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ABSTRACT 

 

 

 A numerical implementation based on the finite element method for the infinite 

cracked hollow cylinder under the action of axisymmetric tensile loads at infinity is 

considered in this study. The infinite cylinder contains a ring-shaped crack of width     

(b – a) at the symmetry plane z = 0, and two rigid inclusions of width (d – c) located 

symmetrically on both sides of the crack. Material of the cylinder is assumed to be 

linearly elastic and isotropic. 

 The proposed model uses efficiently the capabilities of a commercially available 

finite element analysis program, ANSYS, to determine the stress intensity factors at the 

crack tips. In the finite element analysis, six-noded triangular elements were used to 

model the square-root stress singularity at the crack tips. In order to get the stress 

intensity factors, the displacement extrapolation method was used. 

 The numerical results for various crack and inclusion configurations are obtained 

and compared with the analytical results in order to verify Artem’s study. When the 

inclusions are far away from the crack, the interaction among them vanishes. In this 

case, the numerical and analytical results are in good agreement. On the other hand, 

when the inclusions get closer to the crack, a discrepancy has been occurred within the 

acceptable limits.  
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ÖZ 

 

 

 Bu çalışmada sonsuzda eksenel çekmeye maruz çatlamış bir tüp probleminin 

sonlu elemanlar metodu kullanılarak sayısal çözümlemesi yapılmıştır. Tüpte z = 0 

düzleminde eni (b – a) olan halka biçiminde bir çatlak ve bu düzlemin iki tarafında 

simetrik olarak bulunan ve  enleri (d – c) olan halka biçiminde iki rijit enklüzyon 

bulunmaktadır. Tüp malzemesinin lineer elastik ve izotrop olduğu varsayılmaktadır.  

 Çatlak uçlarındaki gerilme şiddeti katsayılarını sayısal olarak hesaplamak için 

oluşturulan model ANSYS sonlu elemanlar analiz programını kullanmıştır. Sonlu 

elemanlar analizinde çatlak uçlarındaki tekilliğin modellenmesinde altı düğüm noktalı 

üçgen elemanlardan faydalanıldı. Gerilme şiddeti katsayılarının hesaplanmasında yer 

değiştirme ekstrapolasyon metodu kullanıldı. 

 Çeşitli çatlak ve enklüzyon konfigürasyonları için sayısal sonuçlar elde edildi. Bu 

sonuçlar Artem’in analitik sonuçlarının doğruluğunun araştırılmasında kullanıldı. 

Enklüzyonlar ve çatlak birbirlerinden yeterince uzak olduğunda aralarındaki etkileşim 

kaybolur. Bu durumda sayısal ve analitik sonuçlar tam bir uyum gösterir. Ancak, 

enklüzyonlar çatlağa yaklaştığında kabul edilebilir sınırlar dahilinde farklılıklar 

oluşmuştur. 
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CHAPTER 1 

 

INTRODUCTION 

 

        The construction of modern structures with improved mechanical properties 

demands for the development of preventive design methodologies to account for their 

operating environment, especially under extreme loading conditions or in the presence 

of defects. Among them, the most severe are crack-like defects which cause changes in 

structural characteristics thus producing unpredictable, even catastrophic, structural 

response [1]. The name of the field that deals with these subjects is fracture mechanics 

and the evaluation of stress intensity factors (SIFs) is an important part of fracture 

mechanics. Different methods exist in evaluation process including experimental, 

theoretical and numerical methods.  

        In certain problems, such experimental techniques as photoelasticity, moire 

interferometry and the method of caustics may be very effective in estimating the stress 

intensity factors. 

 Theoretical methods are essential for solving crack problems for two reasons. 

First, they provide the correct form of singularities and asymptotic results that may be 

needed to analyze and interpret the experimental results and to use for improving the 

accuracy of purely numerical solutions. Secondly, they provide accurate solutions for 

relatively simple part/crack geometries and for certain idealized material behavior that 

could be used as benchmarks for numerical and approximate procedures. 

        However, in practical applications, the geometry of the medium is seldom simple 

and realistic material models seldom lead to analytically tractable formulations. It is 

therefore necessary to develop purely numerical methods that can accommodate 

complicated part/crack geometries and material models. The finite element method 

(FEM) appears to be ideal for this purpose and is widely used in fracture mechanics. 

         From the engineering mechanics approach, many studies on the evaluation of the 

stress intensity factors by finite element method can be found in the literature. Tarafder, 

et.al [2]  evaluated SIFs by FEM for longitudinally cracked cylindirical components 

experiencing arbitrary stress variation across the wall thickness. Shih and Chen [3] 

calculated the stress intensity factors of an elliptical crack front embedded with a round 

bar by using ANSYS, a commercial finite element analysis program. Three dimensional 
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finite element analysis was employed by Shankar and Wu [4] to determine stress 

intensity factors for cracks in the weld line. Stress intensity factors of assumed notch 

cracks and through thickness cracks in tensile shear and modified coach peel specimens 

were determined by the finite element method in the study of Pan and Sheppard [5]. 

Finite element analyses were carried out by Banks-Sills and Eliasi [6] in order to 

determine the stress intensity factor as a function of crack length for the case in which 

the cannon barrel contains two symmetrically located cracks. 

         However, the stress intensity factor evaluation by using the finite element method 

in the analyses involving the combination of different type of defects in the form of 

cracks, holes, or inclusions are limited. In a study of Sergeev, et al. [7] the FEM is used 

to determine the stress intensity factors in a composite longeron web with an arbitrarily 

oriented straight crack near a hole. Xiao, et al. [8] calculated the stress intensity factors 

for a ring-shaped crack surrounded by spherical inclusions by FEM. In a study of Xiao 

and Bai [9] about a circular piezoelectric inhomogeneity interacting with a nearby 

crack, the SIFs are obtained by using ANSYS. In another study of Xiao and Bai [10], 

numerical investigation by FEM on the interaction between a coated piezoelectric fiber-

shaped sensor and a nearby crack was carried out. Xiao and Chen [11] calculated the 

stress intensity factor for a Griffith crack interacting with a coated inclusion by using 

FEM. 

         In this study, the stress intensity factors are evaluated for the problem of an 

infinite hollow cylinder containing a crack and two rigid inclusions by finite element 

analysis using ANSYS. This study is complementary to that of Artem’s work [12]. The 

results of this study have been compared with those of Artem’s to verify her accuracy, 

because the mathematical difficulties in the analytical study which may arise in a 

hollow cylinder containing flaws like cracks and rigid inclusions cause to make 

mistakes during the derivation procedures. Firstly, in order to verify the finite element 

model, the results of Erdol and Erdogan [13] for a hollow cylinder with no inclusion 

were compared with the results of the finite element analysis. In the finite element 

modelling, six-noded quarter point triangular elements were used to model the square-

root stress singularity at the crack tips. In order to get the stress intensity factors, the 

displacement extrapolation method was used. 
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CHAPTER 2 
 

 
STRESS INTENSITY FACTORS 

 

        Fracture is a problem that society has faced for as long as there have been man-made 

structures. The problem may actually be worse today than in previous centuries, because more 

can go wrong in our complex technological society. Fortunately, advances in the field of 

fracture mechanics have helped to offset some of the potential dangers posed by increasing 

technological complexity [14].  

In linear fracture mechanics analysis, determination of the stress intensity factor (SIF) is  

always a major consideration and has to be evaluated. 

 

2.1 Introduction 

 

         In a general sense the stress intensity factor is the counterpart of stress concentration 

factor in notched solids [15]. In the tension test of an isotropic homogeneous bar of constant 

cross-sectional area A, the stress σ  is assumed to be uniformly distributed over the cross 

section, provided the section is sufficiently far removed from the ends of the bar, where the 

load may be applied in a nonuniform manner (Figure 2.1). 

 

Figure 2.1. Stress distribution in an isotropic homogenous bar under tension [16]. 
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        At the end sections, ordinarily the stress distribution is not uniform. Nonuniformity of 

stress may also occur because of geometric changes (holes or notches) in the cross section of 

a specimen (Figures 2.2 and 2.3).  

 

Figure 2.2. Stress distribution of a specimen when a hole occurs [16]. 

 

 

 

 

Figure 2.3. Stress distribution of a specimen when notches occur [16]. 
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 This nonuniformity in stress distribution may result in a maximum stress maxσ at a 

section that is considerably larger than the average stress ( P/Aσ n  , where P is the total 

tension load.).  

 The ratio K defined as 

                                                            
n

max

σ

σ
K                                                                     (2.1) 

is called the “stress concentration factor” for the section (point); the more abrupt the cross-

sectional area transition in the tension specimen, the larger the stress concentration factor 

(Figure 2.4). 

 

Figure 2.4. Stress concentrations where the cross-sectional area decreases [16]. 

 

        A pictorial representation of stress trajectories (Figures 2.1, 2.2, 2.3 and 2.4) is often 

employed as an approximate model in the physics of solids to explain the strain (stress) in the 

neighborhood of a geometrical discontinuity (crack, dislocation, etc.) in a solid. This 

representation is based on the analogy between magnetic lines of forces and stress trajectories. 

For example, analogous to magnetic lines of forces, the stress trajectories, whose paths must 

lie in the material, cluster together in passing around a geometric hole or discontinuity. In 

doing so, the average spacing between the lines of force is reduced and, therefore, there 

results a stress concentration (stress gradient) or an increase in local stress (more lines of force 

squeezed into the same area). To expand this idea further, consider a geometrical 
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discontinuity (crack) and sketch the hypothetical local arrangement of atoms around the tip of 

the crack (Figure 2.5).  

 

Figure 2.5. Atomic model of crack in solid [16]. 

 

        The lines of force may be considered to be transmitted from one row of atoms to another. 

Therefore, the transmission of force around the tip of the crack  (say, a small crack in an 

infinite plate) entails heavy loading and straining of the bonds (AB, CD, AC, etc.). Smaller 

loads and strains are carried by bonds away from the crack (the strain of bond MN is much 

less than that of AB). For bonds sufficiently far from AB, for example, bond MN, the 

associated stress is essentially P/Aσ  . The conceptual model of Figure 2.5 leads to the 

conclusion that for bond AB to be extended, bonds AC and BD also must be extended. Hence, 

the uniaxial loading of the plate causes the region around the crack tip to have not only a high 

tensile strain in the y direction but also a high tensile strain in the x direction. The concept of 

lines of force also suggests  a redistribution of strain energy from regions above or below the 

crack (regions R and Q in Figure 2.5) to the highly strained region at the crack tip (see also 

Figures 2.1, 2.2, 2.3 and 2.4). Also because of distortion of rectangular elements in Figure 2.5, 

high shear stresses exist in the neighborhood of a stress concentration. 

 As an example, consider the case of an infinite plate or sheet with a small circular hole 

of radius a under uniaxial tension σ  (Figure 2.6). With respect to polar coordinates  θr, , the 

plane stress components at any point P are given by the formulas 
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Figure 2.6. Infinite plate with a small circular hole [16].  

 

        It is noted that the stress state given by Equations 2.2 satisfies the boundary conditions  

at ar  , θallfor0σσ rθrr     

and 

r  

2/3,2/0,0,00,    forandfor rxyrryyrxyrrxx .

For ar  ,   2cos2θ1σσθθ                                                                                          (2.3a-c) 

        Hence, for θθσ/2,3π/2,θ   attains its maximum value of   3σσ maxθθ  . For 

θθσπ,0,θ   attains a compressive value σ . Thus, θθσ  attains a maximum tensile value of 
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three times the uniformly distributed stress σ , at the hole ar   for /23π/2,θ  (Figure 2.7). 

This value  3σ  is the largest normal stress that occurs in the plate. Hence, the stress 

concenteration factor at the hole is 3 [16]. 

         In the case of notches, the maximum stress at the notch root is given by 

                                                        nn σ
ρ

A
Kσσ                                                            (2.4) 

where K  is the (dimensionless) stress concentration factor, A is a constant, ρ is the notch 

radius, and nσ is a nominal stress representing the magnitude of external roots. Note that as 

0ρ , σ  tends to infinity. In this case it is said that the (theoretical) stress state at the notch 

root is singular and the asymptotic examination would show that the magnitude of the stresses 

are of the form α
ij k/r~σ ,  1α0  , where r is the distance from the notch root and k is a 

constant. It is seen that the constants α (the power) and k (the strength) fully describe the 

nature of stress singularity at the notch root. In the special case when the notch becomes a 

crack, the strength of the stress singularity k is known as the stress intensity factor. Even 

though in homogenous materials α  is always real, in nonhomogenous wedges α  can be 

complex. 

 

Figure 2.7.  distribution for 2/3,2/    [16]. 

 

        As it stands, the concept is really useless on two grounds: (a) in practice the notch radius 

cannot be zero, and (b) due to local inelastic deformations or yielding there would always be 
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some stress relaxation and redistribution eliminating the possibility of infinite stress. These 

shaky foundations to some extent explains the reasons for the slow acceptance of the stress 

intensity factor as a pyhsically relevant parameter when it was introduced in the 1950s. The 

concept, however, is closely associated with the phenomenon of brittle fracture and, despite 

its peculiar dimension ( 3/2Nm ) for a primary correlation parameter of a very important 

physical phenomenon, it seems to have found almost universal acceptance and very wide use 

[15].  

 

2.2 Fracture Mechanics: Development and Practical Applications 

 

        In designing structural or machine components an important step is the identification of 

the most likely mode of failure and the application of a suitable failure criterion. Fracture 

characterized as the formation of new surfaces in the material is one such mode of mechanical 

failure. At the most basic level the essential feature of the process is breaking of interatomic 

bonds in the solid. From a macroscopic standpoint, however, fracture may be viewed as the 

rupture separation of the structural component into two or more pieces due to the propagation 

of cracks. In between the process involves the nucleation, growth and coalescence of 

microvoids and cracks in the material. Thus, in studying the fracture of solids ideally one 

would have to consider such widely diverse factors as the microscopic phenomena taking 

place at various length scales, and the macroscopic effects regarding the loading, 

environmental conditions, and the geometry of the medium. Due to this highly complex 

nature of the phenomenon, at the present time there seems to be no single theory dealing 

satisfactorily with all its relevant aspects. Quite naturally, then, the theories developed to 

study the fracture of solids tend to treat the subject generally from one of three points of view, 

namely microscopic or atomic, microstructural, and macroscopic or continuum mechanics. 

        From the standpoint of engineering applications, it has been the macroscopic theories 

based on the notions of continuum solid mechanics and classical thermodynamics that have 

provided the quantitative working tools in dealing with the fracture of structural materials. In 

the macroscopic approach to fracture, it is generally assumed that the material contains some 

flaws which may act as fracture nuclei and that the medium is a homogeneous continuum in 

the sense that the size of a dominant flaw is large in comparison with the characteristic 

microstructural dimension of the material. The problem is, then, to study the influence of the 

applied loads, the flaw geometry, environmental conditions and material behavior on the 

fracture process in the solid - a subject which has come to be known as fracture mechanics. 
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        The early strength theories of solids were based on maximum stress. However, it appears 

that the so-called `size effect', which plays a rather important role in fracture, was known 

before the introduction of the concept of stress to study the strength of solids. In one of his 

sketch books, Leonardo da Vinci describes his experiments on breaking iron wires and how 

the weight required to break the wire increases as its length is cut in half in successive tests. 

Similar results were observed by Lloyd and by Le Blanc in the 1830s, again on iron bars and 

wires. In 1858, Karmarsch gave an empirical expression for the load bearing capacity of metal 

wires which had the form  dBA /σ u  , where A and B are constants, d is the wire 

diameter and uσ  is the breaking stress.  

        In a remarkable, but little-known, article, Wieghardt essentially provided the solution for 

a linear elastic wedge subjected to an arbitrary concentrated force P applied to one of the 

wedge boundaries. The solution includes the analysis of the asymptotic behavior of the stress 

state near the wedge apex and the special case of the crack problem in considerable detail. 

This appears to be the first elasticity solution in which the existence of stress singularity was 

recognized, its correct form of αr   was obtained (r being the distance from the wedge apex), 

and the dependence of α  on the wedge angle and on the symmetry of loading was 

demonstrated. In the crack problem, after obtaining the solution, the leading terms having the 

form r/1 in the asymptotic expansion were separated and the correct angular distributions 

were given. 

       Wieghardt then went on to state that: we will now use these equations (for the stresses) to 

provide answers to more questions one might pose regarding the strength of our crack against 

the action of the force P. One may ask: given the strength parameters of our elastic material, 

what is the magnitude of P necessary for material fracture? And, furthermore, at which place 

and in which direction will the fracture initiate? 

        Thus, since he did not question the validity of the maximum stress criterion for fracture, 

Wieghardt was faced with a paradox. At the crack tip, the stress becomes infinite for any 

arbitrarily small P and yet the experience shows that the material fractures only if P is raised 

to a critical value. He tried to resolve the paradox by stating, that: since an elastic material 

does not rupture at a single point but rather fractures over a small section, one might argue 

that cracking occurs not due to specific stresses (or deformations) but due to a resultant over a 

small section. 

        Since the stresses are integrable, the resultant would always be finite. Thus, after 

essentially side-stepping the first question, he observes that, if it occurs at all, the fracture will 
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initiate at the crack tip. He then proceeds to examine the direction of fracture initiation by 

using the then accepted hypotheses of maximum shear stress or maximum tensile stress. Thus, 

Wieghardt's work leaves the impression that the fracture criterion would consist of the 

comparison of an average stress in a `small section' around the crack tip with the theoretical 

strength of the solid. 

       Another important scientist that should be cited in fracture mechanics is Griffith.The 

starting point of his studies was the current knowledge based on ample observations in glass 

and metal wires, rods, and plates that there is an approximately two orders of magnitude 

difference between theoretical strength and bulk strength of solids, and his conclusion, based 

again on observations, that various forms of imperfections, defects and scratches are primarily 

responsible for this discrepancy. The obvious approach would then be to calculate the correct 

values of the maximum stresses around these defects and compare them with the theoretical 

strength of the material. This Griffith did by simulating the defects with an elliptical hole, the 

solution for which was previously given by Inglis. The results showed that the calculated 

maximum stress is independent of the absolute size of the flaw and depends only on the ratio 

of the semiaxes of the ellipse. These findings were in apparent conflict with the test results 

and led Griffith to conclude that “maximum stress” may not be an appropriate strength 

criterion and an alternative theory was needed [17]. 

        The basic idea of Griffith’s theory is that, similar to liquids, the surface of a solid 

possesses surface tension, and that when a crack in the solid propagates, the increase in the 

externally added or internally released energy is balanced by the increase in the surface 

tension energy. In an elastic solid such as that considered by Griffith if U and V, respectively, 

refer to the work of the external forces and the elastic energy and if γ  refers to the specific 

surface tension energy of the solid, then Griffith’s energy balance theory may be expressed as  

 

                                                             γVU
dA

d
                                                           (2.5) 

 

where A is the surface area of the crack. For example, by using the solution 

                                
 1/222

0
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
 ,         ax                                 (2.7) 



 12

for an infinite plane that is under uniform tension 0σ in y direction and which contains a 

through crack of length 2a along the x axis, it may be shown that for the fixed grip case (more 

specifically, if the crack is introduced after loading and then fixing the grips) the total strain 

energy (per unit thickness) is 

                                                  22
00

2
0 aπσ

8μ

κ1
v

E

σ

2

1
V


                                                   (2.8) 

where 0v is the total volume (per unit thickness), μ  is the shear modulus, and 3ν4κ   for 

plane strain and    ν1/ν3κ   for plane stress, ν being the Poisson’s ratio. If we now 

observe that for fixed grip case dU = 0 and dA = 4da (where da is the extension of the crack at 

each end), from Equations 2.5 and 2.8 it follows that 

                                                            2γaπσ
8μ

κ1 2
0 


                                                         (2.9) 

        Note that  /8μκ1 is 1/E for the plane stress and  /Eν1 2 for the plane strain case. In 

the case of crack extension under “fixed load” both dU and dV increase and it can be shown 

that d(U-V)/dA is still given by Equation 2.9. Aside from the minor error pointed out by Sack 

and Orowan, Equation 2.9 is essentially the energy balance equation obtained by Griffith. In 

Equation 2.9 the left-hand side is the energy available for fracture and the right-hand side 

represents the resistance of the solid to fracture propagation. 

        The next important development on the subject was Sneddon’s work on the plane and the 

axisymmetric crack problems. By using Westergaard’s solution for the plane strain crack 

problem, and by solving the (axisymmetric) penny-shaped crack problem through the use of 

Hankel transforms, Sneddon obtained the correct asymptotic behavior of stresses in the small 

neighborhood of the crack front and showed that the asymptotic expressions for the 

components of the stress in the two cases differ only by a numerical factor  2/π . For the case 

of an infinite elastic solid under uniform axial tension 0σ  and containing a penny-shaped 

crack of radius a he also obtained the following energy balance equation. 

                                                        2γaσ
π

4

E

ν1 2
0

2




                                                        (2.10) 

 

which differs from (the plane-strain version of) Equation 2.9 only by a factor  22/π . 

However, by (incorrectly) stating that θθσ in the penny-shaped crack has no analogue in the 

plane-strain case, he failed to recognize the importance of his finding and did not generalize 
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his results. As pointed out later by Irwin, in the penny-shaped crack problem the stress state 

around the crack front is, of course, one of plane strain, and the isolation of the “numerical 

factor” referred to by Sneddon is the key to generalizing the crack problems. It should be 

pointed out that the energy balance relation Equation 2.5 is only a necessary condition for 

crack growth. From the physical meaning of the terms in Equation 2.5 it is clear that the 

stability of (quasi-static) fracture propagation may be determined from  
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        Since the practical fracture resistance of structural solids was observed to be orders of 

magnitude higher than the corresponding surface tension energy γ , Griffith’s work was more 

or less ignored by the engineering community until the late 1940s. The revival of the theory 

came about after the X-ray work indicated that even in materials that were fracturing in 

“purely brittle” manner, there were extensive plastic deformations on the fracture mechanics. 

This led Irwin and Orowan (independently) to propose that in the energy balance theory the 

rate of plastic work at the crack front should also be considered as a dissipative energy 

component. In the early 1950s Irwin made two important contributions. First, he observed that 

in a fracturing elastic solid if the characteristics size of the zone of large plastic deformations 

or energy dissipation around the crack front is very small compared to the length parameter of 

the crack, then it is reasonable to assume that the energy (U-V) “pumped” into the fracture 

zone will come from the elastic bulk of the solid and therefore will not be critically dependent 

on the details of the stress state very near the crack front, and the stress state in the elastic 

bulk of the solid will not differ from a purely elastic crack solution to any significant extent. 

The importance of this observation lies in the fact that one may now be justified in calculating 

the energy (U-V) available for fracture from a purely elastic solution. 

        Irwin’s second contribution was his recognition of the universality of the asymptotic 

stress and displacement fields around the crack tip of his interpretation of the fixed-grip strain 

energy release rate (which involves the strain energy distribution in the entire solid) in terms 

of the rate of crack closure that can be calculated by using the asymptotic expressions for the 

crack surface displacements and corresponding “cleavege” stresses only.He introduced a 

constant ς  (after Griffith) and observed that the symmetric crack solutions given by 
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Westergaard and Sneddon may be generalized to include asymptotic expressions for all crack 

problems having the plane of the crack as the plane of symmetry and for small values of the 

distance r from the crack tip the cleavege stress and the crack surface displacement in the 

plane of the crack may be expressed as  

 

                                             
2r

1

π

ς

κ1

8μ
σ

1/2

yy 








 , 2r
π

ς

8μ

κ1
2v

1/2








 
                       (2.12) 

 

For small crack extension da he then proceeded to calculate the strain energy release through 

the crack-closure energy as follows 

 

                                                  
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2

1
2V)d(U                            (2.13) 

or 

 

                                                                 ςVU
da

d
                                                      (2.14) 

 

        Thus, from Equations 2.12 and 2.14 it is seen that the energy available for fracture per 

unit crack extension may be directly related to the coefficient of the singular term in the 

expression of the stress state at the crack tip. Irwin called the coefficient 

  1/2πςκ18μ  which appears in the asymptotic expression of the stress the “stress 

intensity factor”. 

        Subsequently,by using Westergaard’s solution Irwin showed that the stress and 

displacement states in the close neighborhood of the smooth integral boundary of a plane 

crack in a linearly  elastic solid under most general loading conditions may be expressed in 

terms of three stress intensity factors 21 k,k and 3k associated with the symmetric opening, in-

plane or forward shear, and antiplane shear modes of deformation, respectively (Figure 2.8). 
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Figure 2.8. Modes I, II, and III crack surface displacements [15]. 

 

These asymptotic stress and displacement components may be expressed as follows: 
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where xz is the plane of the crack, the axis z is tangent to the crack border, and θr, are the 

polar coordinates in the xy plane (Figure 2.8). 

        From Equations 2.12 and 2.15b it is seen that the strain energy release rate ς defined by 

Equation 2.14 is related to the Mode I stress intensity factor 1k  as follows: 
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        If the elasticity solution of the crack problem is available, the stress intensity factors may 

be evaluated at any point on the crack border from the asymptotic behavior of the stresses (in 

the plane of the crack) or crack surface displacements by using the Equations 2.15-2.18 for 

0θ  or πθ  . 

        Consideration of such factors as material anisotropy, nonhomogenity, and nonlinearity, 

and dynamic (or inertia) effects would clearly influence the asymptotic expressions given by 

Equations 2.15-2.18. 

        In the type of “brittle” or “low energy” fracture under consideration it was observed that 

the plastic deformations are confined to a small region around the crack front. To establish a 

simple “fracture criterion”, one may thus assume that (a) the characteristic size of the “energy 

dissipation” or “fracture process” zone around the growing crack front is “small” compared to 

the length parameter of the crack, and (b) the size and shape of the dissipation zone remain 

relatively constant as the crack extends. Based on these assumptions one may then make the 

hypothesis that, in solids undergoing essentially brittle fracture, under given environmental 

conditions, the resistance of the material to the fracture, more precisely, the energy needed to 

create a unit fracture surface is a material constant. In Mode I fracture, from Equation 2.14 we 

recall that the energy available for unit fracture surface is ς (which is now referred to as Iς  for 

Mode I). Correspondingly Irwin designated the material’s critical resistance parameter by 

ICς which he called the “fracture toughness” of the material. ICς is also known as the “specific 

fracture energy” or the “critical strain energy release rate”. Referring to Equation 2.19, it is 
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now seen that (under Mode I conditions) the necessary condition for fracture may be 

expressed as  

                                                    IC
2
1I ςπk

8μ

κ1
ς 


                                                          (2.20) 

and, since ICς is constant, a/ς I   determines the fracture stability, where a is a length 

parameter characterizing the fracture area (see Equations 2.11 and 2.14). 

        Mainly because of the validity of the hypothesis regarding the fracture toughness ICς  

being practically constant, in applications the simple fracture criterion expressed by Equation 

2.20 has been extremely successful. The parameter ICς is determined experimentally by 

following certain procedures established by the American Society for Testing Materials. From 

Equation 2.20 one may see that the next step in the evaluation of a fracture criterion 

applicable to structures that behave in a brittle manner was inevitable. Since ICς is a measured 

constant and 1k  is the only calculated quantity, it was natural to reduce the criterion to a 

simpler form by defining the critical value of the stress intensity factor as the material 

constant. At this point also a slight change in notation took place as a result of absorbing the 

coefficient π  in Equation 2.20 into (the definiton of) the stress intensity factor, namely 

2
I

2
1 Kπk  , IK  being the new stress intensity factor. The definition of Modes  I, II, and III 

stress intensity factors is: 

                                                   x,0,0,σax2πlimK yy
ax

I 


 , etc.                                  (2.21) 

The corresponding critical value of IK  which represents the fracture resistance of the material 

and which is obtained from standardized experiments is denoted by ICK and is called the 

“critical stress intensity factor”. Note that ICK is related to the fracture toughness ICς by     

                                                          
1/2

ICIC ς
κ1

8μ
K 









                                                    (2.22) 

and the fracture criterion Equation 2.20 becomes  

 

                                                                 ICI KK  .                                                           (2.23) 

 

Again, since ICK  is constant, for unstable fracture one must have 0a/K I  , a being a length 

parameter of the crack. An additional change in terminology seems to be referring to ICK  as 

the “fracture toughness” of the material. This improper usage, too, appears to be embedded 
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permanently in the fracture literature. If the conditions leading to the simple fracture criterion 

Equation 2.23 are satisfied the field, fracture mechanics, is sometimes referred as the “linear 

elastic fracture mechanics” (LEFM).  

        In addition, to the direct application of Equation 2.23 to static or quasi-static fracture 

problems, it is also used (by properly modifying IK  and ICK ) in such other problems as 

impact loading and dynamic fracture propagation. In impact loading, ICK is simply replaced 

by IDK  which is obtained from standardized impact tests. In dynamic crack propagation 

problems, IK  can be, in most cases, calculated as a function of time and is still the most 

effective factor representing the crack-structure geometry and the applied load [15]. 

 

2.3 Methods of Solution 

 

        There are several kinds of methods of solutions of crack problems leading to the 

calculation of the stress intensity factors such as; complex potentials, integral 

transforms,singular integral equations, alternating method and finite element method. 

 

2.3.1.Complex Potentials  

 

Applicable to only two dimensional problems, the complex potentials were first 

introduced by Goursat to represent the biharmonic function.Expressing the displacements in 

terms of two holomorphoic functions φ andψ as 

                                                     zψz'φzzκφivu2μ                                     (2.24) 

 

and observing that in the mixed boundary value problem which represents the plane 

containing the number of cracks along  kk b,a , (k=1,2,...), ka and kb are branch of points, the 

complex potentials, for example,in the neighborhood of the end point kbz  may be 

expressed as  

 

                            
 

     
 

 ,zG
bz

zF
zψ',zG

bz

zF
zφ' 2k1/2

k

2k
1k1/2

k

1k 





                       (2.25) 
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where the functions jkF and jkG , (j=1,2,...) are holomorphic near and at kb . It can be further 

shown that the asymptotic stress distribution Equation 2.15 directly follows from Equation 

2.25 and the stress intensity factors may be determined from 

 

                                                    zφ'bz22limikk k
bz

21
k




                                        (2.26) 

 

        The method of complex potentials provides perhaps the simplest and most rigorous 

method for solving the crack problems and for analyzing the singular behavior of the solution. 

The serious shortcoming of the method is that it is restricted to two-dimensional elastostatic 

problems for (generally) infinite domains.  

        There are a number of techniques used in the solution of two-dimensional crack 

problems which are also based on the application of complex potentials. Among these the 

method of conformal-mapping, Laurent series expansion, boundary collocation method, and 

certain applications of the Wiener-Hopf method can be mentioned. 

 

2.3.2. Integral Transforms 

 

 The integral transform is one of the most widely used methods in the formulation of the 

boundary value problems in mechanics. If the problem is a mixed boundary value problem the 

formulation would invariably lead to a pair of dual integral equations. Specifically, the crack 

problems for an elastic plane or an infinite strip containing a line crack, plane infinite wedge 

with a radial crack, and an elastic cylinder with an infinite or finite radius containing an 

axisymmetric crack may easily be reduced to dual integral equations by using Fourier, Mellin, 

and Hankel transforms, respectively. The dual integral equations may than be reduced to an 

Abel’s (integral) equation which may turn be either solved in closed form or reduced to a 

Fredholm integral equation. 

 

2.3.3. Singular Integral Equations 

 

 Dual integral equations, dual series equations, or dual series-integral equations arising from 

the formulation of the crack problems may be reduced to a singular integral equation (with a 

Cauchy-type singularity) in a straightforward manner. The crack problems can also be 

formulated in terms of a (system of) singular integral equation(s) directly by using the related 
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Green’s functions (e.g., dislocation and concentrated load solutions) and technique of 

superposition. The method has clear advantages in problems involving unusual stress 

singularities . It also lends itself to relatively simple numerical treatment.  

 

2.3.4. The Alternating Method  

 

The method is also known as Schwarz algorithm or successive approximations. It is 

developed for regions with several contours (e.g., a crack and a bounding surface) and is 

based on the idea that by solving the problem successively for the region with one contour at a 

time and varying (or correlating) the boundary conditions at each step, a useful approximate 

solution may be obtained after a sufficient number of steps. 

 

2.3.5. Finite Element Method 

 

 For apparent reasons this is one of the most widely used methods in practice to calculate the 

stress intensity factors. In the so-called indirect method the stress intensity factor is obtained 

through extrapolation of curve fitting to the values of a stress or a displacement component 

calculated at certain interior locations. In the direct method, special crack-tip elements are 

used and the stress intensity factors are directly calculated. The special elements developed 

for this purpose seem to be quite numerous among which one may mention the circular core 

element, the enriched element, the singular triangle, the quarter-point element, and specialized 

hybrid elements. In all these techniques the basic idea is to design the elements adjacent to the 

crack tip in such a way that the displacements are forced to vary according to the asymptotic 

distributions given by Equation 2.16. The properly calculated local amplitudes would then 

give 1k  and 2k . This method will be investigated in detail in the following chapters. 

        There are, of course, other methods solve the crack problems and to determine the stress 

intensity factors among which one may mention the methods of weight functions, boundary 

integral equations, curvilinear coordinates, and finite differences. One may also note that in 

certain problems such experimental techniques as the method of caustics and photoelasticity 

may prove to be quite effective in estimating the stress intensity factors [15]. 
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CHAPTER 3 

 

FINITE ELEMENT METHOD 

 

3.1 Numerical Methods  

 

        There are many practical engineering problems for which we cannot obtain exact 

solutions. This inability to obtain an exact solution may be attributed to either the 

complex nature of governing differential equations or the difficulties that arise from 

dealing with the boundary and initial conditions. To deal with such problems, we resort 

to numerical approximations. In contrast to analytical solutions, which show the exact 

behavior of a system at any point within the system, numerical solutions approximate 

exact solutions at discrete points, called nodes. The first step of any numerical 

procedure is discretization. This process divides the medium of interest into a number of 

small subregions and nodes. There are two common classes of numerical methods: (1) 

finite difference methods and (2) finite element methods. With finite difference 

methods, the differential equation is written for each node, and the derivatives are 

replaced by difference equations. This approach results in a set of simultaneous linear 

equations. Although finite difference methods are easy to understand and employ 

simple problems, they become difficult to apply to problems with complex geometries 

or complex boundary conditions. This situation is also true for problems with 

nonisotropic material properties. 

        In contrast, the finite element method uses integral formulations rather than 

difference equations to create a system of algebraic equations. Moreover, an 

approximate continuous function is assumed to represent the solution for each element. 

The complete solution is then generated by connecting or assembling the individual 

solutions, allowing for continuity at the interelemental boundaries [18]. The finite 

element method will be investigated in detail in the following paragraphs. 

 

3.2 Finite Element Method 

 

         The finite element method is a numerical procedure for analyzing structures and 

continua. Usually the problem addressed is too complicated to be solved satisfactorily 
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by classical analytical methods. The problem may concern stress analysis, heat 

conduction, or any of several other areas. The finite element procedure produces many 

simultaneous algebraic equations, which are generated and solved on a digital computer. 

Finite element calculations are performed on personal computers, mainframes, and all 

sizes between. Results are rarely exact. However, errors are decreased by processing 

more equations, and results accurate enough for engineering purposes are obtainable at 

reasonable cost. 

        The finite element method originated as a method of stress analysis [19]. It is used 

to analyze both linear and nonlinear systems. Nonlinear analysis includes material 

yielding, creep or cracking; aeroelastic response; buckling and postbuckling response; 

contact and friction; etc. The finite element method is used for both static and dynamic 

analyses. In its most general form, the method is not restricted to structural (or 

mechanical) systems [16]. Today finite elements are also used to analyze problems of 

heat transfer, fluid flow, lubrication, electric and magnetic fields, and many others. 

Problems that previously were utterly intractable are now solved routinely. Finite 

element procedures are used in the design of buildings, electric motors, heat engines, 

ships, airframes, and spacecraft. Manufacturing companies and large design offices 

typically have one or more large finite element programs in-house. Smaller companies 

usually have access to a large program through a commercial computing center or use a 

smaller program on a personal computer. 

 

Figure 3.1. (a) A tapered bar under end load P. (b) A model built of four uniform  

(nontapered) elements of equal length [19].  

 



 23

         Figure 3.1 shows a very simple problem that illustrates discretization, a basic 

finite element concept. Imagine that the displacement of the right end of the bar is 

required. The classical approach is to write the differential equation of the continuously 

tapered bar, solve this equation for axial displacement u as a function of x, and finally 

substitute TLx  to find the required end displacement. The finite element approach to 

this problem does not begin with differential equation. Instead, the bar is discretized by 

modeling it as a series of finite elements, each uniform but of a different cross-sectional 

area A (Figure 3.1(b)). In each element, u varies linearly with x; therefore, for 

TLx0  , u is a piecewise-smooth function of x. The elongation of each element can 

be determined from the elementary formula PL/AE . The end displacement, at TLx  , 

is the sum of the element elongations. Accuracy improves as more elements are used. 

         In the foregoing example, and in general, the finite element method models a 

structure as an assemblage of small parts (elements). Each element is of simple 

geometry and therefore is much easier to analyze than the actual structure. In essence, a 

complicated solution by a model that consists of piecewise-continuous simple solutions 

is approximated. Elements are called “finite” to distinguish them from differential 

elements in calculus. 

  

 

Figure 3.2. (a) A plane structure of arbitrary shape.  (b) A possible finite element                       

model of the structure. (c) A plane rectangular element showing nodal                        

forces ip  and iq . The dashed line shows the deformation mode associated                        

with x-direction displacement of node 3 [19]. 
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         Figure 3.2(a) shows a plane structure. Displacements and stresses caused by 

pressure p are required. The finite element model, Figure 3.2(b), consists of plane areas, 

some triangular and some quadrilateral (if done properly, there is no difficulty in 

combining the different element types). Black dots, called nodes or node points, indicate 

where elements are connected to one another. In this model each node has two degrees 

of freedom (d.o.f.): that is, each node can displace in both the x direction and the y 

direction. Thus, if there are n nodes in Figure 3.2(b), there are 2n d.o.f. in the model. (In 

the real structure there are infinitely many d.o.f. because the structure has infinitely 

many particles.) Algebraic equations that describe the finite element model are solved to 

determine the d.o.f. Use of only 2n d.o.f. in analysis is similar to use of  the first 2n 

terms of a convergent infinite series. 

         It can be seen that in going from Figure 3.2(a) to 3.2(b) the distributed pressure p 

has been converted to concentrated forces at nodes.  

         From Fig. 3.2 it may appear that discretization is accomplished simply by sawing 

the continuum into pieces and then pinning the pieces together again at node points. But 

such a model would not deform like the continuum. Under load, strain concentrations 

would appear at the nodes, and the elements would tend to overlap or separate along the 

saw cuts. Clearly, the actual structure does not behave in this way, so the elements must 

be restricted in their deformation patterns. For example, if elements are allowed to have 

only such deformation modes as will keep edges straight (Figure 3.2(c)), then adjacent 

elements will neither overlap nor separate. In this way the basic requirement is satisfied 

that deformations of a continuous medium must be compatible.  

An important ingredient in a finite element analysis is the behavior of the individual 

elements. A few good elements may produce better results than many poorer elements. 

It can be seen that several element types are possible by considering Figure 3.3. 

Function φ , which might represent any of several physical quantities, varies smoothly 

in the actual structure. A finite element model typically yields a piecewise-smooth 

representation of φ . Between elements there may be jumps in the x and y derivatives of 

φ . Within each element φ is a smooth function that is usually represented by a simple 

polynomial. What shall the polynomial be? For the triangular element, the linear 

polynomial 

 yaxaaφ 321                                                 (3.1) 
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is appropriate, where the ia  are constants. These constants can be expressed in terms of 

321 andφ,φ,φ , which are the values of φ at the three nodes. Triangles model the actual 

φ by a surface of flat triangular facets. For the four-node quadrilateral, the “bilinear” 

function 

 

                                                   xy4321 ayaxaaφ                                           (3.2) 

 

is appropriate. The eight node quadrilateral in Figure 3.3 has eight ia in its polynomial 

expansion and can represent a parabolic surface. 

 

Figure 3.3. A function of  yx,φφ   that varies smoothly over a rectangular region in 

the xy plane, and typical elements that might be used to approximate it [19]. 

 

Equations 3.1 and 3.2 are interpolations of function φ in terms of the position (x,y) 

within an element. That is, when the ia  have been determined in terms of nodal values 

iφ , Equations 3.1 and 3.2 define φwithin an element in terms of the iφ and the 

coordinates. Clearly, if the mesh of elements is not too coarse and if the iφ happened to 

be exact, then φ away from nodes would be a good approximation. Nodal values iφ are 

close to exact if the mesh is not too coarse and if the element properties are properly 

formulated. 
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        How can the user decide which element to use? Unfortunately, the answer is not 

simple. An element that is good in one problem area may be poor in another. Even in a 

specific problem area an element may behave well or badly, depending on the particular 

geometry, loading and boundary conditions.  

        The “finite element method” is a method of piecewise approximation in which the 

approximating functionφ is formed by connecting simple functions, each defined over a 

small region (element). And a “finite element” is a region in space in which a 

functionφ is interpolated from nodal values of φ on the boundary of the region in such a 

way that interelement continuity ofφ tends to be maintained in the assemblage. 

        A finite element analysis typically involves the following steps. Steps 1, 4, and 5 

require decisions by the analyst and provide input data for the computer program. Steps 

2, 3, 6 and 7 are carried out automatically by the computer program. 

1. Divide the structure or continuum into finite elements. Mesh generation programs, 

called preprocessors, help the user in doing this work. 

2. Formulate the properties of each element. In stress analysis, this means determining 

nodal loads associated with all element deformation states that are allowed. 

3. Assemble  elements to obtain the finite element model of the structure. 

4. Apply the known loads: nodal forces and/or moments in stress analysis. 

5. In stress analysis, specify how the structure is supported. This step involves setting 

several nodal displacements to known values (which often are zero). 

6. Solve simultaneous linear algebraic equations to determine nodal d.o.f (nodal 

displacements in stress analysis). 

7. In stress analysis, calculate element strains from the nodal d.o.f and the element 

displacement field interpolation, and finally calculate stresses from strains. Output 

interpretation programs, called postprocessors, help the user sort the output and display 

it in graphical form. 

        The power of the finite element method resides principally in its versatility. The 

method can be applied to various physical problems. The body analyzed can have 

arbitrary shape, loads, and support conditions. The mesh can mix elements of different 

types, shapes, and physical properties. This great versatility is contained within a single 

computer program. User-prepared input data controls the selection of problem type, 

geometry, boundary conditions, element selection, and so on. 
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        Another attractive feature of finite elements is the close physical resemblance 

between the actual structure and its finite element model. The model is not simply an 

abstraction. This seems especially true in structural mechanics, and may account for the 

finite element method having its origin there. 

        The finite element method also has disadvantages. A specific numerical result is 

found for a  specific problem: a finite element analysis provides no closed-form solution 

that permits analytically study of the effects of changing various parameters. A 

computer, a reliable program, and intelligent use are essential. A general purpose 

program has extensive documentation, which cannot be ignored. Experience and good 

engineering judgement are needed in order to define a good model. Many input data are 

required and volumnious output must be sorted and understood [19]. 

 

3.2.1 Historical Background of the Finite Element Method 

 

        The idea representing a given domain as a collection of discrete parts is not unique 

to the finite element method. It was recorded that ancient mathematicians estimated the 

value of π by noting that the perimeter of a polygon inscribed in a circle approximates 

the circumference of the latter. They predicted the value of π  to accuracies of almost 40 

significant digits by representing the circle as a polygon of a finitely large number of 

sides [20]. 

        Beginning in 1906, researchers suggested a “lattice analogy” for stress analysis. 

The continuum was replaced by a regular pattern of elastic bars. Properties of the bars 

were chosen in a way that caused displacements of the joints to approximate 

displacements of points in the continuum. The method sought to capitalize on well-

known methods of structural analysis. 

        Courant appears to have been the first to propose the finite element method as we 

know it today. In a 1941 mathematics lecture, published in 1943, he used the principle 

of stationary potential energy and piecewise polynomial interpolation over triangular 

subregions to study the Saint-Venant torsion problem. Courants’s work was ignored 

until engineers had independently developed it. 

        None of the foregoing work was of much practical value at the time because there 

were no computers available to generate and solve large sets of simultaneous algebraic 

equations. It is no accident that the development of finite elements coincided with major 

advances in digital computers and programming languages. 



 28

        By 1953 engineers had written stiffness equations in matrix format and solved the 

equations with digital computers. Most of this work took place in the aerospace 

industry. At the time, a large problem was one with 100 d.o.f. In 1953, at the Boeing 

Airplane Company, Turner suggested that triangular plane stress elements be used to 

model the skin of a delta wing. This work, published almost simultaneously with similar 

work done in England, marks the beginning of  widespread use of finite elements. Much 

of this early work went unrecognized because of company policies against publication. 

        The name “finite element method” was coined by Clough in 1960. The practical 

value of the method was soon obvious. New elements for stress analysis applications 

were developed, largely by intuition and physical argument. In 1963 the finite element 

method gained respectability when it was recognized as having a sound mathematical 

foundation: it can be regarded as the solution of a variational problem by minimization 

of a functional. Thus the method was seen as applicable to all field problems that can be 

cast in a variational form. Papers about the application of finite elements to problems of 

heat conduction and seepage flow appeared in 1965. 

        Large general-purpose finite element computer programs emerged during the late 

1960s and early 1970s. Examples include ANSYS, ASKA, and NASTRAN. Each of 

these programs included several kinds of elements and could perform static, dynamic, 

and heat transfer analysis. Additional capabilities were soon added. Also added were 

preprocessors (for data input) and postprocessors (for results evaluation). These 

processors rely on graphics and make it easier, faster, and cheaper to do finite element 

analysis. Graphics development became intensive in the early 1980s as hardware and 

software for interactive graphics became available and affordable. 

        A general-purpose finite element program typically contains over 100000 lines of 

code and usually resides on a mainframe or a supermicrocomputer. However, in the 

mid-1980s, adaptations of general-purpose programs began to appear on personal 

computers. Hundreds of analysis and analysis-related programs are now available, large 

and small, general and narrow, cheap and expensive, for lease or for purchase. 

        Ten papers about finite elements were published in 1961, 134 in 1966, and 844 in 

1971. By 1976, two decades after engineering applications began, the cumulative total 

publications about finite elements exceeded 7000. By 1986, the total was about 20000 

[19]. 
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3.2.2 Sources of Error 

 

        There are three sources of error in the finite element method: errors due to 

approximation of the domain (discretization error), errors due to approximation of the 

element behavior (formulation error), and errors due to use of finite precision 

arithmetic. 

        Discretization error is due to the approximation of the domain with a finite number 

of elements of fixed geometry. For instance, consider the analysis of a rectangular plate 

with a centrally located hole (Figure 3.4(a)). Due to symmetry, it is sufficient to model 

only-one quarter of the plate. If the region is subdivided into triangular elements ( a 

triangular mesh or grid), the circular hole is approximated by a series of straight lines. If 

a few large traingles are used in a coarse mesh, (Figure 3.4(b)), greater discretization 

error results than if a large number of small elements are used in a fine mesh, (Figure 

3.4(c)). Other geometric shapes may be chosen for the elements. For example, with 

quadrilateral elements that can represent curved sides, the circuler hole is more 

accurately approximated (Figure 3.4(d)). Hence, discretization error may be reduced by 

grid refinement. The grid can be refined by using more elements of the same type but of 

smaller size (h-refinement) or by using elements of a different type (p-refinement). 

        Formulation error results from the use of finite elements that do not precisely 

describe the behavior of continuum. For instance, a particular element might be 

formulated on the assumption that displacements vary linearly over the domain. Such an 

element would contain no formulation error when used to model a prismatic bar under 

constant tensile load; in this case, the assumed displacement matches the actual 

displacement.  If the same bar were subjected to uniformly distributed body force, then 

the actual displacements vary quadratically and formulation error would exist. 

Formulation error can be minimized by proper selection element type and appropriate 

grid refinement. Numerical error is a consequence of round-off during floating-point 

computations and the error associated with numerical integration procedures. This 

source of error is dependent on the order in which computations are performed in the 

program and the use of double or extended precision variables and functions. The use of 

bandwith minimization can help control numerical error. Generally, in a well-designed 

finite element program, numerical error is small relative to formulation error [16]. 
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         Figure 3.4. Finite element models of plate with centrally located hole. (a) Plate 

geometry and  loading.   (b) Coarse mesh of triangles.      (c) Fine mesh of  triangles.  

(d) Mesh of quadrilaterals with curved edges [16]. 
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         Add to these, powerful programs cannot be used without training. Their results 

cannot be trusted if users have no knowledge of their internal workings and little 

understanding of the physical theories on which they are based. An error caused by 

misunderstanding or oversight is not correctible by mesh refinement or by use of a more 

powerful computer. Some authorities have suggested that users be “qualified”, 

somewhat in the manner of practitioners having be licensed before engaging in a 

profession in which the potential for damage to the public is substantial. Although the 

finite element method can make a good engineer better, it can make a poor engineer 

more dangerous. 

        Computed results must in some way be judged or compared with expectations. 

Alternative results, useful for comparison, might be obtained from a different computer 

program that relies on a different analytical basis, from a simplified model amenable to 

hand calculation, from the behavior of similar structures already built, and from 

experiment. Experiment may be expensive and has its own pitfalls, but is desirable if 

the analytical process is pushed beyond previous experience and established practice 

[19]. 
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CHAPTER 4 

 

ANALYTICAL STUDY 

 

 
 The axisymmetric problem for the hollow cylindrical bar shown in Figure 4.1 

solved analytically by Artem [12].  The cylinder with inner and outer radii A and B is 

subjected to uniformly distributed axial tension of intensity p0  at infinity. The infinite 

hollow cylinder contains a ring-shaped crack of width (b-a) at the symmetry plane  z=0 

and two ring-shaped rigid inclusions of width (d-c) at z= L planes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Geometry of the problem [12]. 

 

Along the rigid inclusions with negligible thickness displacements are constant and 

continuous whereas stresses have jumps. The surfaces of the crack are free of tractions.  

Therefore, the field equations of axisymmetric elasticity problem must be solved 

together with the following boundary conditions: 

    ,00, rz               (arb),     (4.1a) 

   00, rw ,               (A<r<a,   b<r<B)  (4.1b) 

   0, prz  ,        (ArB),    (4.2a,b) 

   0, Lru ,     ., constLrw  ,    (c<r<d), (4.3a-d)

   0, zAr ,    0, zArz ,           (-<z), (4.4a,b) 
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           0, zBr ,     0, zBrz , (-<z),  (4.5a,b)  

where u and w are the r- and z-components of the displacement vector.                                                   

 Solution for the problem shown  in Figure 4.1  may  be  obtained   conveniently 

by  considering  1) problem of an infinite hollow cylinder subjected to loads at infinity 

with no crack or inclusions, and 2) problem of an infinite hollow cylinder containing a 

ring-shaped crack at z=0 and two ring-shaped rigid inclusions at z= L (perturbation 

problem) shown in Figure 4.2. The external load is the negative of the stresses and 

displacements at locations of the crack and the inclusions obtained from the first 

problem. 

 

Figure 4.2. The informal superposition scheme (perturbation problem) [12]. 

 

 Solution of the first problem is relatively simple and straight forward. Therefore 

in this study, the second problem will be treated in detail. General expressions for the 

displacement and stress components for perturbation problem are obtained by solving 

the field equations using Fourier and Hankel transform techniques. Applying the  

boundary conditions on stress free inner and outer lateral surfaces of the cylinder, on 

crack and on rigid inclusions a system of three singular integral equations with kernels 

having Cauchy-type singularity in terms of crack surface displacement derivative and 

normal and shear stress jumps on rigid inclusions are obtained (see [12 ] for details) 
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in which K and E are the complete elliptic integrals of the first and the second kinds, 

respectively. 

 Then, these integrals are converted into series by the use of Gauss-Lobatto 

integration formula so that a system of linear algebraic equations is obtained. This 

system is solved numerically. After the numerical solution obtained, the stress intensity 

factors at crack tips are  determined. 
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CHAPTER 5 

 

FINITE ELEMENT SOLUTION BY ANSYS 

 

 

        In order to evaluate stress intensity factors at the crack tips in this study, a finite 

element analysis program, ANSYS, is used. ANSYS is a comprehensive general-

purpose finite element computer program that contains over 100000 lines of code. 

ANSYS is capable of performing static, dynamic, heat transfer, fluid flow, and 

electromagnetism analyses. ANSYS has been a leading finite element analysis program 

for well over 20 years. The current version of ANSYS has a completely new look, with 

multiple windows incorporating Graphical User Interface (GUI), pull down menus, 

dialog boxes, and a tool bar. Today, ANSYS is in use in many engineering fields, 

including aerospace, automotive, electronics, and nuclear [18]. With the help of GUI, 

one can do his work by pushing commands on the window. Also, one can write a 

program in ANSYS Parametric Design Language (APDL) and then run it without 

pushing the buttons. APDL allows one to build his model in terms of parameters 

(variables), which in turn allows one to make design changes easily [21]. Actually these 

two ways are same in the basis, but the main difference is that the pushing task 

automatically writes the command line of task in APDL language in the former and one 

can see what he has done at the same time on the computer screen. Add to these, 

ANSYS has no limits on the number of the nodes, elements, or degrees of freedom. And 

also it should be  noted that ANSYS uses dynamic memory allocation and the 

parameters managing the memory usage have been left to their default values [22]. 

 

5.1 Introduction 

 

        When one runs the program, he can see an empty interface on the computer screen. 

At the beginning, one should decide which unit system will be used in the analysis. In 

this study, SI unit system is used and this task can be done only by writing the 

command:  

 

/units,si 
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on the command line. The next step is to select the type of the analysis of the problem 

such as structural, thermal and ANSYS fluid. Here, one will define the type and then the 

program will filter the interface, means that commands on the GUI in the following 

steps are related with the type of the analysis which is defined. The type of the analysis 

of this study is “structural” and this task can be done on the GUI by the way shown 

below: 

 

Preferences > Structural   

 

5.2 Preprocessing part 

 

        The first step of the finite element method starts with preprocessing. In the 

preprocessing part, one can select the type of elements, define the material properties, 

build the model, give attributes to the model and mesh the model. The first step is to 

select the element type which is Plane2 in this study (Figure 5.1). Plane2 is a six-node 

triangular structural-solid element. The element has quadratic displacement behavior 

with two degrees of freedom at each node, translation in the nodal x- and y- directions. 

Surface pressure loads may be applied to element faces. Output data include nodal 

displacements and element data, such as directional stresses and principal stresses [18]. 

 

Preprocessor > Add/Edit/Delete..... > Add > Structural Solid > Triangle 6node 2 

 

        After selecting the type of the element, the next step is to define its properties such 

as plane stress, plane strain, axisymmetric or plane stress with thickness. In this study, 

the analysis of an axisymmetric cylinder subjected  to axisymmetric loading is 

considered, so axisymmetric condition can be used. 
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Figure 5.1. Plane2 2D 6-Node Triangular Structural Solid Element of ANSYS [23]. 

 

        Problems involving three-dimensional axisymmetric solids or solids of revolution, 

subjected to axisymmetric loading, reduce to simple two-dimensional problems. 

Because of total symmetry about the z axis, as seen in Figure 5.2, all deformations and 

stresses are independent of the rotational angle . Thus, the problem needs to be looked 

as a two-dimensional problem in rz, defined on the revolving area (Figure 5.2(b)). 

Gravity forces can be considered if acting in the z direction. 

         

Figure 5.2. Axisymmetric problem [24]. 
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Figure 5.3 Elemental Volume [24]. 

 

Considering the elemental volume shown in Figure 5.3, the potential energy can be 

written in the form 

 

                          
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where rdldθ is the elemental surface area, and the point load iP represents a line load 

distributed around a circle, as shown in Figure 5.2. 

 

        All variables in the integrals are independent of . Thus, Equation 5.1 can be 

written as  

 

                              iPuTufuεσ    
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where 

                                                          Twu,u                                                            (5.3) 

                                                          Tzr f,ff                                                           (5.4) 

                                                          Tzr T,TT                                                         (5.5) 
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From Figure 5.4, the relationship between strains ε and the displacements u  can be 

written as 

                                                      θrzzr ε,γ,ε,εε                                                     (5.6) 
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Figure 5.4. Deformation of elemental volume [24]. 

 

The stress vector is correspondingly defined as 

                                                Tθrzzr σ,τ,σ,σσ                                                       (5.8) 

The stress-strain relations are given in the form shown below: 

                                                    Dεσ                                                                      (5.9)       

where the  44  matrix D  is [24]: 
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 To use the axisymmetric conditions has some advantages, such as simplicity in 

modelling, less RAM requirements and higher solution speed than a 3-D model. 

Because of these advantages, the element type is selected as a 2-D axisymmetric 

element and defined by the following command:  

 

Preprocessor > Add/Edit/Delete..... > Options > Element Behavior – Axisymmetric 

 

The next step is to define the material properties. More than one material property can 

be defined by giving different material numbers to them. In structural analysis, Elastic 

Modulus, Poisson’s ratio and/or Shear Modulus are needed to be defined:  

 

Preprocessor > Material Props > Isotropic 

 

The material properties in this study are taken as: 

Whole cylinder without rigid inclusion: Elastic Modulus (E) : 910200 2N/m  

                                                                Poisson’s ratio ()    : 0.3 

Rigid Inclusion                                      : Elastic Modulus (E) : 18102 2N/m  

                                                                 Poisson’s ratio ()   : 9101   

 

Rigid inclusion means that the material embedded inside another material is unmovable, 

so the all displacements of the rigid inclusion is zero. Thus, the strain is also zero and 

according to the Hooke’s law  Eεσ  , this zero value of the strain leads the elastic 

modulus of the rigid inclusion to a value of infinity. In a numerical approach, the 

infinity can be defined as to get a very big value with respect to the other values. In 

other words, in order to achieve the infinity condition, the ratio of the elastic moduluses 

of the rigid inclusion/matrix should be very big. After defining the material properties, 

the model can be built by using appropriate commands. As it is mentioned before, the 

axisymmetric condition is used in this analysis, so a 2-D model can be built in order to 

do the finite element analysis of the problem. The cross sectional area of the whole 

problem has a rectangular shape and due to symmetry about x-axis, it will be sufficient 

to consider half of the 2-D rectangular cross-sectional area. Because of the special 

conditions, the geometry is divided into four smaller rectangles (Figure 5.5).  
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Figure 5.5 2-D Model of the problem 

 

Two similar rectangular areas are formed because of the unique useness of command 

KSCON, which is used for obtaining singular elements at the crack tips in an area. In 

this study, there are two crack tips. Inside these two rectangles, there is another small 

rectangular area, which represents the rigid inclusion. In the analytical study, the 

inclusion’s thickness is assumed to be negligible. So, a rectangle with a small thickness 

with respect to the height of the whole body is assumed as a negligible dimension. The 

last rectangle located at the upper part of the two bigger ones is built in order to apply 

uniform pressure to the line at the upper part of this rectangle. The main problem of 

building the model is to decide the way of how to build, such as by using the command 

that directly forms a rectangle or by forming keypoints at the critical points of the 

structure first and then the rectangles with these keypoints. The best way is the second 

one. Because in order to use the KSCON command, it is required to define a keypoint at 

the crack tip. So, the first step in construction of the geometry is to define the keypoints: 

 

Inclusion area

Uniform loading 
area 

KSCON related 
areas 
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Preprocessor > Create > Keypoints > In Active CS 

 

One can define more than one keypoint by giving different numbers. In this study, 

sixteen keypoints are defined. The next step is to build the required geometry by 

connecting the keypoints by lines: 

 

Preprocessor > Create > Arbitrary > Through KPs 

 

After building the four different parts of the whole model (Figure 5.5), it is required to 

transform these four seperate parts into a unique part by glueing them: 

 

Preprocessor > Operate > Glue > Areas > Pick All 

 

After modelling the problem, it is needed to define the attributes, such as material 

number, real constant set number, element type number and element coordinate system, 

of the different parts of the whole model. This task can be achieved by clicking the 

related areas and then making appropriate changes in the table on the screen, especially 

the material number and element type number. In this study, only one element type is 

defined, so there is no need to deal with it, but on the other hand two materials with 

different numbers are defined, such as 1 and 2, for the whole body without rigid 

inclusion and the rigid inclusion, so it is required to attribute these materials to the 

related areas: 

 

Preprocessor > Define > Picked Areas 

 

The next step is to mesh the whole model, in other words discretization of the whole 

model takes place. The first step is to define the required properties of KSCON 

command in order to form singular elements at the crack tips (Figure 5.6). If a special 

element is introduced in order to consider the singularity of the stress-strain in the 

vicinity of the crack tip a more accurate solution can be obtained. This is the way that 

an accurate stress intensity factor value can be obtained with a rather coarse mesh [25]: 

 

Preprocessor > Size Cntrls > Concentrat KPs > Create 
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Figure 5.6. Mesh generation at the crack tip. 

 

After clicking the commands repectively, it is required to pick the keypoint at the one of 

the crack tip. Then a table appears on the screen. In this table, the number of the 

keypoint at the crack tip, radius of 1st row of elements, radius ratio (2nd row/1st), 

number of elements around circumference values are needed to be defined. In order to 

efficiently model the r type variation of displacements near the crack tip (r being the 

distance from the crack tip), quarter-point elements (QPEs) have been used to mesh the 

region surrounding the tip. QPEs were introduced by Barsoum and Henshell and Shaw 

and are essentially six-noded triangular elements with their mid-side nodes shifted to 

quarter-point positions. It has been shown that, depending on the mesh and crack 

configuration, there exists an optimum size of QPE, smaller or larger QPEs compromise 

the accuracy of results. Murti and Valliappan have suggested that the optimum size of 

QPE is 15-25% of the crack length. However for deeply cracked configurations, due to 

constraint of the length of the remaining ligament, QPEs of such sizes cannot be used. 

An alternative strategy in these situations is to use smaller QPEs surrounded by a layer 

of transitional elements (TEs), which are 1.5244 times larger than the QPEs. The TEs 

stabilize the accuracy of calculated SIFs to within acceptable errors for QPEs smaller 

than the optimum [2]. On the other hand, ANSYS guidelines recommend that the radius 

of 1st row of elements should be “crack length/8” or smaller and in the circumferential 
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direction, there should be roughly one element every 30 or 40 degrees. In this study, the 

maximum radius used is “crack length/10” or less, the number of elements is 16, so 

roughly every 11-12 degrees there is one singular element and radius ratio is taken as 

0.5. Add to these, despite the offer of Murti and Vallipan about the optimum radius of 

1st row of elements, it is seen that the value of this radius doesn’t affect the results 

significantly. On the other hand, the number of elements is the most important and 

effective parameter, so a high number of elements at the crack tip should be taken. The 

KSCON command can be used once in an area, so if there is more than one critical 

point needed singular elements, there should be a number of areas at least the number of 

critical points. And also it should be noted that KSCON command is restricted to the 2-

D analyses. So, if a 3-D analysis is done, then  the macro FRACT is used to create 

SOLID95 crack tip element from the SOLID 45 model using a weighted midside node 

position (quarter point location) [25]. 

After defining the required properties of singular elements, the next step is to 

define mesh size properties of the other lines in the model in order to obtain a fine 

meshed model which is commonly used in this study: 

 

Preprocessor > MeshTool > Lines > Set 

 

After picking lines which one wants to modify the mesh size properties, it is needed to 

give the value of the required “element edge length” or “number of element divisions”. 

For a finer meshed model, smaller values should be given. In this study, “number of 

element divisions” is modified as giving appropriate values according to experiences 

gained before. There is another parameter as “spacing ratio” on this table which has a 

default value of “1”. If one changes this value, lengths of the meshes on lines increase 

or decrease linearly. This is generally an important property in the finite element 

method, which is needed to use coarser meshing far from the critical points. But, in this 

study the model is a bit complex, and there are more than one critical point, such as 

crack tips and inclusions. So, the default value is used without any change. It is seen 

that when the results are compared with changed and unchanged spacing ratio, they are 

similar. 

The next step after modifying the default values of meshing parameters is to mesh the 

model: 

Preprocessor > MeshTool > Mesh > Pick All 
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After picking the required commands for meshing, the meshed model of the whole 

geometry (Figure 5.7) is obtained and the model is discretized into a high number of 

elements. Meshing is the last step of the preprocessor part.  

 

Figure 5.7. The meshed model of the whole geometry. 

 

5.3 Solution part 

 

        In the solution part, boundary conditions are applied. First step of the solution part 

is to define the type of analysis such as static, modal, harmonic, transient, spectrum, 

eigen buckling and substracting. In this study, there is a static loading so that static 

analysis is defined as the type of the analysis. It is not necessary to define by picking the 

command for static analysis because it is the default analysis type: 

 

Solution > Analysis Type > New Analysis > Static 
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        First step of applying boundary conditions is to constrain translation of nodes 

where needed. In this study, UY degree of freedom of the nodes at the base line except 

the nodes on the crack line is constrained because of the symmetry condition according 

to x-axis: 

 

Solution > Apply > Structural > Displacement > On Keypoints 

 

        After picking the commands respectively and then picking the keypoints at the left 

or right crack tip and corner of the base line , it is needed to fill the table on the 

interface.  

        In this table “DOFs to be constrained”, “Displacement Value” and “Expand 

Displacement to nodes” data can be defined. For this study, in order to constrain the UY 

degrees of freedom of nodes due to the symmetry about the x-axis, from the choice of 

“DOFs to be constrained” UY is selected, then “Displacement value” is given as 0, and 

lastly “Expand Displacement to nodes” is modifies as “Yes”, means that all the nodes 

between the selected keypoints are also selected and constrained as the given values at 

the same table. Thus, all nodes between keypoints at the crack tips and corners at the 

base line are constrained as unmovable in the y-direction. In other words,  at z = 0, the 

nodes on the r axis remain constant in the z-direction except the nodes on the crack line. 

Add to this, this constrained condition lets us to obtain a crack when a tensile load 

applied at the upper part of the model or a pressure exerted at the crack line. 

        The next step is to apply pressure at the upper line of the model: 

 

Solution > Apply > Pressure > On Lines 

 

After picking to the related line, it is needed to give the pressure value. There are two 

blanks in the table for “Pressure Value” and “Optional pressure at J end”. If there is a 

uniform load distribution, only “Pressure Value” data is sufficient, but for a linear load 

distribution, the value of “Optional pressure at J end” is needed. J end is the right corner 

of the line. In this study, there is a uniform load distribution and a pressure value of 100 

MPa is taken. According to the 2-D problem, a load having a unit of N/m is used and 

the load exerted defines the pressure value 100 MPa by using the formula shown below: 
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           (m)) radiusinner (m)radius(outer)(N/mPressure(N/m)Load 2             (5.11) 

 

Another keypoint here is the sign of the value for the pressure value. “+” defines a   

compressive load and “-” defines a tensile load. 

        In Figure 5.8, applied boundary conditions on the model can be seen:  

 

 

Figure 5.8. Boundary conditions of the problem. 

 

The last step in the solution part is to start the solution process of matrices and 

equations which are formed by the given data from the beginning of the analysis to this 

step: 

Solution > Solve > Current LS > OK 
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5.4 Postprocessing part 

 

        The last step of the analysis is the postprocessing part where the results from the 

analysis are obtained. In this study, the results of SIFs at the two crack tips and stress 

distribution inside the model have special importance. Calculation of SIFs at the crack 

tips can be accomplished in the Postprocessing part of the ANSYS by KCALC 

command with the displacement extrapolation method.There are also different methods 

such as the J-integral via the domain integral method [26], modified crack closure 

technique [27], virtual crack extension method [5].  The analysis uses a fit of the nodal 

displacements in the vicinity of the crack. The actual displacements at and near a crack 

for linear elastic materials are: 
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where:  

u,v,w = displacements in a local Cartesian coordinate system as shown in Figure 5.9.    

r,  = coordinates in a local cylindirical coordinate system also shown in Figure 5.9.             

G = shear modulus 

IIIIII K,K,K  = stress intensity factors relating to deformation shapes shown in       

Figure 5.10. 

4ν3κ   if plane strain or axisymmetric 

ν1

ν3
κ




  if plane stress  

ν = Poisson’s ratio 

 rO = terms of order r or higher 
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Figure 5.9. Local coordinates measured from a 3-D crack front [28]. 

 

Figure 5.10. The three basic modes of fracture [28]. 

 

Evaluating Equations 5.12-5.14 at 180  and dropping the higher order terms 

yields: 
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For models symmetric about the crack plane(half-crack model,Figure 5.11(a)), 

Equations 5.15-5.17 can be reorganized to give: 
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Figure 5.11. Nodes used for approximate crack-tip displacements: (a) Half model       

(b) Full model 
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and for case of no symmetry (full-crack model, Figure 5.11(b)), 
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where v, u, and w are the motions of one crack face with respect to the other. As 

the above six equations are similar, consider only the first one further. The final factor is  

r

v
 which needs to be evaluated based on the nodal displacements and locations. As 

shown in Figure 5.11(a), three points are available. v is normalized so that v at node I is 

zero. Then A and be determined so that 
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at points J and K. Next, let r approaches 0: 
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Thus, Equation 5.18  becomes  

 

                                                        
κ1
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Equations 5.19-5.23 are also fit in the same manner [28].As shown above, the KSCON 

command can calculate the mixed-mode stress intensity factors IIIII,I KandK,K . This 
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command is limited to linear elastic problems with a homogenous, isotropic material 

near the crack region because the equations used in calculation process is related to the 

linear elastic fracture mechanics. In order to use KCALC command properly, it is firstly 

desired to define a local crack-tip coordinate system, with X parallel to the crack face 

and Y perpendicular to the crack face. This can be done by the following way: 

 

Workplane > Local Coordinate Systems > Create Local CS > At Specified 

Location+ 

 

After the sequence of picking the crack tip and OK twice forms a local coordinate 

system at that crack tip. Then, it is desired to define a path along the crack face. The 

first node on the path should be the crack-tip node. For a half crack model, two 

additional nodes are required, both along the crack face. For a full-crack model, where 

both crack faces are included, four additional nodes are required: two along one crack 

face and two along the other:  

 

General Postproc > Path Operations > Define Path > By nodes 

 

Now, the crack face is defined to the program. The third and next step is to calculate the  

IIIII,I KandK,K : 

 

General Postproc > Nodal Calcs > Stress Int Factr 

 

After picking these commands respectively, it is required to give some properties about 

the problem, such as the displacement extrapolation is based on whether plane strain, 

axisymmetric or plane stress condition; material number for extrapolation; and lastly 

model type of the crack whether half-symmetric, half-asymmetric or full. 

        In this study, firstly, a local coordinate system is defined at the one of the crack tip. 

Secondly, by picking the nodes at the crack tip and two neighbour nodes at the right 

side of the left crack tip or left side of the right crack tip, respectively, a half crack 

model is defined. Thirdly, in order to calculate  IIIII,I KandK,K at that crack tips, 

default values such as plane strain, “1” for the material number and half-symmetric 

boundary conditions are used. 
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         The stress distribution and displacements for the problem can also be obtained: 

 

General Postproc > Plot Results > Nodal Solu... 

 

It can easily be seen that, there is an intensification at the crack tips and the tips of the 

inclusions. In this case, it is clear that the regular stress distribution of the whole body is 

disturbed by the effect of the crack and inclusions. (See Appendix B) 

        As mentioned before, instead of using the graphical user interface, APDL can be 

used in all steps of the analysis. In this study, until the step of attributing material 

properties to the related areas, a log file written in APDL language is used. So, the 

repeating steps in all analyses are done very fastly and parameters are changed very 

easily. A sample log file used in this study is given in Appendix C. 

        Add to these, a convergence test [10] should be done in order to get accurate 

results and prevent from more time consuming than the optimum analysis. This test can 

be done by increasing the number of meshes and doing the same analysis, then 

comparing the results with each other. With the increasing number of mesh, the 

differences between the results become smaller, so the minimum number where the 

constantancy starts is the optimum mesh number of the analysis. In this study, it is not 

need to do such a test in every analysis, because there is not a significant difference 

between the results whether the coarse or fine mesh used. 

        Another important point of this study is how the infinity condition of the height of 

the solid is achieved. This task is achieved by doing the same analysis and increasing 

the height of the geometry. Then, the results are compared with each other and when the 

discrepancy between them are insignificant, it can be said that the condition of infinity 

for the height of the geometry is obtained.  
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CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

        The cracked infinite hollow cylinder with two rigid inclusions is completely 

defined by the dimensionless parameters L/A, a/A, b/A, c/A, d/A, Poisson’s ratio  and 

2/0p . Distances are normalized with A, the inner radius of the cylinder. The stress 

intensity factors at the crack tips are normalized in the form given below: 

  2// 011 abpkk aa                      2// 011 abpkk bb                               

        Due to the dependency of the whole geometric parameters on A, the results of the 

finite element analysis by the use of ANSYS for different values of A are obtained. As 

it is mentioned before, in all analyses the applied tensile load is taken as 100 MPa. In 

the following figures,in some cases discrepencies have been occurred. For the 

dispacement extrapolation method, the differences around 5% can be assumed as in 

acceptable limits. In order to verify the accuracy of the model, the analytical results of 

the study of Erdol and Erdogan [13] are compared with the finite element analysis 

results (Figures 6.1-6.3). It can easily be seen in these figures that there is a good 

agreement between numerical and analytical results, so the model is proved to be 

reliable for further analyses. 
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Figure 6.1. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when A=0.2B,               

                    a = 0.4B,  = 0.3. 
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Figure 6.2. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when A=0.3B,               

                    a  = 0.4B,  = 0.3. 
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Figure 6.3. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when A=0.3B,                

                    a = 0.5B,  = 0.3.         
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 Figure 6.4 shows variation of normalized stress intensity factors ba kk 11 and  with      

(b – a)/A when L = 0.25A and d – c = 0.15A. Stress intensity factors ak 1  and bk 1  

increase as crack width increases. In this figure, the distance between the rigid 

inclusions and the crack is small and it can easily be seen that the analytical and 

numerical results are in good agreement. 
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Figure 6.4. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,          

                    L = 0.25A, d - c = 0.15A, a + b = c + d = 2.25A,  = 0.3.  

 

 

 

 Figures 6.5-6.7 show variations of normalized stress intensity factors ba kk 11 and  

with (d – c)/A when L = 0.5A and  b – a = 0.15A for different  values; 0.2, 0.3, 0.4, 

respectively. The inclusions and the crack are close to each other. As it is seen from 

these figures ak 1  decreases whereas bk 1  increases with increasing inclusion widths, and 

there are acceptable differences between numerical and analytical results. The 

differences increase with increasing  values. 
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Figure 6.5. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                    L = 0.5A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.2. 
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Figure 6.6. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                    L = 0.5A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.3. 
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Figure 6.7. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                    L = 0.5A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.4. 

 

Figure 6.8-6.10 shows variations of normalized stress intensity factors ba kk 11 and  with     

(d – c)/A when L =4.0A and  b - a = 0.15A for different  values. 
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Figure 6.8. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                    L = 4.0A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.2. 
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In these figures, ak 1 and bk 1  remains constant with increasing inclusion widths, the 

analytical and numerical values coincide well with each other. 
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Figure 6.9. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                    L = 4.0A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.3. 
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Figure 6.10. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                      L = 4.0A, b - a = 0.15A, a + b = c + d = 2.25A,  = 0.4. 
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 Figures 6.11-6.13 show variations of normalized stress intensity factors at the 

crack tips ba kk 11 and  with (d – c)/A when L = 0.5A and  b - a = 0.15A for different  

values; 0.2, 0.3, 0.4, respectively. The inclusions and the crack are close to each other. 

The difference between these figures and Figures 6.5-6.7 is the thickness of the hollow 

cylinder. There are acceptable differences between numerical and analytical results. The 

differences increase with increasing  and width of the rigid inclusion values. As it is 

seen from these figures ak 1  decreases whereas bk 1  increases with increasing inclusion 

widths for analytical results, but on the other hand numerical results behave reversely to 

the analytical results. 
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Figure 6.11. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 0.5A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.2. 

 

 

 

 



 62

0.0 0.1 0.2 0.3 0.4 0.5
1.20

1.25

1.30

1.35

1.40

ak1

bk1

FEAk a1

FEAk b1

ba k,k 11

Acd /)( 
 

Figure 6.12. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 0.5A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.13. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 0.5A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.4. 
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 In Figures 6.14-6.16, variations of normalized stress intensity factors ba kk 11 and  

with (d – c)/A when L =4.0A and  b - a = 0.15A for different  values; 0.2, 0.3, 0.4 are 

shown respectively. The rigid inclusions and the crack are far away from each others. 

The difference between these figures and Figures 6.8-6.10 is the thickness of the hollow 

cylinder. In these figures, ak 1 and bk 1  remains constant with increasing inclusion 

widths, the analytical and numerical values coincide well with each other. 
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Figure 6.14. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 4.0A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.2. 
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Figure 6.15. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 4.0A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.16. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      L = 4.0A, b - a = 0.3A, a + b = c + d = 2.5A,  = 0.4. 
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Figures 6.17-6.19 show variations of normalized stress intensity factors ba kk 11 ,  with       

L/A when b – a = 0.15A and  different d - c values; 0.09, 0.15 and 0.21,respectively.  
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Figure 6.17. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                      b - a = 0.15A, d – c = 0.09A, a + b = c + d = 2.25A,  = 0.3. 
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Figure 6.18. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                      b - a = 0.15A, d - c = 0.15A,  a + b = c + d = 2.25A,  = 0.3. 
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According to analytical results, with increasing L/A, both ak 1 and bk 1  tend to 

asymptotic values when L/A>~1.5. When the L/A values are 0.25 and >=1.5, the 

analytical and numerical results are in good agreement. There are acceptable  

differences when the L/A values are between 0.5 and 1.5. 
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Figure 6.19. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,           

                      b - a = 0.15A, d - c = 0.21A,  a + b = c + d = 2.25A,  = 0.3. 

 

 

 

 Figures 6.20-6.22 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when b – a = 0.3A and different d-c values; 0.18, 0.3 and 

0.42,respectively. The difference between these figures and Figures 6.17-6.19 is the 

thickness of the hollow cylinder.When the L/A values are >=2, the analytical and 

numerical results are in good agreement. There are acceptable  differences when the 

L/A values are between 0.25 and 2. 
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Figure 6.20. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                       b - a = 0.3A, d - c = 0.18A,  a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.21. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,           

                      b - a = 0.3A, d - c = 0.3A,  a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.22. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                       b - a = 0.3A, d - c = 0.42A,  a + b = c + d = 2.5A,  = 0.3. 

 

 Figure 6.23 shows variations of normalized stress intensity factors ba kk 11 ,  with 

L/A when b – a = 0.15A and  d –c =0.05A. When the L/A values are >=1.5, the 

analytical and numerical results coincide well with each other. 
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Figure 6.23. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                      b - a = 0.15A, d - c = 0.05A,  a + b = c + d = 2.25A,  = 0.3. 
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 Figures 6.24-6.26 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when b – a = 0.15A and  d – c =0.23A for different  values.  
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Figure 6.24. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.15A, d - c = 0.23A,  a + b = c + d = 2.25A,  = 0.2. 
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Figure 6.25. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.15A, d - c = 0.23A,  a + b = c + d = 2.25A,  = 0.3. 
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When the L/A values are 0.25 and >=1.5, the analytical and numerical results coincide 

well with each other. There are acceptable  differences when the L/A values are 

between 0.5 and 1.5. The differences increase with increasing  values. 
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Figure 6.26. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.15A, d - c = 0.23A,  a + b = c + d = 2.25A,  = 0.4. 

 

 

 

 Figures 6.27-6.29 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when d - c = 0.3A and  for different b - a values; 0.18, 0.3 and 

0.42,respectively. According to analytical results, both ak 1 and bk 1  become independent 

of L/A when L/A>~1. When the L/A values are 0.25 and >=2, the numerical results are 

in good agreement with the analytical ones. There are acceptable  differences when L/A 

values are between 0.5 and 2.  
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Figure 6.27.  Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.18A, d - c = 0.3A,  a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.28. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.3A, d - c = 0.3A,  a + b = c + d = 2.5A,  = 0.3. 
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Figure 6.29. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                      b - a = 0.42A, d - c = 0.3A,  a + b = c + d = 2.5A,  = 0.3. 

 

  

 

 Figures 6.30-6.32 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when b – a = 0.1A and  d – c =0.21A. In these figures, the crack 

is located closer to the inner surface, at the center and closer to the outer surface of the 

infinite hollow cylinder,respectively. According to analytical results, with increasing 

L/A, especially when L/A>~1.5, ak 1 and bk 1  both  tend to approach a constant value. 

When the L/A values are 0.25 and >=1.5, the analytical and numerical results coincide 

well with each other. As from the viewpoint of the finite element analysis, there are 

acceptable differences when L/A<~1.5. 
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Figure 6.30. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.1A, d - c = 0.21A,  a + b = 2.15A, c + d = 2.25A,  = 0.3. 
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Figure 6.31. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.1A, d - c = 0.21A,  a + b = 2.25A, c + d = 2.25A,  = 0.3. 
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Figure 6.32. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.1A, d - c = 0.21A,  a + b = 2.35A, c + d = 2.25A,  = 0.3. 

 

 Figures 6.33-6.35 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when b – a = 0.21A and  d – c = 0.1A. In these figures, the rigid 

inclusions are located closer to the inner surface, at the center and closer to the outer 

surface. 
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Figure 6.33. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.21A, d - c = 0.1A,  a + b = 2.25A, c + d = 2.15A,  = 0.3. 
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Figure 6.34. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.21A, d - c = 0.1A,  a + b = 2.25A, c + d = 2.25A,  = 0.3. 
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Figure 6.35. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.25A,            

                       b - a = 0.21A, d - c = 0.1A,  a + b = 2.25A, c + d = 2.35A,  = 0.3. 
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 Figures 6.36-6.38 show variations of normalized stress intensity factors 

ba kk 11 and  with L/A when b – a = 0.2A and  d – c =0.42A. In these figures, the crack 

is located closer to the inner surface, at the center and closer to the outer surface, 

respectively. When the L/A values are >=2, the analytical and numerical results 

coincide well with each other. There are acceptable  differences when the L/A values 

are between 0.25 and 2. 
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Figure 6.36. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                       b - a = 0.2A, d - c = 0.42A,  a + b = 2.3A, c + d = 2.5A,  = 0.3. 
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Figure 6.37.. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                       b - a = 0.2A, d - c = 0.42A,  a + b = 2.5A, c + d = 2.5A,  = 0.3. 
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Figure 6.38.. Variation of Normalized Stress Intensity Factors ba kk 11 ,  when B =1.5A,            

                       b - a = 0.2A, d - c = 0.42A,  a + b = 2.7A, c + d = 2.5A,  = 0.3. 
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 The variation of normalized stress intensity factors ba kk 11 and at the tips of the 

cracks are presented in graphical form by Figures 6.1-6.38. As it is seen from these 

figures, when the inclusions are far away from the crack, the interaction among them 

vanishes. In this case, the numerical and analytical results are in good agreement. When 

the inclusions approach the crack, a discrepancy has been occurred, but in the 

acceptable limits. There may be several reasons related to this case. In the analytical 

work, the stress distributions along the rigid inclusions may be neglected due to 

negligible thickness of the rigid inclusions. But in the finite element analysis, this case 

is not valid. Also, the rigid inclusions having negligible thickness may not be modelled 

properly. Add to these, the accurcy of analytical and numerical solutions may be 

affected when the inclusions get too close to each other. 

Related data and % differences between numerical and analytical results for each 

figure are tabulated and given in Appendix A. The stress distributions for a sample case 

are given in Appendix B. 

 

 

 

 

 

 



 79

CHAPTER 7 

 

CONCLUSIONS 

 

 A numerical implementation based on the finite element method for an elastic 

hollow cylinder under axial tension containing a crack and two rigid inclusions of ring-

shape is presented in this study. The proposed model uses efficiently the capabilities of 

a commercially available finite element program, ANSYS, to determine the stress 

intensity factors at the crack tips. The numerical results illustrated for various crack and 

inclusion configurations are presented in Chapter 6. Stress intensity factors at the tips of 

the crack are investigated numerically and compared for accuracy with those studied by 

Artem [12] and Erdol [13].  

 At the beginning, in order to verify the finite element model built for the 

problem investigated in this study, a similar problem without rigid inclusions has been  

analyzed. When the results obtained from finite element analysis compared with the 

analytical ones [13], it is seen that the results coincide well with each other. Thus, it can 

be mentioned that the model used in this study is suitable and can be relied on for 

further analyses. Then, the rigid inclusions have been included in the model as in [12].         

The results obtained by using this model are compared with the analytical ones [12]. 

When the inclusions are far away from the crack, the interaction among them vanishes. 

In this case, the numerical and analytical results are in good agreement. When the 

inclusions approach the crack, a discrepancy has been occurred, but in the acceptable 

limits. There may be several reasons related to this situation: 

1) In the analytical work, the inclusions are assumed to be sufficiently thin (having    

negligible thickness) so that the thickness distribution of the stresses in the inclusions 

may be neglected. But, in the finite element analysis this assumption is not valid. 

2) The rigid inclusions with negligible thicknesses are modelled with a small size   

compared with the height of the hollow cylinder. But, the condition of negligibility  

may not be obtained properly. 

3) The distance between the rigid inclusions tends to affect the accuracy of the solutions 

(analytical or numerical) so much that the solutions may fail to converge as the 

inclusions get too close to each other. 
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APPENDIX-A 
 
 

DATA AND % DIFFERENCES BETWEEN NUMERICAL 
AND ANALYTICAL RESULTS FOR FIGURES IN CHAPTER 6 

 
Table A-1 Data and % differences between analytical and numerical results for Figure 
6.1. 
 

b/B(A/B=0.2,a/B=0.4) k'(1b) k' (1a) k'(1b)FEA %dif. k'(1a)FEA %dif. 

0.4 1 1     

0.5 0.9864 1.0405 0.9864 0.0000 1.0418 0.1249 

0.6 0.9963 1.1017 0.9936 -0.2710 1.1019 0.0182 

0.7 1.0345 1.19 1.0294 -0.4930 1.1877 -0.1933 

0.8 1.1262 1.3252 1.1216 -0.4085 1.3245 -0.0528 

0.9 1.3726 1.5644 1.3682 -0.3206 1.5681 0.2365 

1       

 
 
Table A-2 Data and % differences between analytical and numerical results for Figure 
6.2. 
 

b/B(A/B=0.3,a/B=0.4) k'(1b) k' (1a) k'(1b)FEA %dif. k'(1a)FEA %dif. 

0.4 1 1     

0.5 0.9973 1.0591 1.0074 1.0127 1.0724 1.2558 

0.6 1.0167 1.1493 1.0251 0.8262 1.1611 1.0267 

0.7 1.0626 1.269 1.069 0.6023 1.2788 0.7723 

0.8 1.1645 1.4416 1.1674 0.2490 1.4478 0.4301 

0.9 1.4361 1.7374 1.434 -0.1462 1.7408 0.1957 

1       

 
 

Table A-3 Data and % differences between analytical and numerical results for Figure 
6.3. 
 

b/B(A/B=0.3,a/B=0.5) k'(1b) k' (1a) k'(1b)FEA %dif. k'(1a)FEA %dif. 

0.4       

0.5 1 1     

0.6 0.9931 1.0377 0.9961 0.3021 1.0424 0.4529 

0.7 1.015 1.1035 1.016 0.0985 1.1071 0.3262 

0.8 1.0833 1.2098 1.0814 -0.1754 1.2111 0.1075 

0.9 1.287 1.4022 1.282 -0.3885 1.4037 0.1070 

1       

 
 
k' in all tables defines the normalized stress intensity factor. 
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Table A-4 Data and % differences between analytical and numerical results for Figure 
6.4. 
 

(b-a)/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif 

0.025 1.0238 1.0184 1.0299 0.5958 1.0225 0.4026 

0.05 1.0445 1.0336 1.0513 0.6510 1.0382 0.4450 

0.1 1.1355 1.1107 1.1394 0.3435 1.1112 0.0450 

0.15 1.3342 1.2909 1.337 0.2099 1.2852 -0.4416 

0.2 1.8654 1.7823 1.8694 0.2144 1.7662 -0.9033 

0.23 2.9746 2.824 2.9568 -0.5984 2.7748 -1.7422 

 
Table A-5 Data and % differences between analytical and numerical results for Figure 
6.5. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.3304 1.2807 1.3563 1.9468 1.244 -2.8656 

0.05 1.3303 1.2808 1.3571 2.0146 1.2433 -2.9279 

0.1 1.3299 1.281 1.3582 2.1280 1.2425 -3.0055 

0.15 1.3293 1.2814 1.359 2.2343 1.2419 -3.0826 

0.2 1.3287 1.2818 1.3592 2.2955 1.2416 -3.1362 

0.23 1.3284 1.282 1.3591 2.3111 1.2417 -3.1435 

 
 
Table A-6 Data and % differences between analytical and numerical results for Figure 
6.6. 
 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.33 1.281 1.3843 4.0827 1.2371 -3.4270 

0.05 1.3297 1.2811 1.3855 4.1964 1.2362 -3.5048 

0.1 1.329 1.282 1.3872 4.3792 1.2348 -3.6817 

0.15 1.3277 1.2824 1.3884 4.5718 1.2339 -3.7820 

0.2 1.326 1.283 1.3888 4.7360 1.2336 -3.8504 

0.23 1.3256 1.2837 1.3885 4.7450 1.2338 -3.8872 

 
 
Table A-7 Data and % differences between analytical and numerical results for Figure 
6.7 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.3295 1.2812 1.4023 5.4757 1.2178 -4.9485 

0.05 1.3291 1.2814 1.4037 5.6128 1.2167 -5.0492 

0.1 1.3277 1.2824 1.4062 5.9125 1.2147 -5.2792 

0.15 1.3256 1.2838 1.4077 6.1934 1.2133 -5.4915 

0.2 1.3234 1.2854 1.4081 6.4002 1.2131 -5.6247 

0.23 1.3223 1.2862 1.4078 6.4660 1.2132 -5.6756 
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Table A-8 Data and % differences between analytical and numerical results for Figure 
6.8. 
 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.3304 1.2807 1.3292 -0.0902 1.2764 -0.3358 

0.05 1.3304 1.2807 1.3287 -0.1278 1.2765 -0.3279 

0.1 1.3304 1.2807 1.3287 -0.1278 1.2766 -0.3201 

0.15 1.3304 1.2807 1.3287 -0.1278 1.2765 -0.3279 

0.2 1.3304 1.2807 1.3287 -0.1278 1.2765 -0.3279 

0.23 1.3304 1.2807 1.3287 -0.1278 1.2765 -0.3279 

 
Table A-9 Data and % differences between analytical and numerical results for Figure 
6.9. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.33 1.2809 1.3315 0.1128 1.2807 -0.0156 

0.05 1.33 1.2809 1.3315 0.1128 1.2807 -0.0156 

0.1 1.33 1.2809 1.3316 0.1203 1.2803 -0.0468 

0.15 1.33 1.2809 1.3316 0.1203 1.2802 -0.0546 

0.2 1.33 1.2809 1.3316 0.1203 1.2802 -0.0546 

0.23 1.33 1.2809 1.3316 0.1203 1.2802 -0.0546 

 
 
Table A-10 Data and % differences between analytical and numerical results for Figure 
6.10. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.025 1.3296 1.2811 1.3274 -0.1655 1.2797 -0.1093 

0.05 1.3296 1.2811 1.3272 -0.1805 1.2797 -0.1093 

0.1 1.3296 1.2811 1.3272 -0.1805 1.2797 -0.1093 

0.15 1.3296 1.2811 1.3272 -0.1805 1.2797 -0.1093 

0.2 1.3296 1.2811 1.328 -0.1203 1.2785 -0.2030 

0.23 1.3296 1.2811 1.328 -0.1203 1.2785 -0.2030 

 
 
Table A-11 Data and % differences between analytical and numerical results for Figure 
6.11. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3524 1.2677 1.3605 0.5989 1.265 -0.2130 

0.1 1.3524 1.2685 1.3619 0.7025 1.2649 -0.2838 

0.2 1.3524 1.2714 1.3656 0.9760 1.2645 -0.5427 

0.3 1.3522 1.2749 1.3694 1.2720 1.2642 -0.8393 

0.4 1.3518 1.2778 1.3719 1.4869 1.2639 -1.0878 

0.46 1.3516 1.2787 1.3726 1.5537 1.2638 -1.1652 
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Table A-12 Data and % differences between analytical and numerical results for Figure 
6.12. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3518 1.2679 1.3653 0.9987 1.2599 -0.6310 

0.1 1.3521 1.2691 1.3678 1.1612 1.2596 -0.7486 

0.2 1.3529 1.2732 1.3743 1.5818 1.2591 -1.1074 

0.3 1.3534 1.2783 1.3808 2.0245 1.2584 -1.5568 

0.4 1.3531 1.2825 1.3852 2.3723 1.2579 -1.9181 

0.46 1.3526 1.284 1.3863 2.4915 1.2577 -2.0483 

 
 
Table A-13 Data and % differences between analytical and numerical results for Figure 
6.13. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3513 1.2682 1.3715 1.4949 1.2508 -1.3720 

0.1 1.3519 1.2698 1.3752 1.7235 1.2506 -1.5120 

0.2 1.3537 1.2756 1.3849 2.3048 1.25 -2.0069 

0.3 1.3546 1.2827 1.3942 2.9234 1.2494 -2.5961 

0.4 1.3538 1.2886 1.4 3.4126 1.2488 -3.0886 

0.46 1.3528 1.2908 1.4013 3.5852 1.2487 -3.2615 

 
 
Table A-14 Data and % differences between analytical and numerical results for Figure 
6.14. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3524 1.2674 1.3522 -0.0148 1.2679 0.0395 

0.1 1.3524 1.2674 1.3523 -0.0074 1.2679 0.0395 

0.2 1.3524 1.2674 1.3523 -0.0074 1.2679 0.0395 

0.3 1.3524 1.2674 1.3523 -0.0074 1.268 0.0473 

0.4 1.3524 1.2674 1.352 -0.0296 1.268 0.0473 

0.46 1.3524 1.2674 1.352 -0.0296 1.268 0.0473 

 
 
Table A-15 Data and % differences between analytical and numerical results for Figure 
6.15. 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3517 1.2675 1.3517 0.0000 1.2683 0.0631 

0.1 1.3517 1.2675 1.3516 -0.0074 1.2683 0.0631 

0.2 1.3517 1.2675 1.3517 0.0000 1.2683 0.0631 

0.3 1.3517 1.2675 1.3516 -0.0074 1.2683 0.0631 

0.4 1.3517 1.2675 1.3514 -0.0222 1.2687 0.0947 

0.46 1.3517 1.2675 1.3517 0.0000 1.269 0.1183 
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Table A-16 Data and % differences between analytical and numerical results for Figure 
6.16. 
 
 

(d-c)/A k'(1a) k'(1b) k'(1a)FEA %dif. k'(1b)FEA %dif. 

0.05 1.3511 1.2676 1.3512 0.0074 1.2693 0.1341 

0.1 1.3511 1.2676 1.3514 0.0222 1.2693 0.1341 

0.2 1.3511 1.2676 1.3514 0.0222 1.2694 0.1420 

0.3 1.3511 1.2676 1.3513 0.0148 1.2694 0.1420 

0.4 1.3511 1.2676 1.3506 -0.0370 1.2693 0.1341 

0.46 1.3511 1.2676 1.3512 0.0074 1.2691 0.1183 

 
 
 
Table A-17 Data and % differences between analytical and numerical results for Figure 
6.17. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3322 1.2852 1.3193 -0.9683 1.2936 0.6536 

0.5 1.3291 1.2815 1.3875 4.3940 1.2356 -3.5817 

0.75 1.3293 1.2814 1.3908 4.6265 1.2328 -3.7927 

1 1.3295 1.2812 1.3666 2.7905 1.2511 -2.3494 

1.5 1.33 1.2809 1.3323 0.1729 1.277 -0.3045 

2 1.33 1.2808 1.3263 -0.2782 1.2812 0.0312 

4 1.33 1.2809 1.3264 -0.2707 1.2759 -0.3904 

 
 
 
Table A-18 Data and % differences between analytical and numerical results for Figure 
6.18. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3342 1.2909 1.3365 0.1724 1.2849 -0.4648 

0.5 1.3277 1.2824 1.3889 4.6095 1.2344 -3.7430 

0.75 1.3281 1.2823 1.3916 4.7813 1.2323 -3.8992 

1 1.3288 1.2818 1.3673 2.8974 1.2505 -2.4419 

1.5 1.3299 1.281 1.3324 0.1880 1.2769 -0.3201 

2 1.3301 1.2808 1.3264 -0.2782 1.281 0.0156 

4 1.33 1.2809 1.3264 -0.2707 1.2769 -0.3123 
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Table A-19 Data and % differences between analytical and numerical results for Figure 
6.19. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3349 1.2955 1.348 0.9813 1.2784 -1.3200 

0.5 1.3263 1.2834 1.3893 4.7501 1.2341 -3.8414 

0.75 1.3268 1.2833 1.3919 4.9065 1.232 -3.9975 

1 1.328 1.2824 1.3679 3.0045 1.2502 -2.5109 

1.5 1.3298 1.281 1.3326 0.2106 1.2768 -0.3279 

2 1.3301 1.2808 1.3265 -0.2707 1.2815 0.0547 

4 1.33 1.2809 1.3264 -0.2707 1.2752 -0.4450 

 
 
Table A-20 Data and % differences between analytical and numerical results for Figure 
6.20. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3564 1.2825 1.3162 -2.9637 1.3027 1.5750 

0.5 1.3528 1.2722 1.3784 1.8924 1.2642 -0.6288 

0.75 1.3502 1.2684 1.4138 4.7104 1.2377 -2.4204 

1 1.3505 1.2681 1.418 4.9981 1.2344 -2.6575 

1.5 1.3511 1.2679 1.3896 2.8495 1.2509 -1.3408 

2 1.3515 1.2676 1.3651 1.0063 1.2656 -0.1578 

4 1.3517 1.2675 1.3549 0.2367 1.272 0.3550 

 
 
Table A-21 Data and % differences between analytical and numerical results for Figure 
6.21. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3569 1.2969 1.3224 -2.5426 1.2967 -0.0154 

0.5 1.3534 1.2783 1.3863 2.4309 1.2635 -1.1578 

0.75 1.3481 1.2696 1.4154 4.9922 1.2366 -2.5992 

1 1.3487 1.2691 1.4194 5.2421 1.2334 -2.8130 

1.5 1.3501 1.2684 1.3907 3.0072 1.2502 -1.4349 

2 1.3512 1.2678 1.3655 1.0583 1.2653 -0.1972 

4 1.3517 1.2675 1.3549 0.2367 1.2721 0.3629 
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Table A-22 Data and % differences between analytical and numerical results for Figure 
6.22. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3582 1.301 1.3186 -2.9156 1.2816 -1.4912 

0.5 1.3529 1.2831 1.3912 2.8310 1.2628 -1.5821 

0.75 1.3459 1.2709 1.4157 5.1861 1.2366 -2.6989 

1 1.3468 1.2701 1.4197 5.4128 1.2332 -2.9053 

1.5 1.349 1.2691 1.3914 3.1431 1.2498 -1.5208 

2 1.3509 1.268 1.3658 1.1030 1.2652 -0.2208 

4 1.3517 1.2675 1.3549 0.2367 1.2721 0.3629 

 
 
 
Table A-23 Data and % differences between analytical and numerical results for Figure 
6.23. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3308 1.2823 1.3103 -1.5404 1.2984 1.2556 

0.5 1.3297 1.2811 1.3875 4.3468 1.2368 -3.4580 

0.75 1.3298 1.281 1.3914 4.6323 1.2338 -3.6846 

1 1.3299 1.281 1.3674 2.8198 1.2516 -2.2951 

1.5 1.33 1.2809 1.3337 0.2782 1.2774 -0.2732 

2 1.33 1.2809 1.3278 -0.1654 1.2817 0.0625 

4 1.33 1.2809 1.3293 -0.0526 1.2789 -0.1561 

 
 
Table A-24 Data and % differences between analytical and numerical results for Figure 
6.24. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3322 1.2916 1.3493 1.2836 1.2869 -0.3639 

0.5 1.3284 1.282 1.3672 2.9208 1.248 -2.6521 

0.75 1.3289 1.2818 1.3681 2.9498 1.246 -2.7929 

1 1.3295 1.2814 1.3522 1.7074 1.2579 -1.8339 

1.5 1.3303 1.2807 1.3296 -0.0526 1.2746 -0.4763 

2 1.3305 1.2806 1.3259 -0.3457 1.2776 -0.2343 

4 1.3304 1.2807 1.3273 -0.2330 1.2763 -0.3436 
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Table A-25 Data and % differences between analytical and numerical results for Figure 
6.25. 
 
 

L/A k'(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3348 1.2963 1.3566 1.6332 1.2827 -1.0491 

0.5 1.3259 1.2837 1.3899 4.8269 1.2332 -3.9339 

0.75 1.3265 1.2835 1.3928 4.9981 1.2313 -4.0670 

1 1.3277 1.2826 1.3687 3.0880 1.2494 -2.5885 

1.5 1.3298 1.281 1.3293 -0.0376 1.279 -0.1561 

2 1.3301 1.2808 1.3271 -0.2255 1.2809 0.0078 

4 1.33 1.2809 1.3293 -0.0526 1.279 -0.1483 

 
 
 
Table A-26 Data and % differences between analytical and numerical results for Figure 
6.26. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3374 1.302 1.3641 1.9964 1.2765 -1.9585 

0.5 1.3223 1.2862 1.4144 6.9651 1.2177 -5.3258 

0.75 1.3229 1.2862 1.4194 7.2946 1.2135 -5.6523 

1 1.3252 1.2844 1.3875 4.7012 1.2376 -3.6437 

1.5 1.3291 1.2815 1.3374 0.6245 1.276 -0.4292 

2 1.3298 1.2809 1.3265 -0.2482 1.2828 0.1483 

4 1.3296 1.2811 1.33 0.0301 1.2809 -0.0156 

 
 
 
Table A-27 Data and % differences between analytical and numerical results for Figure 
6.27. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.1568 1.1226 1.1408 -1.3831 1.1229 0.0267 

0.5 1.118 1.0812 1.1377 1.7621 1.0738 -0.6844 

0.75 1.1062 1.0696 1.1507 4.0228 1.0549 -1.3743 

1 1.106 1.0692 1.1529 4.2405 1.0532 -1.4964 

1.5 1.1069 1.069 1.1348 2.5206 1.06 -0.8419 

2 1.1076 1.0686 1.1188 1.0112 1.0679 -0.0655 

4 1.1079 1.0685 1.112 0.3701 1.0714 0.2714 
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Table A-28 Data and % differences between analytical and numerical results for Figure 
6.28. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.3569 1.2969 1.3273 -2.1814 1.2982 0.1002 

0.5 1.3534 1.2783 1.3921 2.8595 1.2657 -0.9857 

0.75 1.3481 1.2696 1.4215 5.4447 1.2388 -2.4260 

1 1.3487 1.2691 1.4254 5.6870 1.2356 -2.6397 

1.5 1.3501 1.2684 1.3967 3.4516 1.2519 -1.3009 

2 1.3512 1.2678 1.3715 1.5024 1.2655 -0.1814 

4 1.3517 1.2675 1.3605 0.6510 1.2744 0.5444 

 
 
Table A-29 Data and % differences between analytical and numerical results for Figure 
6.29. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 2.105 1.9803 2.0749 -1.4299 1.993 0.6413 

0.5 2.1343 1.9655 2.1924 2.7222 1.9263 -1.9944 

0.75 2.1405 1.9562 2.2479 5.0175 1.8865 -3.5630 

1 2.1433 1.9545 2.2539 5.1603 1.8823 -3.6940 

1.5 2.1456 1.9532 2.207 2.8617 1.9119 -2.1145 

2 2.1474 1.952 2.1669 0.9081 1.9378 -0.7275 

4 2.1482 1.9515 2.1509 0.1257 1.9485 -0.1537 

 
 
Table A-30 Data and % differences between analytical and numerical results for Figure 
6.30. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.2464 1.14 1.131 -9.2587 1.2657 11.0263 

0.5 1.3047 1.1449 1.3454 3.1195 1.1191 -2.2535 

0.75 1.3104 1.1472 1.3533 3.2738 1.1229 -2.1182 

1 1.3124 1.148 1.3388 2.0116 1.1332 -1.2892 

1.5 1.3169 1.1497 1.3193 0.1822 1.1517 0.1740 

2 1.3177 1.15 1.3162 -0.1138 1.1556 0.4870 

4 1.3174 1.1499 1.3192 0.1366 1.1574 0.6522 
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Table A-31 Data and % differences between analytical and numerical results for Figure 
6.31. 
 
 

L/A k'(1a) k'(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.1367 1.1144 1.1432 0.5718 1.1031 -1.0140 

0.5 1.1206 1.0987 1.1545 3.0252 1.0616 -3.3767 

0.75 1.1209 1.0988 1.1563 3.1582 1.06 -3.5311 

1 1.1217 1.0983 1.1406 1.6849 1.0709 -2.4948 

1.5 1.1229 1.0975 1.1261 0.2850 1.0958 -0.1549 

2 1.1231 1.0973 1.1222 -0.0801 1.0989 0.1458 

4 1.1231 1.0974 1.1241 0.0890 1.0985 0.1002 

 
 
Table A-32 Data and % differences between analytical and numerical results for Figure 
6.32. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.1805 1.2423 1.1826 0.1779 1.222 -1.6341 

0.5 1.182 1.2964 1.2004 1.5567 1.2256 -5.4613 

0.75 1.1839 1.3009 1.2 1.3599 1.2268 -5.6961 

1 1.1829 1.2979 1.2176 2.9335 1.2787 -1.4793 

1.5 1.1818 1.2949 1.1958 1.1846 1.3009 0.4634 

2 1.1817 1.2944 1.1814 -0.0254 1.2926 -0.1391 

4 1.1817 1.2947 1.1802 -0.1269 1.2854 -0.7183 

 
 
 
Table A-33 Data and % differences between analytical and numerical results for Figure 
6.33. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 2.1 1.9786 2.098 -0.0952 1.9924 0.6975 

0.5 2.0984 1.9779 2.2059 5.1230 1.908 -3.5341 

0.75 2.0971 1.9789 2.2069 5.2358 1.9057 -3.6990 

1 2.0967 1.9792 2.1682 3.4101 1.9374 -2.1120 

1.5 2.0972 1.9788 2.1015 0.2050 1.9658 -0.6570 

2 2.0975 1.9786 2.092 -0.2622 1.9736 -0.2527 

4 2.0975 1.9786 2.0955 -0.0954 1.9703 -0.4195 
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Table A-34 Data and % differences between analytical and numerical results for Figure 
6.34. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 2.093 1.985 2.092 -0.0478 1.9983 0.6700 

0.5 2.095 1.98 2.2088 5.4320 1.9056 -3.7576 

0.75 2.096 1.98 2.2121 5.5391 1.9025 -3.9141 

1 2.097 1.979 2.1719 3.5718 1.9344 -2.2537 

1.5 2.0974 1.9787 2.1027 0.2527 1.9656 -0.6621 

2 2.098 1.979 2.0926 -0.2574 1.9732 -0.2931 

3 2.0977 1.9788 2.0959 -0.0858 1.9705 -0.4194 

4 2.0975 1.9786 2.0965 -0.0477 1.9703 -0.4195 

 
 
Table A-35 Data and % differences between analytical and numerical results for Figure 
6.35. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 2.086 1.9895 2.0782 -0.3739 2.0101 1.0354 

0.5 2.0926 1.9824 2.2075 5.4908 1.9066 -3.8236 

0.75 2.095 1.9806 2.2162 5.7852 1.8998 -4.0796 

1 2.0965 1.9794 2.1752 3.7539 1.9318 -2.4048 

1.5 2.0976 1.9785 2.1031 0.2622 1.9648 -0.6924 

2 2.0976 1.9785 2.0916 -0.2860 1.9732 -0.2679 

4 2.0975 1.9786 2.0959 -0.0763 1.9703 -0.4195 

 
 
Table A-36 Data and % differences between analytical and numerical results for Figure 
6.36. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.1013 1.1239 1.0983 -0.2724 1.0729 -4.5378 

0.5 1.2438 1.1214 1.2753 2.5326 1.1018 -1.7478 

0.75 1.2833 1.1203 1.3577 5.7976 1.1245 0.3749 

1 1.2927 1.1233 1.3697 5.9565 1.1294 0.5430 

1.5 1.2974 1.1253 1.3373 3.0754 1.1274 0.1866 

2 1.3013 1.1269 1.3082 0.5302 1.126 -0.0799 

4 1.3032 1.1276 1.3069 0.2839 1.1352 0.6740 
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Table A-37 Data and % differences between analytical and numerical results for Figure 
6.37. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.1807 1.1469 1.1681 -1.0672 1.1459 -0.0872 

0.5 1.1461 1.1066 1.1658 1.7189 1.0916 -1.3555 

0.75 1.1313 1.0914 1.1764 3.9866 1.0706 -1.9058 

1 1.1311 1.0907 1.1787 4.2083 1.0679 -2.0904 

1.5 1.1327 1.0903 1.1594 2.3572 1.0771 -1.2107 

2 1.1339 1.0896 1.1419 0.7055 1.0858 -0.3488 

4 1.1345 1.0894 1.1347 0.0176 1.09 0.0551 

 
 
Table A-38 Data and % differences between analytical and numerical results for Figure 
6.38. 
 
 

L/A k’(1a) k’(1b) k’(1a)FEA %dif. k’(1b)FEA %dif. 

0.25 1.2142 1.1352 1.2038 -0.8565 1.1784 3.8055 

0.5 1.1959 1.2394 1.2008 0.4097 1.2031 -2.9288 

0.75 1.1895 1.2701 1.1946 0.4288 1.1926 -6.1019 

1 1.1912 1.2768 1.1932 0.1679 1.1933 -6.5398 

1.5 1.1905 1.2736 1.1954 0.4116 1.2323 -3.2428 

2 1.1895 1.2706 1.1909 0.1177 1.2565 -1.1097 

4 1.1892 1.2696 1.1971 0.6643 1.2747 0.4017 
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APPENDIX-B 
 

STRESS DISTRIBUTIONS FOR A SAMPLE CASE 
 

 
Figure B1. xσ  distribution when B = 1.25A, L = 0.25A, b – a = 0.15A, d – c = 0.21A,          

a + b = c + d = 2.25A,  = 0.3. 
 

 
Figure B2. Yσ  distribution when B = 1.25A, L = 0.25A, b – a = 0.15A, d – c = 0.21A,          

a + b = c + d = 2.25A,  = 0.3. 
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Figure B3. A zoomed view of Yσ  distribution at the left crack tip when B = 1.25A,        

L = 0.25A, b – a = 0.15A, d – c = 0.21A, a + b = c + d = 2.5A,  = 0.3. 
 

 
Figure B4. A zoomed view of Yσ  distribution at the right crack tip when B = 1.25A,         

L = 0.25A, b – a = 0.15A, d – c = 0.21A, a + b = c + d = 2.25A,  = 0.3. 
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APPENDIX-C 

 

A SAMPLE LOG FILE IN APDL LANGUAGE 

 

/UNITS,SI 

/PREP7 

ET,1,PLANE2 

KEYOPT,1,3,1 

MP,EX,1,200E9 

MP,NUXY,1,0.3 

MP,EX,2,2E18 

MP,NUXY,2,1E-9 

ba=0.6275/0.5 

ka=1.1*ba 

kb=1.4*ba 

bb=1.5*ba 

cn=(ka+kb)/2 

cc=1.1*ba 

dd=1.4*ba 

kh=0.495*ba 

bh=0.505*ba 

K,1,ba,0,0 

K,2,ka,0,0 

K,3,cn,0,0 

K,4,cn,kh,0 

K,5,cc,kh,0 

K,6,cc,bh,0 

K,7,cn,bh,0 

K,8,cn,2,0 

K,9,ba,2,0 

K,10,kb,0,0 

K,11,bb,0,0 



 97

K,12,bb,2,0 

K,13,dd,bh,0 

K,14,dd,kh,0 

K,15,ba,2.25,0 

K,16,bb,2.25,0 

A,1,2,3,4,5,6,7,8,9,1 

A,3,10,11,12,8,7,13,14,4,3 

A,5,6,7,13,14,4,5 

A,9,8,12,16,15,9 

AGLUE,ALL 

KSCON,2,(kb-ka)/10,0,16,0.5 

KSCON,10,(kb-ka)/10,0,16,0.5 

FINISH 
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