —— —— — —IJ

Figure 6.2. SOA based ESB Services

51



Log Registry Service: Through Log Registry Service, before a message received into
an integration running on ESB toolkit is processed, a new registry is created for it to be
logged in the framework. The registry here is started according to the GUID data of the
itinerary which belongs to the message. Having been under registry, message continues
to be processed by the following services. While Log Registry Service is dependent
upon orchestration objects working for the message in the infrastructure which is
developed for classic BizTalk integration, log service developed for ESB is totally
different from this operating mechanism.

Operating message-based, ESB toolkit deals with services one by one with the

help of dispatcher tool on BizTalk pipeline. This makes it impossible for orchestration
objects to emerge in BizTalk infrastructure, thus it is necessary to use ESB toolkit
itinerary features to save the messages. These data are captured during message flow
and saved in the database in the infrastructure via log registry service.
Exception Handling Transform Service: Classic BizTalk integrations within Bimar
encounter many exceptions during message transforms. During this process, exception
handling and registry, continuation of the process are crucial for integrations. With this
custom service, Transform Service within ESB has been developed to handle exceptions
and these exceptions are kept in registry in accordance with the message and its
itinerary GUID.

Transform used by ESB Toolkit service works similar to a service. The difference
is, during the transform process, if the scripts used in the called map encounter an
exception, exception objects in the script are firstly handled by core transform service of
the ESB Toolkit, then by the transform exception handling service of the framework we
developed. In this way, a healthy processing continuum will be sustained for the map
called in transform service, message will not suffer from an exception, and occurring
exceptions will be saved in control. After the exceptions are saved, messages can be
viewed and exception details are accessible.

Log Close service: With this service, messages passing through intermediary services
without any exceptions are registered as “successful” as they pass through the
integration process without any glitch. This service is usually the last service of the
itinerary file created for a message. If the previous services operated and the last
operating service is Log Close service, this means that other services work without an
exception and the message of Log Close service at that time is added to the system as

“successful”. If, before this service, there may be a glitch in services in itinerary e.g.

52



Transform Exception Handling, that service will automatically handle the exception and
add the message registry to the system as “Exception”. Services sustain integration

management by operating on ESB toolkit infrastructure and services.

[ | BUILT-IN | PIPELINES CUSTOM | ]

CUSTOM _

LOG START BUILT-IN

LOG STOP

SERVICES | TRANSFORMATION

ERROR TOLERATE ROUTING

TRANSFORM

[ DYNAMIC SEND PORT ]

Figure 6.3. SOA based ESB Toolkit Framework

Seen from the figure 6.3, SOA Based ESB Toolkit Framework provides custom
components for container logistics information systems. Custom pipelines enables to
process Electronic Data Interchange For Administration, Commerce and Transport files
(EDIFACT). Exception handling, integration tracking and monitoring features is
supplied by log start and log stop services. Input file is processed by custom pipelines

and executed in custom ESB services.

6.2. Service Oriented Integration of Logistic Processes

For the integrations realized within Bimar, framework support is utilized. These
integrations work between different companies and systems located in logistical
domain. In the table below, you can see on which domain the integrations run,
integration code which takes a unique value and provides follow-ups of the integration
within Bimar and the target/source systems of the integrations. Last column
demonstrates which integration works with which ESB type in the newly-developed

ESB architecture. Here is the list of the integrations:

53



Table 6.1. Integrations to work with custom framework

Integration Integration Source Target ESB Type
type Code System System

Depot ENTO0000177 EDS YNA Orchestration
Seaway-Depot | ENT0000187 YNA EDS Orchestration
Port - Seaway ENTO0000171 Yilport YNA Orchestration
Port - Seaway ENTO0000171 Yilport YNA Message-based
Port - Seaway ENTO0000040 Navis YNA Orchestration
Port - Seaway ENTO0000040 Navis YNA Message-based
Roadway ENTO0000014 YNA Catlogic Orchestration
Port - Agency | ENT0000067 Arles BSA Message-based
Port - Agency ENTO0000165 Arles HAPAG Message-based
Port - Agency ENTO0000208 Arles MSC Message-based
Port - Agency ENTO0000050 Arles Navis Message-based
Port - Agency ENTO0000173 Arles Marport Message-based
Port - Agency ENTO0000056 Arles YNA Message-based

These integrations and the present ones have been grouped and started to run as
a single integration. In this way multiple integrations work as single integration.
Incoming and Outgoing point in ESB infrastructure have been reduced to single point.
Integrations ENT0000165, ENT0000050 and ENT0000208 are good examples for this.
Three different integrations running here have been grouped according to their data and
process similarity and re-factored to run as a single integration, thus reducing the
incoming and outgoing channel to a single one, and made to co-run thanks to the
framework.

Merged integrations have been changed as Message-based and optimized in a
way to enable multiple processes through a single integration. The use of Business Rule
Engine Tool made dynamic end-point resolving possible. With the help of business
rules which enable 3 different integrations to work as single ESB integration, and
differentiate present integration processes, processes have become manageable. Being

independent of code and integration design, business rules ensured ESB architecture to

54




access these rules in run-time and run them, hence enabling application of the agility
concept. For instance, whereas a change happening in the end-point that a file should
reach requires a change in the end point definition which is bound as static in classic
BizTalk integration process, and then taking it on build, deploy and production. A
change by means of business rules, however, is just saved, run in run-time by ESB and
Is immediately taken into production. At the same time, the processes of taking it on
build deploy and production server is not needed.

Container logistics process integrations merged and adapted to ESB framework
with custom services. In Table 6.1 full list of integrations are seen that is worked on
custom framework. Total number of integrations 13, merged number of integrations is
8. In Table 6.2 merged integrations are listed, and Table 6.3 is the list of integrations

that is adapted to custom framework without merging with other integrations.

Table 6.2. List of merged integrations

Integration Integration Source Target
type Code System System

Port - Seaway ENTO0000171 Yilport YNA
Port - Seaway ENTO0000040 Navis YNA
Port - Agency ENTO0000067 Arles BSA
Port - Agency ENTO0000165 Arles HAPAG
Port - Agency ENTO0000208 Arles MSC
Port - Agency ENTO0000050 Arles Navis
Port - Agency ENTO0000173 Arles Marport
Port - Agency ENTO0000056 Arles YNA

Integrations that are not merged are included to system that uses custom services of
framework. They behave as a ESB integration, use custom log and transformation
services, support dynamic routing and runtime configuration but lack of similarity about
input and output files or business logic, prevent them to be merged with other

integrations.

6.3. Integration Management in SOA based ESB Framework

Owing to services developed for ESB toolkit and the used framework, a healthy

infrastructure for the integration management has been prepared and infrastructural

55



improvements have been done for crucial problems like file follow-up and exception
management.

Integrations run on ESB Toolkit have become easy to follow-up through a central
system. Written custom services made it possible to monitor the integration process in
the control mechanism.

ESB toolkit integrations have started to be logged on the basis of itinerary and
registered as singular logs according to their itinerary GUID. A healthy start in
integration, running transform service in a exception-tolerating fashion, and finding no
exceptions during message processing enabled a successful registry log. On a contrary
situation, message will be saved in the system as exception.

In the figure below, there is a list of integrations demonstrating that the running

integrations on ESB server are under control of the developed infrastructure.

Integration Configuration on Server

5o || Search..,

4 | B@- & Biztalk 2010 ESB[10.35.104.81]
'?g EMTOO0024Y - EshDenerne
% EMTOO00256 - ArlesItinerary
'?Q EMTOO0025T - ENTOO00040E:b
'?g EMTOO00259 - ENTOO001T1E:b
'?g EMTOO00262 - ENTOO00056E:b
@ EMTOO00026T - EMTO000050Esk Arles - Marport Booking
ik @ ENTOO00255 - MSC COPRAR Yiklerne/Tahliye Entegrasyonu
1 '?g ENTOO00263 - ENTOOOOLT3Esh Arles - Mawvis Booking

Figure 6.4. Container logistic integration list

Each integration definition work with a itinerary file that belongs to itself and it
is logged as single according to the itinerary GUID given to this itinerary in run-time.
With the help of logging, it is possible to know if the messages coming to the
integration processes are processed as “successful” or “fail” and to see the exception
details of the failed integrations. The system, also, enables display of original files by
recording all incoming messages or it may as well send a “fail” message to ESB again
for processing.

Next image shows that integration management is enabled with the registry
system provided by this infrastructure. With features like message follow-up, exception
monitoring, it is possible to monitor ESB Toolkit integration processes.

56



Logs on Server Biztalk 2010 ESB ( 10.35.104.81)

Search

File Mame

Manage Integrations | Integration Configuration on Serer

L4 ENTOO00256 - AtlesItinerary

Drag a column here to group by this column,

Re-T File Name Integration Status Anhk Durumu 5 Size [KB) Statt Time Finish Time Execution Time

Integration Status

Select.., g W i T NT v T 7

Execution Date * | || |N5_67_BSA LTIUE0L2370 . Baganh O 6,340 12,12.2012 05;00:43  12,12.2012 0%:00:59 16 seconds

() Today | M3_163 F3CU3315061 C L. Baganh O 3477 12122012 0%:00:31 12,12.2012 0%:00:43 12 seconds

(et iNs | NS_208_MSCU3833296_Ek.. Baganl =) £.160 12.12.2012 09:00:31 12122012 03:00:41 1L seconds

() Last 1 Month

() Custom Date

From

05.12.2012 10;:18

To Dretails £
| | Message Type Custam Message Technical Detail

Message Type i v v

Select..,

Technical Detail

Figure 6.5. Integration and exception tracking

As seen in integration follow-up screen, ENT0000256 coded integration
messages are run on itinerary file named Arlesltinerary. With all messages processed
successfully, infrastructure developed to adapt the ESB makes it possible to observe
technical data such as message size data, input and output time and processing time by
the user and the developer. In the “Details” form below, it is possible to see the

exceptions occurring in the messages.

Table 6.3. BizTalk vs. SOA based framework comparison

Thesis  Service  Oriented | BizTalk Integration
Integration Infrastructure Infrastructure
Reusable Services YES NO
Dynamic Routing YES NO
Exception Handling YES NO
Exception Monitoring YES NO
Integration Tracking YES PARTIALLY

Within the framework of the developed software, creating manageable, easy-to-
follow-up, recordable integration of applications have been successful. The fact that the
framework written on ESB toolkit is a widely-used structure is also a factor facilitating

the realization of the targets.

57



CHAPTER 7

CONCLUSION

The focal point of thesis is service-based information systems for container
logistics processes management. Thesis aims to tackle one of the most intricate business
processes and corporate applications, that is, integration of applications and it tries to
provide a solution infrastructure suitable to integration management. Study has been
realized within Bimar Company which manages the business processes of Arkas in this
domain.

First of all, after the analysis of business processes that are active in different
domains by different companies, integration points based on this analysis were
determined. A study was carried out to transfer the determined integrations to service-
based architecture. With the advantages provided by the service-based architecture, a
reusable, agile integration architecture that could optimize complicated business
processes was obtained.

These studies were conducted on BizTalk Server, a product by Microsoft used at
Bimar and on other Microsoft products. While existing integrations were on Hub and
Spoke architecture that does not support integration optimization, they were transferred
to ESB Toolkit by Microsoft and this enabled them to utilize the advantages of SOA
architecture.

BizTalk Server was a good solution for a small number of integrations and for
simple business processes, yet it did not yield the necessary performance in the
complicated systems that work with different enterprises, like container logistics
processes. SOA-based services defined in ESB Toolkit were, however, created with an
agile infrastructure for quickly-changing business processes. Moreover, new services
that could be added for the different enterprises with different technologies were
provided with a flexible infrastructure. That the custom services could be used in all
integrations without any configuration was an advantage brought by the reusability
feature.

Moreover, with regards to exceptions and the monitoring of integrations, new

services were written for an efficient process. For a healthy process, follow-up for

58



integrations is as crucial as the monitoring and analysis of exceptions possible in
business logic within integrations. In real life, those kinds of exceptions are possible to
come across and to overcome this, the follow-up for exceptions are provided within
ESB architecture.

To sum up, two of the recent needs and problems of business world, integration
and management of business processes acquires an optimized structure in line with the
targets determined in this thesis. The advantages provided by SOA and ESB
architecture were utilized and a developable infrastructure was put into operation. With
the architecture developed, exception and integration management was supported and
the aimed service-oriented integration infrastructure for container logistics management

was realized.

59



CHAPTER 8

FUTURE WORK

Container logistic integration framework handles exception monitoring,
handling and integration tracking with custom ESB services. Reusable flexible and agile
integration platform provides an optimum infrastructure for integration management.
Business changes, existing integration merging and possible problems in container
logistics can be maintained with less cost with custom ESB services. In addition to
provided solution, an improvement can be done for maintaining business changes.

Agility term of SOA is provided with run time configuration inside ESB
services. Resolver Adaptor Framework, Business Rule Engine usage is the key of
supporting agility. Business changes and critical exceptions require minimum time cost
and quick problem solution for a reliable communication. Therefore, usage of Business
Rule Engine can be configured for also system users but also developers. In case of a
critical problem or sudden change in business logic, system users can edit business rules
and edited rules can be used in production environment without deployment process.
This improvement increases system efficiency and remove bottleneck for integration

management.

60



REFERENCES

[1] Samtani, G. and Sadhwani, D., EAI and web service: easier enterprise application
integration? http://www.webservicesarchitect.com/content/articles/
samtaniOlprint.asp

[2] Cummins, F. (2002), Enterprise Integration, New York: John Wiley.

[3] Sawhney, M. (2001), ‘Don’t Homogenize, Synchronize’,Harvard Business Review,
July-August 2001.

[4] DAVENPORT, T.H., 1993, Process Innovation: Reengineering Work through
Information Technology,Harvard Business School Press,Boston, ABD.

[5] Brodie, M. and Stonebraker, M. (1995), Migrating LegacySystems, Morgan
Kaufmann Publishers, San Francisco,CA.

[6] David S. Linthicum (1999), Enterprise Application Integration, Addison Wesley.

[7] Arsanjani, A.; Borges, B.; and Holley, K. Service-oriented architecture: Components
and modeling can make the difference. Web Services Journal, 9, 1 (2004), 34-38.

[8] Newcomer, E., and Lomow, G. Understanding SOA with Web Services. Boston:
AddisonWesley, 2004.

[9] Bell, (2008), M. Service-Oriented Modeling: Service Analysis, Design, and
Architecture, Wiley

[10] Chappell, David (2004). Enterprise Service Bus. O'Reilly Media, Inc.

[11] http://www.techopedia.com/definition/5229/enterprise-service-bus-esb, last
accessed on October 1st, 2013.

[12] http://www.microsoft.com/en-us/download/details.aspx?id=14293, last accessed on
October 8th, 2013.

[13] http://www.microsoft.com/en-us/biztalk/what-is-biztalk.aspx, last accessed on
October 8th, 2013.

[14] http://msdn.microsoft.com/en-us/biztalk/dd876606.aspx, last accessed on October
8th, 2013.

[15] http://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-
ch05_pointtopointconnection, last accessed on October 8th, 2013.

[16] http://www.poltman.com/en/technical-information/eai/topologies, last accessed on
October 15th, 2013.

61


http://www.techopedia.com/definition/5229/enterprise-service-bus-esb
http://www.microsoft.com/en-us/download/details.aspx?id=14293
http://www.microsoft.com/en-us/biztalk/what-is-biztalk.aspx
http://msdn.microsoft.com/en-us/biztalk/dd876606.aspx
http://msdn.microsoft.com/en-us/library/ff647958.aspx#intpatt-
http://www.poltman.com/en/technical-information/eai/topologies

[17]
http://www.goldstonetech.com/investor%20info/white%20papers/EA1%200vervi
ew.pdf, last accessed on October 15th, 2013.

[18]
http://ggatz.com/images/Enterprise_20Integration_20 20SOA 20vs_20EAI_20vs
_20ESB.pdf, last accessed on October 15th, 2013.

[19] Tuglular, T., Titiz Avci, D., Cetin, S., Daghan, G., Ozemre, M., Oysal, T., “An
Approach to Find Integration and Monitoring Points for Container Logistics

Business Processes”, 2012, The Fourth International Conferences on Advanced
Service Computing, SERVICE COMPUTATION 2012, Nice, France

[20] B. Ganter and R. Wille, “Formal Concept Analysis: Mathematical Foundations”,
Springer, Berlin, 1999.

[21] A. Formica, “Concept similarity in Formal Concept Analysis: An information
content approach”, Knowledge-Based Systems, 21(1), pp. 80-87, 2008.

[22] Enterprise service bus allows IT to adapt to a fast-changing business
environment. By: Huizen, Gordon Van, Computer Weekly, 00104787, 3/22/2005

[23] BizTalkESBToolkitDocs
http://www.microsoft.com/enus/download/details.aspx?id=11847, last accessed :
29.10.2013

[24] http://www.techopedia.com/definition/13984/logistics-management, last accessed
on November 5st, 2013.

[25] Zhang, L., Li, J., Yu, M., "An Integration Research on Service-oriented
Architecture (SQA) for Logistics Information System™, 2006, IEEE International
Conference on Service Operations & Logistics & Informatics; 2006, p1059-1063,

5p

[26] Fei, Z., Shufen, Liu., "Research and Application of the ESB Based on Agent in the
Integration of the MIS in Power Plant”, 2010, pp. 250-3. Publisher: Piscataway, NJ
USA ; Beijing China: IEEE Country of Publication: USA

[27] Jan, Jiang and others, "Research on application of Web based ESB in School
Common Data Platform ™, 2009, 4th International Conference on Computer Science
& Education

[28] Rajini, N., Bhuvaneswari, T. 2010, International Journal on Computer Science and
Engineering Vol. 2 Issue 6, p1980-1983

[29] Wu, J., Tao, X., "Research of Enterprise Application Integration Based-on
ESB",2010, 2nd International Conference on Advanced Computer Control

[30] Seiringer, W., 2009, "Service-oriented Analysis of Logistics Services”, Logistics
and Industrial Informatics, 2009. LINDI 2009. 2nd International

62


http://www.goldstonetech.com/investor%20info/white%20papers/EAI%20Overview.pdf
http://www.goldstonetech.com/investor%20info/white%20papers/EAI%20Overview.pdf
http://ggatz.com/images/Enterprise_20Integration_20-_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://ggatz.com/images/Enterprise_20Integration_20-_20SOA_20vs_20EAI_20vs_20ESB.pdf
http://www.techopedia.com/definition/13984/logistics-management
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5258565
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5258565

[31] Yu, D., Yan, D., 2011, "Towards the Integration of Enterprise Service Bus with
UDDI Server: A Case Study", International Conference on System Science and
Engineering, Macau, China

[32] Hohpe, G., Woolf, B., (2003), Enterprise Integration Patterns, Addison Wesley

[33] http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf
last accessed on September 28th, 2013.

[34] http://integrella.com/what-is-soa/, last accessed on October 20th, 2013.

[35] http://en.wikipedia.org/wiki/Enterprise_service_bus, last accessed on October 20th,
2013.

[36] http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-
server-seen-by-the-programmers-eyes/, last accessed on November 1st, 2013.

[37] http://www.comelio.com/en/business_solutions/integration/biztalkserver, last
accessed on November 1st, 2013.

[38] http://msdn.microsoft.com/en-us/library/ff699598.aspx, last accessed on November
1st, 2013.

[39] http://msdn.microsoft.com/en-us/library/ee236726(v=bts.10).aspx, last accessed on
November 1st, 2013.

[40] http://www.mikethearchitect.com/2009/06/microsoft-esb-toolkit.htmI%?20, last
accessed on November 1st, 2013.

63


http://www.scis.ulster.ac.uk/~zumao/teaching/COM720/readings/reading10.pdf
http://integrella.com/what-is-soa/
http://en.wikipedia.org/wiki/Enterprise_service_bus
http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-server-seen-by-the-programmers-eyes/
http://sandroaspbiztalkblog.wordpress.com/2011/11/01/article-microsoft-biztalk-server-seen-by-the-programmers-eyes/
http://www.comelio.com/en/business_solutions/integration/biztalkserver
http://msdn.microsoft.com/en-us/library/ff699598.aspx
http://msdn.microsoft.com/en-us/library/ee236726(v=bts.10).aspx
http://www.mikethearchitect.com/2009/06/microsoft-esb-toolkit.html

ENT_0000177

SCHEMAS

ENT CODE  YNAKpkTarihceNavis YNAKpkTarihceYilport

ENT_0000040
ENT_0000171
ENT_0000177

APPENDIX A

BUSINESS PROCESSES ANALYSIS

EDS - YNA Entegrasyonu EDS XML

GELEN GELEN

RESULT
With Ignored Attributes
Identical Deleted Different Ratio

45 1 3

88%

TarihceYNAKpkinXml CODEC095 B TarihceEdsOutYnaXml

Schemas
COMPARISON

Name
Line

COMPARISON

Name
Line

COMPARISON

Name
Line

Shema_1 Identical Deleted

YNAKpkTarihceNavis

Schema_2
YNAKpkTarihceYilport
32 31 28

Shema_1 Identical Deleted

YNAKpkTarihceNavis

Schema_2
TarihceYNAKpkinXml
32 53 P}

Shema_1 Identical Deleted

YNAKpkTarihceYilport

Schema_2
TarihceYNAKpkinXml
51 55 2

Different Ratio

1 P 33%

Different Ratio

17 16 46%

Different Ratio

16 16 47%

Figure A.1. Integration Data Similarity Comparison

64



ACENTE
thalat
caliner Manifesto Kontrol = E
(Sealiner'dan YNA’ya Aty
P S Manifestosu
aktariimadan énce opsiyonel
L Kontrol & Onay
denetim)
= Armatérin
Ekipman Stok talebi Gzerine Sealiner Sistem
Girisi Eozntal SIokonevs Szel hareket Guncelleme
Sealiner Manifesto
aktarimi
Bosaltim
Manifesto YNA-Sealiner o Listesi
Dok Hazir i Frozen
Girisi Entegrasyonu
<
= Ozel Beyan
£
Bos.
Konteynerlarin
Dazenlenmesi
1. Vanisi
(2. ve 3. Otomatik P
1
e Atk L——!  Siparis Teslimi
gerekirse)
Konteyner Yerlesim Plani
ve Manifesto
Entegrasyonu
e Demuraj &
Depolama
=
=
=
5
a
<<
3

Figure A.2. Agency - Importation Business Process

65



IACENTE - iHRACAT SURECLERI

Sealiner Son

Booking Listesi

TDR & OnBoard

Listesi

L

Gemi Kalkis Diizeltme Periyodu
Sealiner Booking
Girisi Gemi Nakliye
Talebi
aliner - YNA
Ihracat Booking Girisi Dolum Planiama BL Komutu Yikleme ve Eealiiss
Yaratilmasi & Onaylama ulasti mi ? Fatura Onayi EDCkDx
: Entegrasyonu
BaOKINg Oncest Booking Bncesi
Uyan s
SEAUNER
Konteyner Booking Onay! Giden Stok Sealinsr Stolc
Eslesmesi Giincelleme
Bos Konteyner |3
king Yaratil =
{BooKing tarenimag Satis Departmani BL emrini
Dakimantasyona Departmanina gonderir
Booking Uyarisi %
s =
23 Yaratilmasi
: Mo | | oo Sealiner
BL & Manifesto Ozel Agiklama Sealiner BL & Sealiner - YNA :
ve Girls haniies Sl Manifesto Diizeltme
Yaratimasi anifest Girisi [ BL Entegrasyoni
Kontrolu Onayr
YoReme
Lstesinin. L} panifesto Kildi
Limana
ilmesi YNA Dizeltme
Girisi
Taslak _
Ardiye Ucreti
Shoosrimes! Yikleme Kilidi Fatura Kildi Fatura i )
(Msteri Hesaplama

LIMAN
®

| sockinscesa

SAP

o GEs 7

Process

iness

Bus

1on

3. Agency - Exportat

A

igure

F

66



ARGU Is Akisi
Milgteri Listesinin YUkleme Takibinin Trenden Bogaltim irsaliye iglerinin
Siparigin Alinmast Alinip Eski / Yeni Yapilmast Yiikleme Yapilmasi f———"] islerleri Yapilmasi ve
=2 Misteri Kontroli Kontrolt
2 m
o >
z -
= 2 c
2 = 2
w
(a] o] m
= z2
@ o
= = SAP KUR BILGILERI
= o i
L | o 3
G G o
) .W W
L

SAP

Figure A.4. Railway Business Process

67



ACENTE LimAN
-
o
@
L H
£ S
= =
z
g
a2
28
=2
=
(T —— T N
NOASVHOILNI
OSNDICO™
-
-‘a % r
Lo NTEGRASYON

naﬂ'aiuux

e[t

&
<

g\ B
g/
E
<
F
=z Z
s
]
2
=
=
|
=
gz £
52 o [
S B
= ;ENTEGRASVON == =
H |
. ~
CiT| «——gly~——Li)
,
%8 IE g
—<B—— (7 — E
— (E—— =
NOASVHOILINIT é
ONIIOCS
= EVEY = MOUSTERE 8 é §
s= =3 z Sotun S E= =
E =zE =4
g % %
2
g
2

A ENTEGRASYON
(TS ~—(m
[E

L

003000

SIXID INAZLNOX

ENTEGRASYON

003000

18119 Jauhauoy vewn

Figure A.5. Terminal — Container Entrance Business Process

68



ACENTE LiMAN
z
H
g E
= =
2
=
£
2
TAHLIYE
YOUKLEME
§ MANIFESTO
A
B——cm
NOASVYO3INT
a NTEGRASYON
8 _4F
R
k!
=
H
H
&
n
1§ [
8 ENTEGRASYON
g — | &
£
z
= =
Z
g
z
E3
8 <
g = g
N = | g
o—<—— (7 — :
NOASVHOILNI 3
SNDIOO"
2L 2
=1 v =
=3 8
& 2 i =) /{gx\
3 55 =2% £2E2
2 g2 SzZg =BE
= g = =2
3
g
8
ENTEGRASYON S=
A4|~ ==
3
(s ——

16040 ke
JMASONVHL |

ENTEGRASVONI
B I =
L= S
()~ i |s
=
E 2

003000

Figure A.6. Terminal — Loading/unloading Business Process

INIINOA IATHYL - [¥319390S NV




4 m—>CR— i)

NOASVHOIINT
ENTEGRASYON

e |

EE%EERASVDN

(G e— (! §

sepenuoy

—-4{ neauoy bues
/_H
B

de3

I |
0
PO 29

g 0 150

ewejeimey

NTEGRASYON

\‘ t@w <7

é | (R

100001

(g

N,

seter ey

ENTEGRASYON

ENTEGRASYON

_ENTEGRASVON
() +—RD—(u?  §

ENTEGRASYON

e ({2

8

Figure A.7. Highway Business Process

njokesey




DEPO SUREGLERI : FATURALAMA

o

Misteri, Depo ve arih aram

s

il

E
— Fatura hesaplat KES / SiL Fatura Silinir

KES

o] Fatura blgsi, hizmet
o detay, ekipman Bitis
o il SAP'ye gider
irTaL
Z pan
Q - islem manuel olarak
g hem EDS'den hem
& SAPden ptal e
V]
o
=
g
AP L
ENTOR00U76 - Eds Te Sap Invoice Entegrasyonu
w
=
r4
w
v]
L4

Figure A.8. Depot Invoice Process

71



DEPO SURECLERI : KAPI GIRIS / CIKIS

GES  Gallsan Entegrasyon Says

5 Gnemli Yikise Bagka EST olugturulur,
o Ragor dstirulv. Konteyner'a Aktarma yailir 4
o
bOLY NORMAL
UMANDAN TAHLIE \ Kondisyon Notunun (ORMAL
e W KONTEYNER ) Verimesi oS S REEFER
BILGILERININ GELMES! \ 5 ABCH (ONTEYNE
REEFER
PTI {Reefer testi yapilir)
z o ESR oluturulr.
-
CARE
AR=
<
o©
[V
2
| E
00 .
Enm _
= |
\
gs=7 ¥
) cooeco
w
E
z
w
5]
<
o0Z |1
28| 5 comm
SEh | &
Iz8
"3k
I
z
N
ES =4
2z ¢
W A
S
£ ERED

Figure A.9 Depot Business Process

(cont. on next page)

72



Boaking Talebi Aglmas:

#{ DEPO YERLESIMI

ry

4

TLT kadu Girilir. Natu
1 irilir
[
RED
5 RED?
— E=FRapont frentelya CEVAP GELMES| | — < REVIZE veya
pinderiimes|
ONAY
-~
REVIZE { OMAY
— v
= - =
1] 11
<] - — i Eaaa Tamire alinir, Tasnir SRR B Konteyner tamirl yapir XML -
= | BKM Kodu girilir. » Kondisyon A girilir ve is emrine = |
Listesine girer. kadu silinir. 4
M alinabilir.
2
=
= |
L m
. 5
=
CES =5 =]
CEs =1 x o
2, CEVAP GERI b z
it DOMMES! =
= XML COPARN S B
— RED / REVIZE / ONAY =

EST bakim tutan
ikarma tutari gider.
Entegrasyon var,

OMNAY CEVABI

VERILMESI

Figure A.9 Depot Business Process (cont.)

(cont. on next page)

73



HAYIR

CIKIS BOOKING?

TiAsARLT..

KONTEYNER VAR

EVET

ACENTEYE SORULUR

CIKIS ISLEMI |LGILI KONTEYNER ICIN

IPTAL EDILIR. DEPO YERLESIMI.

| KONTEYNER CIXIS|

ENTEGRASYON

CIKIS ONAYI

HAYIR

EWET

WEB SERVIS ile EDS'ye:
CIKIS talimat verilmesi,

CODECO

Figure A.9 (cont.)

74



	1.Kapak_1
	2.kapak_2
	3.approval_3
	4.abstract_4
	5.TezContent_4

