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ABSTRACT

Biological methods for removing heavy metals are in competition with chemical

and physical techniques such as precipitation, ion exchange, electrochemical treatment

and evaporative recovery, especially, when the concentration of the heavy metal ion is

low, between 1.0 and 100 mg/L. In order to qualify for industrial applications,

biosorbents have to be produced at low cost. The use of biomass from various

production stages; e.g. from the pharmaceutical or the food industries, is one way to

minimize the costs. This study is concerned with the binding of nickel ions onto waste

biomass of Saccharomyces cerevisiae genus, obtained from the food industry. Since the

biomass employed is a waste material, biosorption process described in this study may

represent a cheap alternative to conventional methods.

Biomass cell walls, consisting mainly of polysaccharides, proteins and lipids,

offer many functional groups which can bind metal ions such as carboxylate, hydroxyl,

phosphate and amino groups.

The objective of this study was to investigate the adsorption of nickel on waste

baker’s yeast as a function of several factors, i.e. pretreatment, pH, temperature,

biomass concentrations and initial metal concentrations, in order to determine the

optimum adsorption conditions of a batch process.

Pretreatment of waste yeast biomass using sodium hydroxide, formaldehyde,

nitric acid and ethanol decreased the sorption of nickel (II) ions compared with live

biomass. Optimum initial pH for nickel (II) ions was 5.0 at the optimum temperature of

25o C. The uptake values increased with the increasing initial nickel (II) ion

concentrations up to 150 mg/L. The optimum biomass concentration for this process

was determined as 1.0 g/L.

The biosorption isotherms were developed at various initial pH and temperature

values. The equilibrium values were expressed with the Langmuir model while nickel

sorption did not fit the Freundlich plot. The Langmuir parameters qmax (14.30 mg/L) and

b (0.0069 L/mg) have been calculated. “ qmax ” increased from 7.8 to 14.30 mg/L with

the increase in pH from 3.0 to 5.0. Similar trend was observed for the “ b ” values; an

increase from 0.0025 to 0.0069 L/mg were obtained when the pH of the solution was

raised from 3.0 to 5.0. Both Langmuir model parameters were found to be the highest
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values at pH 5.0 which is consistent with the results of the optimization studies as

described above.

Temperature also affected the phase equilibria of nickel (II)/S.cerevisiae system.

The highest capacity for biosorption system was obtained at 25o C with the qmax and b

values of 14.3 mg/L and 0.0069 L/mg at pH 5.0, respectively. The enthalpy change for

the biosorption process have been evaluated by using the Langmuir constant “b”, which

is related to the energy of adsorption. Nickel (II) biosorption is considered to be an

exothermic process since low binding occurs when the temperature increases from 25 to

45o C.

The uptake of nickel (II) ions by the yeast biomass was also investigated with

respect to time under optimum operating conditions. Biosorption kinetics were rapid

within the first few minutes. After the initial rapid uptake, further biosorption by yeast

cells continued slowly and reached an equilibrium after 2 hours at all pH values of 3.0,

4.0 and 5.0. On the other hand, the rate of adsorption was found to be the fastest at pH

5.0 with an initial rate of around 3.59 mg Ni (II) / g-min.



ÖZ

Atõk sulardaki ağõr metallerin arõtõlmasõnda kullanõlan fiziksel ve kimyasal

tekniklere karşõ, biyolojik metotlar rakip görülmektedir. Özellikle düşük ağõr metal

konsantrasyonlarõnda, örneğin; 1.0 ile 100 mg/L arasõndaki derişimlerde

uygulanmaktadõr. Biosorbentlerin sanayide kullanõlabilmesi, bunlarõn ucuz imal

edilmesini gerekli kõlmaktadõr. Biyomateryallerin örneğin; ilaç ve gõda sanayi

sektörlerinden kolayca ve atõk olarak temin edilebilmesi, biyolojik arõtma sistemlerinde

kullanõlmasõ için ekonomik bir yol sağlamaktadõr. Bu çalõşmanõn konusu, nikel

iyonunun, atõk olarak gõda sanayinden temin edilen bir tür maya olan Saccharomyces

cerevisiae hücresi yüzeyine bağlanmasõnõ içermektedir. Atõk olarak temin edilen

biyosorbenti, mevcut kullanõmda olan ağõr metal arõtma metotlarõna karşõ daha ucuz bir

alternatif olarak düşünülmektedir.

Metal iyonlarõnõn hücre duvarõ yüzeyine bağlanmasõnda duvar yüzeyinde

mevcut bulunan bazõ polisakkaritler, proteinler ve lipidler ile bunlarõn içinde mevcut

bulunan karboksil, hidroksil, fosfat ve amino gruplarõnõn etkin olduklarõ bilinmektedir.

Bu çalõşma, nikelin atõk ekmek mayasõ üzerine adsorpsiyonu, değişik çevresel

faktörlerin bu mekanizmaya olan etkilerinin incelenmesi ve optimum koşullarõn

belirlenmesini amaçlamõştõr. Atõk mayanõn yõkanmasõ, ortamõn pH ve sõcaklõğõ, metal ve

maya konsantrasyonlarõ gibi faktörlerin, kesikli sistemde nikel iyonunu adsorpsiyonuna

etkisi irdelenmiştir.

Sodyum hidroksit, formaldehit, nitrik asit ve etanol kullanõlarak yõkanan atõk

mayanõn nikel adsorpsiyon yüzdesini düşürdüğü gözlenmiştir. Bundan dolayõ, ekmek

mayasõ hiçbir işlemden geçirilmeden doğrudan canlõ hücre olarak, biyosorpsiyon

işleminde kullanõlmõştõr. Nikel biyosorpsiyonunda, optimum pH değeri 5.0 ve optimum

sõcaklõk değeri 25o C olarak saptanmõştõr. Nikelin maya tarafõndan tutunma yüzdesi

sistemin başlangõç metal konsantrasyonuyla artarken, bu konsantrasyonu 150 mg/L� nin

üzerine getirildiğinde, adsorpsiyon yüzdesinde önemli bir değişim gözlenmemiştir.

Diğer taraftan optimum maya konsantrasyonu 1.0 g/L olarak tespit edilmiştir.

Biyosorpsiyon izotermleri değişik pH ve sõcaklõk değerlerinde incelenmiştir.

Nikel biyosorpsiyonu Freundlich modeline uygunluk göstermezken, Langmuir

modeliyle uyum sağlamaktadõr. Langmuir parametreleri olan qmax ve b değerleri

sõrasõyla 14.30 mg/L ve 0.0069 L/mg olarak hesaplanmõştõr. Ortamõn pH� sõ 3.0� den
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5.0� e çõkarõldõğõnda, qmax değeri de 7.8� den 14.30 mg/L�a ulaşmõştõr. Aynõ durum b

değeri için de gözlenmiş ve b değeri 0.0025� den 0.0069�a ulaşmõştõr. Her iki parametre

için maksimum değer, optimum pH olan 5.0�de elde edilmiştir.

Aynõ zamanda nikel / maya faz dengesini etkileyen ortam sõcaklõğõ, en yüksek

biyosorpsiyon kapasitesi için 25o C ( pH 5.0) olarak saptanmõştõr. Aynõ sõcaklõkta, qmax

ve b değerlerinin de en yüksek olduğu gözlenmiştir. Diğer taraftan b sabitinin

adsorpsiyon enerjisine bağlõ olduğu bilindiğinden, entalpi değişimi saptanmõş ve

sistemin ekzotermik olduğu tahmin edilmiştir. Bununla beraber, sõcaklõğõn artmasõyla

(25� den 45o C ye) nikel biyosorpsiyonunda düşüş gözlenmiştir.

Nikel biyosorpsiyonu optimum koşullarda, üç farklõ pH değerinde (3.0, 4.0 ve

5.0) zamana karşõ incelenmiştir. Biyosorpsiyon kinetiğinin ilk dakikalarda çok hõzlõ

olduğu görülmüş; nikel biyosorpsiyonu bu hõzlõ aşamadan sonra yavaşlamõş ve 2 saat

sonra dengeye ulaşmõştõr. En yüksek adsorpsiyon hõzõ, pH 5.0 iken 3.59 mgNi(II)/ g-dk

olarak belirlenmiştir.
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Chapter I

INTRODUCTION

Metal pollution is a widespread problem; in fact, in developed countries. Man’s

use of metals seriously began to affect the environment by the Industrial Revolution.

From the environmental point of view, the metals that are of greatest concern are those

which, either by the presence or by their accumulation, can have a toxic or an inhibitory

effect on living things. The heavy metals escaping into the environment pose a serious

health hazard because they accumulate in the tissues of humans and animals throughout

the food chain. Therefore there is a need of treating and controlling the heavy metals in

the environment.

The commonly used treatment processes for heavy metal removal from dilute

aqueous streams are chemical reduction-oxidation, precipitation, ion exchange and

adsorption. However, these high technology processes have significant disadvantages

such as:

•  incomplete metal removal

•  need for expensive equipment and monitoring systems

•  high reagent or energy requirement

•  generation of toxic sludge or other waste products that require disposal

Especially, such process may be ineffective or extremely expensive when initial

heavy metal concentration is in the range of 10 - 100 ppm. Also there are numerous

reports in the literature documenting the capacity of pure cultures of bacteria, algae and

fungi which remove heavy metal ions from solution. The mixed microbial cultures have

been proposed as reasonable approach for removing heavy metals than pure cultures.

The fortuitous removal of heavy metal ions by the mixed cultures used in the activated

sludge process which is designed to remove BOD but not heavy metal ions, has been

found to be significant but extremely variable. However, the conventional activated

sludge process is considered as an unsuitable tool for the detoxification of heavy metal

ions. Therefore, a new process for the efficient removal of heavy metal ions is required.

An efficient process is necessary not only to detoxify metal-bearing wastewater but also
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to recover precious and non-precious metal ions for recycling back to the consumers.

Recently, biosorption of heavy metals has been receiving  a great deal of attention for

both its scientific novelty and application potential. Biosorption is defined as a property

of dead or living biomass, particularly of microbial origin, to retain and concentrate

metallic elements from dilute solutions (1,2,5,10,16, 20-26,35).

On the other hand, advanced technologies have been developed for remediation of

heavy metal bearing wastes, where metals are amenable to removal by established

biotechnological methods. However, there are some recalcitrant metals for which

physico-chemical and bioremediation technology is not suitable. Therefore the choice of

the microorganism for removing heavy metal ions is important because of wide

differences in their capacity for sorption or in their affinity for the metal. An example of

this is nickel which is difficult to bioremediate by existing  technology compared with

other heavy metal ions. This was probably due to the chemical properties of nickel ions

leading to hindrance of bisorption. The toxic metal nickel which is an environmental

pollutant is also toxic to activated sludge bacteria and concentrations can approach 0.46-

3.4 ppm in mine drainage, 2-900 ppm (rinse water) in plating plants. Wastewater from

paint-ink formulation and porcelain enamelling industries contain nickel concentrations

of 0-40 ppm and 0.25-67 ppm  Ni, respectively (19,27,33,38).

The uptake of heavy metals by the microbial species involves two mechanism.

The first mechanism is the passive uptake. It is rapid and reversible accumulation step

termed biosorption. The second mechanism is the active uptake. It is an irreversible and

slower intracellular bioaccumulation process. The factors such as pH, temperature,

initial metal and biomass concentration can affect the biosorption mechanisms. Also the

pretreatment of the live waste yeast using some chemicals such as sodium hydroxide,

formaldehyde, dimethyl sulphoxide, ammonium persulfate and ethanol can increase the

capacity of biosorption ( 1,2,5,10,16,26,35,44).

These studies are focusing specially on nickel removal by using the biosorption

mechanism. For biosorption, the yeast Saccharomyces cerevisiae is a preferred

biosorbent. S. cerevisiae known as the baker’s yeast, is an inexpensive, readily available

source of biomass that can be obtain from fermentation processes. A lot of search have

been focussed on biosorption of Cu (II), Cd(II), Pb(II) ,Cr(IV), Sr(II), and Fe(II)  and

Uranium by S. cerevisiae (28,30,34-36,39-45, 48). However, there is still no satisfactory

precedent of employing Saccharomyces cerevisiae as a waste biomass in the removal of

nickel. Thus, application of biowaste such as waste baker’s yeast for the removal of
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heavy metal ions may have some advantages because it is inexpensive, effective,

environmentally safe and available sources for a long time period.

In this study, adsorption of nickel on a waste biomass (Saccharomyces

cerevisiae) was investigated since there has been little information in the literature

about this biosorption system. The effects of pretreatment, pH, temperature, initial metal

concentration and biomass concentration on biosorption have been studied together with

equilibrium isotherms and  adsorption kinetics. Isotherms have been described by the

Langmuir model and quantitative data, such as maximum biosorption capacity of

Saccharomyces cerevisiae and affinity constants. Biosorption kinetics were also

investigated in this study as a function of pH.
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Chapter II

TOXIC METALS

Metals can be dispersed, both naturally and by man’s activities, into any of the

earth’s elements: soil, water or air. However, the aquatic environment has been the most

affected area of the earth. The heavy metals which have an environment effect seen in

Table 2.1

Table 2.1 The most important heavy metals present in environment

Cadmium         Nickel
Chromium       Silver
Copper            Tin
Cobalt             Zinc
Lead                Mercury

2.1 Metals in the Environment

Metals are ubiquitous in nature and even those metals generally considered as

pollutants are found in trace concentration in the environment (see Table 2.2). The

effluent sources of metals that are discharged mainly to the rivers are :

•  Metal-plating and metal-finishing operations

•  Mining and ore processing operations

•  Metal processing, battery and accumulator manufacturing operations

•  Thermal power generation (coal-fired plants in particular)

•  Nuclear power generation.
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Table 2.2. Typical background levels of heavy metals in soil and aquatic environments

Metal Aquatic concentration Soil concentration
µg/L µg/L

Gold (Au) ND       0.50
Aluminium (Al) Trace       7.09*105

Arsenic (As) Trace       0.49
Barium (Ba) ND       4.34*103

Cadmium (Cd) 0.06       0.60
Cobalt (Co) 0.07     79.00
Chromium (Cr) Trace   990.00
Cesium (Cs) Trace     59.40
Copper (CU) 0.63   296.00
Mercury (Hg) Trace       0.29
Manganese (Mn) 10 6043.00
Nickel (Ni) ND   397.00
Lead ( Pb) 0.06     99.00
Tin ( Sn) Trace   101.00
Zinc (Zn) 19.62   496.00
ND= no data reported . trace= levels usually below detection.(Ref: 2)

         For the most part, metal pollution problems arise when human activity either

distrupts normal biochemical cycles or concentrates metals. Elevated metal

concentrations in the environment have wide-ranging impacts on animal, plant, and

microbial species.

2.2 Effects of Heavy Metals

To date humans have been exposed to a variety of metals that can cause

symptoms such as hypophosphatemia, heart disease and liver damage, cancer,

neurological disorders , central nervous system damage, encephalopathy and paresthesia

(1,3,4). Also  the plants that have been exposed to metals have been affected and it is

observed of most morphological and mutational changes in plants. These include

shortening of roots, leaf scorch, chlorosis, nutrient deficiency and increased

vulnerability to insect attack. Similarly, microbial growth is often slowed or inhibited

completely in the presence of excessive amounts of metals (1,3,10).
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The heavy metals were classified according to their toxic effect (Table 2.3)

which is reported by European Union under the ‘framework’ Dangerous Substances

Directive (76/464/EEC)  and include two lists, as black and grey .

Table 2.3. Black and Grey list metals

Black list                   Grey list

Cadmium                  Chromium
Mercury                    Copper
                                  Lead
                                  Nickel
                                  Zinc

  Ref: 1

The heavy metals contained in black list are considered very toxic, persistent or

bio-accumulative within the environment. The grey list contains those metals which are

environmentally harmfull but less so than those in the black list. Therefore the limits for

discharge of black list metals must be currently controlled. The standart metal

concentrations  in drinking water and their health effects are given in Table 2.4.

Table.2.4. The standard metal concentration in drinking water and the health

effect.(Page 1 of 2)

METALS EFFECT DRINKING WATER  STANDARDS

Cadmium •  Cause serious damage to
kidneys and bones in
humans

•  Bronchites, emphysema ,
aneamia

•  Acute effects in children

•  By the Environmental Protection
Agency (EPA)
Maximum con.: 0.005 mg/L

•  By European Community (EC):
0.2 mg/L

•  Regulation of water quality (Turkey)
0.001 mg/L

Mercury •  Poisonous
•  Causes mutagenic effects
•  Disturbs the cholestrol

•  By the Environmental Protection
Agency(EPA)
Maximum con.: 0.002 mg/L

•  By European Community (EC):
1 µ/L

•  Regulation of water quality (Turkey)
0.004 mg/L
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Table 2.4 (Page 2 of 2)

METALS EFFECT DRINKING WATER  STANDARDS

Chromium •  Necrosis nephrits and
death in man (10 mg/ kg
of body weight as
hexavealent chromium)

•  Irritation of
gastrointestinal mucosa

•  By the Environmental Protection
Agency(EPA)
Maximum con.: (hexavealent and

       Trivalent ) Total 0.1 mg/L
•  By European Community (EC):

0.5 mg/L
•  Regulation of water quality (Turkey)

0.1 mg/L

Copper •  Causes damage in a
variety of aquatic fauna

•  Phytotoxic
•  Mucosal irritiation and

corrosion
•  Central nervois system

irritation followed by
depression

•  By the Environmental Protection
Agency (EPA)

      Maximum con.: 1.0 mg/L
•  By European Community (EC):
       3 mg/L
•  Regulation of water quality

(Turkey)
       0.01 mg/L

Lead •  Toxic to humans, aquatic
fauna and livestock

•  High doses cause
metabolic poison

•  Tierdness, irritability
anaemia and behavioural
changes of children

•  Hypertension and brain
damage

•  Phytotoxic

•  By the Environmental Protection
Agency (EPA)
Maximum con.: 0.1 mg/L

•  By European Community (EC):
       0.5 mg/L
•  Regulation of water quality

(Turkey)
       0.1 mg/L

Nickel •  High conc. can cause
DNA damage

•  Eczema of hands
•  High phytotoxicity
•  Damaging fauna

•  By the Environmental Protection
Agency (EPA)
Maximum con.: 0.1 mg/L

•  By European Community (EC):
       0.1 mg/L
•  Regulation of water quality

(Turkey)
       0.1 mg/L

Zinc •  Phytotoxic
•  Anaemia
•  Lack of muscular

coordination
•  Abdominal pain etc..

•  By the Environmental Protection
Agency (EPA)
Maximum con.: 5 mg/L

•  By European Community (EC):
       5 mg/L
•  Regulation of water quality (Turkey)
       0.1 mg/L

Ref:1,2,3.6
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2.3. Nickel Ions

The metals which are of greatest enviromental concern, one of them is nickel

which this study focused on nickel removal because it is difficult to bioremediate by

existing technology compared with other heavy metal ions.

2.3.1 Sources and Occurrences of Nickel Ions

In the earth’s crust the average concentration has been reported about 75 mg/ kg

that constitutes about 0.016 % of the total mass. Its principal ores are pentlandite ((Fe

Ni )9 S8 ) , millerite (NiS) and garnierite (( NiMg)6Si4O10 (OH)8). It occurs as the natural

metal only in meteoites. It is used in the production of alloys, nickel plating for

corrosion resistance and in the manufacture of batteries (e.g. nickel-cadmium bateries).

The metal or its compounds are also used as catalysts, dyes, pigments and in metal

process equipments that can give rise to some contamination of food. Nickel is present

in crude oil in varying concentrations and the burning of petroleum products, either in

combustion processes or in vehicle fuel that introduces the metal into the environment.

It also enters surface water by the natural weathering and leaching processes of minerals

and rocks (13).

Many nickel salts are water-soluble, therefore, contamination of water can arise ;

significant problems are associated with industrial discharge of nickel containing

effluents to rivers (10). Nikel concentration can approach 0.46-3.4 mg/L in mine

drainage and 2-900 mg/L (rinse water) in plating plants. Wastewater from paint-ink

formulation and porcelain enamelling industries contains nickel concentrations ranging

from 0.40 mg/L to 67 mg/L nickel (19). Nickel can exist in the oxidation states ranging

from –1 to +4, but its aqueous chemistry is dominated by the +2 (nickelous) state. This

ion forms stable complexes with both organic and inorganic ligands and is also

adsorbed onto particulate matter. The commonest inorganic ligands in natural water are

halides, sulphate, phosphate, carbonate and carbonyls. Humic and fulvic acids from

medium-strong complexes with nickel. As a result nickel is a fairly mobile metal in

natural waters. Few data have been reported on nickel in  air and it has been estimated

to be less than 0.5 µg/m3 . However, higher levels have been reported in the past in

industrial areas. A typical urban air concentration has been found to be 0.2 µg/m3 . The

nickel ions in food have been reported, little is known about the chemical form of nickel
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in food, although it is found to be partly complexed with phytic acid. Nickel ions have

been found  in wines, 100 µg/L and in beers, 50 µg/L. Moreover, it has been reported

that cigarettes contain about 10-20 % of nickel. This appears to be a volatile nickel

compound as nickel carbonyl . Someone who smokes 20 cigarettes a day might inhale

40-80 µg of nickel (3,13).

2.3.2 The Health Effect on Human

Nickel is regarded as an essential trace metal, but in large amounts it is toxic to

humans. It is less toxic than mercury, copper, cadmium and silver, but more toxic than

lead and zinc to plant. It is reported that a concentration of 0.1-9.5 mg Ni/L can reduce

growth and slows down photosynthesis and toxicity to fish . The toxic effect is reduced

by hardness in the water as with other metals (13).

Nikel at high doses can be carcinogenic and teratogenic to humans. Its toxicity is

enhanced in the presence of other metals such as cobalt, copper, iron and zinc. As in the

case of other diavelent cations, nickel can react with DNA, and at high concentrations

they have been reported that can result in DNA damage (2,3). Moreover there are

studies using large numbers of patients that have been investigated the role of contact

dermatitis in eczema of the hands. At last between 4% and 9% of the patients were

found to respond positively to nickel patch tests and especially women are seen to be

more sensitive to nickel than men (2,3).

2.4. Remediation of Heavy Metals

The effluents or waters contaminated with heavy metals must be treated. The

data in Table 2.5, which gives the typical composition of an untreated metal finishing

effluent. The  degree of treatment may range from a main process stream for a seriously

polluted industrial waste to a polishing process to remove the trace concentrations

which can remain after the main treatment. Thus, the type of process or combination of

processes used will depend on the metal(s) involved and the ultimate concentration

allowed. There are a variety of treatment process for wastewater contaminated by heavy

metals.
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Table 2.5. The composition of a typical  untreated metal finishing effluent

      Metal                        Concentration (mg/l)

Chromium                        5-10
Copper                              3-5
Nickel                               5-10
Zinc                                  3-5
Cyanide                            1-5
Suspended solids            10-50

Ref:14

2.4.1. Physical and Chemical Remediation of Metal Ions

The most commonly used methods of treating metal ions from watewater are the

physical and chemical methods which are precipitation-coagulation-flocculation,

chemical precipitation, chemical oxidation-reduction, ion exchange, and adsorption (1,

8,14,15).

2.4.1.1  Precipitation-Coagulation-Flocculation and Neutralization

Precipitation is the most commonly used and the simplest physical and chemical

treatment system that separates solids from liquids by gravity settling . The chemical

used in this process include metal ions (as hydroxides or sulphides) which hydrolyze

rapidly to form insoluble precipitates, and natural or syhntetic organic polyelectrolytes,

which are rapidly adsorbed on the surface of the particulates, thereby accelerating the

rate at which the particulates aggregate. These aggregates ( sludge) are then removed

from the water by physical means such as gravity sedimentation , flotation, or filtration

through granular media (12,14,15).

The aggregation of particulate material is a two-step sequential process. In the

initial step , the interparticulate forces responsible for the stability of the particulates are

reduced or eliminated by the addition of suitable chemicals. Subsequently, particulate

collisions occur due to transport by molecular motion or mechenical mixing. If these

collisions are successful, aggregation occurs. The chemicals used to destabilize

particulates are known as coagulants. Chemical handling and feeding equipment must

be designed for preparation of the chemical coagulant prior to addition. The coagulant is
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injected into the process stream through a mixing that should provide rapid dispersion

of the coagulant in the water. This rapid mixing stage which occurs over a short time

usually less than one minute and this phenomenon is called coagulation. Following

destabilization , less intense mixing of the particulates must be provided to increase the

rate of particulate  collisions without breaking up the aggregates being formed and this

phenomena is called flocculation (8).

There are many chemical processes that can be used to treat hazardous wastes

and metal ions, and the process decision depends primarily on the characteristic of the

waste. For example if the pH of the waste is less than 2 or more than 12.5 then it is

corrosive and can effect the second treatment process efficiency. Therefore such wastes

can be chemically neutralized. Acidic wastewaters are usually neutralized with slaked

lime (Ca(OH)2) in a continuosly stirred chemical reactor. The rate of addition of lime is

controlled with a feedback control system that monitors pH and adjusts the feed rate

accordingly. Alkaline wastewaters may be neutralized by adding acid directly or by

bubbling in gaseous CO2 , forming carbonic acid (H2CO3). The advantage of CO2 is that

it is often readily available in the exhaust gas from any combustion process at the

treatment site. Simultaneous neutralization of acid and caustic waste can be

accomplished in the same vessel (12,15,16).

2.4.1.2. Chemical Precipitation

The ability to adjust pH is important not only for waste neutralization, but also it

facilitates other chemical processes that actually remove undesirable substances from

the waste stream. For example, a common method for removing heavy metals from the

waste is via chemical precipiation, which is pH dependent. By property adjusting pH,

the solubility of toxic metals can be decreased, leading to formation of a precipitate that

can be removed by settling and filtration. Frequently , the precipitation involves the use

of lime, Ca(OH)2, or caustic (NaOH) to form metal hydroxides. For example, the

following reaction suggests the use of lime to form the hydroxide of a divalent metal

(M2+):

           M2+  +  Ca(OH)2  →   M(OH)2   +   Ca2+                                                   (2.1)
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Metal hydroxides are relatively insoluble in basic solutions, and they are

amphoteric- that is , they have some pH at which their solubility is a minimum. Since

each metal has its own optimum pH (see Table 2.6) , it is tricky to control precipitation

of a mix of different metals in the same waste. For a waste containing several metals , it

may be necessary to use more than one stage of precipitation to allow different values of

pH to control the removal of different metals. While hydroxide precipitation using lime

is the most common metal removal process, even lower concentrations of metals in the

effluent can be obtained by precipitating the metals as sulfides. As can be seen in the

Equation 2.1, metal sulfides  are considerably less soluble than metal hydoxides. A

disadvantage of sulfide precipitation is the potential formation of odours and toxic

hydrogen sulfide gas ( 8,12,18).

Table 2.6. The pH values for hydroxide precipitation

 Metal                            pH value

Aluminum                     5.2
Iron                               4.3
Chromium                    6.5-7.3
Copper                          7.1-7.3
Nickel                           9.2-9.4
Zinc                              8.3-8.5
Cadmium                      9.7
Lead                             6.3
Tin                               1.0-4.5

2.4.2.  Chemical Oxidation / Reduction

Oxidation/ reduction (redox) reactions provide another important chemical

treatment alternative for heavy metals. When electrons are removed from an ion, atom,

or molecule, the substance is oxidized ; when electrons are added, it is reduced. Both

oxidation and reduction occur in the same reaction, hence the abbreviation redox. One

of the most important redox treatment processes is the reduction of hexavalent

chromium ( Cr VI ) to trivalent chromium (Cr III) in large electroplating operations.

Sulfur dioxide is often used as the reducing agent, as shown in the following reactions:
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                   SO2
   +  H2O  →    H2SO3                                                                         (2.2)

         2 CrO3  +  3 H2SO3    →   Cr2 (SO3 )4   +  3 H2O                                                 (2.3)

        

The trivalent chromium formed in reaction (2.3) is much less toxic and more

easily precipitated than the original hexavelant chromium. The chromium in reaction

(2.3) is reduced from an oxidation state of +6 to +3, while the sulfur is oxidized from +4

to +6. Another important redox treatment involves the oxidation of cyanide wastes,

which are also common in the metal finishing industry. In the following reactions,

cyanide is first converted to less toxic cyanate using alkaline chlorination ( pH above 10

) ; further chlorination oxidizes the cyanite to simple carbon dioxide and nitrogen gas

(8,12-15,18).

 NaCN + Cl2  + 2 NaOH →  NaCNO + 2 NaCl  + H2O                                  (2.4)

2 NaCNO + 3 Cl2 + 4 NaOH → 2 CO2 + N2 + 6 NaCl +  2 H2O                    (2.5)

2.4.3.  Ion Exchange

Ion exchange is primarily used for the removal of hardness ions and heavy

metals. Ion exchange is a physical-chemical process by which ions are transfered from a

solid to a liquid phase or vice versa. Ions held by electrostatic forces to charged

functional groups on the surfaces of a solid and are exchanged for ions in solution that

is charged like the solid surface being contacted. Because the exchange occurs at the

surface of the solid, ion exchange is typically classified as a sorption process and can be

differentiated from adsorption by the chemical and electrical potentials that control the

exchange of mobile ions between the solid and solution (8).

The mechanism of all ion exchangers both natural or synthetic, have fixed ionic

groups that are balanced by ions of opposite charge to maintain electroneutrality. The

ions either cations or anions  exchange with ions in solution. For example, mostly used

cation exchange resin and the resin initially containing cation A+ is placed in a solution

containing cation B+ due to the concentration difference between the ions A+ and B+ in

the resin and in the solution. The equation used to describe this exchange reaction is

given below:
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B+ + (R-) A+  ↔ A+ + (R-) B+                                                  (2.6)

Where R- represents the negatively charged funtional groups of the resin (8).

The most used applications of ion exchange are for the removal of hardness ions

such as Ca2+ and Mg2+ called softening water from domestic and industrial waters and

for complete demineralization of waters for industrial purposes. The softening process

replaces the calcium and magnesium in the water with sodium and demineralization

accomplished as a two-step. Firstly, all cations being exchanged for H+ ions in a cation

exchange and then all anions being replaced by OH- ions in an anion exchanger. Fe (II)

and Mn(II) can also be removed from water by ion exchange, altough control of

oxidation states is important because Fe (III) and Mn (IV) will full the resins. Another

application of ion exchange is for treatment of heavy metal ions such as chromium,

copper, lead, gold, silver platinum and uranium for the electronic and pharmaceutical

industries and for nuclear reactors, hospitals and laboratories (8,14,15). Today for ion

exchange synthetic ion exchange resins are used for treatment process. However, some

natural exchangers have been shown to be more afficient. The mostly prefered

exchangers are clinoptilolite, a sodium-calcium-aluminum silicate, activated alumina

and recently microorganisms that are still under investigation as ion exchangers

especially for heavy metal removal.

2.4.4.  Adsorption

Adsorption is another technology which has been examined and used for

removing heavy metals. The adsorbent which has probably received most attention is

granular activated carbon (GAC). Some metals such as chromium, lead and copper have

been removed by using GAC (1,8). However carbon adsorption is an expensive

treatment process . Therefore, there is a need of considerable research for the

development of alternative low-cost adsorbents. Further information about adsorption

processes is given in Chapter 3.

Technologies used, at present, for heavy metal removal or other hazardous

wastes have some disadvantages. One of them is that they produce sludge and therefore,

they transform an aquatic pollution problem to one that associated with solid waste

disposal and sometimes lead to incomplete removal of heavy metals. Another important
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factor  is the  difficulty of the application of these methods which makes the system

costly. Therefore a new technology should be considered that should be cheap, effective

and environmentally safe. To date a lot of researchers have mentioned about the

advantages of the biosorption. Which nowadays there are some published studies about

biosorption of heavy metals and many researchers focused on this process that is

considered as the future’s technology.
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Chapter III

ADSORPTION

3.1 Definition and Application

Over the last few decades adsorption has gained importance as a purification and

seperation process on an industrial scale. The ability of many porous substances to

adsorb vapors in large quantities has been recognized since the 18th century, but

application on an industrial scale has been more recently enhanced by the advancement

in the studies of adsorption fundamentals. However, to a considerable extent the

mechanism of adsorption remains surrounded by queries, and therefore studies are

required to establish relations between the many system variables and the performance

of the adsorber. Adsorption is defined as physical and/or chemical process in which a

substance is accumulated at an interface between phases. The adsorbate is the substance

being removed from the liquid phase to the interface and the adsorbent is the solid phase

onto which the accumulation occurs (9,11).

One of the earliest adsorption application is purification, such as the removal of

H2S obnoxius fumes from air and the removal of organic  compounds from liquid water.

Such materials are normally present in relatively low concentrations and are destroyed

after removal. Other examples of purification are the removal of odor and color from

edible oils, decolorization in the sugar industry, solute removal in tobacco

manufacturing, and the removal of unwanted hydrocarbons in oil refining. For recovery

purposes, adsorption has been applied to recover some biological materials , organic

compounds and metals. Another recent application is the immobilization of enzymes

and microbial cells for conducting biochemical reactions such as modification of edible

oils and treatment of wastewater by biosorption (9,11).

3.2 The Mechanism of Adsorption

Adsorption of substances onto adsorbents takes place because there are forces

that attract the absorbate to the solid surface from solution. The specific forces or
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mechanism by which adsorbate is attracted to the solid solution interface can be

physical or chemical (8,9,11).

3.2.1. Physical Adsorption

The electrostatic force is the basic physical principle that describes the

interactions between molecules of adsorbent and adsorbate. In physisorption that is

reversible, the forces between the sorbate and sorbent is weak and the system has low

heat of adsorption. The physical interactions among molecules that based on the

electrostatic force include dipole-dipole interactions, dispersion interactions and

hydrogen bonding. When there is a net separation of positive and negative charges

within the molecule, it is said to have a dipole moment. H2O and NH3 are example that

have permanent dipoles because of the configuration of atoms and electrons within

them. They are polar compounds. When two dipoles are near each other, they tend to

orient their charges to lower their combined free energy by tending the negative charges

of one to approach postive charges of the other. The attraction between the two

molecules are the net dipole-dipole attraction. The hydrogen bonding is a special dipole-

dipole interactions in which the hydrogen atom in a molecule has a partial positive

charge and attracts an atom on the other molecule that has a partial negative charge. The

other interaction is the dispersion interaction or the Van der Waals force. When two

neutral molecules that lack permanent dipoles approach each other, a weak polarization

is induced in each because of quantom mechanical interaction between them. The net

effect is a weak attraction between the molecules (8,9,11).

3.2.2 Chemical Adsorption

Chemical adsorption (chemisorption) is also based on electrostatic forces. The

difference between physisorption and chemisorption are; the attraction between

adsorbent and adsorbate  in chemisorpion that of a covalent or electrostatic chemical

bond between atoms approaches with shorter bond length and higher bond energy.

Adsorbates bound by chemical sorption to a surface generally cannot accumulate at

more than one molecular layer or monolayer because of the specificity of the bond

between adsorbate and surface. The bond may also be specific to particular site or

functional groups on the surface of adsorbents. One example is the chemical bonding of
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adsorbate to specific surface  sites which is acid-base reactions at a functional group.

The hydrated metal ions from solution with hydroxide sites on metal oxides are

followed:

ROH (aq)  +  SOH  ⇔  SOR  +  H2O (aq)

R is metal ion adsorbate and S is metal oxide adsorbent. This type reaction is used for

remove heavy metals by adsorption onto silica and aluminum oxide based clays and

sands for water treatment (8,9,11).

3.3 Adsorption Isotherms

Adsorption isotherm specifies the equilibrium surface concentration of adsorbate

on adsorbent as a function of bulk concentration of adsorbate in solution. It is called

isotherm because it describes the equilibrium state of adsorbate, adsorbent and solute at

a given temperature (8) . Over the years, several researchers have proposed several

isotherms based on different assumptions. However, in this chapter only the Langmuir

and Freundlich adsorption isotherms were discussed because these two isotherms have

been used to explain the biosorption mechanism of metal species by fungi (1,10).

3.3.1 The Langmuir  Adsorption Isotherms

This type of isotherm is proposed by Langmuir (1914) for homogeneous

adsorption. It assumes a uniform adsorbent surface with energetically identical sorption

sites. The Langmuir adsorption isotherm has found wide applicability to adsorption of

metals in water treatment because of its simplicity and its ability to fit a broad range of

experimental data. The Langmuir equation can be represented by the following

equation:

q = qmax b C / ( 1+bC) (3.1)

Where q is the amount of adsorbed per unit mass adsorbent,  qmax is the

maximum amount of adsorbed per unit mass adsorbent or the monolayer capacity, b is
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an empirical constant that reflects the affinity between adsorbent and adsorbate and C is

the concentration of adsorbate in solution at equilibrium. The experimental data may be

plotted to estimate  qmax  and b with rearranging Langmuir equation to:

1/q = 1/ qmax  + 1/(b qmaxC) (3.2)

so that plot of 1/q  against 1/C has slope 1/b qmax and intercept 1/ qmax .

The assumption that limited Langmuir isotherms are; firstly the energy of

adsorption is independent of degree of coverage, secondly reversibly of bonding and

last one is the allowance for at most only one monolayer. The q values is assumed to

approach a saturating value , qmax, if C value becomes very large (1,8,9,11).

The Langmuir model which is simply used for biosorption phenomena of one

component metal ions has a theoretical basis that relies on a postulated chemical or

physical interaction (or both) between solute and vacant sites on the adsorbent surface.

The heat ( ∆H ) of adsorption should be independent of the fraction of surface covered

by the adsorbed solute (θ =  qeq / qmax )  according to the ideal Langmuir model. qmax  is

supposed to represent a fixed number of surface sites and it should therefore be a

temperature-independent constant while the temperature dependence of the equilibrium

constant should follow the Arrhenius equation. The heat of adsorption related to the b

constant has the form:

b = bo exp (-∆H / RT)            (3.3)

Where b is constant related to the energy of adsorption in which bo is a constant

containing the entropy term. ∆H is the heat of adsorption, R is the universal gas constant

and T is the absolute temperature. The assumptions of identical sites with no interaction

between adsorbed molecules imply that the heat of adsorption is independent of

coverage and  has been calculated using the Langmuir constant b. The heat of

adsorption  can be obtained by calculating the slope  of ln b versus 1/T  plot (11,22,25).
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3.3.2 The Freundlich Adsorption Isotherm

The Freundlich isotherm describes equilibrium on heterogeneous surfaces and

hence does not assume monolayer capacity. Mathematically , it is expressed by:

 q = K C 1/n (3.4)

Where K is an indication of the adsorption capacity of the adsorbent and 1/n

indicates the effect of concentration on the adsorption capacity and represents

adsorption intensity. Its values range between 0 and 1. The log-log plot q against C for

this equation is linear. Here the surface concentration of adsorbate does not approach a

saturation value as C increases, since there is always surface sites with higher energies

of adsorption to fill. The Freundlich isotherm is very widely used to fit observed data

empirically even when there is no basis for its underlying assumptions (8,9,11).

3.4 Kinetics of adsorption

The thermodynamic laws specify an equilibrium state between the adsorbent and

adsorbates, the removal of compounds in water treatment is often determined by the rate

of adsorption during contact with adsorbent. The adsorption rate is

ra = kC (1 - θ ) (3.5)

and the desorption rate is

rd = k’θ (3.6)

where C is the unadsorbed solute concentration in solution, k and k’ , respectively, the

adsorption and desorption rate constants and θ, the fraction of surface covered by

adsorbed solute. At equilibrium, the equality of these two rates leads to the Langmuir

adsorption isotherm:

θ = KC / (1 + KC ) (3.7)
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where the adsorption equilibrium constant is K = k/k’. Combining Eq. (3.5) and

Eq.(3.6), the Langmuir – Hinshelwood adsorption equation modified for monolayer

adsorption is obtained and the rate of adsorption is given as follows :

r = kC / (1 + KC ) (3.8)

In an experimental data plot of rate versus C, the rate of adsorption is

proportional to the first power of the concentration of metal ion at low bulk

concentrations and can be given using Eq. (3.9):

r = kC (3.9)

At higher bulk metal ion concentrations, the rate of adsorption becomes

independent of bulk metal ion concentration. Eq. (3.8) can describe the rate of

adsorption very accurately in both of these situations. This kind of rate equation is also

defined as “ saturation type rate ”. This rate equation can be linearized by plotting 1/r

versus 1/C to determine the rate and equilibrium constants of adsorption from the slope

and intercept, 1/k and K/k, respectively.

The process of adsorption can be categorized as a set of sequential steps. The

first step is transport of solute from bulk solution phase to the boundary layer or surface

film surrounding the adsorbent particle. The second step is transport of solute across the

boundary layer to the exterior surface of the adsorbent particle. Molecular diffusion or

eddy diffusion controls transport across the film or boundary layer. For adsorbents used

in water treatment, most of the active surface area occurs in pores within adsorbent

particles. The third kinetic step is diffusion of solute within these pores, from the

exterior of the particle to the interior surfaces of the particle. Similarly, solute may be

transported along surfaces of pore walls. The final step is the physical or chemical

binding of adsorbate to the internal surface of the adsorbent. The rate of this step is

controlled by chemical kinetics at the molecular level (8,11).

The kinetics of adsorption can be characterized with respect to dependence on

operating parameters such as temperature and bulk concentration. The magnitude of the

heat effect for the biosorption process is the most important criterion to develop a

thermodynamic and kinetic relationship for metal-microorganism interaction process.

However, the kinetics of the metal uptake process and the description of the thermal
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properties of the biosorption remain essentially unknown and little study on the

evaluation of the enthalpy change of biosorption have been given.
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Chapter IV

BIOSORPTION BY FUNGAL BIOMASS

         The importance of metallic ions to fungal and yeast metabolism has been known

for a long time.The exact role of the metallic species in metabolic activities of the cell,

however, is still being studied and in many instances it is not fully understood. Metals

are known to play an important role in many key metabolic catalyzed by enzymes. The

inhibitory role of metals in biochemical reactions is known but these aspects are the

basis for their toxicity to the microrganisms, fungi being no exception, and to the higher

organisms as well.The fungi and  yeast are used in a variety of industrial fermentation

processes. Such industrial fermentation processes can serve as an economical and

constant supply source of biomass for biosorption of metal ions, because the biomass

could be available in large quantities from established fermentation process. On the

other hand, there is a possibility to use   fungal biomass as biosorbent for detoxification

of industrial effluent streams by removing their toxic heavy metals component. Another

aspect of using fungal biomass, the sequestered metals of value could be recovered and

recycled or resold. These decrease the costs of wastewater treatment process and the

industrial operation (1,10,32-36,39,43,45).

4.1 Fungi

4.1.1 Characterization of Fungi

        Fungi are a eukaryotic, nonphotosynthetic group of microorganisms that relying

on organic substrates as their source of carbon and energy for growth and metabolic

activities. Most fungi are coenocytic organisms and feature a vegetative structure

known as mycelium consisting of thread-like projections called hyphae forming a

multinucleate mass of cytoplasm. That enclosed within a rigid, very branched system of

tubes fairly uniform in their diameter. A mycelium normally germinates from a single

reproductive cell or spore which may be mobile in the water molds and phycomycetes.

Although  higher fungi and their spores are incapable of movement, the internal

contents of mycelium show streaming movements of the cytoplasm enclosed within its
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wall. In nature, the vegatative mycelium of fungi is rarely seen because it is normally

embedded in soil and other opaque substrates. Some fungi ( the mushrooms) form

specialized spore-bearing fruiting macroscobic structures.

Their morphology (shape), physiology, reproductive mode, metabolic activities,

energy storage products, chemical composition and many other features serve in their

taxonomic classification. The division and classification of fungi start with four large

group:

•  Phycomycetes or aquatic molds are generally characterized by a mycelium with

no partitions (nonseptate mycelium) and endogenous spore formation inside a

sac-like structure .

•  Ascomycetes form sac-like structures bearing four, eight or more ascopores

originating from two meiotic followed by one or more mitotic divisions after a

fusion of opposite sex nuclei.

•  Basidiomycetes form four special basidiospores originating from meiotic

divisions of a diploid nucleus. These are not in a sac.

•  Fungi Imperfecti lack a sexual reproduction mode called asexual spores that  are

always exogenous and constitute a provisional taxonomic group.

A few groups in these classes have largely lost their mycelial  habit of  growth

and  became unicellular. Such fungi are collectively known as yeasts which multiply

predominantly by budding and which have become very important to man. The widely

used Saccharomyces cerevisiae which can grow anaerobically ( brewer’s yeast) for

producing ethanol or aerobically as baker’s yeast which is an ascomycetous yeast (10,

17).

4.1.1.1 The Baker’s Yeast

Baker’s yeast is a mass of viable yeast cells of the Saccharomyces cerevisiae

genus. It is produced through fermentation process. A yeast which is a unicellular

fungus has a nucleus contains two sets of chromosomes.
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Figure. 4.1. Diagrammatic drawing of a yeast cell showing typical morphologhy

Generally yeast cells are larger than bacteria and vary considerably in size. Their

appearance is spherical or egg - shaped. They have no flagella but do possess most of

the other eucoryatic organelles. The yeast Saccharomyces cerevisiae seen in Figure 4.1.

They have a single nucleus and reproducers either asexually by budding  and

transverse division or sexually through spore formation. Each bud that separated can

grow into a new yeast, and some group together to form colonies (see Figure 4.2).

During budding there is a complete division of this double set of chromosomes, each

daughter cell that is vegetatively produced again contains a complete double set of

chromosomes. The cell is approximetly 5-8 µm in size (17,10).

Figure.4.2. The yeast Saccharomyces cerevisiae reproducing colonies by
budding.
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4.1.1.2. The Cell Wall Structure of Yeast

The sequestering of metallic species by fungal biomass which constitutes the

basis of biosorbent behaviour has mainly been traced to the cell wall. They may also be

found within the cell associated with various organelles or they crystalize in the

cytoplasm. However,  the cell wall can be considered the primary site and the one which

metallic ion from the environment encountered first and where most of the metals are

found (2,4,10,16).

The cell wall of Saccharomyces cerevisiae is approximately 70 nm thick and

contains a number of polymers including glucan (28.8 %), mannan (31%), protein (

13%), lipid (8.5 %)  chitin-chitosan (2%) and a small percentage of inorganic ions such

as Ca+2, Mg2+ and K+2  (3%) of the cell wall mass (see Figure 5.4) (10,17,30).

Figure. 4.3. A schematic diagram of a  yeast cell wall

Glucan a polymer  of  β (1-3) linked glucose with β (1-6) branches. It is found

primarily on the cell membrane side of the cell wall, its main function is maintaining.

The outer layer of the cell wall consists of mannan polymers linked to proteins. This

matrix is crosslinked by disulfide bonds and intrachain hydrogen bonding. Mannan is a

polymer of mannose monomers forming a main chain linked by α (1-6) bonds and side

chains with α (1-3) and α (1-3) bonded mannose residues which branch from the main

chain via α (1-2) links. The mannan is found as a covelently linked protein-

Mannan

Glucan

Protein

Cytoplasmic membrane

Chitin microfibriles

Cell wall ≅ 70nm
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polysaccharide complex of 25 to 500 kDa, of which the protein usually contributes 5 to

10 %  and poly-mannose branches are crosslinked via phosphate on the mannose

residues (30,17).

Protein is found throughout the cell wall of  S. cerevisiae but it is more

prominent in the outer layer. Chitin is a polymer of N-acetylglucosamine residues linked

by β (1-4) glycosidic links and is associated with protein in the cell walls to which  is

linked via nonaromatic amino acid residues. Chitosan is produced by the deacetylation

of chitin that is found naturally in fungal cell walls. Chitin is found as microfibrils in the

inner layer of the cell wall in the glucan matrix and in bud scars.The inorganic ions

generally exist in the cell membrane and in cytoplasm (30).

4.1.1.3 Essential Nutrients and Environmental Conditions for the Growth of

Yeast

The cell synthesizes the many individual substances of the biological cell,

including the structurall elements. One of the most important nutrients for the yeast is

an assimilable carbonic organic composition that serves as a source of carbon also as a

source of energy requirement for the metabolism. S. cerevisiae requires the following

essential nutrients and growth promoters for the multiplication of its cells. For Baker’s

Yeast in the presence of atmosheric oxygen: (17)

•  A source of assimilable organic carbon and energy

•  An assimilable nitrogen composition

•  The essential minerals such as PO4
+2 , K+, SO4

-2 , Mg2+ and trace elements

such as Fe, Cu, Zn and Mn

•  The growth promoters biotin, pantothenic acid and m-inositol

4.2 The Metal Ion Uptake by Fungi

The metal ion uptake by both living and dead cells can consist of two differing

modes. The first uptake mode is independent of cell metabolic activity, and is termed as

biosorption or passive uptake. It involves the surface binding of metal ions to cell walls

and extracellular material. The second mode of metal uptake into the cell across the cell



28

membrane is dependent on the cell metabolism, and is termed as intracellular uptake,

active uptake or bio-accumulation. The first mode is common to metal uptake by both

living and dead cells. The second mode that is depending on metabolism, occurs in

living cells (see Figure 4.4). This slow phase of metal uptake can be due to a number of

mechanisms, including covalent bonding, surface precipitation, redox reactions,

crystallization on the cell surface or membrane transport. Sometimes this slow uptake

requires metabolic energy, indicating an active transport. The metal uptake is facilitated

by the production of metal-binding proteins. Therefore , metal uptake may take place by

different modes, depending on whether the cells are dead or living (1,2,4,5,10,16,18).

Figure.4.4  The metal ion uptake by a microorganism

4.2.1 Biosorption Mechanism

The biosorption can be demonstrated with both dead and living biomass and

defined as a property of certain types of inactive, dead, microbial biomass to bind and

concentrate heavy metals from even very dilute aqueous solutions. Biomass acting just

as a chemical substance, as an ion exchanger of biological origin particularly the cell

wall of the microorganism was found to be responsible for this phenomenon. There are

two mechanisms involved in biosorption:

The Metal Ion Uptake

Passive uptake Active uptake

Biosorption/ Ion exchange
(Independent of cell
metabolic activity)

Bioaccumulation
(Dependent of cell
metabolic activity)

Occurs both living
and  dead cells

Only occurs  living
cells
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•  Ion exchange : ions such as Na, K, Mg and Ca on the cell wall

surface   become displaced by heavy metal ions,

•  Complexation between metal ions ; various functional group of the cell wall

such as carboxyl ; amino; thiol; hydroxy; phosphate and hydroxy-carboxyl

interact in coordinated way with metal ions (1,4,5,10,16,18).

4.2.2 Factors Affecting Biosorption

Biosorption of heavy metals is affected by many experimental factors such as

pH, temperature, biomass concentration  and initial metal concentration. Recently,

pretreatment of biomass by using some chemical substances have been reported  that

can increase the biosorption capacity.

4.2.2.1 pH Effect on Biosorption

Several researchers have investigated the effect of pH of heavy metals by using

different kinds of microbial biomass. For example, the biosorption of Cu(II), Cd(II) and

Pb(II) by S.cerevisiae was pH dependent and maximum biosorption was obtained in the

pH range 5.0-7.0 (28,33,39,40,46). Maximum nickel biosorption by chlorella species

and R.arrhizus were investigated at pH 7 and 4.5 (19,24,25). Biosorption of lead(II),

copper(II), and nickel(II) by R.arrhizus and Z.ramigera were maximum at pH in the

range 4.0-5.0 (22,37). Another search for removal of Cd(II), Pb(II) and Cu(II) by

Phanerochaete chrysosporium was maximum at pH 6 ( 22,27,37,49). It is reported that

at pHs lower than optimum values, protonation of the cell component adversely affected

the biosorption and during ion exchange process, H+ ions  are replaced instead of metal

ions  on the cell wall. At higher pH values metals were precipitated because of high

concentration of OH- ions.

4.2.2.2. Temperature Effect on Biosorption

Temperature can have a significant effect on biosorption. For example , the

optimum biosorption temperature for Pb(II), Cu(II) and Ni(II) by R.arrhizus was

determined to be 250C for; and for Cu(II), Cd(II) and Pb(II) by S.cerevisiae was

determined to be 250C (35,42,49). However , the optimum biosorption temperature of
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the same metal ions by Phanerochacte chrysosporium and by Sreptomyces noursei were

determined to be 300C (32,43). On the other hand, Fe(III) and Pb(II) biosorption by

Zoogloea ramigera was increased with increasing temperature upto 450C (25). Many

researchers have reported that at low temperature  the binding of heavy metal ions to the

microorganisms occured by a physical adsorption process and an equilibrium between

the cell wall surface and the metal ions was usually rapidly and easily reversible ,

because of small energy requirement (22,25).

4.2.2.3. The Effect of Biomass Concentration on Biosorption

The biosorbent concentration has been shown as one of the important factor in

the biosorption process. In the literature there are examples of the effect of biomass

concentration on heavy metal biosorption. It has been found that the metal uptake was

increased when the biomass concentration decreases (31). Such behaviours have been

explained that an increase in biomass concentration leads to interference between the

binding sites (31,47).

4.2.2.4. The Effect of Initial Metal Concentration on Biosorption

Another factor that affects biosorption process is the initial metal concentration.

It has been reported that generally the adsorption rate increased with increasing initial

metal concentration. For example, adsorption of Fe(II), Pb(II) and Cd(II) by S. leibleini

has increased with increasing initial metal ion concentrations up to 150 mg/L , at high

concentration the adsorption rates have not been changed (50). This type of reaction rate

was termed as “saturation type reaction rate”. The adsorption yields ( Y= q1=∞ / C0)

decreased while the maximum adsorbed metal amounts per unit mass of dry biomass

increased by increasing the initial metal ion concentration (21,24,25,27,34,35,42).

4.2.2.5  The Effect of Pretreatment on Biosorption

Living cells have been pretreated using physical and chemical methods to

increase the metal biosorption capacity. Physical pretreatment methods have included

heat treatment, autoclaving, freeze drying and boiling. Chemical pretreatment methods
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such as contacting especially fungal cells with acids, alkaline and organic chemicals that

increase the biosorption capacity have been reported in the literature (1,26,27,41,42.44).

One of them is pretreatment of Aspergillus niger using sodium hydroxide,

formaldehyde, dimethyl sulphoxide and detergent. This has increased in biosorption of

lead, cadmium, copper (26). The pretreated R. arrhizus  with formaldehyde have

increased biosorption of lead and nickel (27). Moreover, S.cerevisiae  with hot alkali

treatment by using NaOH have been observed as increases in biosorption of lead,

copper and cadmium (41,42,44).



Chapter V

EXPERIMENTAL

5.1 Materials

5.1.1 Microorganism

The industrial strain of Saccharomyces cerevisiae, collected from the waste of

Pakmaya Baker�s Yeast Industry ( İzmir, Turkey) was used as the biosorbent in this

study. The waste biomass was stored at 4 oC after biomass suspensions were prepared in

concentrations  of 10 g dry cell per litre deionized water. pH of this stock yeast solution

was around 5.5. The suspension was directly diluted into the flasks containing metal

solutions to be used for biosorption experiments as live biomass.

5.1.2 Chemicals

Nickel (II) solutions were prepared by diluting 1000 ppm stock solutions of

nickel (II) obtained by dissolving Ni (NO3)2 .6H2O in deionized water. The live biomass

was pretreated with sodium hydroxide, formaldehyde, nitric acid and ethanol. The pH of

biosorption medium was adjusted by using 0.1 M HCl and 0.1 M NaOH. The chemicals

used in this study is given  in Table 5.1.

Table 5.1 The chemicals and their properties.

Chemical                                             Purity and properties                Producer

Ethanol (C2H5OH)                                       % 95                                      Carlo-Erba
Formaldeyhde                                              % 37, d=1.09 g/cm3                 Merck
Hydorchloric acid (HCl)                              % 37, d= 1.19 g/cm3               Aldrich
Nitric acid (HNO3)                                      % 65, d= 1.40 g/cm3                Merck
Sodium hydroxide (NaOH)                         % 98.99, pellet                        Aldrich
Nickel (II) Nitrate (Ni ( NO3)2 . 6H2O)      % 99.98, d= 2.05 g/cm3           Aldrich
Nickel ( ICP)                                               ICP std solution, 1000 ppm     Merck
Deionized water  ( WaterPro PS,                18.1 megaohm                         Labconco
                               model 90007 � 05)
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5.2 Methods

5.2.1 Pretreatment of Waste Yeast

The live S.cerevisiae was treated with some chemicals in order to prepare its

surface for biosorption. Thirty gr dry weight of biomass was pretreated in five different

ways as descibed below (26):

A. Live biomass without pretreatment.

B. Boiled for 15 min in 500 ml of 0.5 N sodium hydroxide solution.

C. Boiled for 15 min in 500 ml of 10 % (v/v) formaldehyde solution.

D. Boiled for 15 min in 500 ml of 10 % (v/v) nitric acid solution.

E. Heated for 15 min in 200 ml of ethanol under reflux condition.

After  each pretreatment , the biomass was washed with excess amount of

deionized water and then dried at 60 oC  for 12 h. Sodium hydroxide pretreated biomass

was washed with deionized water until the pH of the wash solution was in near neutral

(6.8-7.2) range since high pH values (≥ 9) are responsible for nickel hydroxide

precipitation.

5.2.2 Effect of pH on Biosorption

The experiments were carried out in well - stirred solutions with a volume of 100

ml. 100 mg/L nickel ion concentration and 1.0 g/L biomass concentration were used for

each run. A series of biomass suspensions from pH 3 to 6 were adjusted with 0.1 M HCl

and 0.1 M NaOH. For adjusting the pH�s of biosorption medium to 3, 4, 5 and 6; 422 µl

of 0.1 M HCl, 90 µl of 0.1 M HCl, 5 µl of 0.1 M HCl and 156 µl of 0.1 M NaOH were

used, respectively. Adsorption experiments for each metal solution and pH were carried

out in an orbital shaker at 150 rpm and 25o C for 24 hours. Samples were then assayed

and metal uptake by biomass for each run were calculated at different pH values.
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5.2.3 Effect of Temperature on Biosorption

150 mg/L nickel solutions were prepared separately in total volume of 90 ml at

pH 5.0. 10 ml concentrated biomass (1.0 g/L) was then added to the metal solutions.

Samples were placed in an orbital shaker (150 rev min-1) at different temperatures (15,

25, 35 and 45o C). Under the specified conditions the same concentration of nickel

without biomass were placed in order to check the loss in metal solution. After 24 hours

(sufficient to reach equilibrium), 1.5 ml samples were taken, centrifuged and

supernatants were analysed for nickel concentration. The uptake of nickel was

determined from the difference between the initial and equilibrium concentrations.

5.2.4 Effect of Biomass Concentration on Biosorption

Biomass concentrations ranging from 0.5 to 5.0 g/L were used. The initial nickel

concentration  was 100 mg/L in 100 ml total solution volume and pH was adjusted to

5.0 with trace amount of 0.1 M HCl. After shaking the solutions at 150 rpm in an orbital

shaker for 24 hours, the equilibrium was reached and samples were taken, centrifuged

and analysed for final nickel concentration.

5.2.5 Effect of Initial Metal Concentration on Biosorption

90 ml of metal solutions containing 0, 50, 100, 150, 200 and 250 mg/L nickel(II)

ion were mixed with 10 ml of 1.0 g/L biomass, and pH of the solution was adjusted to

pH 5.0 with trace amount of 0.1 M HCl. The solutions were shaken in an orbital shaker

at 25o C, 150 rev min-1 for 24 hours. After reaching the equilibrium, 1.5 ml samples

were taken, centrifuged and residual nickel concentrations were determined. From the

difference between the initial and residual nickel concentration, amount of nickel

adsorbed by biomass for each run were determined.

5.2.6 Determination of Biosorption Isotherms

The equilibrium adsorption isotherms were conducted in batch mode for

different pH (3.0, 4.0, 5.0, 6.0) and temperature (15, 25, 35, 45oC) ranges. The range of

concentration of prepared nickel(II) solutions varied from 0 to 250 mg/L in biosorption
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medium. All reactions were carried out in stirred solutions (total volume about 100 ml)

with a typical volumetric ratio between biomass/bulk liquid of 1.0 g/L in an orbital

shaker over 24 hours. Samples (1.5 ml ) were taken, centrifuged in a Hettich, model

EBA 12/12R centrifuge and  analysed. The initial and equilibrium concentration of

nickel was determined in each run. The initial and residual nickel(II) ion concentrations

(Ceq) in solution were determined by using the ICP � AES equipment and the adsorbed

metal amount per unit mass of waste yeast (qeq) was calculated from the mass balance.

Equilibrium adsorption isotherms were prepared by plotting the amount of nickel sorbed

per mass of dry cells as a function of residual concentration of nickel at equilibrium.

The mean values of triplicates of each concentration were plotted and fitted to both

Langmuir and Freundlich isotherm equations.

5.2.7 Determination of Biosorption  Kinetics

Adsorption kinetic experiments were performed in batch mode in well stirred

vessels (100 ml). A nickel solution of known concentration was added to an appropriate

amount of the yeast, pretreated before. The initial concentration of nickel (II) in the

liquid phase was 100 mg/L and adsorption kinetic experiments were conducted for four

different pH ranges (3.0, 4.0, 5.0 and 6.0) using 1.0 g/L biomass concentration. The

solutions were agitated continuously in an orbital shaker at 25oC and 150 rpm to ensure

homogenous exposure to the metals. The decrease in the nickel concentration in

solution due to adsorption was analysed by pipetting small amounts of solution (1.5 ml)

and centrifuged. Samples were taken at short intervals (at the very beginning

approximately every 60 seconds, then every 5 minutes) starting from the initial time for

60 minutes. After 2 hours equilibrium was reached, but in order to be sure more samples

were taken and analysed over the 24 hours period. Each experiment was repeated three

times, and mean values were presented (Chapter VI).

5.3 Analysis of Metal Ions

The concentration of unadsorbed nickel ions in the sample supernatant was

determined by using an Inductively Coupled Plasma-Atomic Emission Spectrometer

(Varian, ICP-AES, Axial Liberty). 1.5 ml samples were taken from the biosorption
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medium and were centrifuged in a Hettich, model EBA 12/12R centrifuge at 10,000

rpm, 4o C for 3 minutes. 1ml alliquot from each sample supernatant was pipetted into 10

ml volumetric flasks containing 18.1 megaohm deionized water and HNO3. The acidity

of the solution in each volumetric flask was adjusted to 5 % (v/v) HNO3.

The standard nickel solution concentrations were prepared from 1000 ppm Ni

standard solution in 5 % (v/v) HNO3. The concentration range of the standard solutions

covered the Ni (II) concentration in the samples after each biosorption experiment.

The blank solution was prepared in 100 ml volumetric flasks using 18.1

megaohm deionized water with HNO3 concentration of 5 % (v/v).

 The instrument operating conditions of  ICP � AES  are described in Table 5.2.

Table 5.2   ICP � AES (Axial Liberty) operating conditions

Argon gas flow                   15 L/min

Argon auxiliary flow          1.50 L/min

PMT voltage                       650 V

Sample uptake                     30 sec

Rinse time                           10 sec

Line for nickel element       231.604 nm

All the equipment (glass and plastic ware) were soaked in 1:5 nitric acid solution

for 24 hours, rinsed thoroughly with deionized water and dried in an oven at 70-80o C

after each use (51,52).



Chapter VI

RESULTS AND DISCUSSION

6.1 Factors Affecting the Biosorption of Nickel by Waste Baker’s Yeast

It is known that some parameters such as pH, temperature and bulk

concentration may affect the biosorption capacity. Therefore, biosorption data of

nickel(II) by waste yeast are presented in this section under different pH, temperature,

biomass and metal concentration values at equilibrium to obtain the optimum conditions

for this system.

6.1.1 Effect of Pretreatment

Live or dead cells of biomass can be used as an adsorbent material for the

removal of toxic metal ions from aqueous solutions. The efficiency of dead cells in

biosorbing metal ions may be greater, equivalent to, or less than that of living cells and

may depend on factors such as the microorganism under consideration, pretreatment

method used, and type of metal ion being studied (26). The biosorption capacities of

live or dead biomass may vary great deal. Therefore, in this study live cells were used

and the waste baker�s yeast was pretreated  in four different ways (see ChapterV) to

determine the effect of pretreatment methods on the biosorption capacity of nickel since

there is no information about this subject in the literature for Saccharomyces cerevisae.

Figure 6.1 shows the effect of pretreatment of S. cerevisae done by using sodium

hydroxide, formaldehyde, nitric acid and ethanol on biosorption of nickel in comparison

with live cells. Pretreatment of live biomass using ethanol and formaldehyde yielded

with the 5.70 and 4.80 mg Ni(II)/g biomass uptake values, respectively. These values

were found to be lower than that observed for live biomass, but higher than other

pretreatment results. Pretreatments using NaOH decreased the biosorption of nickel to a

value of 2.55 mg Ni(II)/g biomass. The lowest biosorption capacity of 0.54 mg Ni(II)/g

biomass was found for the cells pretreated with HNO3. Pretreatment of live biomass

using four different chemicals did not improve the nickel biosorption in comparison

with live biomass.



Figure 6.1 The effect of pretreatment on biosorption (pH=5.0; temperature 25oC; biomass concentration=1.0 g/L; Ci = 100 mg/L
agitation rate= 150  revmin-1; A= Live biomass without pretreatment ; pretreatment  by using: B= ethanol, C= NaOH,
D= nitric acid E= formaldehyde)
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Live biomass was observed to possess highest nickel biosorption (6.30 mg Ni(II)/g

biomass) capacity; HNO3 pretreatment completely inhibited nickel biosorption. This

observation was found to be similar to the findings of Kapoor and Viraraghavad,

obtained for biosorption of nickel by Aspergillus niger. But the pretreatment with same

methods as we used, increased the biosorption of lead, cadmium, and copper in case of

the A. niger research (26). The accumulation of lead (II) in S. cerevisiae cells decreased

because the number of binding sites were decreased by autoclaving (33).

Huang and Huang suggested that increase in metal biosorption after pretreating

the biomass could be due to removal of surface impurities and exposure of available

binding sites for metal biosorption (26). But, here in this study pretreatment decreased

biosorption of nickel in comparison with live cells which might indicate that it may be

advantageous to use live cells. This may be due to the fact that microorganisms can take

up nickel intracellularly. It is possible that better nickel removals by live biomass could

have been due to intracellular nickel uptake or the presence of chelating ligands that

may be present on the cell surface in trace amounts, even after washing the biomass

thoroughly before the biosorption experiments. It needs to be pointed out that reduction

in nickel biosorption by ethanol and formaldehyde in comparison with live cells was in

the range of 10-25 % only, while the lowest results were obtained with NaOH and

HNO3 in comparison with live cells were 60 % and 90%, respectively. Thus, it was

demonstrated in this study that pretreatment of S. cerevisiae did not have an effect on

biosorption capacity for nickel ions. Therefore, live cells of S. cerevisiae without

applying any pretreatment were used for biosorption experiments throughout this study.

6.1.2 Effect of pH on Biosorption

pH is one of the major factor affecting biosorption of metal ions since cation

competition may occur with hydrogen ions. Hence, in this study biosorption was studied

with respect to the different pH values using constant nickel and biomass concentrations

at 25o C. Figure 6.2 shows the effects of pH on biosorption capacity at equilibrium.
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Figure 6.2 Effect of pH on nickel biosorption capacity by S. cerevisiae at a
constant initial metal ion concentration of 100 mg litre-1(temperature
= 25oC; biomass concentration= 1.0 g litre-1 ; agitation rate = 150 rev
min-1)

Figure 6.3 The pH change during biosorption started with pH 6.5 and the
precipitation of  Ni (II) ions ( Ci = 100 mg/L; temperature = 25oC;
biomass concentration = 1.0 g litre-1 ; agitation rate = 150 rev min-1)
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As can be seen from Figure 6.2, the maximum biosorption of nickel on biomass

was observed at around pH 6.0. During the time course of biosorption, when pH of the

solution was checked it was observed that the pH was not constant when the initial pH

was 6.0. The nickel ions precipitated at the bottom of the flasks because of the high OH-

ions in the adsorption medium. Figure 6.3 shows the change in pH during biosorption at

pH close to 6.0. Here, it can be seen that the initial pH was 6.0 and changed during the

time course of biosorption. The pH gradually decreased and after 90 minutes the pH

change was not recorded upto 24 hours. pH was maintained at 4.98, while nickel uptake

on biomass increased and penetration by cells occured at the same period of time. When

the similar observation was made for the initial pH values of 3.0, 4.0 and 5.0, there was

no change in pH during the time course of biosorption.

In Figure 6.2, it can be seen that there is a decrease in nickel ion adsorption per

unit weight of biomass when pH was decreased from 6.0 to 3.0. The maximum nickel

ion uptake by waste baker�s yeast was obtained as 1.39 and 3.66 mg Ni(II)/g biomass at

pH 3.0 and 4.0, respectively. At pH 5.0, nickel uptake was maximum, 6.30 mg Ni(II)/g

biomass, which can be selected as the optimum pH  value for Ni(II) uptake even pH

seems to yield with the maximum uptake. Since this result was thought not to be the real

adsorption value because of the precipitation; pH 5.0 was selected as the optimum pH

for biosorption.

The nickel ion uptake found to be decreased with decreasing the pH. The

medium pH affects the solubility of metals and the ionisation state of the functional

groups (carboxylate, phosphate and amino groups) of the fungal cell wall. The

carboxylate and phosphate groups carrying negative charges on the fungal cell wall

components are the potent scavengers of cations (32). At acidic pH (≈3.0), protonation

of the cell wall component adversely affected the  biosorption capacity of the fungal

biomass, but this effect became negligible with increasing the pH of the medium. With

an increase in pH, the negative charge density on the cell surface increases due to the

deprotonation of the metal binding sites and thus increases biosorption.

The pH effect on biosorption was reported by many researchers and heavy metal

biosorption by S. cerevisiae was found to be efficient in the pH range between 4.0 and

5.5. For example, the  uptake of lead (II), cadmium  (II), copper (II) and zinc (II) by S.

cerevisiae have been found  maximum at the pH value 4.5 and 5.5. Below these pH

values biosorption has not been effective (33-35,39-46,48,49). However, the uranium

uptake by using S. cerevisiae  has reached the maximum value at pH 4.0 (46). In
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another report, the biosorption for strontium (II), Mn (II), and TI (II) by S. cerevisiae,

havee been found high at pH of 5.5 (40).

6.1.3 Effect of Initial Metal Concentration on Biosorption Capacity

The effect of initial metal concentrations of nickel (II) ions from 50 mg litre -1 to

250 mg litre-1 was studied and results were presented in Figure 6.4. The biosorption of

nickel(II) ions by waste yeast increased with increasing  the initial  metal ion

concentration upto 150 mg/L. At higher concentrations the adsorption of nickel(II) ions

did not change and reached to a saturation value. The maximum uptake of nickel(II)

ions reached to 7.82 mg Ni(II) g-1 biomass at 150 mg/L initial metal concentration.

Figure 6.4 The effect of initial metal concentration on biosorption capacity
(pH=5.00; temperature = 25oC; biomass concentration = 1.0 g litre-1 ;
agitation rate = 150 rev min-1)
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Z.ramigera, R. arrhizus, S. cerevisiae and S. leibleinii  (24,25,34,35,42). The effect was

further investigated with biosorption isotherms ( see Section 6.2).

6.1.4 Effect of Biomass Concentration on Biosorption capacity

The biosorbent concentration has been shown to be one of the important factor

in  biosorption  processes. In this study, the waste yeast concentration from 0.1 to

5.0g/L was used to determine the effect of  biomass concentration on nickel biosorption

capacity and Figure 6.5 shows the results for the different biomass concentration on the

capacity of biosorption.

Figure 6.5 The effect of biomass concentration on biosorption capacity
(pH=5.00; temperature = 25oC; Ci = 100 mg/L ; agitation rate = 150
rev min-1)
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The biosorption of nickel(II) ions decreased with increasing the waste yeast

concentration  (Figure 6.5), eventhough an increase in biosorbent concentration

generally increases the uptake of the substances. Such a behaviour has been explained

by some researchers  and hypothesized that an increase in biomass concentrations leads

to interference between the binding sites (31,47). The nickel (II) adsorption by waste

yeast decreased with decreasing biomass concentration owing to decreasing surface area

of the cell wall that decreased the binding sites. In the present study, optimum waste

yeast concentration was found to be as 1.0 g/L.

6.1.5 The Effect of Temperature on Biosorption Capacity

The effect of temperature on nickel biosorption was shown in Figure 6.6. As can

be seen in this figure, the maximum biosorption of nickel(II) ions by waste yeast was

obtained at 25o C. The adsorptive capacity of the yeast biomass for nickel(II) ions

decreased with increasing temperatures above 25o C . Below 25o C, biosorption capacity

decreased. The biosorption capacity was found to be the highest at 25o C with the value

approximately 8.0 mg Ni(II)/g biomass. The biosorption capacity values were found to

be nearly the same for the temperature ranges 15, 35 and 45o C and around 2.30 mg

Ni(II)/g biomass was obtained.

Adsorption is an exothermic process, therefore, the adsorptivity is expected to

decrease with increasing temperature. Here, a maximum adsorption value was obtained

at 25o C. S.cerevisiae yeast is known to be very active at this temperature. Therefore,

temperature effect experiments were conducted using different biomass concentrations

at different temperature values. The results were shown in Figure 6.7 and experimental

data were given in Table B.2 (see App.B).

As can be seen from Figure 6.7, biosorption capacities changed with respect to

temperature at different biomass concentrations. The lowest biosorption value was

observed when experiments were conducted at 35 and 45o C. The uptake of nickel were

not changed considerably and found to be approximately 2.0 mg Ni(II)/g biomass by

changing the biomass concentrations from 0.5 to 5.0 g/L. Uptake of nickel by changing

the biomass concentration at 15 and 25o C resulted with an increase. In the case of the

experiments conducted at 15o C, maximum biosorption was around 1.5 g/L biomass

concentration with the value of 3.0 mg Ni(II)/g biomass.
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Figure 6.6 The effect of temperature on biosorption capacity (pH=5,00; biomass
      concentration =1.0 g/L; Ci = 150 mg/L; agitation rate =150 rev min-1)

Figure 6.7 Biosorption of nickel(II) ions for different temperature and biomass
     concentration (pH=5,00; Ci = 100 mg/L; agitation rate=150 rev min-1)
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The maximum uptake of nickel ion per biomass was occurred at 25o C as also

indicated in Figure 6.6, with the uptake value of 6.30 mg Ni(II)/g biomass. Here, it can

be seen that as the biomass concentration increases, the biosorption capacity decreases

at all the temperature values. It has been reported that at low temperature values the

binding of heavy metal ions to the microorganisms occured by a physical adsorption

and an equilibrium between the cell wall surface. The metal ions were usually rapidly

bound and easily dissociated because of small energy requirement (22,25).

Accumulation processes that depend on cellular metabolism, such as active uptake,

would be those that are the most likely to be inhibited by low temperatures, whereas

high temperatures could affected the integrity of the cell membranes and hinder

compartmentalization of metal ions, also leading to reduced uptake levels (45).

6.2 Equilibrium Isotherms for Biosorption of Nickel(II) Ions by Live Cells

of S.cerevisiae

The nickel(II) biosorption experiments were performed in batch mode in stirred

solutions as a function of pH and temperature since these are the main process variables

affecting the equilibrium of metal - microorganism systems as seen in Section 6.1. The

equilibrium relationship between the adsorbed metal amount per unit mass of

S.cerevisiae (qeq)  and the residual nickel(II) ion concentration (Ceq) in solution phase

were expressed by adsorption isotherms. The initial nickel ion concentrations were

changed from 50 to 250 mg/L while the yeast concentration in each sample was held

constant at 1.0 g/L. The applicability of the Langmuir and Freundlich adsorption

isotherms for the metal - microorganism system was tested under these specified

conditions by only changing the pH and temperature.

6.2.1 Biosorption Isotherms for Nickel(II)/Baker’s Yeast System at

Different pH Values

The biosorption equilibrium isotherms were generated for different pH values.

The temperature of 25o C and biomass concentration of 1.0 g/L were held constant since

these were the optimum values found from the previous biosorption experiments.

Figure 6.8 and Table 6.1 show the biosorption isotherms for nickel(II) � baker�s

yeast system at the pH values of 3.0, 4.0 and 5.0. The isotherm data were tried to fit the
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Langmuir and Freundlich adsorption isotherms. In Figure 6.8 solid lines show the best

fit Langmuir isotherms using the parameters reported in Table 6.1. The parameters were

estimated for each pH values from the linearized equations of Langmuir and Freundlich

which were given in Chapter III. The calculated parameters were given in Table 6.1 and

6.2 and the linearized Langmuir and Freundlich isotherm curves can be seen in Figure

C.1-14 (see App.C).

Table 6.1 The biosorption parameters obtained from the Langmuir adsorption isotherms
    for nickel (II) ions at different pH values.

                pH                    qmax                           b                          R 2

                                        (mg/g )                (L/mg)                   (regression coefficient)

        3.00                        7.82                      2.5 × 10 �3               0.985

        4.00                      14.00                      4.6 × 10 �3               0.986

        5.00                      14.30                      6.9 × 10 �3               0.989

Table 6.2 The biosorption parameters obtained from the Freundlich adsorption
     isotherms for nickel (II) ions at different pH values.

         pH                             K                          1/n                      R 2

                                                                                                  (regression coefficient)

        3.00                        0.015                      0.9701                0.894

        4.00                        0.300                      0.5791                0.854

        5.00                        0.470                      0.5392                0.910

The data did not fit the Freundlich adsorption isotherms as seen in Table 6.2. It

can be seen that all isotherms follow the Langmuir relationship and fitted with high

correlation coefficients as seen in Table 6.1. A linear approximation can be made for the

nickel (II) concentrations below 30 mg/L solution. The ratio between equilibrium

concentrations in the biomass and liquid bulk increased with an increase in pH,

particularly at pH 5.0, which is consistent with the trend shown in Figure 6.2.



Figure 6.8 Biosorption isotherms for nickel(II)/ baker’s yeast system at different pH values (biomass concentration= 1 g/L;  temperature
     25oC  ; agitation rate = 150 rev min-1) Lines corresponds to the Langmuir isotherms using values reported in Table 6.1.
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Table 6.1 shows the biosorption parameters qmax and b as a function of pH for

the nickel(II) / baker�s yeast adsorption system. As can be seen from Table 6.1, as pH

increases both the qmax and b values increase. These parameters are strongly affected by

pH. This increase can also be seen from Figures 6.9 and 6.10.

Figure 6.8 shows the change of the highest possible sorbate uptake qmax for

different pH values and Figure 6.10 shows the change of the b values for different pH

values. As shown by Table 6.1, the highest coefficient b value was obtained at pH 5.00

as 0.0069 L/mg  which is related to the affinity between the biosorbent and sorbate. A

large value of b  shows the strong bonding. The highest possible sorbate uptake, qmax

were determined as 7.80, 14.00 and 14.30 mg/L at pH 3.00, 4.00 and 5.00, respectively.

On the other hand, qeq   values were determined as 2.55, 6.11 and 7.82 mg Ni(II)/g

biomass at pH 3.0, 4.0 and 5.0, respectively, was smaller than qmax. That might indicate

that the biosorption of nickel ions on S. cerevisiae could be expressed by monolayer

type of adsorption in which the surface of the yeast was not fully covered by nickel

ions.

6.2.2 Biosorption Isotherms for Nickel(II) / Baker’s Yeast System at

Different Temperature Values

The experimental values of biosorption equilibrium and the calculated Langmuir

adsorption isotherms for the adsorption of nickel ions were given in Figure 6.11. The

Langmuir model parameters were given in Table 6.3 which were estimated from the

linearized Langmuir isotherm curves at different temperature values were given in

Figures C.1-14 (see App.B).

As shown in Figure 6.11, the experimental adsorption equilibrium data for

nickel(II) ions were well fitted to the Langmuir model for different temperature values.

The highest coefficient b and  qmax  values were obtained at 25o C. The large value of b

constant as 0.0069 L/mg shows the strong bonding.  The  qeq value at optimum pH and

temperature was determined as 7.82 mg Ni(II)/g biomass which was smaller than qmax

(14.30 mg/g ). This might also be an indication for the monolayer type adsorption of

nickel ions on S. cerevisiae.
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Figure 6.9 The Langmuir parameters of qmax at different pH values

Figure 6.10 The Langmuir parameters of b at different pH values

0

2

4

6

8

10

12

14

16

2 3 4 5 6

pH

q m
ax

 (m
g/

g)
 

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

2 3 4 5 6
pH

b 
(L

/m
g)



Figure 6.11 Biosorption isotherms at different temperatures (biomass concentration 1.0 g/L; pH: 5.00  ; agitation rate : 150 rev min-1) Lines
       correspond to the Langmuir isotherms using values reported in Table 6.3
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The experimental equilibrium data of nickel(II) biosorption on S.cerevisiae for

different metal concentrations and temperatures were given in Table 6.4A (see App.A).

Figure 6.12 and 6.13 show the change of the Langmuir parameters by varying the

temperature of the nickel(II) biosorption on waste yeast.

Table 6.3 The adsorption constants obtained from the Langmuir adsorption isotherms
    for nickel (II) ions at different temperatures

   Temperature                   qmax                            b                          R2

        (Co)                          (mg/g )                 (L/mg)                    (regression coefficient)

        15                             3.907                      0.0014                 0.957

        25                           14.30                        0.0069                 0.990

        35                             7.70                        0.0032                 0.987

        45                             8.23                        0.0026                 0.989

Table 6.4 The adsorption constants obtained from the Freundlich adsorption isotherms
    for nickel (II) ions at different temperatures

   Temperature                   K                            1/n                          R2

        (Co)                                                                                     (regression coefficient)

        15                             0.043                      0.470                 0.937

        25                             0.069                      0.634                 0.935

        35                             0.002                      0.715                 0.931

        45                             0.001                      0.748                 0.947
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Figure 6.12 The Langmuir parameters of qmax at different temperatures

Figure 6.13 The Langmuir parameters of b at different temperatures
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6.3 Determination of Biosorption Enthalpy Change of Ni(II) Ions

The thermal properties of the biosorption system are not well known. However,

the overall enthalpy of the interactions between the cell wall and the heavy metal ions is

temperature dependent in the biosorption process. The temperature changes can affect

the number of factors which are important in heavy metal ion biosorption. The change

of the temperature can affect the microorganism cell wall configuration and the

ionization of chemicals on the cell wall. Although, it is known that the magnitude of the

heat effect for the biosorption process is the most important criterion to develop the

thermodynamic and kinetic relationship between the metal � microorganism interaction

process (10,22,25).

Adsorption process, especially physical adsorption, is generally assumed to be

an exothermic process. The adsorption of metal ions increases with increasing

temperature which is explained on the basis of thermodynamic parameters. The

enthalpy change for the biosorption of nickel ions on S. cerevisiae was calculated using

the Langmuir constant b that related to the energy of adsorption. According to the

Arrhenius equation, the b has the form:

b = bo e (-∆H/ R T)

The enthalpy change was obtained by calculating the slope of a plot of ln b

versus 1/T (8,11). The negative values of slope or the positive values of enthalpy

change show the adsorption to be endothermic. On the other hand, the positive values of

slope or the negative values of enthalpy change show the adsorption to be exothermic.

The change of the Langmuir constant b with temperature for the biosorption of nickel

ions on S. cerevisiae at optimum pH and biomass concentration were represented by

Figure 6.14. The value of the enthalpy change for the biosorption of nickel ions by S.

cerevisiae and the regression coefficients (R2) were given in Table 6.5.
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Figure 6.14 The change of the Langmuir constant b with temperature for the
biosorption of Ni(II) on S.cerevisiae (pH=5.0; biomass
concentration =1.0 g/L  ; agitation rate = 150 rev min-1)

Table 6.5 The value of enthalpy change for the biosorption of nickel ions by
    S.cerevisiae.

                                                            ∆H                                   R2

                                                     (kJ/mol)                           (regression coefficient)

    S. cerevisiae- Ni(II)                    -17.10                                0.9554

The adsorbed Ni(II) ions quantities at equilibrium decreased with increasing

temperatures in the range of 25 � 45o C as can be seen in Figure 6.6. The positive values

of slope or the negative values of enthalpy change were obtained from the curve seen in

Figure 6.14. The biosorption of  nickel (II) ions on S.cerevisiae was determined to be

exothermic as seen in Table 6.4. It is known that the heat of physical adsorption is

typically between of 2.1 and 20.9 kJ/mol (22). Physical adsorption phenomenon is

associated with the presence of weak Van der Waal�s forces. Equilibrium between the

cell surface and the metal ions is usually rapidly attained and easily reversible, because

the energy requirements are small (8). Volesky hypothesized that uranium, cadmium,

zinc and cobalt biosorption by dead biomass of algae, fungi and yeasts takes place

through electrostatic interactions between ions in solution and cell wall (10,35). The
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same result was found for marine algae was studied by Schiemer and Wrong who

suggested that nickel ions were bound predominantly by electrostatic attraction (23).

Moreover, the bound energies of various mechanism for adsorption may be

approximately ranked from strongest to weakest. Covalent or electrostatic chemical

bonding is higher than 41.80 kJ/mol, dispersion interactions and hydrogen bonding vary

between 8.36 and 41.80 kJ/mol and dipole-dipole interactions are small than 8.36

kJ/mol. Although, the heats of chemisorption generally change from 80 to 200 kJ/mol

(8,11).

In this study, the heat of biosorption was compared with the heats of physical

and chemical adsorption. The value that is of the same order of magnitude for physical

adsorption was observed. The heats of biosorption (∆H) of chromium (VI) and lead (II)

ions by Z. Ramigera and nickel (II) ions by R. arrhizus  were found by Sağ and Kutsal

as 16.0 kJ/mol, 18.9 kJ/mol and �21.4 kJ/mol, respectively. They assumed that these

values being of the same order of magnitude as the heat of physical adsorption.

Although, the heat of nickel biosorption by R. arrhizus was found to be negative, it was

indicated that the adsorption was an exothermic process. Increase in adsorption of

nickel (II) ions with a rise temperature have been explained on this basis by Sağ and

Kutsal (22). From Table 6.5, the heat of nickel biosorption on S.cerevisiae was

determined as �17.10 kJ/mol which is close to the heat of nickel biosorption on

R.arrhizus found by Sağ and Kutsal (22). However, it was considered that the proposed

mechanisms for the heavy metals uptake process were mainly both microrganism and

metal dependent because of specific surface properties of the microorganisms, cell

physiology and different solution chemistry of metal ions. The complexity of the

microorganism�s surface structure implies that there may be many ways for the metal to

be captured by the cell wall. Therefore, biosorption mechanisms are still not very well

understood (22).

6.4 Kinetics of Nickel (II) Biosorption

In this study, experimental kinetic data were obtained using waste S.cerevisiae

for nickel(II) biosorption over a range of operating pH values. These results were

obtained from batch experiments in well-stirred vessels and shown in Figure 6.15. As

can be seen, the initial rate of adsorption was very fast, and this was followed by a much

slower phase for four different pH values. There seems to be an initial period to be less
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than a few minutes of rapid adsorption responsible for about 60 % of total final

adsorption at pH 5.0. After this rapid initial uptake further biosorption by waste yeast

occured slowly and reached an equilibrium after 2 hours. No obvious increase in Ni(II)

uptake was observed thereafter upto 24 hours.

This result suggested that the slow and metabolism-dependent uptake of metal

ions into intracellular organelles was not important in this study. The maximum uptake

of Ni(II) ions  was obtained 6.30 mg Ni (II) g-1 dry biomass at 100 mg/L initial metal

concentration, at pH 5.0 and 25 oC. S. cerevisiae took up  3.95 mg Ni(II) g-1 dry biomass

after 1-min biosorption, nearly 60% of the total amount of Ni (II) accumulated

throughout the whole 24-h treatment process. The residual Ni(II) concentration dropped

rapidly in the first few minutes, decreased gradually in the first hour and no further

decline was found after one hour of biosorption for the other pH values of 3.0, 4.0 and

5.0. The decline in Ni concentration remaining in the solution corresponded to the

increase in cellular nickel concentration (Figure 6.15). The uptake values of nickel by

the cells were 1.21, 1.26, 3.95 and 6.78 mg Ni(II)/ g biomass at the first minute of

biosorption at the pH values of 3.0, 4.0, 5.0 and 6.0, respectively. After 24 hours the

uptake of nickel increased and 1.40, 3.66, 6.3 and 10.3 mg Ni(II)/ g biomass values

were obtained for pH 3.0, 4.0, 5.0 and 6.0, respectively.

 As  it is clear from these values, the maximum uptake was observed at pH 6.0.

However, as it was discussed in Section 6.1.2, the precipitation could be occured and

that the value could not be attributed to the adsorption experiments. Therefore, pH 5.0

was selected as the optimum value. Because of the same reason, the rate calculations

were only done for the pH values of 3.0, 4.0 and 5.0.

This initial rapid mechanism that is known as passive uptake. It is considered as

reversible accumulation step and is also called biosorption. Biosorption  can be

considered as a collective term for a physical and chemical adsorption, ion exchange,

coordination, complexation, chelation and microprecipitation (1,27,42,45,49). The

functional groups such as phosphate, carboxyl, amine and sulphoxide groups can form

complexes with the metal ions. Chitin and chitosan present in fungal cells can also

sequester metal ions (33,34,36). For example, Brady and Stoll suggested that the yeast

cell wall components bind heavy metals in the order of protein> mannose > chitin>

glucan. On the other hand, most of the metal uptake was due to ion-exchange (33).



Figure 6.15 The adsorption curve for the biosorption of Ni (II) ions on S. cerevisiae at different pH values ( Ci = 100 mg/L; temperature=
        25oC; biomass concentration= 1.0 g litre-1; agitation rate = 150 rev min-1)
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The displacement of calcium, magnesium, potassium and hydrogen ions by biosorption

of metals on S.cerevisiae have been documented ( 1,10,34-36,39-42,48).

Nickel uptake by different microorganisms have been reported such as nickel

uptake by Streptomyces noursei  and by C. vulgaris have been observed as 0.8 mg

Ni(II) g-1 dry biomass and 1.28 mg Ni(II) g-1 dry biomass , respectively (19, 43).

Maximum nickel uptake by Aspergillus niger has been found only 1.75 mg Ni(II) g-1

dry biomass and these values are smaller than that of the results of this study. However,

nickel removal by immobilized biofilm of Citrobacter , by Rhizopus arrhizus and by

biowaste of fruit juice industry were obtained as 8.8 mg Ni(II)/ g dry biomass, 10.32 mg

Ni(II)/ g dry biomass and 13.0 mg Ni(II)/ g dry biomass , respectively

(21,22,25,26,27,38).

In this study the kinetic results were given as the initial adsorption rates, r

(mg/g-min.). The initial biosorption rate was obtained by calculating the slope of a plot

of the adsorbed metal ion quantity q per gram of dry biomass (mg/ g) versus time (min)

at  t = 0 (Figure 6.15). Figure 6.16 shows the initial biosorption rates of Ni(II) ions by

S.cerevisiae for different pH values. As shown in this figure, biosorption rates were

increasing with increasing pH. The initial rates of biosorption were found to be 0.65,

1.26 and 3.65 mg Ni(II) / g-min for pH values of 3.0, 4.0 and 5.0, respectively. The

highest rate of biosorption of nickel (II) by waste yeast was obtained at pH 5.0 (Fig.

6.16).

Figure 6.16 The effect of pH on initial adsorption rates. ( Ci = 100 mg/L;
temperature = 25oC; biomass concentration = 1.0 g litre-1 ; agitation
rate = 150 rev min-1)
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Chapter VII

CONCLUSIONS AND RECOMMENDATIONS

In this study, the adsorption of nickel (II) ions using the waste baker’s yeast was

investigated in a batch system. The baker’s yeast, a mass of viable yeast cells of the

Saccharomyces cerevisiae genus, was obtained from the Pakmaya (Baker’s Yeast

Industry) as a waste biomass.

Biomass was pretreated with sodium hydroxide, formaldehyde, nitric acid and

ethanol and biosorption capacities of pretreated cells were compared with live cells.

Results indicated that pretreatment of Saccharomyces cerevisiae reduced biosorption of

nickel as compared to live cells. The better nickel removals by live biomass could be

due to the presence of chelating ligands that may be damaged by the chemicals during

pretreatment or by microorganisms taking up nickel intracellulary. It is advantageous to

use live biomass instead of pretreated biomass by expensive chemical substances.

Therefore, all biosorption studies were conducted by using the live cells.

Nickel biosorption resulted in an increase of pH. The nickel ion uptakes by

waste baker’s yeast were obtained to be 1.39, 3.66, 6.3 and 10.3 mg Ni(II)/g biomass for

the pH values of 3.0, 4.0, 5.0 and 6.0, respectively. At above pH values above 5.0,

nickel ions precipitated because of high OH- ions. On the other hand, protonation of the

cell wall component of yeast adversely affected the biosorption capacity at low pH

values.

The optimum biomass concentration was observed as 1.0 g/L. Above this value

the amount of adsorbed nickel(II) ions on the yeast cell decreased because high biomass

concentrations led to interference between binding sites of the cell wall. On the other

hand, at low biomass concentration the biosorption decreased since the required surface

area for metal binding decreased. The biosorption experiment of nickel (II) ions was

repeated with different initial metal concentration, from 50 mg/L to 250 mg/L. It was

observed that biosorption increased with increasing metal concentration upto 150 mg/L.

At higher concentrations, the adsorption did not change. Biosorption reached an

equilibrium state at 150 mg/L and this type of reaction was termed as saturation type

reaction.
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Another parameter affected the biosorption of nickel(II) ions was the

temperature. Maximum biosorption of nickel(II) ions by waste yeast was obtained at

25oC. The adsorptive capacity of the microorganisms for nickel(II) ions decreased with

increasing temperatures between 25 and 45o C. It has been reported that at low

temperatures, the binding of heavy metal ions to the microorganisms occurred by a

physical adsorption process. The metal ions were usually rapidly bound and easily

reversible because of small energy requirement. As a result, the optimum  values of pH,

temperature, yeast concentration and initial metal concentration for nickel biosorption

by waste yeast was observed as 5.0, 25oC, 1.00 g/L and 150 mg/L,respectively. At this

optimum conditions the maximum amount of adsorbed metal ions on waste yeast was

determined as 7.82 mg Ni(II)/ g biomass.

The applicability of the Langmuir model for metal-microorganism system was

tested at different temperature and at different pH values. The biosorption of nickel(II)

ions by waste baker’s yeast did not fit the Freundlich adsorption isotherms. The

Langmuir constants b and qmax were found to be maximum under the optimum

conditions. The qmax and b values for nickel (II) ions were determined as

14.30mgNi(II)/gbiomass and 0.0069 L/mg, respectively. The result showed that qeq

(7.82 mgNi(II)/g biomass) was smaller than qmax which can be explained that the

adsorpion of nickel ions on S. cerevisiae may be a monolayer type adsorption and the

surface of the yeast is not fully covered. The highest b values that is according to the

affinity between the binding sites was observed at optimum biosorption condition.

Although the enthalpy change for the biosorption process was evaluated by using the

Langmuir constant b, related to the energy of adsorption. Nickel(II) biosorption was

determined to be an exothermic process since decreased binding occurs as the

temperature is increased in the range of 25–45oC.

Biosorption kinetics influenced from the pH changes in the solution. The fastest

rate was obtained at pH 5.0 with the overall uptake value of 6.3 mg Ni(II)/ g biomass

after 24 hours. The equilibrium was reached within 2 hours, very rapid adsorption was

observed during the early stages of time course. The initial rates of nickel biosorption

were 0.65, 1.21 and 3.65 mg Ni(II)/ g-min for pH values of 3.0, 4.0 and 5.0,

respectively.

The results obtained in this study indicated that electrostatic interactions are

important in metal biosorption processes. Biomass particles may have an overall

negative charge the magnitude of which increases with increasing pH as more sites are
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deprotonated. The cell wall of Saccharomyces cerevisiae contains polysaccharides,

proteins and lipids. The outer layer of the cell wall of S. cerevisiae consists of a coat of

protein. Thus, the variations of surface charge on the cell wall with pH would be

somewhat similar to that of protein. A charge develops on a protein molecule by the

dissociation of ionizable side groups of the constituent amino acids (33).

Moreover, the biosorption of nickel on yeast cells was occured as monolayer

adsorption since the equilibrium isotherms can be described by the Langmuir model.

The biosorption kinetics were very fast which may indicate a rapid binding to

negatively charged groups on the cell surface. It can be concluded that nickel(II) ions

binding on live cells of S. cerevisiae was a result of passive uptake and active transport

of metal ions inside the cells and metabolic uptake were negligible.

Since the studies in the literature focusing specifically on nickel removal is rare,

the results of this study may contribute to the following research on nickel biosorption

by S. cerevisiae. Due to the time limitations of the present work, some aspects could not

be studied. For future studies effect of ionic strength on the equilibrium isotherms,

immobilization of yeast cells on a suitable support material and nickel removal from the

electroplating wastewater could be worth to investigate.
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APPENDIX A

ICP – AES Axial Liberty Performance Data

The performance data of ICP – AES were given in Table A.1. The calibration

was done using 2, 5, 10 and 20 ppm Ni standard solutions. The correlation coefficient of

the calibration curve, illustrated in Figure A.1, was 1.000

Table A.1 ICP – AES performance data

 Calibration response curve                                   y = 534.5x  (r=1.000)

 Limit of detection (3x)                                    0.023 ppm (1 ppm Ni)

      0.053 ppm (2 ppm Ni)

 Relative standard deviation (RSD %)       0.3 %   (5ppm Ni standard solution)

      0.15 % (10 ppm Ni standard solution)

The 3x detection limit of the system was 0.023 and 0.053 ppm for 1 and 2 ppm

Ni standard solution, respectively. As seen in Table A.1, the measurement of 5 ppm and

20 ppm Ni standard solutions have RSD % less than 1.

Different wavelenghts 221.647 nm, 231.604 nm, 232.003 nm, 341.476 nm and

352.452 nm were tested at the beginning of the experiments. The wavelength 231.604

nm is in agreement with the literature was used for Ni ions (Figure A.2).
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APPENDIX B

Amount of Adsorbed Ni(II) Ions

The amount of adsorbed metal ions (mg) per g biomass was calculated by using

the following equation:

q = ( Ci – Ceq )* V / m

Where q is the amount of metal ions adsorbed on the biomass. Ci and Ceq are the

initial and equilibrium metal concentration in the solution, m is the amount of biomass

and V is the volume of biosorption medium. The experimental and calculated data are

given in Tables B.1 – 2 – 3 – 4. At  pH 5.00 and 25o C, the amount of adsorbed nickel

ions is calculated below :

Ci  =  151.34 mg Ni(II) /L   ( see Table B.4)

Ceq=  140.12 mg Ni(II)/L    ( see Table B.4)

m   =  0.144 g

V    =  0.10 mL

q     =  ( 151.34 – 140.12 ) * 0.100 / 0.144

q     =  7.78 mg Ni(II) / g biomass

 Rate calculations

The initial biosorption rate is obtained by calculating the slope of a plot of the

adsorbed metal ion quantity q per gram of dried biomass (mg/g) versus time (min) at

t=0. For example the initial biosorption rate at pH 5.0 was found to be 3.65 from the

slope of the curve as seen in Figure B.1.
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Figure B.1 The adsorption curve for the biosorption of Ni(II) ions on
S.cerevisiae at pH 5.0. ( temperature = 25oC; biomass concentration =
1.0 g/L; agitation rate= 150 rev min-1)
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Table B.1 The experimental data of the equilibrium for nickel(II) biosorption on
S.cerevisae for different pH values. ( Ci=100 mg/L; biomass concentration=
1.0 g/L, temperature= 25oC, agitation rate =150 rev min-1)

                                                                         q (mg Ni(II) /g biomass)
         Time (min)
                                    pH:          3.00                   4.00               5.00                      6.00

                 1                                 1.21                   1.26               3.95                      6.78

                 2                                 1.30                   1.74               3.97                      7.14

                 3                                 1.38                   1.78               3.98                      7.20

                 4                                 1.33                   1.73               3.99                      7.40

                 5                                 1.34                   2.10               4.00                      7.10

                10                                1.29                   3.10               4.68                      7.90

                15                                1.37                   4.46               4.60                      8.55

                30                                1.36                   2.79               4.80                    10.13

                60                                1.10                   2.94               4.98                    10.18

                90                                1.25                   2.90               5.13                    10.20

              120                                1.33                   2.66               6.00                    10.21

              180                                1.31                   2.55               5.99                    11.40

              240                                1.39                   3.32               5.62                    11.10

              300                                1.38                   2.30               6.03                    11.00

              360                                1.37                   3.35               5.98                    11.11

              480                                1.39                   3.40               6.00                    10.75

              720                                1.39                   3.61               6.07                    10.24

              960                                1.40                   3.66               6.10                    10.23

            1200                                1.39                   3.63               6.20                    10.26

            1440                                1.40                   3.66               6.30                    10.30



77

Table B.2 The experimental data of  nickel(II) biosorption on S.cerevisae for different
 biomass concentrations and temperature. (pH=5.0; agitation rate=150 rev.min-1)

   Temperature               X                Ci              Ceq                   qeq
              (oC)               (g/L)         (mg/L)        (mg/L)         (mg Ni(II) /g biomass)

              15                  0.50         100.00           98.00              1.96

                                    1.00         102.97         100.96              2.00

                                    1.53         100.00           95.25              3.07

                                    2.00           98.50           93.50              2.48

                                    5.00           97.75           88.75              1.78

               25                 0.10         105.17         101.75              3.87

                                    0.54         101.28           98.79              4.58

                                    1.00         104.76           97.17              6.00

                                    1.54         100.78           94.40              4.12

                                    2.02         101.57           95.06              3.20

                                    3.03         101.17           92.91              2.72

                                    5.02         100.47           90.37              2.00

               35                 0.54           97.75           96.75              1.90

                                    1.00         103.60         101.21              1.98

                                    1.51         100.50           99.27              1.85

                                    2.98           97.50           96.61              1.77

                                    5.00           98.25           97.91              1.69

               45                 0.52           97.24           96.00              2.05

                                    1.00         102.75         100.83              1.85

                                    1.53           95.75           92.50              2.10

                                    2.00           94.00           90.51              1.74

                                    5.00           95.25           87.50              1.53
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Table B.3 The experimental data of  nickel(II) biosorption on S.cerevisae for different
metal concentrations and pH values. ( biomass concentration= 1.0 g/L,
temperature=25oC agitation rate= 150 rev min-1)

               pH                             Ci                    Ceq                   qeq
                                               (mg/L)           (mg/L)          (mg Ni(II) /g biomass)

              3.00                          60.10              59.22              0.72

                                             101.70            100.21              1.38

                                             151.21            148.51              2.50

                                             175.70            173.10              2.55

                                             249.87            247.10              2.57

               4.00                         52.30              49.67              2.51

                                               78.15              74.21              3.50

                                             103.13              97.67              5.07

                                             159.51            152.79              6.11

                                             255.00            249.50              6.18

               5.00                         51.03              45.69              3.37

                                             100.90              91.94              5.80

                                             151.34            140.12              7.78

                                             199.98            186.64              7.82

                                             253.60            241.24              8.00
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Table B.4 The experimental data of  nickel(II) biosorption on S.cerevisae for different
metal concentration and temperature. (biomass concentration=1.0 g/L,
pH=5.0 agitation rate =150 rev min-1)

         Temperature                    Ci                   Ceq                 qeq
              (oC)                         (mg/L)            (mg/L)          (mg Ni(II) /g biomass)

              15                             51.08              49.25              1.65

                                               99.75              97.75              2.00

                                             152.75            149.75              2.85

                                             203.50            199.75              3.07

               25                            51.03              45.69              3.37

                                             100.90              91.94              5.80

                                             151.34            140.12              7.78

                                             253.60            241.24              8.00

               35                            51.21              50.00              1.05

                                             103.60            101.21              1.98

                                             153.00            149.83              2.67

                                             205.00            201.25              2.70

               45                            51.75              50.83              0.95

                                             102.75            100.83              1.85

                                             155.00            149.50              2.34

                                             205.00            201.84              2.61
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APPENDIX C

Determination of the Langmuir model parameters

The Langmuir equation can be represented by the following equation:

q = qmax b C / ( 1+bC)

Where q is the amount of adsorbed per unit mass adsorbent,  qmax is the

maximum amount of adsorbed per unit mass adsorbent or the monolayer capacity, b is

an empirical constant that reflects the affinity between adsorbent and adsorbate and C is

the concentration of adsorbate in solution at equilibrium. The experimental data can be

plotted to estimate  qmax  and b with rearranging the Langmuir equation as:

1/q = 1/ qmax  + 1/(b qmaxC)

so that plot of 1/q  versus 1/C has slope 1/b qmax and intercept 1/ qmax. The linearized

Langmuir and Freundlich adsorption isotherms for nickel ions at different conditions are

given in Figures C.1–14. For example, at pH 5.0 and 25oC the Langmuir parameters b

and qmax  are obtained by using the Figure C.2. As seen in Figure C.2, the slope and

intercept are given below:

slope  =  1/ (b qmax ) = 10.128

intercept = 1/ qmax  = 0.0701

qmax = 14.265 mg Ni(II)/g biomass

b = 0.0069 L/mg
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Figure C.1 The linearized Langmuir adsorption isotherm obtained at pH=3.0
(Biomass concentration =1.0 g/L; temperature =25oC; agitation rate=
150 rev min-1)

Figure C.2 The linearized Langmuir adsorption isotherm obtained at pH=4.0
      (biomass concentration 1 g/L; temperature 25oC; agitation
       rate=150rev min-1)
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Figure C.3 The linearized Langmuir adsorption isotherm obtained at pH=5.0
 (biomass concentration=1 g/L; temperature=25oC  ; agitation rate =
  150 rev min-1)

Figure C.4 The linearized Langmuir adsorption isotherms obtained at 15oC
(pH=5.0; biomass concentration=1.0 g/L ; agitation rate = 150 rev
min1)
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Figure C.5 The linearized Langmuir adsorption isotherms obtained at 25oC
                 (pH=5.0; biomass concentration=1.0 g/L ; agitation rate=150 rev
                  min1)

Figure C.6 The linearized Langmuir adsorption isotherms obtained at 35oC
(pH=5.00 biomass concentration=1.0 g/L ; agitation rate = 150 rev
min-1)
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Figure C.7 The linearized Langmuir adsorption isotherms obtained at 45oC (pH
      5.00; biomass concentration 1 g/L ; agitation rate : 150 rev min-1)

Figure C.8 The linearized Freundlich adsorption isotherms obtained at 15oC
(pH=5.00; biomass concentration=1.00 g/L ; agitation rate=150 rev
min-1)
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Figure C.9 The linearized Freundlich adsorption isotherms obtained at 25oC
(pH=5.00; biomass concentration=1.0 g/L ; agitation rate=150 rev
min-1)

Figure C.10 The linearized Freundlich adsorption isotherms obtained at 35oC
(pH=5.00; biomass concentration=1.0 g/L ; agitation rate=150 rev
min-1)
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Figure C.11 The linearized Freundlich adsorption isotherms obtained at 45oC
(pH=5.00; biomass concentration=1.0 g/L ;agitation rate=150 rev
min-1)

Figure C.12 The linearized Freundlich adsorption isotherm obtained at pH=5.0
( biomass concentration=1 g/L;temperature=25oC;agitation rate=150
rev min-1)
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Figure C.13 The linearized Freundlich adsorption isotherm obtained at pH=4.0
(biomass concentration=1 g/L; temperature=25oC; agitation
rate=150 rev min-1)

Figure C.14 The linearized Freundlich adsorption isotherm obtained at pH=3.0
(biomass concentration=1 g/L; temperature=25oC; agitation
rate=150 rev min-1)
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