A Mathematical Modelling for Manpower Planning

By

Memet ULUDAG

A Dissertation Submitted to the
Graduate School in Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

Department: Computer Engineering
Major: Computer Software

izmir Institute of Technology
Izmir, Turkey

June, 2001

We approve the thesis of Memet ULUDAG

Assoc. Prof. Ahmet H. KOLTUKSUZ
Supervisor
Department of Computer Engineering

Prof. Dr. Sitki AYTAC

Department of Computer Engineering

/{/,_“

.....................................

Asst. Prof. Murat GUNAYDIN
Department of Architecture

B

%rof. Dr. Sitka AYTAC
Head of Department

Date of Signature

27.06.2001

27.06.2001

27.06.2001

27.06.2001

ACKNOWLEDGEMENT

I would like to express my many thanks to my advisor Assoc. Prof. Ahmet H.
Koltuksuz, Ph.D. for his support and encouragament, making it possible for me to write
this thesis.

I like thank to Helen Sherlock, who was helping me on accessing many resourses
and references in Dublin, much required by me during research and writing phases of this
thesis.

Many friends and family members, giving me support and patience. I like to thank
them for everything.

ABSTRACT

Information systems are one of the most important tools for organizations to
conduct business today. The dependency of organizational functions to information
systems makes them critical for the people using them. So becomes the impact of failure
or success of information systems more significant in organizations. The initial task for
information systems designers is to appreciate this real life situation and understand
various aspects of information systems and their evolution over the past decades.

Information system design is a detailed process which has to be planned and
implemented with great care not only for, but also with the business experts and users.
Designers and users should be aware of the problems, requirements within the
organizational context. In this thesis, we will describe and discuss various information
systems in organizations. Different information system types will be given.

Database management systems (or databases in organizations) are the essential
parts of information systems. A “good” information system is surely backed up with a
“good” database behind it. Designing a “good” database systems is the critical part of
the process. Following structural and well defined methods on database design is
something we need in today in organizations. We will present, further in this thesis,
various database management systems and database types. Relational model is the most
widely used database management system today. We will study various relational
database model concepts which will be a base for our management information system
database design. We will follow various design and refinement methodologies to end-up
with a well documented and refined relational database model. During our design we will
utilize a sophisticated database design tool. We will use the database design tool Sybase
PowerDesigner. Our design will be modeling a man-power planning database..

v

(074

Bilgi sistemleri, giiniimiiz organizasyonlarinda, en onemli is araglarindan biri
haline gelmistir. Organizasyonel fonksiyonlarin, bilgi sistemlerine olan bagimhliklari, bilgi
sistemlerini kullamicilar1 igin oldukga kritik hale getirmistir. Bu nedenle de, bilgi
sistemlerinin basaris1 veya basarisizifi, organizasyonlar i¢in daha da Gnemli hale
gelmistir. Tasarmmcilar i¢in ilk i5, bu gercek yasam senaryosunu algilamak ve bilgi
sistemlerinin degisik yonlerini, geligimleri ile birlikte kavramaktr.

Bilgi sistemi tasarimi oldukg¢a detayli ve cok dikkatli planlanmasi gereken bir
islemdir. Bu sadece kullanicilar1 diisiinerek degil, aym zamanda kullamicilarin da tasarim
¢abasina katimim saglayarak yapimalidir. Bu tez ¢aligmasinda, degisik bilgi sistemleri
yapilar1 tammlanmug ve detaylar1 verilmistir.

Veri tabam y6netim sistemleri, bilgi sistemlerinin vazgegilmez pargalaridir. Iyi bir
bilgi sistemi, mutlaka iyi bir veri tabani sistemiyle desteklenmelidir. Genel olarak, iyi bir
veri tabam tasarimi yapmak, isin en onemli kismudir. Giinlimiizde organizasyonlarda
ihtiya¢ duyulan, yapisal ve iyl tamimlanmug veri tabami tasarim metodlaridir. Tezin
ilerleyen kisminda, degisik veri tabam ve veri tabam yOnetim sistemleri verilmistir.
fliskisel (Relational) model, giiniimiizde en yaygin kullanilan ver: taban1 modelidir. Bu
modelin degisik kavramlari, bizce gerceklestirilecek tasarim galismasina temel olmasi
agisindan, bu galismada detaylandirilmigtir. Burada, tasarim ve gelistirme (refinement)
metodlarim izlenerek, iyi dokiimanlanmug ve gelistirilmig (aritilmus) iliskisel bir veri tabani
modeline ulagilmigtir. Bu tasarim siirecinde, gelismis bir veri tabani tasarim paketi Sybase
PowerDesigner kullamlmustir.Veri tabam tasarimimiz, insan giicli planlamasina yonelik
bir model ortaya ¢ikarmaktadir.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
CHAPTER 1. INTRODUCTION
1.1 Motivation
1.2 Scope
1.3 Organization
CHAPTER 2. INFORMATION SYSTEMS
2.1 Basic Concepts: Data and Information
2.2 Systems
2.3 Information Systems
2.4 Architecture and Components of Information Systems
2.5 Functions of Information Systems
2.6 Evolution of Information Systems Technology
2.7 Types of Information Systems
2.7.1 Transaction Processing Systems (TPS)
2.7.2 Office Automation Systems (OAS)

2.7.3 Knowledge (Engineering & Scientific) Work Systems
(KWS)

2.7.4 Management Information Systems (MIS)
2.7.5 Decision Support Systems (DSS)
2.7.6 Executive Information Systems (EIS)

2.8 Interrelationship between Information Systems Types

CHAPTER 3. DATABASES AND INFORMATION SYSTEMS IN
ORGANIZATIONS

3.1 Introduction To Database Systems

vi

Xi1

13

16

18

19

21

22

23

24

26

28

28

3.1.1 Definitions

3.2 Evolution of Database Systems : From File Organisations to
Databases

3.3 Components of Database Systems in Organisations.
3.4 Types of Databases and Database Management Systems
3.4.1 Hierarchical Databases
3.4.2 Network Databases
3.4.3 Object-Oriented Databases
3.4.3.1 Object-Relational Databases
3.4.3.2 Object-Oriented Databases
3.5 Relational Databases
3.5.1 History in Brief
3.5.2 Definitions
3.5.3 Constrains in Relational Model
3.5.3.1 Domain Constraints
3.5.3.2 Key Constraints
3.5.3.3 Foreign Key Constraints
3.5.3.4 User-defined Constraints
3.5.4 Relational Database Design Concepts
3.5.4.1 Schema Refinement and Decomposition
3.5.4.2 Functional Dependency
3.5.5 Normalization
3.5.5.1 First Normal Form
3.5.5.2 Second Normal Form
3.5.5.3 Third Normal Form
3.5.5.4 Boyce-Codd Normal Form

3.5.5.5 Forth Normal Form

vil

28

: |

34

38

38

40

43

46

48

49

49

50

55

56

¥

58

59

5

59

62

68

70

71

72

73

73

3.5.6 Structured Query Language (SQL) 76

CHAPTER 4. DATABASE DESIGN AND ENTITY-RELATIONSHIP o
MODELING

4.1 Database Development Process ¥ i

4.2 Entity-Relationship Model 80

4.2.1 Entity 80

4.2.2 Relationship 81

4.2.3 Weak Entity (or Weak Relation) 83

4.2 .4 Extended E/R Model 84

4.2.5 Various Design Consideration in E/R Model 86

4.2.6 E/R Diagram Symbols and Notations 87

CHAPTER 5. A MIS DATABASE MODEL FOR MAN-POWER PLANNING 89

5.1 Introduction 89
5.2 Assumption 90
5.3 E/R Model Design 91
5.3.1 Database Requirements Summary 91
5.3.2 Preliminary Entity Design 92
5.3.3 Detailed Entity Design 94
5.3.4 E/R Diagram 98
5.3.5 Relationships in the E/R Model 106
5.4 Database Schema Creation, E/R to Relational Conversion 120
5.4.1 Tables 120
5.4.2 Domains 145
5.4.3 Physical Database Schema 145
CHAPTER 6. CONCLUSION 148
SUMMARY 150

OZET 151

viil

IBLIOGRAPHY 152

LIST OF FIGURES

Figure 2.1 McDonough’ s Distinction between Data and Information.
Figure 2.2 Process from Data to Information.

Figure 2.3 General System Model.

Figure 2.4 Detailed Model of a System.

Figure 2.5 A General Organizational Information (Computer) Architecture.
Figure 2.6 A Higher Level (Functional) View of Information Systems.
Figure 2.7 Organizational Functions and Their Relationships

Figure 2.8 Architecture of Classical Transaction Processing Systems.
Figure 2.9 Internetworking Architecture of Transaction Processing Systems
Figure 2.10 Architecture of Office Automation Systems

Figure 2.11 Architecture of Management Information Systems

Figure 2.12 Architecture of Decision Support Systems.

Figure 2.13 Architecture of Executive Information Systems.

Figure 2.14 Interrelationship between Different Information System Types
Figure 3.1 Structure of a DBMS.

Figure 3.2 Relationships Between Entities in Data Processing in Organizations
Figure 3.3 Relationships in Database Systems.

Figure 3.4 A Hierarchical Database (Schema Tree).

Figure 3.5 An Example Hierarchical Database.

Figure 3.6. Bachman Diagram For Car-Hire Network Database.

Figure 3.7 Many-to-Many Mapping Between Record Types.

Figure 3.8 Record Type Definitions For Car-Hire Database.

Figure 3.9 Relationship Definitions For Car-Hire Database.

Figure 3.10 Difference Between Traditional and Object-Oriented Databases.
Figure 3.11 Relation.

Figure 3.12 EMPLOYEE Relation.

Figure 3.13 WORKING and EMPLOYEE Relations.

Figure 3.14 SALARY Relation.

Figure 3.15 DAYS-EMPLOYEE and SALARY Relations.

Figure 4.1 High-Level Phases of Database and Application Development.

Figure 4.2 An Entity Representation in E/R Model.

Figure 4.3 Entities and Relationships.

Figure 4.4 Recursive Relationships.

Figure 4.5 Weak Relationship.

Figure 4.6 Aggregation.

Figure 4.7 Generalization in E/R Model.

Figure 4.8 Symbols used in E/R Diagram.

Figure 5.1 Relationships Between Functions and Man-Power Planning.
Figure 5.2 E/R Diagram

Figure 5.3 Entity Relationship Representation in Conceptual Model
Figure 5.4 Conceptual Database Model Diagram

Figure 5.5 Physical Database Model Diagram

Figure 5.6 Interfaces To Other Business Systems and Areas

LIST OF TABLES

Table 3.2 Relations in Mathematics Versus Relations in the Relational Model.
Table 3.3 Practical Reasons for Supporting Domains.

Table 3.4 Developments in SQL Standards.

Table 5.1 Entity List

Table 5.2 Table List

Table 5.3 Domain List

IZMIR YUKSEK TEKNOLOJT ENSTITDST
REKTORLUGU

[Kutiphane ve Dokamantasyon Daire B}k]

Chapter 1

INTRODUCTION

1.1 Motivation

Computers, and computer based systems have evolved dramatically, since they
were first introduced in the 1940’s as the products of scientific research and
development in to date “high-tech” laboratories of Universities and research labs.
Popular availability of computing power lead to the evolutionary development of
information systems and databases used by the organizations. Not only the nature of the
organizations and business practices, but also the understanding of information systems
have somehow changed over the past decades.

Auvailability of more powerful and economically feasible computing technology
has brought new tools and utilities for, not only computer people, but also for business
experts. Thus, various information system architectures have been developed along with
the different database management systems. Computer usage - at least in the western
world - has become a part of daily businesses and personal lives of people in one way or
the other.

New roles within the organizations have been defined, creating more “gray”
than “black and white” job descriptions and expertise areas. Furthermore, the successful
utilization of computing power, specially information systems, have become strategic
aspects for the organizations.

Information systems are costly to purchase — or develop — deploy and maintain.'
Given the amount of expertise, time and effort put into information systems, the
expectancy of “success”, effectiveness and user satisfaction is at a very high level.
These factors in fact make the task of information system design a technical and social
combination of efforts. Technical because, building a technically strong infrastructure is
always a prerequisite for development. And social because, the existence of the
information systems in the organizations are pretty much alive and evolving in nature;
where anything from raw data to subjective viewpoints are thrown into a pot and melted
together to perform daily and decision making tasks in the organizations. User
orientation and awareness of business objectives on one side of the table, and
technological abilities / limitations on the other. From these are emerging the final
products : The information systems.

The study and implementation of information systems undoubtedly requires
strong theoretical knowledge and technical capabilities. But given the nature of them,
they also strongly require a practical understanding and experience gained over the
years and different exercises carried out in real life. We cannot deny the existence of pro
or contra technology feelings of business expert within the organizations. People in their

! Munshi J., A Framework for MIS Effectiveness, Working Paper, For presentation to the Acs
Business Administration, Athens, International Conference, July 1996, p.1

own experiences either made a great use of technology, or had struggled to perform
their very basic business operations by using “badly” designed and implemented
information systems. We believe the question of a “good” information system, at least
in the minds of business people and users, is a difficult question. But we also believe
that understanding the overall impacts of the information systems to people and to the
organization is a good starting point to find answers. And as we have mentioned before,
a strong technical ability and understanding is the main weapon that system analyst and
designers, technical architects and in general all developers need to have to tackle the
problems of information systems.

Databases, as a big entity within the information systems area, are occupying an
important role in the overall picture. Not only because they are the source of data, but
also because they are sophisticated platforms that require a specific understanding and
expertise. Their quality, effectiveness, design characteristics directly effect the overall
quality and characteristics of an information system using them. We cannot design and
implement an “good” information system without a “good” design and implementation
of its database background. One might argue that this rule is valid for any entity of
information systems, for example the user applications, but we strongly suspect that
databases do play a bigger role since they hold and control the important entity,
business data, after all. A badly designed front-end system may be replaced with better
versions but a badly designed and implemented database will take more effort and cost
to become a better one. What is more, sometimes it is not even possible to achieve this,
given the lessons we have learned from the old big legacy systems, which are to
important to throw away and to big and badly designed to make more effective and
useful.

This thesis was possible by experiencing the real life cases along with the
theoretical studies during the last years. The study has been a mixture of “real-life” and
academic research. This thesis is aimed to give an overall view of developments in the
information system area. Different architectures and types of information systems are
introduced before going into the details of database design and modeling. We aimed to
distinguish the different information system types from each other. Our categorization is
a more functional categorization. One can categorize information systems, based on
their architecture or criticality or scope. We have introduced some architectural
differences but it is not our study in this thesis to go into details of these.

1.2 Scope

We have seen a highly dense relationship between the information systems and
database systems, which lead us to study and present the various database systems, their
architectures and their history of evolvement in this thesis. The final outcome of this
study is a database modeling for man-power planning in a typical organization in
manufacturing business. Since this is not a full implementation of an information
system, we have excluded the system analysis phases.

Different types (i.e. manufacturing, financial) of organizations, where full
system developments have been experienced - from a programmers level to project
management level - provided the real life knowledge for the database development
work in this thesis. Real life experience on different platforms of computer systems and

development environments over the past years was the main motivation, along with the
theoretical study in the information systems and database area.

This work is mainly concerned with the utilization of formal database
development methods and a sophisticated database design and development tool to
implement a management information system database; a model for man-power
planning in an organization. We will usage E/R Diagram method to define the model
and use the conceptual and physical design methods for developing the actual database.

Before the actual development work, we have introduced various definitions and
concepts of information systems and database systems. This is done as an outline of a
generic picture of what happened and is happening in the information systems area and
database management systems in the organizations. We have worked on a relational
database model with the believe that the relational model is the most standardized and
widely utilized model in many organizations to date.

Many big database providers such as Oracle, Sybase have come up with
powerful and sophisticated database management systems over the last years for
relational database systems. The current trend in database management systems is
towards the object-relational and object-oriented databases. We did not include any
object-oriented design and development in our model. Object-relational model is an
extension to relational database management systems with added abstract data types,
nested tables, varying arrays and large objects. Even though some of these features are
used in our model, we still call it a relational-database since main model behind it is the
relational database model.

1.3 Organization
The rest of this thesis is organized as follows

e Chapter 2 describes various concepts of information systems, their evolution,
different information system types and their architectures.

o Chapter 3 describes various database system concepts, architectures,
organizational relations and different database types. The elaboration is on
the relational database systems as this is the model for our database
development. Relational model concepts, functional dependency,
normalization and schema refinement is given in this chapter.

e Chapter 4 describes the various concept on designing a database, E/R
modeling, conceptual design and physical design.

e Chapter 5 contains the actual work of the database development using the
modeling and design tool Power Designer.

e Chapter 6 is the concussion, wrapping up various discussions and future
research and development opportunities in the area we have worked in this
thesis.

Chapter 2

INFORMATION SYSTEMS

2.1 Basic Concepts: Data and Information

The new Oxford Dictionary of English defines data as “facts and statistics
collected together for reference and analysis™ with the sub sense “the quantities,
characters or symbols on which operations are performed by a computer, which may be
stored and transmitted in the form of electrical signals and recorded on magnetic,
optical, or mechanical recording media.”

Webster’s Dictionary defines data as “things known or assumed; facts or figures
from which conclusion can be inferred.”

For a complete definition of “data”, both definitions above could be combined.
As for computer people and the way their minds sometimes work, the sub sense given
above probably makes more sense.

A more dual and standard definition for data is given by the American National
Standards Institute (ANSI):

1. A representation of facts, concepts, or instructions in a formalized manner suitable
for communication, interpretation, or processing by humans or by automatic means.

2. Any representation such as characters or analog quantities to which meaning is or
might be assigned. Generally, we Ferfonn operations on data or data items to supply
some information about an entity.

Everyone, in computer terms or not, has data. Organizations, individuals, or
systems generate and use data in their activities to form different kind of knowledge or
information. The next step is to compare and distinguish data from information so that
we can clearly understand both of these concepts and their relationship.

According to the International Standards Organization (ISO) and ANSI,
information is the meaning that human assigns to data by means of the known
conventions used in their representation.’

There is now a rather widely accepted distinction between data and information.
The distinction in definitions for data and information also has a potential circularity
when considering data as the encoded representation of information and information as
derived from data and useful in solving problems.®

? The New Oxford Dictionary of English, Oxford University Press, Oxford, New York, 1998, page 468
3 Webster’s New World Dictionary, College Edition, Toronto, Canada, page 374, 1962
* American National Dictionary for Information Processing, Washington, DC : Computer and Business
Equipment Manufacturers Association (CBEMA), Report No. X3/Tr-1-77, 1977 September.
5 .
Ibid
¢ Everest Gordon C., Database Management Objectives, System Functions & Administration, McGraw-
Hill, p. 7, 1986

McDonough offered an early distinction between data and information. (See
Figure 2.1). He argued, that data becomes information when evaluated in a specific
situation or applied to solving a particular problem. That is, data becomes information
when used to make a decision. Since value derives solely from solving problems, it is
meaningful to speak only of the value of information and not of the value of data.
Information is formed in the human mind when data and a problem come together; the
supplier and the user of information must both contribute to making the product. The
supplier or supplying system cannot produce a complete product - information —
without the user who is faced with a problem.

Some consider McDonough’ s position extreme, yet his opinion led to a key
point: data requires interpretation to derive information, and the interpretation must
stem from a specific problem situation. Consequently, it is meaningless to speak of an
information processing system. No matter how much data is processed, it cannot be
turned into information until a person uses it to solve a problem.

DATA Human Mind PROBLEMS

Information
Formation

DECISION

ACTION

Figure 2.1 McDonough’ s Distinction between Data and Information.

The term data is used here to represent messages that can be available to the
individual but which have not as yet been evaluated for their worth to him in a specific
situation. All communications in a firm may be considered as some form of data
processing. Information is used here as the label for evaluated data in a specific
situation. When the individual singles out one of his problems and finds among his data
material that help him solve the problem, he is converting or isolating information from
data. Note that a given message may remain constant in content and yet under this
approach, change from data to information when it is put to use in making decision.’

Terence Hanold draws an interesting and clarifying distinction between data and
information: Information has to do with communication of knowledge inspired by
observation — with the interchange of thoughts and ideas proceeding from experience.
Information is different in kind from data. Information has the attribute of

" Ibid, p.10.

communication which data does not have. In context of business, data is merely the
digital shadow of haphazardly events indifferently recorded. Yet information begins
with data. Data is transformed into information through the infusion of purposeful
intelligence. Thus, information is data refined by intelligence so that it communicates
meaning or knowledge.®

We have tried to clarify the definitions of data and information in this section,
along with their interrelationships and logical dependencies. Different views for
defining data and information leads us to a common understanding: Data has to be
processed, filtered, reviewed, communicated, validated to produce information, which is
useful to decision makers. Figure 2.2 shows the high-level process from data to
information.

PROCESS
Data —P Fllterm.g —» Information
Calculation
7y Communication
validation l
‘ Decision Maker,
Problem Solver
Defining processes
New data (facts)

Figure 2.2 Process from Data to Information.

Information in general must have the following characteristics to be useful and
valuable:

1. Accuracy: The known rule: “garbage in garbage out”. No garbage data should be in
the loop of generating information. Data must be accurate.

2. Completeness: Even though some might rightly argue that information is never
complete and frozen, because of the continuing learning process, we still state the
completeness of information - at a given time within given boundaries - as a
requirement for its value.

3. Simplicity: Out of scope, too much information can distract the process of decision
making by hiding the actually required information.

4. Timeliness: Out of date information or invalidated information would lead to wrong
results and decisions.

5. Verifiability: Any information should be able to be traced back to the data behind
it, and the processes that generated it for proof and verification purposes.

6. Economical: No process and system has unlimited sources for generating
information. Therefore information must be economical to obtain.

¥ Terrance Hanold, An Executive View of MIS , Datamation (18:11), page 66, November-1972

2.2 Systems

As suggested by the name, information systems are specific types of systems.
We will start from the basic system concepts to be able to describe and understand the
nature of information systems.

We live in a world, full of systems, some of them physical and some others more
abstract. A system can be defined as a collection of interrelated parts which taken
together forms a whole such that, the collection has some purpose and a change in any
of the parts leads to or results from a change in some other parts.’

This is a very broad definition of a system. The importance here is that, the
elements or components of a system are interrelated. A single object or structure can not
be defined as a system unless the elements of it are fulfilling the requirement of
dynamic interrelation. Systems have inputs, processes, outputs, feedback and control
mechanism. Furthermore we can say that components in a system could be as well sub-
systems with their own inputs, processes and outputs. Most systems can be illustrated
by general model given in the Figure 2.3, which also shows the intermediate storage
entity of a systemm. In this figure, internal details on various elements are shown as
black boxes. These will be detailed and described in the following paragraphs, along
with the other definitions such as system boundaries, connections between sub-systems
and functional hierarchies within a system.

Another attribute of systems is their objectives, by which we understand the
reasons of their existence. Objectives of a system can be clear; “easy” to observe and
understand or they may be difficult and very complicated. The engine of a car as a
system has a simple, clear objective whereas, political systems or economic systems
have complex, multi objectives, difficult to define, understand and formulate.

Control

Process
Inputs Qutputs
I Y

Internal Storage

Figure 2.3 General System Model.

Inputs and outputs of a system depend on the nature of the system. These can be
physical or abstract structures. The petrol for the car engine is a physical input whereas

? Curtis Graham, Business Information Systems Analysis Design and Practice, Third Edition, Addison
Wesley Longman Ltd., p.13, 1998
"% Ibid, p.14.

the view of a politician is an abstract input to an economic system. Followings are
examples for system input and outputs:

Physical materials
Data / information
Money

Energy

Labor

Decision

Control mechanism in a system is the set of rules, conditions to ensure that the
system objectives are fulfilled. Changing system objectives, processes, inputs and
outputs would lead to changes in the control mechanisms. Control mechanism can be
viewed as internal input to the system process.

Internal storage is the temporarily or permanent structures within the system,
that the process needs to store, retrieve and update. A system would need to keep every
intermediate output until the final one is achieved. Storage is also an environment for
storing set of control rules and structures.

Figure 2.4 shows a more detailed model of a system where sub systems together
compose the main system.

Environment

[INPUT

System Boundary

Sub System 1
o - Control
Pl.2 v

Sub System 2

7

L
ﬁb

Storage [outPUT >

Figure 2.4 Detailed Model of a System.

Inputs come from, and outputs are transferred to, the environment of a system.
Any entity outside the boundaries of a system can be described as the environment. The
environment of a system is in interaction with it by giving inputs and receiving outputs.
System boundary is a separation between the environment and system scope.

2.3 Information Systems

Information systems are the subject of the rest of this chapter. We will be
describing various components, functionality and structures of information systems in

the following sections. We will also present various definitions and discuss these
definitions from different angels.

Information systems here will refer to computer based information systems,
other than manual systems. The system part of the information system represents a way
of seeing the set of interacting components, such as: people, objects, procedures and
functions."' People follow procedures and execute functions to develop or generate
information from the information systems as an output of data processing.

The term information systems has been defined as the effective design, delivery,
use and impact of information technology in organizations and society. 2

Buckingham et al. (1987b) defines information system as a system which
assembles, stores, processes and delivers information relevant to an organization (or to
society), in such a way that the information is accessible and useful to those who wish
to use it, including staff, managers, clients, citizens. An information system is a human
activity (social) system which may or may not involve the use of computer systems.

The definition of Buckingham emphasizes the “social” and “human” elements of
information systems. According to this definition, information systems are not
technology driven. What is more, the driving power behind the information systems are
social and organizational requirements. Technology is seen more as a tool utilized in
information systems.

We will review the evolution of the information systems from a technology and
functional point of view — which also represents the social and human elements. Even
though information systems are originating from the needs of various parties in
organizations and society, technology behind them has become a more and more
powerful resource, effecting the nature and utilization of the information systems. This,
in return, has given wider perspectives for information consumers. Information system
requirements and information scopes in organizations and societies are now far bigger
than what they would have been fifty years ago. On the other hand information systems
are not just technology and do not just mean automation.

Information systems study is at the center of many concepts mainly, people,
software, data, communication, hardware, organization and procedures which makes
information system development more than just an information technology (IT) task.
Information systems are a part of an organizational solution, based on information
technology, to a challenge posed by environment.

2.4 Architecture and Components of Information Systems

1 Avison D.E, and Fitzgerald, G., Information Systems Development : Methodologies, Techniques and
Tools, Second Edition, McGraw-Hill Companies, p.1,1995
2 bid, p.2.

Computer based information systems are composed of various components
interacting with each other to perform the desired goal. We will try to picture the
general architecture and components of information systems. We will be considering
the “modern” up to date architectures. This means that we will be taking samples from
the up to date technological platforms and architectures. We will be also using the
industrial experiences we have over the past years, where we have observed many types
of information systems infrastructures in different types of organisations. The
experience of real life information systems will be driving force for the discussions in
this section.

People; managers, information workers, customers, developers are the first and
main component of an information system. Information is only valid and valuable if it is
utilised by people. Information systems are for people. Another view is that, it is people
who design, implement and use information systems. It is nothing different than the
Neanderthal Man making hand-axes for survival. We would not like to reduce the scope
of information systems to a hand-axe development by saying this, but we would like to
emphasize the needs and tool building characteristics of human being. Today, we need
information systems, and so we build them.

Users, of an information systems can be in different levels. Data collectors,
business experts, office clerks, production engineers, junior and senior managers and
customers are examples of these users.

Another human group is the information system developers in organizations.
Operators, programmers, business experts, managers, information workers, system
analysts and database administrators are members of this group. No surprise that some
of these people exists in both groups as users and developers. This is because, some
people developing a system are also the very same people using the system. For
example business experts are in these category.

The second component of an information system is the computer technology and
various computer systems. Nowadays, computer systems in organizations are more like
a collection of various architectures. Distributed systems, centralized mainframes,
client server systems, various operating systems, database management systems and file
structures co-exist to build up the overall computer platform for information systems."?
Using local and wide area networks, these architectures can communicate, and various
application programs can share the organizational, and external data.

Database management systems are an essential part of information system
architecture. Everyone has data.'* Data is stored and controlled in databases. An
automated database is a mechanized, shared, formally defined and centrally controlled
collection of data used in an organization.'> We will explore the database concept in
much more detail in the following chapter.

Many organizations have information systems with in-house developed
applications and third-party packages. Third party packages more often are for a

8 Uludag Memet, 00 Yilina Hazirmisiniz?, TMMOB Elektrik Muhendisleri Odasi Izmir Subesi Bulteni,
Yil: 11, Sayi:110, Haziran 1999, p.20

" Looney Kevin, Koch George, Orace 8I: The Complete Reference, Osborne/McGraw-Hill, p.6, 2000.

¥ Everest Gordon C., Database Management Objectives, System Function & Administration,
international student edition, McGraw-Hill Book Company, p.11, 1986

10

specific process within the organization. These are developed and maintained by an
outside “expert” company. Payroll system, financial systems are a few of the examples
where such packages come into picture.

End-user computing systems (EUCS) are a relatively new approach in
information systems. In parallel to using in-house systems and packages, various
business departments take the approach of developing small mostly stand-alone systems
to assist on their daily activities. These systems are called the end-user computing
systems. End-user computing also refers to the ability of non-computer employees to
create their own systems.'® There are various views on EUCS systems and on their
advantages and disadvantages which we will be not discussing in this study.

Local area (or organization) computer network is the communicator for the
systems, It serves for all well known benefits described in network studies. As for our
purpose we know that developments in the communication technology made much
faster and reliable communication networks possible.

A general organizational information system computer architecture is shown in
Figure 2.5, It is clear that this representation is not always the case. By giving such a
view we are trying to add every possible component into the picture to have a possible
wider understanding and to see a bigger scope of information systems.

A higher level (functional) view of information systems is pictured by including
external (customers, suppliers, co-operating organizations) and internal functional
entities (departments, data flow, information flow, users). This is shown in Figure 2.6,
where the computer component detailed in Figure 2.5 is shown as a black box.

Various functions within an information system scope are processed by different
groups. Development, execution and maintenance of an information system are carried
out together by business experts, workers, analysts, and managers. Various business
areas will continuously feed in data and gather information from the information
system. In fact, data and information will be shared by these different groups. Each of
them will probably be more interested in a different format and content of information
generated from the same pool of data. Data will be administrated by the database
management (administration) entity; a collection of systems and people. External
components (environment) will have a bi-directional data and in fact information flow
to and from an organizations information system. Customers, co-operating
organizations, vendors, institutes are types of external components. In Figure 2.6, data
and information flow is shown with arrows. This is a general view of an organizational
information system. Again we need to highlight that not always each of these functional
relationships exist between various components. In reality, different kind of business
areas (manufacturing, finance, health etc.) will have different structures, dictated by the
nature of the organization.

i Department of Accounting and Business Law of the James J. Nance College of Business
Administration at Cleveland State University, URL: http://www.csuohio.edu/accounts/

11

Mainframe Systems

File
Structures

Work
Stations

<

End User Computing
Systems

Servers

Databases

Peripheral Devices
Printers

Image Processors
Audio/Video Devices

) =

Work

li stems

Stations

ILocal Network

Work
Stations

ﬁ Management

Database

Systems

Third-Party Packages

Server

Databases

< - > Intranet Servers

Figure 2.5 A General Organisational Information (Computer) Architecture.

CUSTOMERS

Data

SUPPLIERS

—)

()

Information

ORGANISATIONS

—

PmAm]ysts, ik
Business Bxperts | * Depa;tment
Design, l Z - e -
Execut i nformation
ecuie ' —
Computer Architectures, [@-— o
Programs,
Department
(Hardware & Software B
of Information System) f
A Information
i Data
R — e Dep | ent
— ' S —meeee C
Information

DBMS

Figure 2.6 A Higher Level (Functional) View of Information Systems.

2.5 Functions of Information Systems

Until now we have described information systems, defined their architectures
and components. During the previous sections we have also given indications on the
functions of information systems. In this section we like to summarise the overall
information systems functions. Regardless what the architecture, complexity or type of
an information systems is, the general function descriptions we will give in this section
are valid. Since we are not working on a specific information system, we will not give
any specific functionality of any specific organisational information system.

A high level list of functions of an information system are given below. These
are common, general functions valid for almost every information system.

o Input: Data collection, transaction processing.

» Storing: Storing business data. Involves database management.

¢ Processing: Converting data to information. Manipulation of data in many different
ways.

e Output: Producing different types of outputs (as information).

» Feedback: New data generation from produced information. Serving as a feedback.

The list of functions we have given above are defined in isolation from the
business functions of an organization. In fact, to be able to describe the functions of an
information systems, first we need to describe the business functions of an organization
it has born to. We need to understand the structure of the organization along with the
business processes and objectives. Another very important aspect is that we need to
understand the decision making methods. At the end of the day, we define information
systems as very sophisticated tools for supporting the business functions and workers on
daily activities, planning, reporting and decision making.

Every organization is unique. As complex systems, no two organizations can be
exactly the same. But we can still give a general description of common function in
organizations. The exact internal details of these functions (how they are executed,
managed etc.) can be different from one organization to the other. Below, we have
given the brief descriptions of these common functions in organizations:

o Purchasing: Regardless of their type, organizations need material or service from
environment. An organization cannot be fully isolated to operate without receiving
any service or material from outside. Therefore purchasing is a common function for
organizations.

e Sales: Organizations produce “something” to sell or provide. Whatever an
organization sells can be in fact the purchase of another. Service and products are
the sellable outputs of organizations. We should note that products are not always
finished goods, since they can be sometime raw material for another organization to
process it.

¢ Human Resources & Man-Power Planning: “Things” are done by people. Labor is
the greatest value. To do things, people need to be recruited, organized and planned.
This is a common function and requirement for every organization.

13

» Manufacturing: To sell or deliver “something”, it has to be produced. Sometimes
this can be a service development where not a physical product is produced.
Manufacturing is the function of the production in organization.

¢ Logistics: “How are products going to be delivered?” or “how will the raw material
be available for production?”, or “how will people be transferred from and to work
place 7”7 These are some of the questions and problems the logistics function is
dealing with.

e Accounting / Finance / Operations: This is a function sitting on top of the others. It
can be seen as a function for assessing how things are going in the organization. In a
sense, accounting and finance is the function that probes, measures and report on the
status of other functions.

We like to include information technology, training, engineering and planning to
the list of common functions in organizations at present.

All given functions above have their own objectives and tasks. What is more,
they have different priorities and problems. They may be independent within them
selves but in reality all of them actually depend and rely to each other to process. None
of these function can be isolated from the others to meet the objectives of the
organization. Different level of data and information flow exist between these functions.
They have interfaces between each other.

We have to now place information systems to the organizational picture drawn
above, and overlap the general information system functions with the business functions
so that they make sense. The purpose of information systems in organizations is to
integrate the activities of different departments (functions) into a single business system
that produces coordinated, integrated responses to its environment.'’

In Figure 2.7 we show the organizational functions and the relationship between
them. As we have mentioned before, every organizational function has its own local
objectives and structures. Therefore, up to a certain level they will utilize information
systems to support their own operational information needs. Furthermore, different
functions can have dedicated software packages (information sub-systems) for
themselves. But from a higher level view, the data these departments provide to the
information systems will in fact be shared and utilized by others which will build up the
organizational information. Considering the human resources department for example,
we could say that it would use a specific payroll system for its own operations. The
payroll system would not be a tool for other departments as such. But the data provided
by human resources department would be utilized by other departments and other sub
systems, which then will make this data an organizational level data.

Considering the structure given in Figure 2.7, it is not a real life exercise to have
just one information system component to equally support all functions in an
organization, Therefore we have given the information systems entity within each
function to show how in reality these are utilized.. This does not imply that these

" Kroenke David, Management Information Systems, McGraw-Hill Book Company, p.454,1989

14

information systems are in isolation or physically divided. In fact it shows the different
functional systems with local information structures and their communication. The total
of these information systems entities compose the organizational information system.

Purchasing

Informatio
System

Information
System

i

Accounting
Finance

Information Logistics

Manufacturing S
/ ystem

Information
System

\
Information
System

Human

“~.Resources

Information
Business Communication System
Process Links
LS
Data Flow

Figure 2.7 Organisational Functions and Their Relationships.

Because organizations are complex enough, information system for them need
to have certain characteristics. First of all, there should be agreed and documented
standards for usage, maintenance and scope. Workers, managers, everybody involved in
the process should know and use these standards. Standards must be useful and they
must be more people-oriented than technology oriented. Because it is people who will
apply them or not, it is important to have business people, users, involved in agreeing
on standards. Sometimes having standards and not applying them is worse than having
no standards at all.

15

Information systems change by time. Parallel to the organizational changes.
Some of them die, some of them get re-designed or some of them grow in scope and
developed further. Changes required for information systems should be controlled. As
we have mentioned above, in general, no information system in any function of the
business is just isolated and stand-alone. Therefore, the impacts of changes to one
system need to be analyzed and verified before any change is applied. Changes are a
fact of life. It is to the control mechanism how smooth these will occur or how painful.

Modern technology in information systems has introduced many benefits for
users and developers. It has also given new directions to information system
architectures. But there is another side to this fast advancing technology. In Figure 2.5,
we had given some of the technological architectures which can co-exist in an
organization. The base for co-existence is the technological compatibility of various
hardware and software systems. Especially in software industry, we see very rapid
changes and upgrades. It can be sometimes chaotic for organizations to keep the
existing compatible systems and at the same time upgrade versions, platforms and
operating systems. Because information systems are not just a few programs on a
personal computer, uncontrolled and unplanned changes, causing to interruption of the
business can not be acceptable and affordable. Changes on technology in information
systems should be coming mainly from the business requirements and organizational
needs. By this we do not ignore the fact that there are also technological reason and
opportunities why changes to the system should be applied. But this is should be a
secondary reason after the business needs.

In this section we have analyzed the functions of information systems at a high
level view. These have been mapped to the business functions of organizations. We
have not yet brake down the general information systems into various types. This will
be discussed in Section 2.7. For each type given, we will also briefly describe the
specific functions. This will enable us to understand how different types of information
systems fit together into organizational functions.

2.6 Evolution of Information Systems Technology

To understand the evolution of the information systems, we need to study the
developments in the computing area over the last decades. Despite emphasising the
human (information workers, managers, etc.) role in the overall information systems
architecture, developments in the hardware and software technology have made
important impacts on forming the modern system architectures. We would like to repeat
that information systems development is not just equal to automation but automation
plays an important role on the architecture, development and utilisation of information
systems.

The field of information systems has grown dramatically over the past three
decades. Recent trends have transformed the information system landscape. These
trends include the evolution of implementation technology from centralised mainframe
environments towards distributed client server architectures, embracing the internet and
intranets; changes in the user interface technology from character -based to graphical
user interfaces, multimedia, and the World Wide Web; changes in applications from
transaction processing systems towards system supporting collaborative work; and the

16

use of information technology as an enabler of business process reengineering and
redesign.'®

We have studied the evolution of computers and information systems by the
known method of “generations approach” because, computer hardware, and software,

can be considered to have evolved through a series of “generations”. '

First Generation, mid 1940°s — mid 1950’s:

The science of electronic allowed the fist electronic computers to be build in
1940s. This was centered around the electronic valve, a device of the size of domestic
light bulb. It consists of electrodes enclosed in a glass bulb, which is then evacuated.
The valve is responsible for regulating and amplifying flows of electricity. It is usually
agreed that the first general-purpose electronic computer was built in USA and was
called ENTAC.

In 1946, a group of scientists and engineers at the University of Pennsylvania's
Moore School of Electrical Engineering quietly inaugurated a revolutionary way of
managing information. They called it the ENIAC (Electronic Numerical Integrator and
Computer). It gave rise to the modern computer industry and would eventually
transform people's lives to a degree that even its inventors could not have imagined.*

First Generation computer were

e Vacuum tube based (short-lived, generated a lot of heat, bulky, slow)
¢ Huge machines in size

e Large amount of manual work involved in running programs

L]

Used for specialized numerically based applications (scientific, census,
engineering and military.)

Second Generation, mid 1950’s — mid 1960°s:

e The second generation computers were based on the new technology of
transistors.

e Magnetic core memory increased the size to multiples of Kbytes.

o These were still, larger machines, requiring dedicated human (operator)
activities to run.

¢ They used less power, produced less heat and therefore were more reliable.

e The timesharing mainframe machines were developed which would be for
lease more than for sell.

e Programs were written in specialized languages such as COBOL which
enabled the development of more complex business systems. Batch
processing was applied. Payroll systems, scientific computing systems were
developed.

o File systems were used for data storing and processing.

¥ Hirschheim Rudy, A Comparison of Five Alternative Approaches to Information Systems
Development, Australian Journal of Information Systems Volume 5, Number 1, 1997

® Hart Dennis & Toomey Warren, History of Computer and Information Systems, URL:
http://www.cs.adfa.edu.au/teaching/studinfo/csis/Lectures/topic3.html

® University of Pennsylvania School of Engineering & Applied Science, ttp://www.seas.upenn.edu:8080/
~museum/ overview.html

17

Third Generation, mid 1960°s — late 1970’s:

e Developments in LSI technology enabled the third generation computers.

e Third generation computers were smaller, cheaper and more powerful
computers than second generation.

e Availability of more sophisticated software (operating systems) made them
easier to use. Computers began to be interactive. Office computers emerged
running business applications.

e Networking technologies were used which increasing the shared utilization
of computing powers.

Fourth Generation, early 1980’s —now:

e VLSI technology is developed. Much more power, memory and disk
capacity is available in this generation of computers.

e Fast, powerful computers lead to development of more complex, business
oriented user-friendly information systems. More people have now access to
personal computers and workstations.

e Database systems (relational) have progressed dramatically supporting
development of information systems. Development tools and programming
environments are now suitable for complex business system
implementations.

e Multi-media systems are introduced. Distributed systems, client server
architectures are developed.

e Communication technology has made dramatic progress. Internet is being
used by millions of people.

e Computers became the essential daily tools in offices and personal activities.

As we see from the brief history, computer information systems evolved along
with the developments in the technology. Huge computers within the walls of
laboratories or military bases became powerful workstations available to offices and
information workers. Thus leading to the development of very complex but user
friendly information systems of any type.

The future of computing is being shaped in the present days. The impact and
opportunities Internet brought to our life is already there. Geographical boundaries on
communication and information sharing are disappearing whereas the privilege of
owning the technology and information becomes a more and more powerful force, may
be introducing new digital boundaries between nations and continents.

2.7 Types of Information Systems

Information systems can be categorized in various ways depending on what
would be used as a criteria on categorizing them. In the following sections we will be
giving a more functional and organizational category of information systems. Some
other perspective would be the “criticality”, “scope”, “infrastructure” (hardware /
software), “architecture” (centralized information systems, distributed systems
architecture, Internet technology based architectures, etc.).

18

We will be identifying various information system categories according to their
functionality within the organizations. The types of information systems described
below are Transaction Processing Systems, Office Automation Systems, Knowledge
Work System, Decision Support Systems, Management Information Systems and
Executive Information Systems.

2.7.1 Transaction Processing Systems (TPS)

Transaction processing systems can be viewed as the most data oriented and
least “intelligent” category of information systems. These are more for storing or
retrieving data rather than generating information. Transaction processing system
support day-to-day operations.”’

A reservation system, order placement system are examples of transaction
processing system. These system are often at or near the boundary of the organizations
and close to their environment such as customers, suppliers. Transaction processing
systems can be seen as the data source of an organizations, required to operate. These
systems are often the providers of data for other types of information systems.

Transactions processing systems are the oldest of all information systems types,
developed in 1950s in accounting department of major corporations.”” This does not
change the fact that we are still heavily using them in organizations and daily life.
Starting from early terminal based centralized mainframe architectures to internet
technologies and web pages, transaction processing systems are still well in service of
organizations and people. Many credit card transactions made on today’s Internet sites
are actually typical examples of transaction processing systems with running on highly
advanced technological platforms. Another specific area of transaction processing
systems is the so-called “hand-held devices” utilized mostly by mobile sales and order
processing workers.

Another characteristics of transaction processing systems is that these are
exposed to a more public usage unlike some other type of information systems which
are more management or business experts oriented, within the organization. Recalling
the example of web sites for credit card transactions, will give us an idea how many
different types of customers, with different approaches, understandings and needs will
actually utilize such a system. Despite of their limited functionality in comparison to
other information system types, transaction processing systems will surely have a wider
range of users. Therefore functions and routine processes within such a system should
be well defined and supported.

Figure 2.8 shows a typical architecture of a classical transaction processing
system. Figure 2.9 in contrast shows a more distributed and internetworking architecture
of transactions processing systems.

In Figure 2.8, in a classical centralized environment, transactions are generated
by a terminal given as the transaction medium and directed to the application(s) for

*! Kroenke David, Management Information Systems, McGraw-Hill Book Company, p.29,1989
] .
Ibid, p.29.

19

processing, storing data and generating straight forward reports. Data storage can be in
any form from file structures to databases.

/_\

TPS Data
Transaction Application(s) | | Storage
Medium

e TGRS

Reporting

Figure 2.8 Architecture of Classical Transaction Processing Systems.

In Figure 2.9, the concept of geographically distant transaction mediums is
introduced where, the TPS application is receiving transactions through the Internet
from various decentralized medium. Internal components are like in the classical
- architecture, the TPS application, reporting and data storage. Transaction medium are
external components of the overall system.

Transaction processing systems can be both, batch or on-line. Figure 2.9 is an
example for on-line systems. On line systems provide immediate results for a single
~ transaction at a time. In batch systems, transactions are collected, grouped together and
processed as a set. This is called batch processing.

Transaction Medium Internal Components

TPS

' —PApplication(s)

v

Reports R -
.-‘-‘-‘_—'f-—._

Figure 2.9 Internetworking Architecture of Transaction Processing Systems

TPS Data
Storage

20

-y

2.7.2 Office Automation Systems (OAS)

Another type of information systems is office automation systems, that create,
store, modify display and communicate business correspondence, whether in written,
verbal or video form.”> Typical examples for office automation systems are word
processors, spreadsheet tools, e-mail, voice mail, planning and presentation tools, video
conferencing facilities, and stand alone, relatively simple customized database systems.
Finally, the utilization of Intranet technologies has introduced new opportunities on
utilizing and sharing business data and information between employees over the web
pages.

Advances in computer hardware and software technology have a big impact on
office automation systems, changing the way how communication, documentation is
performed in today’s office environments. The computing power and technology
evolution from centralized mainframe and user terminals to powerful multi purpose
work stations have changed in many ways how the tools in offices are used.
Developments in communication technology and fast local area network architectures

enabled offices to move from initial standalone word processing environments to
networked, shared processing powers.

Utilization of office automation systems has lead to many different business
oriented systems like document archiving and imaging systems; on the job training
utilities, internal (organization) libraries, standards and procedures catalogues.
Furthermore, physically separate offices of an organizations can now share, access data
and information without the barriers of distances. The more workers became familiar

with the computing tools, the more customized information they could gather or
produce.

Developments described above have also lead to new concepts in the offices.
Sharable and easy to access data has lead to the emphasis of security and privacy issues.
Because of the wider range of access to the office automation system and therefore to
the information, the vulnerability of the data and information has become more and
more an issue. Protection for digitally accessible files, e-mails with confidential
information, databases with sensitive data has become more important than ever. What
18 more, the privacy of the employees, customers and other parties in an organization
has become critical. We believe in future these issues will be more under discussion.
We assume common sense ethical parameters are in place in every organization, but
how much more has to be done to ensure security, privacy of personal and business

information? This is not clear yet. Is it, for example, ethical, managers to monitor their

offices by utilizing video conferencing or close circuit camera systems which normally
should be great tools for overseas communications? Or should it be normal, monitoring

- workers desktops with some “office spy” tools?

Figure 2.10 shows typical architecture of automation systems with most

- common hardware and software components.

B Kroenke David, Management Information Systems, McGraw-Hill Book Company , p.55, 1989

J

21

Work
Stations Lt

C

Desktop Databases Desktop Program: Message (e-mail) Systems

Figure 2.10 Architecture of Office Automation Systems

2.7.3 Knowledge (Engineering & Scientific) Work Systems (KWS)

A very specific information system type is the knowledge work systems. These
are sophisticated special purpose engineering and scientific systems utilized by experts
in an area. Most typical example of such a system would be the computer aided design
(CAD) tools. Other examples are, special testing and analysis systems, simulation tools.
Unlike office automation systems, these are very much customized systems. Knowledge
work systems, are not general-purpose tools for many different types of usage. They
generally need very powerful computer hardware to run. Surrounding equipment for
such systems are generally special hardware unlike a shared printer in an office. One
commonality between office automation and knowledge work systems is that both are
- mostly third party products developed by expert companies and are not in-house built.

2.7.4 Management Information Systems (MIS)

Probably the most popular name in information systems area is the management
information systems or otherwise known the MIS. In this study, we are categorizing
information systems into various types according to their architectures and
- functionality. But some resources use the name management information systems to
cover all different types. In this approach, the name management information systems
replaces the general term information systems. Some other resources call it business
information systems. We will use the name management information systems and we
will distinguish MIS from other types. The database development model and case study
‘given in this study will based on a management information systems exercise.

Gordon Davis describes management systems as an integrated, user-machine

system form providing information to support operations, management analysis and
‘decision making functions in an organization. The system utilizes computer hardware

y5s

and software; manual procedures; models for analysis, planning, control, and decision
making; and a database.**

The description of Davis puts emphasis on three aspects of management
information systems: decision support and planning, operations management and day-
to-day activities, database component. Considering the decision support systems and
executive information system more for decision making and long term planning we
believe that the management information systems fall more into the area of operations
management. Their main objective is providing information, enabling short - middle
term planning for managers. Databases are essential components of computerized
management information systems. An effective MIS cannot be built without viable data
management tools. An important key to a successful MIS is the effective management
of an organization’s data resources.”

We will describe in the section 2.8 the interrelationship between various
information system types more in detail but as for now, generally, transaction
processing systems are the main data providers for management information system.
Transactional data provided by TPS are transformed to valuable planning and
monitoring information in MIS which then could as well serve as an input to more
higher level decision making support systems like decision support systems and
executive information systems.

A typical architecture for management information systems is given in Figure
2.11. The data flow from TPS to MIS is shown in the figure where TPS is an external
but important entity for MIS. Report represent any type of information obtained from
MIS. These can be text reports, graphical outputs, etc. Experts and users represent the
human component of the MIS architecture for whom the information systems are
developed for and who master the system. Database component of the MIS will be
discussed in detail in the following chapter. What is more database themselves are
complex enough systems. Database management systems composed from both, machine
and human components are developed to handle the data background aspects of
management information systems, and in fact every, information system.

Day-to-day reporting and information needs are handled by management
information systems. Short-term planning, historical analysis are possible with
management information systems because of the intensive data collection by transaction
processing systems at the background.

2.7.5 Decision Support Systems (DSS)

Organisations do not only need routine, day-to-day data collection and reporting

tools (TPS and MIS). They also require systems for helping decision making. Decision
~ support systems are interactive, computer based facilities for assisting people making
business decision. Decision making is not always a routine task. In fact it is more an ad
‘hoc rather than a standard process. The difference of DSS from TPS and MIS is that,

- % Gordan B. Davis and Margrethe H. Olson, Management Information Systems: Conceptual

- Foundations, Structures, and Development, second edition, McGraw-Hill Book Company, 1985

¥ Everest Gordon C., Database Management Objectives, System Function & Administration,
international student edition, McGraw-Hill Book Company, p.18, 1986

23

DSS do not always support an ongoing process. They support the even driven,
opportunity and problem related decision making.

I Data & Information

oy MIS
Systems ™~ Applications

Reports

Figure 2.11 Architecture of Management Information Systems.

Transactions and regular reports are mostly standard, so are the TPS and MIS.
But decision making is not. It is more flexible, variant and less structural. So are the
decision support systems.?®

Decision support systems are more sophisticated. They have more modeling and
analysis power than management information systems. TPS and MIS are the internal
data sources for DSS but external data sources are utilized as well. Decision support
systems have relatively smaller number of users. Strategic decision makers, long term
planners are the two groups of users in DSS area.

A general architecture for DSS is given in Figure 2.12. Here we have shown the
data flow from TPS and MIS to DSS. Office automation tools are mostly used in
decision support systems because they are flexible for ad hoc reporting, graphical
presentation, documentation. Here links to external data sources and DSS model data is
shown. DSS can store and use its own model data.

- 2.7.6 Executive Information Systems (EIS)

After seeing so many different types of information systems one may ask the
question: “Why was there a reason to developed executive information systems?” An
answer to this question comes from Watson & Rainer in Floyd Kelly’s paper:
“Information systems have long been used to gather and store data, to produce reports

- ®Kroenke David, Management Information Systems, McGraw-Hill Book Company, p.55, 1989

24

for workers, managers. However, senior managers rarely use these systems directly, and
often find the information to be of little use without the ability to explore underlying
details.””’

This may explain the need for executive information systems. Differing from
MIS and DSS, an executive information system is a tool that provides direct on-line
access to relevant information in a useful and navigable format. Relevant information is
timely, accurate and actionable information about aspects of a business that are of
particular interest to the senior manager. The useful and navigable format of the system
means that it is specifically, designed to be used by individuals with limited time,
limited keyboarding skills and little direct experience with computers. An EIS is easy to
navigate so that managers can identify broad strategic issues and then explore the
information to find the root causes of those issues.*®

For executives to see issues, executive information systems should consolidate,
summarize and present information at the very high level within the organizations.

Figure 2.13 shows a general architecture of executive information systems.
OAS, TPS, MIS and DSS are information systems providing data and model to
executive information systems. Like in decision support systems, executive information
system can build and store their own model data.

External
Systems &
Data
Information
Models Models
Reaues Resnonse
‘___.
DSS
TIPS S MIS
Data > Applications < Data

Plans &
Presentations

Figure 2.12 Architecture of Decision Support Systems.

7 Kelly Floyd, Implementing an EIS (Executive Information System), EIS References, (Watson &
gainer, 1991), URL: http://www.ceoreview.com/papers/eis.htm
-~ Ibid.

i

—_—

2.8 Interrelationship between Information Systems Types

The final section of this chapter is about the interrelationship between various
information system types we have seen so far. In DSS and EIS we have shown the links
to other types of information systems where data from other types were used by DSS

and EIS. To have a complete picture of information systems we have put them together
and shown their data flow relationship.

Executive

TPS MIS

Data - Data
m Request Information m

EIS <
»| Applications |«

Reports Graphs

OAS DSS

Data Plans & Data
Presentations

Figure 2.13 Architecture of Executive Information Systems.

Figure 2.14 shows the data dependency and flow between TPS, OAS, KWS,
MIS, DSS and EIS. This relationship does not always exist. What is more, not all
different types of information systems co-exist in every environment. But since we are
interested in the rather wider and full picture than to some specific cases, we have given
all possible links and co-existence. As we move from TPS to EIS, in the given sequence
above, outputs are more and more consolidated. The data background becomes more
complex and data comes from various sources.

As we have mentioned in the previous sections, information systems are also

communicating to third party packages and external systems. For the simplicity we have
not given these link in Figure 2.14.

We also think that KWS are different in nature from the other information
system types. Because they are more for engineering, design and scientific areas, the
usual data link between them and other types would not necessarily exist. We assume
there is actually a human entity between the KWS and other types. Furthermore we
assume that the flow of data from/to KWS and MIS or DSS is through the human entity
what we call as a more manual link

26

(" \ pars
et

P. Human Entity/ Manual Process

> EIS ¢
DATA DATA &
MODELS
DATA
DATA &
> MIS LEORMLTION » DSS
DATA & *
DA T"T INFORMATION, OAS
T DATA
TPS DATA
DATA
KWS

|ZMIR YUKSEK TEKNOLOJT ENSTITTS.
REKTORLUGU

| Kutiphane ve Dokimantosyon Daire Bgk.

Figure 2.14 Interrelationship between Different Information System Types

Sl

Chapter 3

DATABASES AND INFORMATION SYSTEMS IN
ORGANIZATIONS

3.1 Introduction To Database Systems

Organizations and people use data as a valuable resource for many kind of

business activities every day. Data is organized, stored, processed as part of these

~ activities. Information systems, are developed for processing data and generating

- valuable results for different levels within the organization. Database systems are

utilized to handle the data component in this overall picture of organizations and
information systems.

In this chapter we will study various database and database management concept
and discuss the organizational relationships between information systems and databases.

We will give definitions from various sources to understand the various components of
database systems.

3.1.1 Definitions

One of the major entities in the overall information systems architectures are the
database systems. Modern information systems are developed along with the
sophisticated databases architectures and database management systems (DBMS).
DBMS have evolved along with the developments in the computer technology, thus
- supporting the data requirements of organizations and information systems within the
organizations more efficiently. Today, more than at any previous time, the success of an
organization depends on its ability to acquire accurate and timely data about its

operations, to manage this data effectively, and use it to analyze and guide its
activities.”®

The major part of our work in this thesis well be a relational database
development process for a management information system model. And in this chapter
we will first discuss the databases and database management systems theory as a base to
- our practical work in the following chapters. Some different definitions of databases and
.~ database management systems are given below.

A database is a collection of data, typically describing the activities of one or
- more related organizations. For example, a university database might contain
“information about entities such as students, faculty, courses and classroom;
relationships between entities, such as students enrolments in courses, faculty teaching
courses and the use of classrooms for courses. A database management systems, or
DBMS, is a software designed to assist in maintaining and utilizing large collections of

Ramakrishnan Raghu, Gehrke Johannes, Database Management Systems, Second Edition, McGraw-
Hill Higher Education, p.3, 2000.

Database processing requires the database management system [DBMS] to
provide an interface between application programs and these on-line database tables
containing user-data. These DBMS are sold as packages developed by large
experienced software firms such as Oracle, IBM, Sybase, and Microsoft. They may be
classified as a Horizontal Application Software Packages, but some experts would
instead classify a DBMS as a systems utility program. A modern DBMS is a bit of both;
it provides general utility services and also assists in providing application support for
a wide variety of commercial purposes. i

A very good representation of DBMS internal structure is given by
Ramakrishnan and Gehrke. This representation is based on the relational model which
we will be using in this thesis for the database development. Figure 3.1 Shows the
structure of a relational DBMS. The given structure in the Figure 3.1 includes more
recent technologies such as WEB as well as the classical front-end and structured query

language (SQL) interfaces. These are in fact not a part of the DBMS internal structure
but we have included them for the completeness of the picture.

External entities shown as application front end, world-wide-web (WWW) front

- end are for business experts and users, who we can call as the non-technical users. SQL

tools and interfaces are for technical users such as system developers, database
administrators, system programmers.

SQL tools and front-ends pass SQL commands to the DBMS. DBMS produces
~ query execution plans, executes these plans against the database and returns the results.
~ When triggered, SQL queries are parsed and presented to the query optimiser. Query
optimiser uses the information how the data is stored and produces efficient execution

- plans. Execution plan is the key for evaluating a query and is generally represented as a
- tree of relational operators.

Disk space manager is responsible for keeping track of available disk space. The
~ code that implements the operators sits on top of the file and access methods layer. File
- and access methods layer includes software for supporting the files, which are collection
- of pages or collection of records. File manager issues requests to the disk space manager
to obtain and relinquish space on disk. The file and access methods layer requests and
frees disk space in units of a page. The size of these pages is a DBMS parameter. Buffer
“manager brings pages from the disk into the main memory.

DBMS supports concurrency control by using a transaction manager and lock
~manager. Transaction manager ensures that transactions request and release locks
aecordmg to a protocol. It also schedules the execution of transactions. Lock manager

organises and keeps tracks of lock requests and implements the locks in the database on
ﬂw objects. Recovery manager is responsible for maintaining a log and restoring the
system to a consistent state after a crash situation. For creating their operational logs,
disk space manager, buffer manager and files and access methods layer communicate
with the recovery manager and concurrency control.

We will not present any further detail on the internal architecture of DBMS. The

opics Reading on Database Management Systems by A.A. Verstraete, Revised: May 22,1998, URL:
hitp://misweb.smeal.psu.edu/database/

30

study in this thesis has the scope of information systems and databases.

T

WEB Front-Ends Application SQL Tools
Front End and
Interface
y SOL COMMANDS
D_B..M.§ Query Evaluation Engine
Plan Executor Parser
Operator Optimiser
Fvalnator
Concurrency l
Control (g—p{ Files and Access Methods |g-p
Transaction I
Manager Recove
> Buffer Manager <> 3 4
Manager
Lock l
Manager | lg—p Disk Space Manager 4P
//_ \
k _’//
Interaction DATABASE System
,,,,,,,,,,,,,,, . Catalogue
A, Index Files
References »| DataFiles
_ _//

Figure 3.1 Structure of a DBMS.

- 3.2 Evolution of Database Systems : From File Organisations to Databases

Databases were developed to solve the problems and limitations of file systems

~ which were painful platforms to do development, to maintain and use. Programmers and

users were limited with the file structures on developing business application and

information systems. Today, thanks to the modern database systems, organisations can

-~ develop and make use of highly sophisticated information systems supported by strong
DBMS.

31

Traditional file structures and application development environments forced the
development task to focus on applications and the processes, thus defining data within
individual programs which furthermore introduced many kinds of other problems. Each
time an application is be developed, the problem of data needed to be addressed and

solved all over again. Some of the common problems with using files can be
summarised in a few points given below :

Data integrity problems and redundancy.
Data inconsistency introduced by multiple copies of same data.

Inflexibility and limited sharing of data because of application dependency.
Poor development efficiency.

Maintenance difficulties and data dependency of programs.

We can in fact add more items to this above. To solve some of these problems
within the file structures, developers have tried to share data among the various
applications by applying some techniques. This was an approach to try to minimise the
redundancy problem, but in fact this required excessive physical data transfers between
applications and data storage. Considering the limited networking, storage capacity and

computation power in the days of file usage, the data transfer was not be always a
possibility and an efficient solution.

The earliest database systems research were based on the hierarchical method.
These were an extension of COBOL file systems. To provide more flexible access,
these systems were extended to network databases. Following this, the relational
- database approach emerged and became the dominant and most common type available.
- Recently object-oriented approach has been developed which is an extension of
~ relational model in some cases and a very much different architecture in others.** The
overall object-oriented approach is still evolving and is still far away from the point of
- replacing the database systems developed before it.

The early programming languages COBOL and FORTRAN became the
foundation of creating enterprise information systems. To operate, these systems, data
- was required to be stored somewhere. In 1964 General Electric developed the first
- commercial database management system called IDS — Integrated Data source. This
was based on the early network data model developed by C. W. Bachman. IBM and
North American Aviation (Rockwell International) developed MIS — Information

‘Management System and its Language DL/1 as the first commercial hierarchical
DBMS.

In 1970 Edgar F. Codd published an article which offered a fundamentally
different approach. Codd suggested that all data in a database could be represented as a
fabular structure (tables with columns and rows, which he called relations) and that
e relations could be accessed using a high-level non-procedural (or declarative)
age. Instead of writing algorithms to access data, this approach only needed a
icate that identified the desired records or combination of records. This would lead

* Post V. Gerald, Database Management Systems, Designing and Building Business Applications, Irwin
aw-Hill, p.15, 1999

32

to higher programmer productivity. And in the beginning of the 1980s several
Relational DBMS (RDBMS) products emerged (Oracle, Informix, Ingres and DB2).*

In the early-mid 1980s research started on another type of database. This
research was among other things, motivated by the need of a database system capable of
handling complex objects and structures like those used in CAD systems and CASE
systems®. To accomplish these objectives the database had to be able to store classes,
objects, objects associations and methods. Thus, the object-oriented DBMS (OODBMS)
emerged. In the late 1980s and 1990s several vendors have developed OODBMSs.

During the same period, the relational databases already had its standard - SQL-92,
defined by its ANSI committee and ISO. And so did the network database vendors as
well; CODASYL (Conference on Data Systems Languages defined in 1986 by the
ANSI X3H2 committee).

In Table 3.1 the historical developments and milestones in the database systems
are given. Nowadays, relational database systems are the most commonly used and very
much standardised systems in technological terms. Strong products are available in the
market. Parallel to this another developing area are the object-oriented databases. But
despite the research and new developments in the object-oriented databases, they lack of
widely established standards and foundations.

The database development work in this thesis is based on the relational model.

Today, the features and performance of the database systems are bigger then
ever. Increasing computing and communication power providing a platform for more
sophisticated database management systems and database development tools, thus
enabling business people and developers to concentrate more on the real life
requirements and solutions. Some of the main features and solutions database systems
provide can be listed as below, Database systems:

* reduce data redundancy:. data is more consistent since only one master version
exists for any given data entity.

» improve data integrity: data is more likely to be accurate and up-to-date, and
available when it is needed. Data quality standards can be enforced and security and
privacy of the data is more easily guarded.

o enable data independence: data and programs are not dependent to each other. Data
can therefore be reorganized without revising the programs (Provided that “good”

programming techniques are applied). Programs can be written or revised without
reorganizing the data.

All these features enable the development of more business-oriented systems.
- Changing roles in the development process create new interfaces between the business
- experts and developers. Database administration in the organisations is becoming a

* Codd E F., 1970, A Relational Model for Large Shared Databanks, Communications of the ACM,
Volume 13, Number 6, p.377-390, June 1970.
- % Zdonik S., What Makes Object-Oriented Database Management Systems Different, Advances in
~ Object-Oriented Database Systems, NATO ASI Series, Series F: Computer and System Science, Vol.
130, 3-26, Springer Verlag, Berlin Heidelberg New York, 1994

Table 3.1 Evolution of Database Systems

more and more required role, which not only demands just technical knowledge but also
a concentration on business functions of the organisations. We will discuss various
component of a database system in the organisation later in this chapter.

Database System / DBMS

Description

1961 : Integrated Data Source (IDS)

The first general purpose DBMS system.
Developed by Charles Bachman at General
Electric in early 1960s.

Formed the basis for Network data mode
(standardised by the Conference on Data
System Languages — CODASYL)

1968 : Information Management
System (IMS)

Developed by IBM in late 1960s.

This is still being used in some
organisations.

Based on the Hierarchical data model.

SABRE System

Developed for making airline reservation
by American Airline and IBM in late
1960s.

| 1970 : Edgar Codd — The Relational
- | Database Model and SQL.

In 1970, Codd in IBM’s San Jose Research
Centre proposed the relational data model.
This enabled rapid development of many
DBMS systems based on the relational
model.

In 1980’s the relational model became the
dominant and most commonly used.

SQL query language became the standard
as part of IBM’s System R Project. (1980)

[1980-1990: DB2, ORACLE,
| INFORMIX, SYBASE)

Research on powerful query language and
richer data models.

Specialised systems are developed.
Relational data model used in management
resource planning (MRP), enterprise
resource planning (ERP) systems

1990 — 2000 : Object Oriented
Databases, WWW architectures.

A new and still evolving method.

Less common, foundations still being
established.

Not standardised as relational model.

All database vendors are adding internet
features to their DBMS to make it suitable
for systems developed for internet.

.3 Components of Database Systems in Organisations.

Database systems in organisations consist of various components including both
human components and machine/software components. A database system, (in fact,
considering the in modern days we could say multiple database systems) are at the
centre of the data processing in organisations. Database systems surrounded by various
type of information systems, applications, tools, processes, people and the information
needs of real life environment, The scene described above is a very much alive and

ever-changing, evolving scene. Processes, business rules change and so do the Database
systems and data processing tool.

In Figure 3.2, a high level relationship diagram between different entities of data
processing in organisations is given.

l [Administrators]
Business Rules A
B and Processes

E [Management]
i A

Organisational

i Databases
Information
System
A
Information »
System ¢
Business A
Experts '

p[Developers]

Figure 3.2 Relationships Between Entities in Data Processing in Organisations

Business rules and procedures are the formal definitions of how the business is
conducted, how processes are executed. These rules and procedures are defined by
business experts and managed by the and managers. Business experts have a role in
nformation systems development as well, by providing business problems and
roposals for solutions during the analysis and development of information systems
yithin the organisation. The rules and processes also define the way databases are
rganised and data is maintained. Data is administrated by database administrators.
nformation systems, process the data and generate results for business problems. This
hole set of relationships within an organisation defines the overall data processing and
iformation management. Dotted lines represent the human processes interaction.

35

Figure 3.2 is just one way of putting various components and relationships
together. Some may argue that, the centre piece of all these are actually business rules
and processes which drive the rest. This would be an equally valid definition. But our
aim here is to present the relationships in an organisations from a database point of

view and we like to emphasise the importance of data and databases such that
everybody else needs and uses them.

Regardless of an organisations structure, whether matrix, or pyramidal, where
operational activities are at the bottom, management planning and control activities in
the middle, and strategic planning in top, corporate databases - including all databases
in an organisation - contain data, relating to the organisation; its operations, its plans,
and its environment. Various types of information systems are put in place to access,
process, and report data and generate information for the organisation and its functions.

Database Administrator (DBA):

As described earlier, database system have human and machine components. On

of the essential human components of a database systems is the database administrator

.~ (DBA). The DBA must be an analyst and designer and not just an implementation

Il technician. DBA must have the ability of problem solving and guidance to information
systems designer. The typical roles of a DBA can be listed as :

» Define, acquire and retire data according to the business needs.

s Provide tools for developers and users to access the database, generate results.

¢ Assist users and information system developers in planning and using data resources
and database management tools

* Maintain and manage day-to-day database functions such as backup, security,
integrity and standards.

~ » Monitor daily operations and take necessary actions for increasing efficiency,

security. Fine tune the database system to make it more efficient for the users and

developers.

o Give input at the analysis and design phases of information systems. Carry-out
- database implementations.

Database Management System (DBMS):

We have described the DBMS in Section 3.1.1 in detail. Along with the
functions already described, DBMS is essentially, a set of programs utilities, procedures
 fo manage the database and data. It is also a tool for the DBA to administer the database
- system. DBMS provides tools and methods to access data by applications and users.

DBMS selection is a critical task for technical decision makers in organisations.
In 1986, Everest loosely estimated the number of DBMSs developed as over 600 in the
past 25 years. (Everest 1986). Considering the acceleration in the computer hardware
and software technology and the increase of computer usage in organisations since
1986, this number can be easily be seen as doubled or tripled. In selecting a DBMS, an
‘organisation should understand its own data processing requirements and environment.
Required functional capabilities should be listed and verified to make sure the DBMS

36

selected is a suitable one for the business functions. Business data load, data volume
and geographical facts are the other criteria for selecting a DBMS.

Business Data:

| A commercial database management system can exists in many organisations.
For example, an ORACLE database can be purchased by many organisations and used.
Many of the tools, functions of the DBMS would be very much the same in every
organisation purchased it. But, on the other hand, business data is the one component
which is almost unique to each organisation. Business data consist of in-house
- developed user databases, tables and related programs. The reason to use a database
system is actually store and process the business data accumulated along with the daily
operations of business. The business data is the most critical and valuable component of
- adatabase system. It is the business data feeding into the information systems enabling
- people to conduct their functions. Business data cannot be purchased. It can only be
- produced. Business data has to be maintained safely, structurally by the database
~ management system.. Overhead data or system data (metadata : data about data) is
mvisible to the users and is mostly irrelevant to the actual business. The business data,
databases, schemas, tables, procedures developed by the people of an organisation are
intellectual properties of common effort between various parties.

Figure 3.3 shows the relationship between DBA, DBMS and the Business data
(database). We have also shown the information system and tools in the figure.

> » DBA

» .
Information
Systems

Machine
Process
User Tools DBMS
For Data N -—» DBMS
i R > Access V| TOOLS
Development /
&

Programmers :
> Tools “

DATABASE

ire 3.3 Relationships in Database Systems.

37

Users interact with the database via information systems, user tools for data access and

development and programmers tools and tools provided by the DBMS. DBA is in

charge of setting necessary platforms, granting access rights and monitoring the process.

DBA also uses the DBMS tools for administrative purposes. DBMS provides a layer

between the raw data in the database and users. DBMS is a machine process that
. enables and controls the data traffic between the users and the database. The DBMS has
- multiple components described earlier, to do the automatic tasks.

3.4 Types of Databases and Database Management Systems

Through out the evolution of database systems various architectures have been
developed and implemented. As history of evolution shows, different database
management systems have been developed during different times, and these have all
different capabilities regarding organization and modeling of data and access to data.’’
The earliest of these were the hierarchical databases, followed by network databases,
relational databases and the relatively new concept object oriented databases.

In this section we will briefly discuss the hierarchical, network and object
- oriented databases but go into more detail of relational databases. We will leave the
relational databases to a separate section at the end of this chapter.

3.4.1 Hierarchical Databases

_ Hierarchical databases are the earliest database systems. As the name suggests,

hierarchical databases use the hierarchical data model for structuring the data, assuming
that business data often shows a hierarchical nature. The best way of understanding a
hierarchical data structure is to picture an upside down tree which constructs a parent —
child relationship between records types. These record types define a hierarchical
schema. The parent —child relationship enforces that a child record can have only and
-~ only one parent record whereas the parent record can have multiple child records in the
hierarchical schema. The parent record links to the child records via pointers. Figure 3.4
-shows a simple hierarchical database (schema tree) where the root record is the starting
“point to get to a low level record in the hierarchical schema. The properties of a
‘hierarchical schema must obey the following rules:

- The root record-type cannot be a child of any record type in the parent-child
relationship.

- Every record type - except the root participates as a child record type in
exactly one parent-child relationship.

- A given record type can participate as the parent record type in any number
of parent-child relationship.

- A leaf is defined as a record type which does not participate as a parent in
any parent-child relationship.

~ Danielsen Asbjorn, The Evolution Of Data Models And Approaches To Persistence In Database
, M Sc. Essay, University of Oslo, Department of Informatics, 1998.

38

An example hierarchical database schema is given in Figure 3.5. This schema is
designed to represent a university database where different courses thought in the
departments and students enrolled to different courses. Each department has also staff
members. Departments have classrooms where the courses are assigned to. The record
types and the fields in each of them are given in the figure.

ROOT
Level 1 Level 1
Record Record
. Level 2 Level 2
pomter Record Record

Figure 3.4 A Hierarchical Database (Schema Tree).

DEPARTMENT
STAFF CLASSROOM
COURSE
STUDENT
DEPARTMENT
NAME HEAD
NAME TITLE | PHONE
LOCATION |CAPACITY
NAME
NAME | YEAR

are 3.5 An Example Hierarchical Database.

39

| Hierarchical model employs two main data structuring concepts : records and
- parent-child relationship. A record is a collection of field values (i.e. the
DEPARTMENT field values in Figure 3.5 are values for ID, NAME, HEAD) that
provide information on an entity or a relationship instance.

Records of the same type are grouped into record types. A record type is a given
name, and its structure is defined by a collection of named fields or data items. Each
field has a certain type, such as integer, real or string.®

A parent-child relationship in hierarchical databases is a one —to-many
relationship where a parent record type instance has multiple child record types. The
parent-child relationship in a hierarchical database is generally shown by listing the
pair of parent and child record type) in parenthesis. In Figure 3.5 two of the parent-
child relationships are (DEPARTMENT, STAFF); (DEPARTMENT-CLASSROOM).

Hierarchical databases can be very useful for some applications such as the
functional mapping between parent and children and the hierarchical structure, whereas
others pose restriction. We cannot have dangling children unconnected to a parent. If a
parent is deleted, so must be all its children. While the hierarchical model can be very
suitable for some applications such as organisational structures and parts explosion
relationship (bill of materials), it can be too restrictive for some others.>* The main
areas where the hierarchical model has problems are, on many-to-many relationships,
cases where a record type is the child of multiple parent and n-ary relationships with
- more than two participating relationships.

3.4.2 Network Databases

As mentioned in Section 3.2 C. W. Bachman developed the first commercial
- network database management system called the IDS — Integrated Data Store. The
- network database arranges its data as a directed graph and has its own standard
‘navigation language, called DBTG. The nodes in the network database represent the
‘record types and the arch between the nodes represent the relationships. Network
~ databases allow a given node to have more than one arc, each for a different
relationship. This feature does not exists in hierarchical databases where a parent node
-~ can only have one arc to link to its child.

. The network model is very similar to the hierarchical model actually. In fact, the
lierarchical model is a subset of the network model. However, instead of using a single-

database looks like a hierarchical database in that you can see it as a type of tree.
However, in the case of a network database, the look is more like several trees which
share branches. Thus, children can have multiple parents and parents can have multiple

R., Navathe S., Fundamentals of Database Systems, 2™ Edition, The Benjamin / Cummins
ublishing Company, p.344, 1994

Ozkarahan Esen, Database Management. Concepts, Design and Practice, Prentice-Hall International
Editions, p.25, 1990

40

children.*

The network databases offers an efficient access-path to its data and is capable
to represent almost any informational structure containing simple types (e.g. integers,
floats, strings and characters). This is accomplished using different kinds of mapping
mechanisms called sets. A set is a container of pointers identifying which sets of data
can be reached from the current record. Three sets are defined by the CODASYL
standard - singular/system sets, multimember sets and recursive sets. Using these sets,
the database designer and programmer may represent and navigate on one-to-one, one-
to-many, and many-to-many relationships. To be able to do this, the programmer has to
know the physical representation of the database and access the database using a low-

:: level navigational language (Bachman 1973). This approach to DBMS is more flexible
. than the hierarchical approach, but still the programmer has to know the physical
. representation of data to be able to access it, and accordingly applications using a
network database has to be changed every time the structure of the database changes.*’

[Network databases were designed and implemented to solve some of the
- difficulties and problems of hierarchical databases. Hierarchical database would not
allow the existence of many-to-many relationships without duplications of record types.
Network databases can represent many-to-many relationships. Data redundancy is
another problem of hierarchical databases, that network database solve.

A simple network database architecture and Bachman Diagram for a car-hire
network database is given in Figure 3.6. In Figure 3.7, the many-to-many mapping
between record types is shown. Figure 3.8 shows the schema data definition language
(DDL) for record types and Figure 3.9 shows the DLL for relationships database. *

Data definition language enables to perform the following tasks on a schema :
o Create, alter, and drop schema objects.

Grant and revoke privileges and roles.

Analyze information on a table, index, or cluster.

Establish auditing options.

Add comments to the data dictionary.

In Figure 3.6, the many-to-many relationship between owner and member
- record types (i.e. MECHANIC and CAR, CAR and CUSTOMER) are constructed by
inserting link record types between them. These link record types are SERVICES and
- HIRING. The many-to-many functional mapping between MECHANIC and CAR is
- constructed by setting a one-to-many mapping between MECHANIC and SERVICES
and a one-to-many mapping between CAR and SERVICES. Similar approach is used
for CAR and HIRING, CUSTOMER and HIRING functional mappings, which enables
* the many-to-many functional mapping between CAR and CUSTOMER record types.

= Sol Selena, Network Databases, Web Developers Virtual Library, 16 August 1998, URL:
tip://www.stars.com/Authoring/DB/

* Danielsen Asbjern, The Evolution Of Data Models And Approaches To Persistence In Database
Systems, M Sc. Essay, University of Oslo, Department of Informatics, 1998.

* University of Wolverhampton, The School of Computing and Information Technology (SCIT),
\CP4011 Database Concepts and Techniques, URL: http://scitsc.wlv.ac.uk/

41

Root
Depot
Mechanics l Depot-Cars
Mechanic Car Customer

Mech-Services

Car-Services Customer-Details

Services Hiring

Figure 3.6. Bachman Diagram For Car-Hire Network Database.

_' To summarise the characteristics of the network databases following rules can

- There must be a one-to-many relationship between pairs of record types (nodes)
-~ related with respect to an owner-with-member relationship.

- A given owner instance must posses a unique set of member instances
- A given record type cannot be both owner and member of the same set type.

network database has the following constructs :
“Owner record types.

er record types.
types relating owner and member record types.

CUSTOMER CAR CUSTOMER
one |
Customer-1 Car-1 n'gv v/
many-to-man
map;ing y Customer-2 Car-2 HIRING
Customer-3 Car-3 “_‘t"":_y /’\
Customer-4 Car-4 S
fCAR CAR
oy database instances many-to-many
ok schema network schema
with HIRING

Many-to-Many Mapping Between Record Types.

42

3.4.3 Object-Oriented Databases

- You know my methods, Watson. Apply them. (Arthur Conan Doyle, The
Memories of Sherlock Holmes).

In this section we will describe the object-oriented approach and object oriented
database management systems without going into much detail. We will present various

definitions for object-oriented design, programming and databases from different
sources.

Sommerville defines object-oriented design as: “Object-oriented design is a
design strategy based on information hiding. It differs from the functional approach to
design in that it views a software system as a set of interacting objects, with their own
private state rather than as a set of functions that share a global state. Since the late
1980s, object oriented design has been widely publicized and adopted. Outside the

business systems domain, it is perhaps the pre-dominant design strategy for new
software systems.”**

~ Another definition for object-oriented design is given as: The foundation of the object-
oriented approach lies in encapsulation which enables restricting the effects of change
~on software, and inheritance, which allows classes (i.e., types) to pass properties to each
“other. A class is a set of object, i.e., a type in databases. An object, therefore is an
instant of a class similar to an entity being instance of an entity set or type in traditional
databases. A method is a part of an object’s properties (i.e., behavior) that describes
how the object carries out its operations.**

The characteristics of an object-oriented design can be summarized as:

| Objects are abstraction of real world having their private states and offering service
to other objects to achieve the goals of the overall system.

Objects are independent entities and can be modified independently since the state
and representation information is kept within them.

¢ No shared data exists in objects oriented design. Objects communicate through
calling each other services.

_ From the early hierarchical and network databases to more recent well-establish
ind standardized relational databases systems, organizations used more and more the
atabase technologies to conduct business. Even though the relational database model is
0 wide spread and standardized, special types of operations in daily life made it clear
iat it was not sufficient to model the needs of businesses and organizations. Specially,
entific modeling, design and manufacturing areas, dealing with geometric objects
two or three dimensions, robotics and automation made this very much clear.
her requirement emerged for new data types and structures, which are different
n the existing traditional data structures. For example, computer aided design and
deling (CAD/CAM), document management or multi-media repositories are some of
areas requiring specialized data structures and data handling.

sommerville Ian, Software Engineering, Fifth Edition, Addison-Wesley Publishing Company,
)zkarahan Esen, Database Management. Concepts, Design and Practice, Prentice-Hall International
ions, p.264, 1990

43

SCHEMA NAME IS CAR-HIRE-DATABASE;
PRIVACY LOCK FOR LOCKS IS LOCK-LOCK;
PRIVACY LOCK FOR DISPLAY IS DISP-SCHEMA-LOCK;
PRIVACY LOCK FOR INCLUSION IS INCL-SCHEMA-LOCK;
PRIVACY LOCK FOR ALTER IS ALTER-SCHEMA-LOCK.

AREANAME IS CAR-AREA;
PRIVACY LOCK FOR RETRIEVAL IS AREA-READ-LOCK;
PRIVACY LOCK FOR UPDATE IS AREA-WRITE-LOCK.

RECORD NAME IS DEPOT;
LOCATION MODE IS CALC USING DEPOT-NAME
DUPLICATES ARE NOT ALLOWED;
PRIVACY LOCK FOR STORE IS DEPOT-ADD-LOCK;
PRIVACY LOCK FOR DELETE IS DEPOT-DEL-LOCK.

01 DEPOT-REC.
02 DEPOT-NAME; PICTURE 'X(20).
02 DEPOT-ADDRESS; PICTURE 'X(32)"

RECORD NAME IS CAR;
LOCATION MODE IS CALC USING CAR-REG
DUPLICATES ARE NOT ALLOWED.

01 CAR-REC.
02 CAR-REG; PICTURE 'X(6).
02 CAR-MAKER; PICTURE 'A(20).
02 TYPE-OF-CAR; PICTURE 'A(15).
02 CAPACITY; PICTURE '9999".
02 YEARS-OLD; PICTURE '99".
RECORD NAME IS HIRERS;

LOCATION MODE IS CALC USING HIRER-NO
DUPLICATES ARE NOT ALLOWED.

01 HIRER-REC.
02 HIRER-NO; PICTURE '9(6).
02 HIRER-NAME; PICTURE 'A(20)"
PRIVACY LOCK FOR GET IS CUST-NAME-GET-LOCK.
02 HIRER-ADDRESS; PICTURE 'A(32)"

PRIVACY LOCK FOR GET IS CUST-ADDRESS-GET-LOCK.

RECORD NAME IS HIRINGS;
LOCATION MODE IS VIA CAR-HIRINGS SET.
01 HIRING-REC.
02 HIRE-DATE; PICTURE "X(8)'.
02 HIRE-TIME; PICTURE 'X(5).
02 HIRE-LENGTH; PICTURE '999".
RECORD NAME IS SERVICES:
LOCATION MODE IS VIA CAR-SERVICES SET.
01 SERVICE-REC.
02 SERVICE-CODE; PICTURE '9999".
02 SERVICE-DATE; PICTURE 'X(8).
02 MILES-CLOCKED; PICTURE '9(6).

RECORD NAME IS MECHANIC;
LOCATION MODE IS CALC USING MECH-NO
DUPLICATES ARE NOT ALLOWED.

01 MECH-REC.
02 MECHNO; PICTURE '9999".
02 MECH-NAME; PICTURE "X(20)".
02 MECH-ADDRESS; PICTURE 'X(32

e 3.8 Record Type Definitions For Car-Hire Database.

SET NAME IS DEPOT-CARS;
ORDER IS SORTED;
PRIVACY LOCK FOR INSERT IS CAR-INSERT-LOCK;
PRIVACY LOCK FOR REMOVE IS CAR-DELETE-LOCK;
OWNER IS DEPOT.
MEMBER IS CAR MANDATORY AUTOMATIC;
ASCENDING KEY IS CAR-REG DUPLICATES ARE NOT ALLOWED;
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

SET NAME IS CAR-HIRINGS;
ORDER IS SORTED;
OWNER IS CAR.
MEMBER IS HIRINGS MANDATORY AUTOMATIC;
ASCENDING KEY IS HIRE-DATE HIRE-TIME DUPLICATES ARE NOT ALLOWED;
SEARCH KEY IS HIRE-DATE DUPLICATES ARE ALLOWED;
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

SET NAME IS HIRER-DETAILS;
ORDER IS SORTED;
OWNER IS HIRERS.
MEMBER IS HIRINGS MANDATORY AUTOMATIC LINKED TO OWNER;
ASCENDING KEY IS HIRE-DATE,HIRE-TIME DUPLICATES ARE NOT ALLOWED;,
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

SET NAME IS CAR-SERVICES;
ORDER IS SORTED;
OWNER IS CAR.

MEMBER IS SERVICES MANDATORY AUTOMATIC LINKED TO OWNER,
ASCENDING KEY IS SERVICE-DATE DUPLICATES ARE LAST ALLOWED;
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

SET NAME IS MECH-SERVICES;
ORDER IS SORTED;
OWNER IS MECHANIC.
MEMBER IS SERVICES MANDATORY AUTOMATIC LINKED TO OWNER;
ASCENDING KEY IS SERVICE-DATE DUPLICATES ARE LAST ALLOWED;
SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

~ SET NAME IS MECHANICS;
ORDER IS SORTED;
PRIVACY LOCK FOR FIND IS MECH-LIST-LOCK;

PRIVACY LOCK FOR REST IS MECH-UPDATE-LOCK;
OWNER IS SYSTEM.

MEMBER IS MECHANIC MANDATORY AUTOMATIC;
ASCENDING KEY IS MECH-NO DUPLICATES ARE NOT ALLOWED.

~ END SCHEMA.

gure 3.9 Relationship Definitions For Car-Hire Database.

- Object-oriented database is a new and evolving method of organizing data® to
ill the requirements of organizations and people. To understand the differences
ween a traditional (relational) and object-oriented databases we need to consider

characteristics of both and compare them to observe how they effect the whole
se development and management processes.

- Ozkarahan identifies the main difference between traditional and object-oriented
bases as the passive and active behavior of the underlying system and the way these
ented. According to this definition, traditional databases are passive and
ed databases are active. Data in traditional systems are accessed by the

ald V., Database Management Systems, Designing and Building Business Applications, Irwin
,p-17, 1999

45

application program via DBMS, stored in the programs data structures, processes to
produce required outputs and results are finally written back to the passive database.
Here the active component is the application program and not the database. In the
object-oriented database, the database contains objects that are made up from passive
data and active procedures to reflect the behavior of the object. A mechanic arm of
robot for example, contains both data and programs that together compose the robot arm
object and its behavior (i.e. movements). Figure 3.10 shows how the traditional and
object-oriented databases differ from each other in the way described above.
Application logic in object-oriented databases is passed to the database instead of being
developed in the application program. The analogy here is, just like DBMS took over
the details that the had to worry about in file systems, the object-oriented databases take
over the details of modeling and implementing real-life objects from traditional DBMS.

Object-database systems have been developed into two different categories:
Object-relational databases and object-oriented databases. Object - relational databases
are extension to the relational databases which combines some of the object-oriented

features with the existing relational. These extended features will be briefly presented in
 the following section .

3.4.3.1 Object-Relational Databases

. There is an increasing need to store and manipulate complex data in relational
- databases. Complex data is imminent not only in multimedia applications for the Web,
- but also in specialized application domains such as medical care (including X-rays, MRI

imaging, and EKG traces); geographical, space, and exploration systems (such as maps,

seismi::ﬁ data, and satellite images); and even financial systems (such as time series
data).

The Object-relational databases (ORDBMS) are an extension to the existing
RDBMS, which includes some of the features of object-oriented architecture, in other
words ORDBMS encapsulates some features into an RDBMS, creating an ORDBMS.
ORDBMS add new object storage capabilities to the relational systems at the core of
‘modern information systems. These new facilities integrate management of traditional
fielded data, complex objects such as time-series and geospatial data and diverse binary
‘media such as audio, video, images, and applets. By encapsulating methods with data
structures, an ORDBMS server can execute complex analytical and data manipulation
erations to search and transform multimedia and other complex objects.

As an evolutionary technology, the object-relational (OR) approach has
inherited the robust transaction- and performance-management features of its relational
ancestor and the flexibility of its object-oriented cousin. Database designers can work
with familiar tabular structures and data definition languages (DDL) while assimilating
new object-management possibilities. Query and procedural languages and call
interfaces in ORDBMSs are familiar: SQL3, vendor procedural languages, and ODBC,
and proprietary call interfaces are all extensions of RDBMS languages and interfaces.
[he leading vendors in the market for ORDBMS are IBM, Informix, and Oracle.*’

f_kamhackkamp Martin, Extending Relational DBMSs, DBMS, Volume 10, Number 13, December
997, p. 45

'Grimes Set, Modeling Object/Relational Databases, DBMS, Volume 11, Number 4, April 1998, p.51

46

Traditional DBMS OODBMS

i;;}ﬁgzzgn Buffer User Interface

I l REQUESTS RESULTS T

m— Object Object
Store /
Object
Data Method\‘
Passive,

Structured Data

Retrieve

4> Messages

= ire 3.10 Difference Between Traditional and Object-Oriented Databases.

: Object-relational databases organize information in the familiar relational
tabular structures. In fact, object-relational implementations subsume the relational
database model. ORDBMSs are an incremental upgrade to their RDBMS predecessors,

and, unlike the move to object database systems, object-relational migration will not
iecessarily entail wholesale recording.

~ As we defined before; the traditional RDBMS are extended to include object-
riented concepts and structures such as abstract data types, nested tables and varying
rays. In ORACLE terms these are defined as following :

Abstract Datatypes

~ Abstract datatypes are datatypes, that consists of one or more subtypes. Rather
n being constrained to the standard DBMS datatypes like NUMBER, DATE/TIME,
IAR, abstract datatypes can more accurately describe the data. For example an
tract datatype for project may contain the following fields (columns):

 NAME VARCHAR (50)

STARTDATE DATE
- ENDDATE DATE
- MANAGER VARCHAR(25)
- BUDGET NUMBER(11,2)

47

When creating a table that uses project information , a column should be created that
uses the abstract datatype for projccts.48

Nested Tables

A nested table is a table within a table. A nested table is a collection of rows,
represented as a column within the main table. For each record within the main table,

the nested table may contain multiple rows. This can be seen as storing a one-to-many
relationship in a table.*’

Varying Arrays

A varying array is like a nested table, a collection. A varying array is a set
objects each with the same datatype, that can be set while creating the array

Large Objects

A large object is capable of storing large volumes of data. Large objects can be
in datatypes of binary, character. These objects can store G-bytes of data in one single
field of the table. Storing pictures of students in student table as a binary large object is
‘an example for the usage of large objects.

'3.4.3.2 Object-Oriented Databases

Object-oriented database systems are proposed as an alternative to relational
systems and are aimed at application domains where complex objects play a central
role. The approach is heavily influenced by object-oriented programming languages and
can be understood as an attempt to add DBMS functionality to a programming language

In an OODBMS anything represented as an object, or part of an object, may be
stored in the database, regardless of type. All DBMSs, except the ORDBMSs, are only
able to handle simple types and in some cases simple objects (e.g. Binary Large Objects
‘BLOB) or collections. The ORDBMS data model defines limitations to its ability to
model data due to its organization of tables. The OODBMSs lack a common data-model
ike the ORDBMS/RDBMS and some consider this a major weakness of the
JODBMSs upon it from a different perspective - OODBMSs are new and only research
nto the area will give the answer.

One thing is for sure: OODBMS has still a long way to go for fully replacing the
isting RDBMS and ORDBMS, which are used very widespread in organizations as
e data source for information systems. Computing is becoming object-oriented. But
aditional information systems and data processing methods, database systems, legacy
stem continue their existence and serve the organizations as they did in the past.
ODBMS does not look like to take over the world in the very near future. As King

woney K., Koch George, Oracle 8i, The Complete Reference, Oracle Press, 2000, p.73.
id, p.74.
akrishnan R, Gehrke J, Database Management Systems, McGraw-Hill Higher Education, 2000,

48

describes; “Like wine makers, database management people don't favor pouring old
wine into new bottles. Call them conservative, but given the mass of data stored in
existing relational and mainframe databases, the tendency is to look askance even at
new data going into new types of containers. That, in a metaphoric nutshell, is the

situation faced by object-oriented database management systems (OODBMSs) as they
seek to become mainstream products.” '

3.5 Relational Databases

3.5.1 History in Brief

Before the relational databases emerged, IBM had already developed its
hierarchical database product IMS in 1968, Charles Bachman developed CODASYL-
based network model product IDS in General Electric (1961).

While all these were happening, at least one researcher at IBM was dissatisfied
- with both the CODASYL products and IBM's database package. Edgar F. (Ted) Codd,
an Oxford-trained mathematician, joined IBM in 1949 and later moved to IBM - San
Jose. Codd found existing and new database technologies during this time as "taking the
old-line view that the burden of finding information should be placed on users” [In this
view, the database management system] should only recognize simple commands and it

would beszup to the users to put together appropriate commands for finding what was
needed"

With the dissatisfaction of the existing products, Codd produced some technical
__ in IBM, followed by his milestone paper “A Relational Model of Data for Large
Shared Data Banks”, where he outlined the relational approach to organize data in
databases. The relational model consisted of:

Independence of data from machine (hardware) and storage implementations
» High-level non-procedural language for accessing data.

Codd summarized the relational model in his abstract as “Future users of large
data banks must be protected from having to know how the data is organized in the
machine (the internal representation). A prompting service which supplies such
nformation is not a satisfactory solution. Activities of users at terminals and most
pplication programs should remain unaffected when the internal representation of
, is changed and even when some aspects of the external representation are
ianged. Changes in data representation will often be needed as' a result of changes in

uery, update, and report traffic and natural growth in the types of stored
S
formation.

ung Nelson H., Object DBMSs : Now or Never, DBMS Online, Volume 10, Number 8, July 1997,

he Rise of Relational Databases, Funding a Revolution: Government Support for Computing Research,
tional Research Council Report, National Academy Press, Washington, D.C. 1999, Part-II Case
dies in Computing Research.

dd, E. F., A Relational Model of Data for Large Shared Data Banks, Communications of the ACM
Volume 13, Number 6, June 1970, p.377-387.

49

In the same paper, Codd, then describes the advantages of relational model over
the hierarchical and network modes : “The relational view (or model) of data described
[in Section 1] appears to be superior in several respects to the graph or network model
presently in vogue for non-inferential systems. It provides a means of describing data
with its natural structure only -- that is, without superimposing any additional structure
for machine representation poses. Accordingly, it provides a basis for a high level data
language which will yield maximal independence between programs on the one hand
and machine representation and organization of data on the other.

A further advantage of the relational view is that it forms a sound basis for
treating derivability, redundancy, and consistency of relations. The network model, on
the other hand, has spawned a number of confusions, not the least of which is mistaking
the derivation of connections for the derivation of relations.

Finally, the relational view permits a clearer evaluation of the scope and logical
limitations of present formatted data systems, and also the relative merits (from a
logical standpoint) of competing representations of data within a single system.
Examples of this clearer perspective are cited in various parts of this paper.
Implementations of systems to support the relational model are not discussed.” >*

While all these were happening, IBM had already went further with IMS. The
company has already made financial investments on IMS. Codd had to prove in many
platforms his idea of relational model and convince people that it would be a success,
both technically and commercially. After Codd published his paper openly. IBM had
declared IMS as sole product and criticized Codd as acting against the company
objectives. Codd, arranged a meeting with CODASYL supporter Charles Bachman.
This was followed by two projects in 1970, to implement relational method. The first
- project was within IBM and was called the System R. The second project, Ingres,

~ started at UC-Berkeley and was founded by National Science Foundation (NSF) and
military.

In 1990, in his book, Codd defined the importance of the database management
systems as : “Today, if you have a well-designed database management system, you
have the keys to the kingdom of data processing and decision support.”™ The relational
model of Codd is based on the mathematical theory of relations. The relational model is
- simple and elegant, where a database is defined as the set of relations and a relation is a
table with rows and columns. The relational model enables the usage of SQL for data
querying.

Relational model has various properties and concepts we will be defining in the
following section and go into more detail of relational design concepts and topics.

'3.5.2 Definitions

Relation:

* Ibid.
* Codd E. F, The Relational Model for Database Management: Version 2, Addison-Wesley Publishing
ompany, 1990,

50

Relational model is based on the mathematical theory of relations. In mathematical
terms, a relation is defined as :

Given sets Sy, Sa,..., S, (not necessarily distinct), R is a relation on these » sets
if it is a set of n-tuples, the first component of which is drawn from the S, the second
component from S, and so on. R is a subset of Cartesian product S; x S; x ... X S,.
Relation R here is the degree of n. Each of the sets S,, S,,..., S, on which a relation is
defined is called a domain. We will study domains later in this chapter in more detail.

A relation R of the degree » that has the following attributes :

Attribute A, getting its values from D,
Attribute A, getting its values from D,,

Aétribute A, getting its values from D,,

where Dy, Dy, ..., D, are domains; the relation R is shown as
R(A;:D; A2:D; ... A,;:D,), or more often shown as :

R(A| A; ... A,) given that domains are listed seperately.

The ordering of A, A,... A, is not of any significance in the theory. The
mathematical relation is a set with special properties. All of its elements are tuples.
“ These are all of the same type. The tuples are not of any particular order; the relation is
- an unordered set. This is juts what is needed for commercial databases, since many of
the relations in such databases are each likely to have thousands of tuples, sometimes
millions™. Considering large databases in organizations today, even millions of tuples
in a relation is not a imaginary large number. Ordering, sorting, numbering addressing
tuples in the storage is not the aim of the relational model, which also avoids to give the
task of ordering of tuples to the users. The relational databases model follows the

- A tuple is represented by each row.
- The order of the rows in R are not relevant.

- Content of each rows are distinct form each other, they are not the same.

Table 3.2 lists the Relations in Mathematics versus Relations in the Relational
Model.”’. The atomic value means that, each value is indivisible in the relational model.

Another definition of relation can be given as :

A relation r of the relation schema R(A,, A,,..., A,), also denoted by n(R), is a
et of n-tuples, r = (t), tp, ...t,). Each n-tuple t is an ordered list of n values. t= <vy, v,,
., Va), Where each value v; 1<= i <= n, is an element of domain A;, or is specially null

51

A relation schema R, denoted by R(A,, Aa,..., A,) is made up of relation name R
and a list of attributes A;, A,,..., A,. Each attribute A,, is the name of a role some
played by some domain D in the relation schema R. D is the domain of A;. Domain D is
represented as dom(A;).

The main construct to represent data in relational model is a relation. A
relational database is a collection of relations. Relations are like tables, having columns
(attributes, fields), and rows (tuples, records). Relations have unique names. A sample
relation is shown in Figure 3.11, where columns and rows and multi-dimensional set
structure of the relation is described.

In the Figure 3.11 we have a multi-set collection which makes up the relation.
There is the set of tuples(row), set of columns (attribute) values within each column
and finally set of tuple values within each tuple. These sets are shown as A, B, C
respectively, in the figure.

A relational database is a collection of relations with unique and distinct names.
A relational database schema is the collections of schemas for the relations in the

~ database.

Table 3.2 Relations in Mathematics Versus Relations in the Relational Model

| Mathematics Relational Model
Unconstrained values Atomic Values
_' Columns not named Columns named
| Columns distinguished from each other | Columns distinguished from each other and
| by position from domains by name
| Normally constant Normally varies with time
Domain:

_ A relational schema R, denoted by R(A;, A,..., A,), is made up of a relation
name R and a list of attributes A;, As,..., A,. Each attribute A; is the name of a role
played by some domain D, in the relational schema R. D is called the domain of Ai and
18 represented by dom(A)) .

A relation schema defines the domain of each field or column in the relation. A
domain is referred to in a relation schema by the domain name. Domain D is the set of
atomic values, which are indivisible within each domain. A domain defines the rules

possible values for each column in the relation. The values that appear in the

column must be drawn from the domain associated with that column. This is essentially

fining the data type of the field. Domains can be sometimes very useful to implement.
Jomains have to be defined with a name and a type of data.

A real life example of domain usage and benefits are given below:
Twelve countries in European Union have initiated the conversion to single
ency (euro). The conversion will happen during the last week of December-2001
and the first week of January-2002. Organizations, governments have to convert their
databases from their local currency amounts to euro amounts according to the given

52

conversion ratio. For example the conversion ratio for Irish Punt is 0.787564, ie. |
Euro = 0.787564 Irish Punts.

In addition to many technical difficulties, one problem is to identify the
monetary fields within the organizations databases. In our case, Organization has a
relational databases system and monetary fields are defined as NUMBER(11,2), i.e.
field type is number with precision (integer) 9 and scale (decimal) 2 positions. But this
~is not enough to quickly say that every NUMBER(11,2) field is monetary. Some of them

can be rates, units or percentages (i.e. 14.50%) or any other numeric but non-monetary
fields.

The Domain usage here becomes very much important to categorize numeric
fields into business domains.

Relation : STUDENT
SID NAME FACULTYNO | DOB
3456 | Joe Murray 123 12/01/1972
8976 | Helen Sherlock 123 17/05/1970
1655 | Mick Reidy 123 12/12/1972
1020 | Sandeep Ahuja 134 01/07/1968
4040 | Niamh O’Malley | 135 10/06/1969

Columns (Fields, Attributes)

SID | NAME | FACULTYNO | DOB < Names
(records rows)
v
Set of Tuple Values (C) l
Set of Columns (B)
Set of Tuples (A)
ure 3.11 Relation.

Take the relation MEMBER having the listed fields and domain declarations. A
the salary of the member and monthly pension contributions in 3 categories
en in this relation.

53

- MEMBERID : D_STRING

- SALARY : D_MONETARY
- CONTRIBUTIONI :D_MONETARY
- CONTRIBUTION2 :D PERCENTAGE
- CONTRIBUTION3 :D_MONETARY

When the given domains are defined as

- D _STRING : STRING 5
- D_MONETARY : NUMBER 11,2
" - D PERCENTAGE : NUMBER 11,2

it will imply that MEMBERID is STRING #ype, SALARY, CONTRIBUTIONI,
CONTRIBUTION3 are NUMBER ftype but within the monetary domain and

CONTRIBUTION?2 is NUMBER type as well but within the percentage domain which
clearly distinguishes monetary and non-monetary fields.

1 Given the definition of domain, we can restate the definition of a relation within
 the context of domain:

A relation r(R) is a subset of the Cartesian product of the domains that define R

1R) c (dom(A;) x dom(A;) x ... x dom(A,)). The Cartesian product defines all
possible combinations of values from the domains. No value can exists in the relation
‘which is not drawn for the underlying domain.

Codd, defined various practical reasons for relational DBMS to support the
concept of domains, as he states that “full support for many of the featured of the

relational model depends on full support of the domain concept.” These reasons are
listed in Table 3.3 as a summary.

Degree, Cardinality:

The degree (arity) of a relation is the number of fields in the relation. The
ardinality of a relation instance, is the number of tuples (set of tuple values) in the
elation instance. The STUDENT relation in Figure 3.11 has cardinality 5 and degree 4.

Super Key

~ Superkey of relation R(A, A, ..., A,) is the set of attributes A < R with the rule
at no two tuples t; and t; in any legal relation r on R have the property t1[A] = t2[A].

Key

A key K is a superkey with the rule that removal of any attribute from K will
se it not to be a superkey anymore. Key is minimal as a difference from superkey.

54

Given the EMPLOYEE relation with attributes (EID, NAME, BIRTH-DATE,
SALARY) , {EID} is a key. {EID, NAME} and {EID, NAME, BIRTH-DATE } are

superkey.

Table 3.3 Practical Reasons for Supporting Domains.

Reason Description
Integrity Single most important concept in determining whether a given
relational database is integrated. No relation is permitted from a non-
existing domain.
Data Type By defining the data types of domains only permitted data types can
Declaration be used in the columns. Standardisation of a specific data type can
be achieved.
Domain Required id domain integrity is to be supported. Domain integrity
Integrity consists of those integrity constraints that are shared by all the
. columns that draw their values from that domain. Frequently applied
domain constraints are: Regular data types, Value ranges allowed,
; whether or not ordering functions (<,>) are applicable to the values
" | Domain- Protect users from costly operations of comparison between
| constrained semantically non-comparable values.
' ators
| Transaction It is necessary to support domains in order to support transactions
Support that single out all occurrences of some value.
| User-defined Enable users to define customised integrity checks for the values. If
Integrity Checks | values in column C1 have to be sub-set of column C2 then it is
: required to have the domains defined for C1 and C2 which enables
the user-defined constraint to work.

Primary key, foreign key, union compatibility, referential integrity
and constraints

When forming R UNION T is executed, it is required that the degree
of R is equal to degree of T and there exists one-to-one mapping of
the columns of R onto columns of T such that the two columns of
each pair belonging to the mapping have a common domain.

Domains are important for performance of the database by
supporting domain based indexes. Domain based index is a single
index on the combination of all columns that draw their values for
the domain. Once such an index is defined, a new column introduced
to the database will automatically expand the domain based index.

Constrains in Relational Model

When considering constraints, we have to think of the importance of preserving
he accuracy of data in organizational databases. Every day, critical or non-critical
geisions are made in organizations, based on the results of various queries on the
latabases or outputs of information systems that generate reports for users. Garbage
ata will produce garbage output which may lead to garbage decision. The database
herefore is only good and reliable if the stored data is good and reliable. In the previous
gction we have discussed the business data as one of the most important component of
DBMS. So it is up to the DBMS and database model to make sure the business data is

55

- valid and correct at any given moment. To achieve this relational database model has
| some integrity constraints.

An integrity constraint is a condition that is specified on a database schema, and
restricts the data that can be stored in an instance of the database. If a database instance
satisfies all the integrity constraints specified on the database schema, it is a legal

instance. A DBMS enforces integrity constraints, in that it permits only legal instances
to be stored in the database.’®

The relational model has the preventive approach in maintaining the integrity
- and accuracy, which means that illegal instances are not permitted at first place. The
opposite to this preventive approach would be in theory the corrective, which would be
letting the illegal instances exists but enabling the users or DBA to correct them.
Integrity constraints cannot be placed and executed in the user tools and applications
connecting to the database. It must be a centralized task where there cannot be any by-
pass.

_ Constraints that apply in every relational database are the entity integrity, such

that no primary key or foreign key is allowed to have a missing value and referential
integrity, such that for each distinct foreign-key value in relational database, there must
exist in the database an equal value of a primary key from the same domain. If the
foreign key is a composite key, the components that are foreign keys themselves, must
- exists in the database As components of at least one primary key value from the same
- domain. In the following section different types of constraints are discussed. These are -
additional to entity integrity and referential integrity constraints- domain constraints,
key constraints, foreign key constraints and user constraints

Codd, has a different way of categorizing the various constraints. In his
categorization he has the following types of constraints D-TYPE, Domain Constraints ;
'C-TYPE, Column Integrity; E-TYPE, Entity Integrity; R-TYPE, Referential Integrity;
'U-TYPE, User defined Integrity. These are the so-called CURED constraints (CURED
composed of the first letters of the five types)

3.5.3.1 Domain Constraints

A given value for an attribute A must be an atomic value from the domain of A
(dom(A)). The type of the attribute A must also follow the defined domain type it
draws its values from. Normally domains data-types are defined as the standards types
uch as Integer, String, Real etc. Any violation to the domain constraint is not
permitted. An application program violating this constraint will be returned by an error
ode from DBMS which will be indicating that the specific command given by the
ipplication is not executed. This is an error situation where the front-end application has
0 normally a way of interpreting the error code from the DBMS and generate a

derstandable, user-friendly message or log for the users, specially for online front-end
ipplications.

akrishnan R, Gehrke J, Database Management Systems, McGraw-Hill Higher Education, p.56,

56

A good practice of system development is to be able to minimize the domain

violations at the point of their occurrence, i.e. control them before they can occur. This

- may sound as a contradiction to what we have stated in Section 3.5.4 but it is in fact not

such. If a given database column can only accept a set of numbers, for example the

possible ages of employees cannot be less then 16, then it is always a good practice to
limit the entry selection to numbers which are greater than 16.

3.5.3.2 Key Constraints

As we have defined before, in a relation composed of tuples, each tuple must be
unique, i.e. no two tuples can be the same. There are other subsets of attributes of a
relation schema R with the property that no two tuples in any relation instance » of R
- should have the same combination of values for these attributes. If a such subset of
attributes is denoted as SK, then for any two distinct tuples t; and t; in a relation,
 instance 7 of R, we have the constraint that

t:[SK]# t:[SK]

Here, SK is called the superkey of the relation schema R. Superkey is the set of
aftributes that contains a key. A key uniquely identifies a tuple. A superkey can have
redundant attributes but a key cannot. Given key K of a relation schema R is a superkey
of R with the additional property that removing any attribute A from K leaves a set of
attributes K' that is not a superkey of R. A key is a minimal superkey; a superkey from
which we cannot remove any attributes and still have the uniqueness.

To further examine the key constraints, we have the sample EMPLOYEE
elation in Figure 3.12 where we have same sample tuples and attributes. Set {EID} is a
ey for EMPLOYEE because no two employee tuples can have the same data value for
ID. Take a set of attributes, for example {EID, FNAME, LNAME, DOB}which
ins EID. This set of attributes is a superkey. This superkey is not a key for
OYEE, since when removing FNAME, LNAME, or DOB or all of them from the
es still behind a superkey. A relation may have multiple keys, which are called
didate keys. One of the candidate keys is designed to be the primary key which
ntifies the tuples in the relation.

YEE
FNAME LNAME DOB PHONE
Mick Reidy 13/08/1945 | 7042020
Joe Murray 04/10/1950 7043239
Helen Sherlock 01/06/1965 | 7032929
Joe Soap 19/05/1072 | 7052101
Grainne Whelan 12/03/1967 | 7032001
Nataraj Balajee 04/02/1975 | 7042921

3.12 EMPLOYEE Relation.

D} listed below is a key EMPLOYEE.

57

EID

1226
1235
1256
1500 Set {EID}
1345
1200

' Set {EID, FNAME, LNAME, DOB} listed below is a superkey but not a key for

EMPLOYEE. When removing the FNAME, LNAME, DOB or all of them, we still get
- asuperkey

EID FNAME LNAME DOB

1226 Mick Reidy 13/08/1945
1235 Joe Murray 04/10/1950
1256 Helen Sherlock 01/06/1965 Set{EID,FNAME,

1500 Joe Soap 19/05/1072 LNAME ,DOB}
1345 Grainne Whelan 12/03/1967

1200 Nataraj Balajee 04/02/1975

3.5.3.3 Foreign Key Constraints

In the cases where the information stored in a relation is linked (via a foreign
key) to another information stored in another relation we have to consider the foreign
key constraint which enables the DBMS to check and ensure the consistency of the data
across the multiple relations. In Figure 3.13, we have an additional relation, WORKING
along with the EMPLOYEE relation where WORKING has the attributes, PID,
SDATE, EID. To ensure the consistency of the data, we have to make sure that the EID
ttribute in WORKING tuples must also appear in the EID attribute of some tuples of
EMPLOYEE. Here, the EID in WORKING relation is a foreign key and refers to the
MPLOYEE relation, where the EID is a primary key.

EMPLOYEE
; EID | FNAME | LNAME | DOB PHONE
ID | SDATE EID 1226 | Mick Reidy 13/08/1945 | 7042020
03/01/2001 | 1345 « 1235 | Joe Murray 04/10/1950 | 7043239
01/05/2000 | 1200 | ™. . | 1256 | Helen | Sherlock | 01/06/1965 | 7032929
01/12/1999 | 1500 ..,,;“;::-{:'M;;-P 1500 | Joe Soap 19/05/1972 | 7052101
01/06/2001 | 1235 " "~ 4| 1345 | Grainne | Whelan 12/03/1967 | 7032001
— 41200 | Nataraj | Balajee | 04/02/1975 | 7042921

Foreign key '
Primary key

3.13 WORKING and EMPLOYEE Relations.

58

Inserting a tuple <103,01/10/2001,9999> to WORKING foreign key constraint
because there is no tuple in EMPLOYEE with the primary key 9999. If we delete the
tuple <1500, Joe, Soap, 19/05/1972, 7052101> from the EMPLOYEE relation, the
foreign key constraint will be violated because there are still at least one tuple referring
to the one we are trying to delete.

3.5.3.4 User-defined Constraints

In addition to the previously given integrity constraints, user-defined integrity
constraints are required for DBMS to enforce which include different organizational,
legal rules and governmental regulations that can not be already built-in to the DBMS
- but can be defined by the DBA. User-defined integrity constraints are compiled and

entered to the database catalog. An example of user-defined constraints can be given as
follows.

Assume the employees will be given a salary increase which the DBMS cannot
control on how to set the new salaries. When the new salaries are entered from a front-
end user application or calculated and becomes a row to be committed to take effect, the
front-end tool does not have anymore control on it. This is the moment where the
' DBMS takes action and check that the new salaries are compliant with he constraints
defined. The constraint conditions for this can be given as

Condition 1: SALARY NEW <MAX SALARY
Where TITLE_CODE =t

Condition 2: (SALARY NEW-SALARY-OLD)<(SALARY_OLD x
INC_PERCENT)
Where TITLE_CODE =t

‘When the update of salary is executed, the testing of the constraints will be triggered
and the following actions will be taken by the DBMS:

UPDATE SALARY : If Condition 1 = TRUE Then ACCEPT
UPDATE SALARY : If Condition 2 = TRUE Then ACCEPT

3.5.4 Relational Database Design Concepts
In the previous sections of this chapter we have described various aspects of
elation model and design considerations that are necessary to implement on designing

elations. The questions that still need to be answered are: What is a good relational
chema and design? Is there any formal way of measuring quality of the relational

3.4.1 Schema Refinement and Decomposition

Informally, we may address some measures for high-quality relational design.
ese can be listed as:

59

- Semantics of the attributes: When we design a relation, we assume that
certain meanings are assigned to the relation. Meaning are associated with
the attributes it holds. The meaning (semantics) identifies what sort of
attribute values would be in the relation and what is the relation of attribute
values to one another. This is a very much subjective and common-sense
measure.

- Reducing the redundant values in tuples: As described in this section,
redundancy is the enemy of good design and efficient implementation

, - Reducing null values in the tuples of relations: If many of the attributes do
; not apply to the tuples of a relation, then we will end-up with null values.
Null values are difficult to handle and interpret. Sometimes even the
meaning of the null value may be unclear. Is it null because the attribute
does not apply to this tuple ? Is it null because the attribute applies to the
tuple but the value is currently unknown ? or is it null because the attribute
applies to the tuple, the value is know but not processed (i.e. updated) yet ?

Conceptual database design provides a set of relational schemas and integrity
constraints. These are the definitely start-points for good database design but are not the
only points to consider during the design phase. When ER designs are translated into
relational schemas these inherit nonetheless redundancy problems which forces us to
refine the schema and eliminate these problems. We can list the problems caused by
redundancy as follows.

- Update Problems: Multiple copies of stored data has the problem of updating
each copy correctly and has a big risk of inconsistency after the update
operation.

- Insertion Problem: It may not be possible to insert data unless some other
data has to be inserted as well.

- Deletion Problems: It may be impossible to delete a data without loosing
some other required information.

- Storage redundancy : Waste of storage. Considering the cheap availability of
storage media in the modern days still does not justify the storage
redundancy, since this has also an effect on the overall performance of the
database system.

Many real life redundant design cases today exist in some organizations because
of lack of understanding of the importance of the subject or lack of quality measures
‘and audit on designs. Production support, data verification become easily overwhelming
fasks which could be in fact minimized when redundancy is taken care of. Many
business users suffer from the inconsistency of multiple instances of the same data in
the databases and require technical support from developers or database administrators
vhen processing the data. The tools and the database at the background becomes easily
1 struggle for the users to achieve business objectives and perform required tasks.

60

For the purpose of examining the problems above and discuss the schema
refinement and decomposition we will work on the following example:

The relation is defined as below with the given attributes where the key is the
EID (employee id). The DAILY-SALARY is defined by RATING. For a given
RATING value there is a defined DAILY-SALARY figure.

SALARY (SSN, NAME, RATING, DAILY-SALARY, D-WORKED)

Figure 3.14 shows the populated relation of SALARY relation on which we will
examine various redundancy related issues. Same value of RATING attribute will lead
to the same value of DAILY-SALARY attribute. Information in this case is stored
multiple times, where RATING value 8 and DAILY-SALARY 100 are repeated 3 times
in the relation. Similar case is valid for RATING value 6 and DAILY-SALARY 75

SALARY
EID NAME RATING | DAILY-SALARY D-WORKED
1226 Mick Reidy 8 100 5
1235 Joe Murray 8 100 5
1256 Helen Sherlock 6 75 4
1500 Joe Soap 6 75 4
1345 Grainne Whelan 8 100 3
| 1200 Nataraj Balajee 5 50 4
|

Figure 3.14 SALARY Relation.

where the repetition is twice. If we plan update the DAILY-WAGES for the first tuple,
‘where the RATING 8 will now define 125 instead of 100, we cannot do this without
‘updating the second and firth tuples as well. This is an update problem in the relation.
‘We cannot add a new tuple to the relation without giving the new RATING and
corresponding DAILY-SALARY. This a typical insertion problem in the relation. If we
delete the tuple for the employee Nataraj Balajee then we loose the RATING, DAILY-
SALARY information for RATING 5. This is an example for delete problem.

To overcome the given situation above there is a process defines as the
decomposition. Basically, decomposition means to replace a given relation with set of
smaller relations where each of them has a subset of attributes of the original relation.
fhis is done with the help of identifying functional dependencies in the original

In our case we can apply the following decomposition and end-up with the
ollowing relations :

DAYS-EMPLOYEE (EID, NAME, RATING, D-WORKED)
SALARY (RATING, DAILY-SALARY)

- Figure 3.15 shows the populated relations after decomposition. We have
iminated addition problem, for both DAYS-EMPLOYEE and SALARY where we can

61

add new tuples to both relation without the requirement of knowing any other
information. Changing the DAILY-SALARY is an single tuple update in SALARY
relation, unlike in the original version where multiple tuples had to be updated. We can
delete an employee without loosing any SALARY information.

Even though everything sounds great with this decomposition approach,
there are still issues and questions around it : Is a relation required to be decompose ?
Did we introduce new problems by decomposing a relation as in example case ? These
questions will be answered with the normalization methods and functional dependency
analysis described in the following sections. Another derived problem of the
decomposition is the potential requirement of the joins for the queries on the original
relation. This over and over joining may cause to performance issues which may be
more severe than the original redundancy problems. We will be discussing further
relational database design aspect in the next sections.

DAYS-EMPLOYEE
EID NAME RATING | D-WORKED
1226 Mick Reidy 8 5
1235 Joe Murray 8 5
1256 Helen Sherlock 6 4
1500 Joe Soap 6 4
1345 Grainne Whelan 8 3
1200 Nataraj Balajee 5 4
:. SALARY
[RATING | DAILY-SALARY
8 100
6 75
5 50

Figure 3.15 DAYS-EMPLOYEE and SALARY Relations.

3.5.4.2 Functional Dependency

L

We already have raised the questions regarding good relational design and how
to distinguish a “good” version from a “bad” version with solid mathematical evidence
“and not with subjective design criteria. Relational model enables us to do so with the
help of functional dependency and normalization theory.

The single most important concept in relational design is that of a functional
dependency.” Normalization methods are based on the functional dependency theory.
Functional dependency is a constraint between two sets of attributes from the relation.
Before formally defining the functional dependency we shall define the functional
mapping between attributes of a relation and work on a sample relation for clarifying
the definition of functional dependency. Functional dependencies allow us to express
constraints that cannot be expressed using superkey.

9 Blmasri R, Navathe S. B., Fundamentals of Database Systems, Second Edition, The Benjamin /
Cummins Publishing Company, p.401, 1994

62

Assume the two attributes EID (employee id) and TILE define the employees.
EID is given as unique, i.e. representing one and only one employee. Each employee
can have one title, but multiple employees can have the same title. This will lead us to
the conclusion that there may exists a many-to-one mapping between EID and TITLE.
This mapping is defined as the functional mapping and shown as EID — TITLE. Here
the EID is named as domain and TITLE is named as range. In other words EID
determines TITLE or TITLE depends on EID. Such a mapping is defined as functional
dependency (FD).

In the given relation DPM (DEPT, PRODUCT, MANAGER) with the following
populated data we will check the DEPT - MANAGER or MANAGER — DEPT as
we claim they exist. According to the definition we can have a many-to-one or one-to-
- one DEPT - MANAGER if the FD holds. Same is valid for MANAGER — DEPT.

DPM
DEPT | PRODUCT | MANAGER
DI Pl M1
D1 P2 Ml
D1 P3 M2
D2 i M3
D2 P4 M3

For DEPT - MANAGER test, taken the values for DEPT we have D1 and D2.
From the values above we se that DEPT — MANAGER cannot be validated because
for D1 we have M1 and M2 which is not many-to-one or one-to-one.

For MANAGER — DEPT test, taken the values for MANAGER we have M1

and M2 and M3. From the values above we se that MANAGER — DEPT is valid since
it satisfies the many-to-one and one-to-one condition.

Functional dependency analysis is a practical and structural method of analyzing
problems and relational design anomalies introduced during the database design phases,
specially entity-relationship (ER) modeling that we will study in the next chapter.
Furthermore functional dependency is a way of refining the relational schema created
from ER model. ER model by its nature cannot enable the designer make refinement
decisions specially for:

- Constraints on relationship set. (Business rules or policies of the business which
' have to be incorporated to the database design)

- Problem of identifying attributes of entities in the ER model. (Does an Attribute
A belong to Entity E, or E; ?)

- Problem of defining and identifying entities for representing business rules in
the database design. (Do we need an entity E or not ?)

Definition

A functional dependency (FD), denoted by X — Y, between two sets of
ributes X and Y that are subsets of R specifies a constraint on the possible tuples that

63

can form a relation instance » of R. The constraint states that, for any two tuples t; and t,
in r such that t;[X] = t,[X], we must also have t;[Y] = t,[Y]. This means that the values
of the Y component of a tuple » depend on, or are determined by, the values of the X
component; or alternatively, the values of the X component of a tuple uniquely (or
functionally) determine the values of Y component.

Inference Rules for Functional Dependencies®

REFLEXIVITY: if X2 Y, then X - Y. Or, X— X and Y — Y, where every X
~ determines it self and every Y determines itself.

Proof:
If X o Y and tuples t; and t, in some relation instance » of R such that t;[X] = t;[X].
Then t;[Y] =t;[Y] because of X DY .. X > Yandalso . X—>Y

5_ AUGMENTATION: if X —» Y, then XZ —» YZ for any Z. Or, XZ — Y.

Proof:

Assume that X — Y holds in a relation instance » of R but that XZ — YZ does
not hold. Then there must exist two tuples t; and t; in 7 such that:

(@) u[X] = t[X]

(b) ti[Y] =t[Y]

(0) t[XZ] = t2[XZ]

(d) t,[YZ] # t,[YZ] which is not possible since (e) is deduced from (a) and (b)
(€) ti[Z] = t2[Z] and (f) is deduced from (b) and (e)

() t[YZ] = t,[YZ] which is contradicting (d).

SITIVITY: f X 5> Y, Y > Z,then X - Z.

b) Y - Z hold in a relation . then for any two tuples t; and t, in 7 such that t,[X] =
15[X], we must have

¢) ti[Y] = to[Y] (from (a)), and hence we must have

) i Z] = t:[Z] (from (c) and (b)); . X — Z must hold inr.

)JECOMPOSITION: If X - YZ, then X = Y and X — Z.

roof:

) X - YZ (given),

;YZ — Y (using reflexivity and YZ D Y)
) X > Z (using transitivity on (a) and (b))

64

ADDITIVE (UNION): If X —»Y and X—>Z, then X —>YZ Or
X—>Yand W —> Z, then XW > Y Z (if X =W then X — YZ)

Proof:

(a) X > Y (given),

- (b) X > Z (given),

- () X > XZ (using augmentation on (a) with X; where XX = X),
(d) XY — YZ (using augmentation on (b) with Y)

(e) X = YZ (using transitivity on (c) and (d))

PSEUDO-TRANSITIVITY: If X > Y, YW — Z, then WX — Z

- Proof:

(a) X > Y (given),

(b)) WY — Z (given),

(¢) WX — WY (using augmentation on (a) with W),
(d) WX — Z (using transitivity on (c) and (b))

The Membership Algorithm®'

Ifan FD is derived from another existing FD, then this is called a redundant FD.
During the various transformations and decompositions of a schema design, it has to be
ensured that semantics are preserved. To do this the proof of equivalence of FDs
between the two versions of the schemas is required. The staring point for the proof is
the non-redundant set of FDs in both schemas which is obtained by minimality.

The inference rules reflexivity, augmentation and transitivity are known as
strong inference rules. With these three rules , given a functional dependency set F,
n a schema R , any dependency that can be inferred from F by using reflexivity,
ugmentation and transitivity holds in every relation state r defined on R that satisfies
i dependencies in F. Again by using reflexivity, augmentation and transitivity rules,
¢ can infer dependencies until no further dependencies can be inferred, thus resulting
) complete set of all possnble dependencies that can be inferred from F. Furthermore,
e set of dependencies F*, which are called the closure of F, can be determined from F
‘using the first three rules The set of all functional dependencies logically implied by

the closure of F. In other words, the closure of F, F', is calculated from given set f
FDs by using Armstrong’s rules.

Given the relation R, R(A, B, C, D, E, F, G), where A is the key, given the

ing FDs : A - ABCDEFG,CE — A, BD — E, additional FDs can be computed
he members of the set F*.

mCE -» A and A - ABCDEFG: CE - ABCDEFG
mBD — E and augmentations : BDC — EC
mCE - ABCDEFG and BDC - EC : BDC — ABCDEFG

arahan Esen, Database Management. Concepts, Design and Practice, Prentice-Hall International

65

From A - ABCDEFG:A—> A, A—» B, A-> CA-> D A-> FA-> G

The of the membership algorithm is to show the redundancy of a FD by using
the inference rules. Here we first need to apply the simplifications on the given set of
FDs. Next step is the application of inference rules to the set F of FDs. The problem
here is the be able to calculate the closure of F, F', to verify that a tested FD is implied
by F*. To avoid the difficult and costly task of calculating F" another alternative is
proposed. X' is the closure of set of attributes X in R for FD set F. X" (the closure of set

- of attributes) is obtained such that the FD X — A can be deduced from F by the
inference rules and enables the test of FD X — B in F without calculating the F*. This
~ algorithm is called the membership algorithm.

Given the set F of FDs below, we will test each FD A — B against the
remainder F’ = F — (A — B) to find out if A — B is member of F " and if so to conclude
~ that we can ignore A — B in F since F* will imply this.

R(A,B,C,G, H,I),F={A—> CB,CG—>H,B—> HHA—> H AG—> H}
Applying further simplification (decomposition) will lead to :

(hA-> B
2)A—> C
3)CG—->H
4 CG-oI
5)B—> H
(6)A—> H
(HMAG—-> H

2. X=AC from (2)
3. X=ACH from (6)
4, No more additions can be made to X = A — B is not redundant.

Test of A > C

X=A
2. X=AB from(1)
3. X=ABH from (5)

No more additions can be made to X = A — C is not redundant.

fest of CG — H

L X=CG

. X=CGI from(4)

. No more additions can be made to X = CG — H is not redundant.

est of CG — I

. X=CG
. X=CGH from (3)

66

3. No more additions can be made to X = CG — I is not redundant.

Testof B > H
1. X=B
2. No more additions can be made to X = B — H is not redundant.

4 X =ABCH from (5)

| 5. Hc ABCH; A — H follows from F’ and is redundant
Test of AG > H
l. X=AG
2. X=AGH from (6)

3. Hc AGH; AG — H follows from F” and is redundant

We have end-up with this algorithm with a set of non-redundant FDs.

Minimal Set of Functional Dependencies

A set of FDs is minimal if

Every dependent attribute is a single attribute.
- No determinant attribute is redundant.

- There is no redundant FD in the set of FDs

The database design process requiring the test of equivalence of two schemas
requires. Given the set of FDs in both schemas are F, and F,

- Equivalence of set of FDs in both schemas.

- Closure of F; (F;")= Closure of F, (F,").
- Deleting a FD from F, to obtain F, implies : F2 # F;

place by AC —> E (from A —> B, AC - D); AC - E

—>E E—» D = AC—E
‘transitivity and can be removed

|

67

3.5.5 Normalization

Normalization process was first proposed by Codd. In general the normalization
process takes a relation through a series of test to “certify” whether or not it belongs to
a specific normal form. Normalization of data can be looked as a process during which
unsatisfactory relation schemas are decomposed by breaking up their attributes into
smaller relation schemas that posses desirable properties.®> For a given schema, we
should be able to tell whether it is a “good” design or a “bad” design. If it is a bad
design we need to be able to understand the reasons and problems that makes it a “bad”

design. Normal forms and normalization is a guidance for such measurement in the
relational model.

The original normalization proposal was aiming to resolve the update anomalies
on relations we have described before in this chapter. In a wider view, normalization
provide the designers with

- A formal method of relation analysis based on the keys and functional
~ dependencies.

- - Test series, that can be applied on relations so that it can be normalized. Failing test
will be an indication of decomposition requirement of the relation it is applied.

We do require normal forms and normalization of relations because, they are pure
structures that do not carry multiple disjoint facts and they do not cause update
anomalies. Additional to normalization followings are required for a “good” design,
since normalization does not alone guarantee this.

- Lossless schemas and joins.

- Dependency preservation, which ensures that all FDs are represented in some of the
individual relations.

Lossless Schemas (Lossless Join Decomposition)

Decomposition of a schema R is the process of replacing the schema R by more
relations which contain subset of attributes of R and altogether they include the totality
of attributes of schema R. More formally, the relational schema is the set of attributes,
__={A,, As,....A,} where A; denotes an attribute. Decomposition D, creates a set of
elational schemas from R, i.e. D ={ Ry, Ry,...,R, }. D is called the decomposition of R.

Lossless join decomposition is defined as the decomposition which has the
'bute preservation and relational preservation. Attribute preservation is achieved by
atisfying the rule of no attributes being left out during decomposition or no spurious
uples are introduces. Given the schema R(X, Y, Z) , where decomposed relations are
vu as Ri(X, Y)and R; (Y, Z) . R # RjU R; concluding that the decomposition is not
ossless where tuples (x1, y1, z3) and (x3, y1, z1) are spurious an are not in the original
lation. An algorithmic way of lossless join decomposition test is as follows:

Elmasri R, Navathe S. B., Fundamentals of Database Systems, Second Edition, The Benjamin /
I :|: ins Publi&hiﬂg Compa.ny, p.407, 1994

68

[

Algorithm : Test for Lossless Join®

Step 1:

Step 2:

Assign S(i, j) = by Vi,

Step 3:

R R, R, RiUR;

X Y |Z X |Y Y [z X [y [z

xl |yl [zl x1 |yl | |yl |zl x1 [yl |zl

2 |y2 2| [|y2]| [y2]2 > ffl 23

x3 [yl |Z3 x3 |yl yl |Z3 X2 |y2 |22
x3 | vl |zl
x3 |yl |23

Create a matrix S with Row(i) for relation R; of D and Column(j) for attribute A; in R.

Fori= 1 to n representing R; and j = 1 to m representing A; (where n, m total number

of rows and columns), if R; includes Aj then S(i, j) = g

Step 4:

ForeachFD A —» B inF,

For all rows in S which have the same symbol in the columns for attribute A; make the
symbols in each column that corresponds attribute B be the same in all these rows such
that if any of the rows has an “a” symbol for the column, set the other rows the that
same “a” symbol in the column. If no “a” symbol exists for the attribute in any of the
ws, choose one of the “b” symbols that appear in one of the rows for the attribute and
the other rows to that “b” symbol in the column.

5: If a row is made of “a” symbol then the decomposition has the lossless join
property, otherwise is not lossless.

xecution of the Algorithm on an Example

=(A,B,C,D,E, F)
B{A > B,C > DE,AC »F}

g (A! B)s R2= (Cs Ds E) R3 = (As C, F)

1&2:

B[B [C | D[E]|F
bll | bl2 | b13 | bld | bl5 | bl6
b21 | b22 | b23 | b24 | b25 | b26
b31 | b32 | b33 | b34 | b35 | b36
p428

|

IZMIR YUKSEK TEKNOLOJT ENSTITST
REXTORLUGU

“iifiphane ve Dokimantasyon Daire Bsk.

69

S A B C D E F
R, | al a2 | bl3 | bl4 | blS | bl6
Ry | b21 | b22 | a3 ad a5 | b26
Ry| al | b32 | a3 | b34 | b35 | a6

. Step4:
FD: A — B, Row 1 and Row 3 agree on values in column A (al) : Change b32 to a2

FD : C — DE, Row 2 and Row 3 agree on values in column C (a3) : Change b34 to a4
b35 to a5

S| A B & D E F

IR, | al a2 | bl3 | bl4 | bl5 | bl6

|Rp | b21 | b22 | a3 ad a5 | b26
R; | al a2 a3 a4 as ab

FD : AC — F: No two rows are the same in AC Columns, no change can be made.

Step 5: Row 3 is (al, a2, a3, a4, a5, a6), so this decomposition is lossless.

Dependency Preservation

Dependency preservation is achieved by satisfying the rule, that FDs in set F on

R do appear in the decomposed relations R;, Ry,...,R,. If a schema S is given with the

FD set F;

- The attributes of S are investigated and attributes which are not part of any FD
are separated. These attributes are made to be a relation.

- Ifan FD A — B exists in F where AB contain all attributes of F then S is singe
relation.

- Otherwise, a relation R; is made from each A; — B;

- If there exists a FD as A — B;in F for all attributes B; (1<= i <= n) the a single
relation of AB;B;...B, is built.

~ As an additional rule; if the schema is a decomposition of R, then the key of R
qust be itself a relation or must be in one of the decomposed relations, to make the
decomposition lossless and dependency preserving.

1 First Normal Form

- First normal form was defined to disallow multi-valued and composite
attributes.

- In first normal form, every field must contain an atomic value.
- No nested or sub relations can exist in an relation.

The relation EMP_WORK, below is not in fist normal form. R is a relation with
ributes employee id (EMPID), employee name (EMPNAME), projects worked

70

(PROJECTS_WORKED) which it self is a relation of project id (PROJID), total hours
worked (H_WORK).

EMP_WORK (EMPID, EMPNAME, PROJECTS_WORKED)

EMPID | EMPNAME PROJECTS_WORKED
PROJID H_WORK
001 Joe Murray {Y2K EURO} | {500 250}

- 1002 Bob Hamilton | {Y2K EURO} | {1000, 325}

EMP WORK as populated with the following attributes as first normal form and with
redundancy. In this case the primary key is EMPID, PROJID

EMP_WORK (EMPID, EMPNAME, PROJID, H_WORK }

EMPID | EMPNAME PROJID H WORK
001 Joe Murray YK 500

001 Joe Murray EURO 250

002 Bob Hamilton | Y2K 1000

002 Bob Hamilton | EURO 325

The relation EMP _WORK is decomposed into EMPLOYEE and
EMP PROJECTS to obtain non-redundant first normal form where the primary key is
‘migrated to EMP_PROJECTS to combine with the partial key of PROJID in

'EMP_WORK relation. This process is taking out the nested relations into stand-alone
relations.

EMPLOYEE (EMPID, EMPNAME)

MPLOYEE
PID | NAME

Joe Murray
Bob Hamilton

MP PROJECTS

EMPID | PROJID |H WORK

Y2K 500
EURO 250
Y2K 1000
EURO 325

5.5.2 Second Normal Form

- Full functional dependency is the base of second normal form, where a given
FD A — B is a full functional dependency if any removal of attribute from
A implies that the FD is not valid anymore. Formally, for a given X € A (A
~ {X} x— B) where x— implies no functional dependency. A non-full

71

functional dependency (partial functional dependency) A — B, is the case if
the attribute X € A can be removed from set X and the FD still is valid.
Formally, for a given X € A (A — {X} — B). In the relation EMP_WORK
EMPID,PROJID — H_WORK is a full FD but EMPID,PROJID —
EMPNAME is partial dependency.

- If two disjoint fact are in the same relation, the relation is not in second
normal form.

- A given relation R is in second normal form if every nonprime attribute A id
fully functional dependent on the primary key of the relation.

In the relation EMP _WORK below, the non-prime attribute EMPNAME
- violates the full functional dependency rule considering the FD

- EMPID - EMPNAME.
EMPID,PROJID - EMPNAME and EMPID - EMPNAME

making EMPID partially dependent to the primary key. Also PROINAME (project
- name) and PROJLOC (project location) are violating full functional dependency
because of the FD

| PROJID — PROJNAME,PROJLOC.
EMPID,PROJID - PROJNAME,PROJLOC and
PROJID — PROJNAME,PROJLOC

EMP_WORK (EMPID,PROJID, H WORK, EMPNAME, PROINAME, PROJLOC)

FD : EMPID, PROJID - H_WORK
FD : EMPID — EMPNAME

D : EMPID — PROJNAME, PROJLOC

To obtain the second normal form, the EMP_WORK relation is decomposed

.5.5.3 Third Normal Form

- Transitive dependency is the base for third normal form which is defined
such that ; given a FD in R A — B, if there is a set of attributes X which is
not a subset of any key in R and A — X and X — B is valid.

- Codd defines a relation R in third normal form if “it is in second normal
form and has no transitive dependency of any non-prime in primary key”.

72

Relation EMP _DEPT below is in second normal form since no partial
dependency exists but because of the functional dependencies EMPID — DEPTID

(department id), DEPTID — DEPTNAME (department name). and DEPTID is not part
of the key EMPID.

EMP_DEPT (EMPID, EMPNAME, GENDER, PHONE, DEPTID, DEPTNAME)
FD : EMPID - EMPNAME, GENDER, PHONE, DEPTID
FD : DEPTID — DEPTNAME

Decomposing the relation EMP_DEPT to EMPLOYEE and DEPARTMENT
gives third normal form relations.

EMPLOYEE (EMPID, EMPNAME, GENDER, PHONE, DEPTID)
DEPARTMENT (DEPTID, DEPTNAME)

For a relation to be in third normal form, it has to be obeying the rules of being

fully functional dependent on all keys of R, and no transitive dependent on every key of
R.

3.5.5.4 Boyce-Codd Normal Form

Schemas with relations of third normal form are considered as “good” designs.
Third normal form resolves anomalies of insertion, deletion and updates in the relations.
Any design which is at least not in the third normal form will be introducing these
anomalies. Boyce-Codd normal form is a normalization with additional restriction on
third normal form. As seen in the previous section, a relation needs to be fully
- functional in other words there should be no partial dependency and should not allow
transitional dependency which implies that no FD with non-prime dependent or key
determinant should exist. In Boyce-Codd normal form the second condition, which
allows in an FD A — B, B to be prime attribute if A is not a superkey, is not valid. A
Boyce-Codd normal form is a normalized relation where all determinant attributes are
candidate keys.

- 3.5.5.5 Forth Normal Form

Even when using FD and normalization approach to decompose relations to
avoid anomalies and redundancies, in real life there can be cases where the FD theory
‘does not apply and we may have to deal with such cases. Given the example In the
telation R below with attributes PROINAME, EMPNAME PROJLOC where a project
has employees working and project has locations. Project employees and locations are
‘not dependent to each other. Here we have a case of one-to-many PROJNAME,
EMPLOYEE relation and one-to-many PROJNAME, PROJLOC relation. The existence
of these two one-to-many unrelated relations are the base for another functional
dependency, called the multivalued dependency. The rule for multivalued dependency
in the given relations is to keep all possible combinations PROJINAME, EMPNAME
and PROINAME, PROJLOC. The relation is populated as a sample for this condition is
shown below. Where the possible combinations of tuples of both one-to-many relations
are in the relation.

i)

R(PROINAME, EMPNAME, PROJLOC)

PROJNAME | EMPNAME | PROJLOC
Y2K Mick Reidy L1
Y2K Joe Murray L2
Y2K Mick Reidy L2
Y2K Joe Murray L1

Multivalued Dependency

On a given relation R, the multivalued dependency (MVD), A -»— B, where A
and B are subsets of R follows the rules below for an instance relation r of R : If t; and
t2 exist in r such that t;[A] = t,[A], then another two tuples must also exist in r as t; and
t4 with the following rules:

- B[A] = tfA] = t,[A] = t2[A]
- t3[B] =t;[B] and t4[B] =t,[B]
- t3[R-(AB)] = tz[R-(AB)] and t4[R-(AB)] = t;[R-(AB)]

In the relation R above, PROJINAME —»— EMPNAME and
PROINAME —— PROJLOC.

A given MVD on R, MVD A —5— B, is a trivial MVD if, B is a subset of A or
A U B = R. Inference rules, reflexivity, augmentation, transitivity, projection,
additivity, pseudo-transitivity, complementation and replication exist for MVD.

Reflexivity: A >— B

Augmentation: If A -»— B, then AC >— B

Transitivity: IfA -— Band B »>— C,then A ->—»> C-B

Projection: [fA -— Band A »>— C,thenA >—»> BN C,A—>—> B-C,A—>»>—> C
=B

Additivity: If A >— B and A -—> C, then A -— BC

Pseudo-transitivity: If A —-— B and BC -— D, then AC ->— D -BC
Complementation: If A -— B and C= R~ (AB), then A »>—> C

Replication: If A — B, then A >— B

~ The relation R above is not in fourth normal form. because it only consists of
two unrelated one-to-many relationships. a given relation R is in fourth normal form
with given F, set of dependencies, if for every nontrivial MVD A ->—> B inF A is a
superkey in R. In the given relation R above, PROINAME —— EMPNAME and the
PROINAME —— PROJLOC does not imply PROJNAME to be superkey of R. When
e R above is decomposed into R1(PROJINAME, EMPNAME) and R2 (PROINAME,
’ROJLOC) , then both R1 and R2 are in fourth normal form.

Given below the relation PROJECT(PROJINAME, EMPNAME. PROJLOC),

entical to R above, where we have introduced another project name EURO along with
ree employee dependents (Helen Sherlock, Mick Reidy, Joe Murray, Bob Hamilton,)

74

and four location dependents, L3, L4, LS5, L6 we end-up with the following relation
with 20 tuples.

PROINAME | EMPNAME PROJLOC
Y2K Mick Reidy L1
Y2K Joe Murray L2
Y2K Mick Reidy L2
Y2K Joe Murray L1
EURO Helen Sherlock | L3
- |EURO Mick Reidy L3
. |EURO Joe Murray L3
EURO Bob Hamilton | L3
EURO Helen Sherlock | L4
EURO Mick Reidy L4
EURO Joe Murray L4
EURO Bob Hamilton | L4
EURO Helen Sherlock | L5
EURO Mick Reidy L5
EURO Joe Murray L5
EURO Bob Hamilton | LS5
EURO Helen Sherlock | L6
EURO Mick Reidy L6
EURO Joe Murray L6
EURO Bob Hamilton | L6

When decomposing PROJECT into PROJ_EMP and PROJ_LOC then we obtain the

following tuples in both relations for PROJ EMP(PROJNAME, EMPNAME) and
PROJ_ LOC (PROINAME, PROJLOC) :

| PROINAME | EMPNAME PROINAME | PROJLOC
YK Mick Reidy Y2K L1
Y2K Joe Murray Y2K 12
EURO Helen Sherlock EURO L3
| EURO Mick Reidy EURO L4
| EURO Joe Murray EURO L5
| EURO Bob Hamilton EURO L6

The total number of tuples is 12 with update, delete and insertion anomalies removed ,
which would exist in PROJECT relation.

In this chapter we have studied the wvarious schema refinement and
lecomposition methods, along with the functional dependency theory and normal forms
hat are essential features to refine a schema. Even thought a database design mostly
larts with ER modeling, it is not always possible to end-up with a non-redundant set of
2lations which don’t have any insert, update or delete anomalies, translated directly
om the ER model. ER modeling will be studied in the next chapter. We have not
cluded the relational calculus in this chapter. We are also not presenting the details of

13

the SQL but just give an overview of it. The theory we have studied in this chapter,
specially normalization, will be a base for our database model and design we will be
presenting in the following chapter.

3.5.6 Structured Query Language (SQL)

SQL was the first language used in the IBM’s System R relational DBMS
product. Over the past years since it was first used, SQL has become a popular
relational database language. It is first standardized in 1986 by the American National
Standards Institute (ANSI). Since then, it has been formally adopted as an International
Standard by the International Organization For Standardization (ISO) and the
International Electrotechnical Commission (IEC). It has also been adopted as a Federal
Information Processing Standard (FIPS) for the U.S. federal go:mternment.64

The first SQL Standard developed by ANSI was in 1986. This was called as
SQL-86. A minor revision came in 1989, and was called SQL-89. Next a major revision
was introduced in 1992, and called SQL-92. This was a 580 page specification. ISO
collaborated with ANSI to develop SQL-92. SQL-92 significantly increases the size of
the original 1986 standard to include a schema manipulation language for modifying or
altering schemas, schema information tables to make schema definitions accessible to
users, new facilities for dynamic creation of SQL statements, and new data types and
domains. Other new SQL-92 features include outer join, cascade update and delete
referential actions, set algebra on tables, transaction consistency levels, scrolled cursors
deferred constraint checking, and greatly expanded exception reporting. SQL-92 also
removes a number of restrictions in order to make the language more flexible and
orthogonal. Most commercial DBMSs currently support SQL-92. SQL-1999, As a
. major extension to SQL-92 has been approved in 1999. Table 3.4 summarizes the
developments in SQL standards.

Table 3.4 Developments in SQL Standards

' Version Description

1 1986: SQL-86 First standard published by ANSI
11989: SQL-89 Minor revision on SQL-86
1992: SQL-92 Maijor revision. ISO collaborated with ANSI. Mainly Includes:

- Schema manipulation language

- Schema information tables

- Facilities for dynamic creation of SQL statements
- New Data types and domains

- Outer join

- Cascade update / delete

1999: SQL 1999 A Major extension to SQL-92

As mentioned before, our study does not include SQL implementations. We
will not implement any programming, such as front-end or SQL. The programming
phase would be an exercise for actual development of our model, for which we are
designing the database, both conceptual and physical model.

% National Institute of Standards and Technology (NIST) SQL Project, URL: http://www.nist.gov/

76

Chapter 4

DATABASES DESIGN AND ENTITY-RELATIONSHIP
MODELING

. 4.1 Database Development Process

Almost every design process of a database system contains the entity
relationship (E/R) modeling. The E/R model is based on perception of the real world as
consisting of a collection of basic objects (entities) and relationships among these
objects. It is intended primarily for the database design process by allowing
specifications of an enterprise scheme. This represents the overall logical structure of

the database. The overall logical structure of a database can be expressed graphically by
the E/R model using specific diagrarns.65

Peter P. Chen proposed the E/R model: A data model, called the entity-
relationship model, is proposed. This model incorporates some of the important
semantic information about the real world. A special diagrammatic technique is
introduced as a tool for database design. An example of database design and description
using the model and the diagrammatic technique is given. Some implications for data
integrity, information retrieval, and data manipulation are discussed. The entity-
relationship model can be used as a basis for unification of different views of data: the
network model, the relational model, and the entity set model %

In this chapter we will give the various aspects of E/R model and start
developing pieces of our database model for man-power planning with the E/R
representation.

The general steps in a database development process can be listed as below. For
~ the completeness of system development phases, we have given system analysis and
~ implementation phases as headlines but we will not explore these areas in this chapter.

- Systems Analysis: Some sources also call this phase as requirements analysis. This
phase includes initial processes and tasks of information system design. This phase
collects facts, requirements, directions from the business environment. These
collections involve both; application level and data level facts. Functional structures
and existing data maps of the business environment are drawn in this phase. The

outcome of this phase will lead to the application development and database design
and implementation.

. System Design: Once the system analysis phase is completed, the next step is the
identify the functional requirements and database requirements. The first one will be

® Han, J., Database Systems and Structures, Lecture Notes, CPMT354, 1995, School of Computer
Science, Simon Fraser University, URL: http://www.csuohio.edu

% Chen P. P., The Entity-Relationship Model - Toward a Unified View of Data, ACM Transactions on
Database Systems, Volume 1, Number 1, p.9, March 1976

17

Organisational) fé}e}c;;xllrements,
[Environment ; CRES
i - Orders,
- Opportunities
for developing a database
system
S S
H
System Analysis
(requirement analysis) Lt " Business experts
Functional & Database] !Sny:;:zn;:;lalyst
Requirements 8
- workers

System Design

| ‘

Functional Design Conceptual Design

CONCEPTUAL SCHEMA -
-~ PROCESS MODELS

DBMS e

Logical Design
<
DBMS -CONCEPTUAL SCHEMA 4«1
Yy b
Application Design Physical Design

-------- > APPLICATION MODELS
PHYSICAL SCHEMA 4

> Implementation [

igure 4.1 High-Level Phases of Database and Application Development.

The output of the conceptual design is the E/R Model (conceptual schema). for
e rest of the chapter, we will be working in detail with the E/R model. We have seen
¢ Logical design concepts in Chapter 2 where we have introduced the functional
gpendency and normalization in schema refinement. Various design tools can be used
ring the phases in the figure above. Major DBMS companies and vendors have
oduced analysis, design and development tools to assist the database designer. We
ll use the Sybase tool, Power Designer in our implementation of the relational model.

79

4.2 Entity-Relationship Model

4.2.1 Entity

E/R model has some basic components we will be studying in this section.
Entity is the basic, main component in the E/R model. entity is an diagram object
representing a real world object and it can be distinguished from other entities.
Employee, title, department, project are some examples to possible entities in real
world and in E/R model. Entities may be physical or conceptual objects. A set of
entities 1s the collection of entities in a given database schema, or an entity type is the
collection of entities that have the same attributes.

Entities have set of “attributes” as properties. The attributes describe the
entity. For example, a department entity can be described by Department id, department
name, manager. Attributes of an entity have “values”, which are the stored data for
them in the database. The attributes mostly have domains for their values. As we
described a domain before, it 1s a set of possible values, that an attribute can have.
domains are described with domain names, the data types and sometimes with valid
value ranges. Entities have keys, as primary key, candidate key to identify a single
entity in a given entity set. A key is the minimal set of attributes whose value is unique

to identify the entity. There may be multiple candidate keys, one of them being defined
- asthe primary key.

Entities in the E/R model are generally shown as in Figure 4.2 with their
attributes as ovals attached to the rectangular entity.

EMPLOYEE

Figure 4.2 An Entity Representation in E/R Model.

In the Figure 4.2, the EMPLOYEE entity is represented with the rectangle with
its name. the attributes are shown as ovals with attribute names in the middle. The key

bute is bold and underlined in E/R representation. Attributes of an entity can be in
e of the following types:

- Simple or composite: A simple attribute cannot be divided into further sub-
attributes and so it is atomic. On the other hand a composite attribute is
composed of multiple atomic attributes. In Figure 4.2, the ADDRESS attribute
can be given as an example to composite attributes because it may be composed

80

of attributes such as street name, number, city. Here, any of the attributes
composed to make-up the address attribute are called the simple attributes.

- Single valued or multivalued : Some entities can have single (unique) value. In
the EMPLOYEE entity, the age would be an example of such an single-valued
attribute. But the EMPLOYEE could have multiple phone numbers and
therefore the phone attribute would be a multivalued attribute. Multivalued
attributes mostly can have a group of values or range of values that the entity
can have.

- Stored or derived : On the EMPLOYEE entity, if we have the birth date and
age attributes together, then the birth date attribute could be a stored (recorded)
entity and the age attribute would be the derived entity which is calculated from
birth date and current date as : AGE = NOW-BIRTH DATE. The thing to notice
here is that, even though the stored value is fixed, the derived value can change
by time.

- Null valued attributes: One of the important concepts in attributes are the null
valued attributes. for a given entity and its attribute, there may be a value not
available or not applicable. For example, the apartment number of an employee
may not exists since he or she may not be living in an apartment but may be
living in a private house. such unknown values are called NULLS. It is
important to understand that NULL #”BLANK” or NULL # ZERO. Blank and
zero are known values whereas NULL is not known. Primary keys are not
allowed to be NULL since this would violate all relational rules and integrity
constraints.

4.2.2 Relationship

Entities which interact with each other are linked with relationships.
‘Relationships tie entities. The second element of the E/R model are the relationships or
| the relationship types.

A relationship type is defined as, R, among n entity types E,, E,...E,, defines a
set of associations among entities from these types. R is the set of relationship instances
1, where each r; associates n entities (e, €2,...€,), and each entity ¢; in r; is member of
entity type E; (1< j < n).%’

Relationships in E/R model are shown as diamond along with the attributes they
hold from the entities they relate. A simple figure describing entities and relationship is
given in Figure 4.3. Here, the entities are EMPLOYEE and TITLE and the relationship
is EMPLOYEE TITLE. The StartDate and EndDate attributes associated with the
EMPLOYEE TITLE relationship are called the descriptive attributes of the
relationship. We show the properties (attributes) of the relationship above the diamond
and the key properties are shown as boldface and underlined. If the key properties are

Elmasri R., Navathe S., Fundamentals of Database Systems, 2™ Edition, The Benjamin / Cummins
Publishing Company, p.49, 1994

81

associative, i.e. they are coming from the entity attribute set, then these are handled like
foreign keys.

TITLE M N EMPLOYEE

(I1d, Code, StartDate, EndDate)

Figure 4.3 Entities and Relationships.

A relationships degree is the number of entity types in the relationship. The
degree of EMPLOYEE_TITLE relationship is two which is called a binary relationship.
A relationship of degree three is called a ternary relationship.

_ In the EMPLOYEE TITLE, if a title can be held by many employees and an
_employee can have multiple titles than we have a many-to-many relationship. If a title
~can only be held by one employee and an employee can hold many titles then the
relationship would be many-to-one from title to employee. If an employee can only
have one title and a title can be held by many employees, the relationship would be one-
to-many from title to employee. In the case of one employee can only have one title and
atitle can only be held by one employee, then we would have a one-to-one relationship.
These constraints described are called the mapping constraints. We display the
mapping constraints on the both side of the relationship diamond. In our case we have
set a many-to-many relationship. Mapping constraints are also known as cardinality
constraints.

If the existence of an entity depends on the existence of another entity through a
relationship, then there exists an participation constraint. Participation constraint can
be a total or partial. A given database requirement stating that every employee must be
working in a department, would imply the total participation constraint on the
relationship between employee and department. Every employee must be assigned to a
department via the relationship. Database requirement stating that every department
must have a manager (from the employee domain) implies that some employees will be
nanaging departments but not all of them. Some employees will be related to the
lepartment via a relationship but not all of them. This constraint is the partial
articipation constraint. In E/R diagrams some sources show the total participation with
ouble line (=) and partial participation with single line (-).

Entities play roles in relationships. This is identified by their role name. For

cample in the Figure 4.3, the TITLE entity plays the role of title. In some other cases,
1 entity in an relationship plays more than one roles and has different role names to

82

distinguish each the participation and the role played by this participation. This kind of
relationships, where an entity plays different roles are called the recursive relationships.
in Figure 4.4, a recursive relationship is show. Here the employee entity plays the role
of employee and also plays the role of supervisor, which is in fact also an employee.
Recursive relationships occur where an entity type is related back to the same entity

type, i.e. relations like “married”, “reports-to”, “manages”. A recursive relationship is
also called an unary relationship.

4.2.3 Weak Entity (or Weak Relation)

Entities, which don’t have any key attribute for themselves are know as the
weak entity. These entities are owned or identified by some other entities in the
schema. Another way of defining the weak entities is to identify the relationship
between an entity and its owner as a hierarchical relationship, which implies that the
dependent cannot exists without the root it depends. In this way, the relationship is
defined as weak and not the entity and the weakness of the relationship is shown with
double lined diamond.*® The weak relationship must obey the following rules :

- Leaf entity (weak entity) must have a total participation in the relationship. In
other words, there cannot be a child entity without any parent entity.

- The mapping constraint must be one-to-or one-to-many from parent entity to
child (dependent) entity.

MANAGES

EMPLOYEE

(EMPID, MGRID)

REPORTS

gure 4.4 Recursive Relationships.

Child entities in weak relations can have a partial key which identifies uniquely
e child entities dependent on a parent entity with one-to-many constraints. Any unique
itribute of the child entity can be the partial key. In the physical implementation of the
d entity, the key of the parent is migrated to it forming along with the partial key the
entifier of the child. A weak relationship is shown in Figure 4.5, where the entity
MPLOYEE HISTORY is dependent to the entity EMPLOYEE. The partial key of
MPLOYEE HISTORY is shown as dotted-underlined.

ahan Esen, Database Management. Concepts, Design and Practice, Prentice-Hall International
p.212, 1990

83

EMPLOYEE

| EMPLOYEE HISTORY

Figure 4.5 Weak Relationship.

4.2.4 Extended E/R Model *

In addition to the E/R model, certain extension are implemented, to
conceptualize total mapping constraints, aggregation and generalizations in the E/R
model. Extended E/R model is an additional abstraction to the existing E/R model.

Total Mapping Constraint

Consider the case, where departments have been allocated pool cars, which can
be assigned to multiple departments. What is more, a pool car cannot exists without
- being assigned to a department. In other words, every POOL CAR instance is assigned
10 a department and not every department has to have a pool car assigned. This is the
situation where we have total mapping constraint. Total mapping constraint is shown
with a dot (.) on the side of the constrained entity, in this case the POOL CAR entity.

Agegregation

So far we have defined a relation to be an association between entities. In real
life we have scenarios which required us to model relationships between a collection of
entities and relationships. The feature enabling this is called the aggregation, indicating
a set of relationships is participating to another relationship. Aggregation is shown in
dotted line around the set of relationships and entities forming it. Consider the example
f departments developing products and employees managing them given in Figure 4.6
vhere the DEVELOP relationship contains the DEPARTMENT and PRODUCT
lationship. Aggregation enables us to use the DEVELOP relationship in the
IANAGES relationship. This handles the problem of relationships only existing
etween entities. In the same figure we have also shown the total mapping constraint.

Generalization

bid, p213

84

EMPLOYEE POOL_CAR

: | PRODUCT _M_’L DEPARTMENT | !

EMPLOYEE

. Officeld

SHIFT WORKER DAY WORKER

¢

TEMP PERMANENT

Contractld @

{

ire 4.7 Generalization in E/R Model.

85

Generalization arises from the need to categorize entities into sub-entities where
each of the sub-entities will have category specific descriptive attributes and common
attributes are listed with the super-entity , which is above all of the sub-entities. in
Figure 4.7 a generalization is given. The generalization is in the diagram is given as “IS
A” where every employee is a shift worker or day worker and every employee is a
permanent or temporary employee.

In Figure 4.7, common attributes, existing for all employees are attached to the

EMPLOYEE entity. Employees are then categorized as SHIFT WORKER,
DAY WORKER and TEMP, PERMANENT.

Shift working employees have been attributed with start time and end time of
their shifts. Day workers have been assigned with office id, where they work. In the
second “IS A” generalization, temporarily employees have the attribute contract id and
permanent employees have the attribute payroll id. All employees have “id”, “first
name”, “last name”, “birth date” and “date joined company” attributes regardless
whether they are shift working or day working and whether they are temporarily or
permanent.

4.2.5 Various Design Consideration in E/R Model

When modeling database systems using E/R model, there are usually some
considerations to be taken into account and decision to be made based on the model.
Some decision points are whether a concept, (or object) be modeled as an entity or
attribute?, Should it be a relation or an entity in the E/R model?, How should be the
relationships designed, binary, ternary? Should aggregation be used or not ?

Based on the answers on these questions, the E/R model is designed and
implemented. The answers to these questions are critical for the success of the model

and for representing the real life cases in the database.

What should be an entity and what should be an attribute ?

One of the best examples to describe this problem is the address of employees in
a database. There are two options, address can be an attribute of EMPLOYEE entity or
it can be a separate entity and can be in a relationship with the EMPLOYEE entity.
Followings are the questions we should be answering before a making a decision

- Do we need to capture many addresses for an employee ? Do employees have
multiple addresses ?

Do employees share the same addresses ?
Do we need to report on sub-information on addresses. for example do we have
query which reports all employees living in a given city ?

these questions are answered we will be able to design accordingly and if all of
are “YES” we will need to design address as an entity rather than an attribute.

Should an object be an entity or relationship ?

86

The best way of tackling this problem is to investigate the constraints given in
the requirements and answering the following questions. Does the model fulfill the
requirements and does it represent the given scenarios by using an object as an entity or

relationship? Are the real life cases represented with entities and attributes or are they
instances of relationships?

Given the example below of preliminary design of an E/R model for Employee
and department entities, the employee entity has a reference to the department entity
through the initial attribute DEPARTMENT. This clearly indicates that there is a need
to a relationship among the two preliminary entities EMPLOYEE and DEPARTMENT.

Most of the times, the initial design is refined to create more relationships for a database
definition.

EMPLOYEE {ID, NAME, SEX, ADDRESS, DEPARTMENT}
DEPARTMENT {NUMBER, NAME, LOCATION}

4.2.6 E/R Diagram Symbols and Notations

Different source use different symbols and notations in modeling a database
using E/R diagram. The symbols we will be using in this thesis are given in Figure 4.8.

ENTITY Entity - 1

Entity - 2

?

Total participation of Entity-2 in Relation R

N

WEAK ENTITY Entity - 1

Entity - 2

S

Cardinality M:N for Entity-1 and Entity-2 in R

(M:N

Entity - 1

Entity - 2

Relationship

3

Structural constraints of minimum and

maximum participation of Entity-2 in relation
R (min,max)

Key attributes are underlined. Partial attributes
in weak entities are dashed-underlined

7" Multivalued /" Derived .
Attribute - \ Attribute S

X
s s

gure 4.8. Symbols used in E/R Diagram

87

In the next Chapter, where the E/R diagram is given, we will simplify the
| diagram by listing the attributes of the entities seperately and not showing in the E/R
- diagram.

88

Chapter 5

A MIS DATABASE MODEL FOR MAN-POWER PLANNING

5.1 Introduction

In this chapter we will give a MIS database model development for a man-power
planning database. The development phase will start with the initial description of the
system. the next step will be the E/R model of the database followed by the
implementation of the conceptual model with Sybase tool Power Designer®. The next
step will be the creation of the relational database from the conceptual model.. The
database model we have developed in this study is based on a theoretical organizational
requirement of a database system.

We have made some assumptions during this design work. These are on the
requirement analysis (system analysis) and actual implementation. We will not present
the details of the requirement analysis and actual database implementation in this thesis.
What is more we will not provide the business applications side of this work, i.e.
implementation of front-end MIS applications working against our database.

Man-power planning and reporting is an important task in every organization.
What is more, many organizational functions shown in Figure 2.7 actually require an
efficient man-power planning tool or platform to carryout their tasks. Whether a
company is in manufacturing sector or service provider, man-power is an essential part
for delivering the products or the services. In our model we will be designing the
database based on requirements of an organization in manufacturing area.

There are various problems and challenges in organizations to be tackled to
carry out the organizational functions. These problems are in one way or the other also
related to the man-power planning problem. As being the most valuable resource of
- operation, man-power has to be planned efficiently. There are multiple packages and
solution providers in the market place today on enterprise resource planning systems,
crew scheduling systems, human resources management packages, time attendance

systems etc. Some of the major developers are SAP, PeopleSoft, Oracle, JDEdward,
IBM and Microsoft.

Our study in this thesis is an attempt to understand information and database
systems and try to develop a database model for an experimental environment for man-
power planning. Following areas are considered in developing the database model.

Production and production planning: This includes to meet the production
targets within the given constraints and quality metrics. Production requires man and
machine as resources operate. Production and production planning are based on the

short term requirements and plans. The output of production planning is the short term
production schedules.

89

- Physical implementation issues such as security, views, DBMS selection, front-end
user application design are not in the scope of this work. But we will be giving a sample
physical database creation (scripts) for Sybase SQL Server Anywhere 5.5 ©

Initial refinements are implemented on the E/R model. We are not giving every step of
refinement during the E/R modeling.

PRODUCTION . / ABSENTEEISM

LOGISTICS |[¢—» MAN-POWER lg p TRAINING
PLANNING

PRODUCTION PERFORMANCE
PLANNING ANALYSIS

[Figure 5.1 Relationships Between Functions and Man-Power Planning.

5.3 E/R Model Design

5.3.1 Database Requirements Summary

Database Name : MAN-POWER PLANNING DATABASE.

The Man-Power Planning Database is designed to accommodate data for an
organization which manufactures a specific type of product.

The company is organized as various departments where a department can have
multiple sub-departments. Within a department there are different work-teams.
- Departments own different production lines, composed of production machines where
each production machine is in fact composed of different sub-machines making up the
production line. Machines are located in different areas and locations. Each area has
different locations assigned to it. The company operation is based on an overall
organizational calendar with a planned version and actual version.

91

The company operates in daily shift basis. There are different shifts in a day

starting and ending at certain times in a time sequential way. There is also a regular day
shift operation in the company.

Crews are composed of employees. Crews are assigned to the different working
shifts. A crew has a planned and actual calendar. Employees in a crew can come from
different department. An employee can only be in one crew at a time.

Employees have qualifications and job titles enabling them to be assigned to
different production machines. Workers with different qualifications are assigned to the
production machines for each working shift. Production machines have a list of required
qualifications. Production is carried out on a calendar basis where machines have a
production calendar for operation. Different activities of operation can be carried out
on a given machine on different dates and shifts. Machines also produce products for
which data is stored in a daily basis for each shift. Employees attend training programs
based on a training schedule and on given classrooms and dates. The training have the

purpose to give more qualifications to the employees. An employee training record is
kept for history of attended training.

Employee activities are planned by employee calendar and actual employee
transactions are kept in actual employee calendar.

Employee transportation is carried out with shuttle system where stations and
shuttles are assigned for each calendar date. A shuttle services multiple station for a

given date and shift. A station can also be serviced by multiple shuttle on a given date
and shift.

5.3.2 Preliminary Entity Design

{} Indicates relational information. () Indicates composed attributes. Key attributes are
underlined and bold face.

Below, the initial entity designs are given. These are not in any form or shape of
refinement. These preliminary designs have to be converted into detailed entities and
relationships in the E/R model.

ORGANIZATION CALENDAR
{Working Calendar-Planned}
{Working Calendar-Actual}

DEPARTMENT

Code, /* Primary key for the DEPARTMENT entity type
Name, /* Short name

Description, /* Long Description

SuperDepartment, /* Super-Department that this department reports to
Manager, /* Manager from EMPLOYEE entity

{WorkTeam}, /* Work teams that belong to the department

{ProductionMachines}/* Production machines owned by department

92

AREA

{Cost Center} /* Cost Center areas in a department.

Code
Name
{Location}

EMPLOYEE

W

Code /* Primary Key for EMPLOYEE entity type
(Name(FirstName, LastName, UserName))

SSN /* Social Security Number

(Personal Information(BirthDate, BirthPlace, Mothers Name, Fathers Name,
Marital Status, Sex, Blood Type, Title, Nationality))

Address(Address Line, City, Country, e-mail)

{Job Title}

{Qualifications}

{Cost Center}

{Education}

{Company}

{Department}

{Working Calendar-Planned}

{Working Calendar-Actual}

{Crew}

(Contact Information(FirstName, LastName, Address, Phone Number))
{Shuttle Information}

{Activity}

{Vacation}

COMPANY

Code

Name

Address

Phone Number
Fax Number

(Time (Start Time, End Time))
Order

Code

Name

{Working Calendar-Planned}
{Working Calendar-Actual}
{Status}

ODUCTION MACHINE

{Working Calendar}

93

{Status}

TRAININGACTIVITY
{Training}
{Status}

{Type}

{ Attendees}
{Trainer}
{Classroom}

5.3.3 Detailed Entity Design

. Following the high-level requirement description and preliminary entity design,

the next step is the detail the E/R model for the entities. In this section every entity of
the model is described and attributes are given. The next step will be the E/R diagram
given in Section 5.3.4. The key attributes are be underlined and bold-faced.

Table 5.1 summarizes the list of all entities followed by all entities with the

attributes. Figure 5.2 (a), (b), (c), (d), (e), (), (g), (h) in Section 5.3.4 show the E/R
diagram of the model in Figure 5.2.

Table 5.1 Entity List

Name Description

ACTIVITY Production activities of the
Production Machines

AREA Physical area in the company

BLOODTYPE Different Blood Types

CITY City

|CLASSROOM Class rooms for training
|COMPANY Company

|COSTCENTER Cost Center Codes in the company
|COUNTRY Country

|CREW Crew
CREWCALENDAR_ACTUAL Actual crew operation calendar
ICREWCALENDAR PLANNED Planned crew operation calendar
ICREWSTATUS Crew status codes

DEPARTMENT Department

EMPLOYEE Employee

EMPLOYEEACTIVITY Employee activities
EMPLOYEECALENDAR ACTUAL Actual employee operation calendar
EMPLOYEECALENDAR PLANNED Planned employee operation calendar
ING Employee Training

Fducational Institutes
JOBCATEGORY Job Categories

Job Titles

Education level for employees
Location in the company

94

Table 5.1 Continued.

MACHINETYPE Production machine types
ORGANIZATIONCALENDAR ACTUAL | Actual company operation calendar
ORGANIZATIONCALENDAR PLANNED | Planned company operation calendar
ORGANIZATIONSTATUS Company Operation status
PMCALENDAR Production machine calendar
PMSCHEDULE Production machine calendar
PMSTATUS Production machine status codes
PRODUCT product
PRODUCTIONMACHINE Production machine
QUALIFICATION Employee Qualification
SHIFT Shift
SHUTTLE Shuttle
STATION Station
TITLE Title (initials)
TRAININGACTIVITY Training events
TRAININGMASTER Training master setup
TRAININGSTATUS Training status codes
TRAININGTYPE Training types
VACATIONENTITLEMENT Employee annual vacation
entitlements
WORKCALENDARTYPE Type of calendar (shift non-shift)
WORKTEAM Work teams
Entities :

ACTIVITY (Code Name, Description, DefaultAmount)
AREA (Code, Name)

BLOODTYPE (Code, Name)

CITY (Code, Name)

CLASSROOM (Code, Name)
- COMPANY (Code, Name, AddressHQ, PhoneNumber, FaxNumber)
COSTCENTER (Code, Name, Description)
COUNTRY (Code, Name, Abbreviation)
CREW (Code, Name, Description)
CREWCALENDAR_ACTUAL (CalendarDate, TotalAmount, Notes)

CREWCALENDAR PLANNED (CalendarDate, TotalAmount, Notes)

25

CREWSTATUS (Code, Name, Description)

DEPARTMENT (Code, Name, Description, ManagersSince)

DEPENDENTS (FirstName, LastName, Relationship)

EMPLOYEE (Code, FirstName, LastName, UserName, Ssn, BankAccountNo,
BirthDate, BirthPlace, MothersName, F'athersName, MaritalStatus, Sex, AddressLinel,
Addressl.ine2, AddressLine3, PostalCode, HomePhone Number, WorkPhone Number,

WorkExtension, Postl.ocation, FaxNumber, Email, ContactFirstName,

ContactLastname, ContactAddress, ContactPhoneNumber, DateJoined, LeftService,
DateLeftService)

EMPLOYEEACTIVITY (Code, Abbreviation, Name, Description, ActivityType,
WorkActivity, UnitofActivity, DisplayOrder, Display)

- EMPLOYEECALENDAR ACTUAL (CalendarDate, TotalAmount, Notes)
EMPLOYEECALENDAR PLANNED (CalendarDate, TotalAmount, Notes)

L EMPLOYEEHISTORY (RecordDate, Department, EduationLevel, Institute, JobTitle,
Company, Notes)

EMPTRAINING (Result, Notes)
INSTITUTION (Code, Name)
JOBCATEGORY (Code, Name, Description)
JOBTITLE (Code, Name, Description)

LEVEL (Code, Name, Description)

LOCATION (Code, Name)

MACHINETYPE (Code, Name, Description)
ORGANIZATIONCALENDAR ACTUAL (CalendarDate, TotalAmount, Notes)
'ORGANIZATIONCALENDAR PLANNED (CalendarDate, TotalAmount, Notes)
ORGANIZATIONSTATUS (Code, Name, Description)

PMCALENDAR (ProductionDate)

PMDOWNTIMES (StartTime, EndTime)

MSCHEDULE (PlannedProductionAmount, ActualProductionAmount, Defects)

STATUS (Code, Name, Description)

96

PRODUCT (Code, Name, Description)

PRODUCTIONMACHINE (Code, Name, Description, Active)
QUALIFICATION (Code, Name, Description)

SHIFT (Code, Name, StartTime, EndTime, Sequence)
SHUTTLE (Code, RegNumber, Driver, Capacity, Remarks)
STATION (Code, StationName, Address)

TITLE (Code, Name)

TRAININGACTIVITY (DateFrom, DateTo, Capacity, Notes)
TRAININGMASTER (Code, Name, Description, Notes)
TRAININGSTATUS (Code, Name)

TRAININGTYPE (Code, Name, Description)

VACATIONENTITLEMENT (EntitlementYear, VacationEntitlement,
VacationRemaining, CompensationBalance)

WORKCALENDARTYPE (Code, Name)

WORKTEAM (Code, Name, Description)

97

5.3.4 E/R Diagram

COSTCENTER

SuperDepartment

DEPARTMENT

CClobCategory
EmployeeCompany
JOBCATEGORY
COMPANY (O.N)
EmpCostCenter
N 1
TITLE (0,1) (O.N)
EmployeeBType EmployeeDepartment
BLOODTYPE 1 N EMPLOYEE
(0.N) (0.1
EmpAddressCity
CITY
COUNTRY
EmpVacEntitlement
Nationality Moo 1 2
1 N
(o.m\/ (0.1) EmplJobTitles (ON) n
EmpMainJobTitle
1 N ®
JOBTITLE
[(O,N) (1N

VACATIONENTITLEMENT

Figure 5.2 (a) E/R Diagram

98

f"‘—__’“

QUALIFICATION
L]
M
N
EmployeeQualification
(O.N)
PMQualification
[]
EMPLOYEE
oy | N
EmployeeEducation
o.N) 1
Education
LevelInstitution
LEVEL

M N
INSTITUTION
(ON) (O,N)

PRODUCTIONMACHINE
0,1) N
DepartmentPM
(O.N) 1
DEPARTMENT
ON) i
DepartmentWorkTeam
(1,10 N e
WORKTEAM

Figure 5.2 (b) E/R Diagram

PMMachineType

PRODUCTIONMACHINE

SHIFT

MACHINETYPE

ACTIVITY

PMPMCalendar

PMCalendarActivity

CrewPMCalendar

CREW

ShiftPMCalendar

WORKTEAM

Work T'eamPMCulendar

PMStatusPMCalendar

PMSTATUS

Figure 5.2 (¢) E/R Diagram

100

EMPLOYEEACTIVITY

.N) 1 (O,N) 1

oN)y 1 (O.N)

(L1) N (LD

(a
EmpActEmpCalPin EMPLOYEE
EmployeeEmpCalPln EmployeeEmpCalAct
N

(LD N (LD

EmpActEmpCalAct

EMPLOYEECALENDAR_PLANNED

EMPLOYEECALENDAR_ACTUAL

o1 N .1 N
1 1
CREW
ON) (ON)
LD N ShiftEmpCalPln ShiftEmpCalPln Ly
ShiftEmpCalPln SHIFT
ON) ON)

ShiftEmpCalAct

Figure 5.2 (d) E/R Diagram

101

CSCCPIn

CREWSTATUS

CSCCAct

(1,1) N

N (LD

CREWCALENDAR_PLANNED

CREWCALENDAR_ACTUAL

(LD N

1

(LD N

CREW

1

(ON)

CrewCrewCalPlIn

(ON)

CrewCrewCalAct

Figure 5.2 (e) E/R Diagram

102

PMCALENDAR

1 (O,N)
PMCalendarPMSchedule
N (L.1)
PMSCHEDULE
[]
N (1L,1)
ProductPMSchedule
PRODUCT

PRODUCTIONMACHINE SHUTTLE
N 0.1) N OM)
; 1 (0,N)
LocationPM StationShuttle
1 (ON)
M O.N)
PMCalDowntimes
N (1,10
LOCATION STATION
N (L1 PMDOWNTIMES 1| oN
Areal.ocation StationEmployee
1 (0O,N) N (LD
AREA EMPLOYEE

Figure 5.2 (f) E/R Diagram

103

CREW

e N

WCTypeCrew

(LD

WrkCalTypeOrgCalPln

\/ ki

(ON)

WORKCALENDARTYPE

-

(L1 N

WrkCalTypeOrgCalAct

ORGANIZATIONCALENDAR _PLANNED

ORGANIZATIONCALENDAR _ACTUAL

(L1

ShiftOrgCalPln

N

(LD

!

1
(O,N)

OrgStatOrgCalPln

(L) N

t ORGANIZATIONSTATUS

1

(O.N)

OrgStatOrgCalAct (LD

o.N)

SHIFT

&

o.N)

N

ShiftOrgCalAct

Figure 5.2 (g) E/R Diagram

TTypeTraining
1
TRAININGMASTER N /\ TRAININGTYPE
(,1) \/ (O,N)
1 (0,N)
T™T
ClassRoomTraining N (L1 TStatus
CLASSROOM TRAININGACTIVITY TRAININGSTATUS
QUALIFICATION
QualificationTraining TrainingEmpTraining
1 N
EMPTRAINING
(O.N) (L1
EMPLOYEEHISTORY
Instructor
EmpHist
1
DEPENDENTS g ! | EMPLOYEE
oN)
.1 ©ON) i
EmpDependents EmpTraiing

Figure 5.2 (h) E/R Diagram

105

5.3.5 Relationships in the E/R Model

Arealocation
CClobCategory
ClassRoomTraining
CrewCrewCalAct
CrewCrewCalPIn
CrewEmpCalAct
CrewEmpCalPIn
CrewEmployee
CrewPMCalendar
CSCCAct
CSCCPIn
DepartmentPM
DepartmentWorkTeam
DeptCostCenter
EmpActEmpCalAct
EmpActEmpCalPIn
EmpAddressCity
- EmpAddressCountry
EmpCostCenter
. EmpDependents
EmpEmpCalAct
EmpEmpHist
EmpJobTitles
EmployeCompany
EmployeeBType
EmployeeDepartment
EmployeeEmpCalPIn
EmployeeQualification
EmployeeTitle
EmpMainJobTitle
EmpTraining
EmpVacEntltlement

MStatusPMCalendar

106

ProductPMSchedule
Qualification
ShiftEmpCalAct
ShiftEmpCalPln
ShiftOrgCalAct
ShiftOrgCalPIn
ShiftPMCalendar
StationEmployee
StationShuttle
SuperDepartment
SuperPM

T™MT
TrainingEmpTraining
TStatus

TTypeTraining
WCTypeCrew
WorkTeamPMCalendar
WrkCalTypeOrgCalAct
WrkCalTypeOrgCalPIn

Detailed Description of Relationships

AreaLocation

Name: Areal.ocation
Entity 1: Area

Entity 2: Location
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Area Mandatory: No Dominant: No Min, Max: 0, n
L Entity 2 — Entity 1: Role: Location Mandatory: Yes Dominant: No Min, Max: 1, 1

CCJobCategory
Name: CClJobCategory
Entity 1: JobCategory
Entity 2: CostCenter
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: JobCategory Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: CostCenter Mandatory: Yes Dominant: No Min, Max: 1, 1

ClassRoomTraining

Name: ClassRoomTraining
Entity 1: ClassRoom

Entity 2: TrainingActivity
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: ClassRoom Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Training Mandatory: No Dominant: No Min, Max: 0, 1

107

CrewCrewCalAct

Name: CrewCrewCalAct
Entity 1: Crew

Entity 2: CrewCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: CrewCalAct Mandatory: Yes Dominant: No Min, Max: 1, 1

CrewCrewCalPln

Name: CrewCrewCalPIn
Entity 1: Crew

Entity 2: CrewCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: CrewCalPIn Mandatory: Yes Dominant: No Min, Max: 1, 1

CrewEmpCalAct

Name: CrewEmpCalAct

Entity 1: Crew

Entity 2: EmployeeCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpCalAct Mandatory: No Dominant: No Min, Max: 0, 1

CrewEmpCalPIn

Name: CrewEmpCalPIn

Entity 1: Crew

Entity 2: EmployeeCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpCalPIn Mandatory: No Dominant: No Min, Max: 0, 1

CrewEmployee

Name: " CrewEmployee
Entity 1: Crew

Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0,n

Entity 2 — Entity 1: Role: Employee Mandatory: Yes Dominant: No Min, Max: 1, 1
CrewPMCalendar

Name: CrewPMCalendar
Entity 1: Crew

Entity 2: PMCalendar
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Crew Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max 1, 1

108

CSCCAct

Name: CSCCAct

Entity 1: CrewStatus

Entity 2: CrewCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: CS Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: CCAct Mandatory: Yes Dominant: No Min, Max: 1, 1

CSCCPIn
Name: CSCCPIn
Entity 1: CrewStatus
Entity 2: CrewCalendar Planned
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: CS Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: CCPIn Mandatory: Yes Dominant: No Min, Max: 1, 1

DepartmentPM
Name: DepartmentPM
Entity 1: Department
Entity 2: ProductionMachine
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

| Entity 1 — Entity 2: Role: Department Mandatory: No Dominant: No Min, Max: 0, n
l Entity 2 — Entity 1: Role: PM Mandatory: No Dominant: No Min, Max: 0, 1

. DepartmentWorkTeam

Name: DepartmentWorkTeam
Entity 1: Department

Entity 2: WorkTeam
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Department Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Workteam Mandatory: Yes Dominant: No Min, Max: 1, 1

DeptCostCenter
Name: DeptCostCenter
Entity 1: Department
Entity 2: CostCenter
Cardmnality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Department Mandatory: No Dominant: No M, Max: 0, n
Entity 2 — Entity 1: Role: Costcenter Mandatory: No Dominant: No Min, Max: 0, 1

EmpActEmpCalAct
Name: EmpActEmpCalAct
Entity 1: EmployeeActivity
Entity 2: EmployeeCalendar_Actual
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

- Entity 1 — Entity 2: Role: EmpAct Mandatory: No Dominant: No Min, Max: 0, n
~ Entity 2 — Entity 1: Role: EmpCalAct Mandatory: Yes Dominant: No Min, Max: 1, 1

109

EmpA ctEmpCalPIn

Name: EmpActEmpCalPIn

Entity 1: EmployeeActivity

Entity 2: EmployeeCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: EmpAct Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: EmpCalPln Mandatory: Yes Dominant: No Min, Max: 1,1

EmpAddressCity
Name: EmpAddressCity
Entity 1: City
Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Address City Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, |

EmpAddressCountry

Name: Emp AddressCountry
Entity 1: Country

Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Address Country Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, 1

EmpCostCenter

Name: EmpCostCenter
Entity 1: CostCenter
Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: CostCenter Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 01

EmpEmpCalAct
/| Name: EmpEmpCalAct
Entity 1: Employee
Entity 2: EmployeeCalendar Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Emp Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: EmpCalAct Mandatory: Yes Dominant: No Min, Max: 1,1

EmpEmpHist

Name: EmpEmpHist
Entity 1: Employee

Entity 2: EmployeeHistory
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Emp Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpHist Mandatory: Yes Dominant: No Min, Max: 1, 1

110

EmpJobTitles

Name: EmplobTitles
Entity 1: JobTitle
Entity 2: Employee
Cardinality: Many to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: JobTitle Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, n

EmployeeCompany
Name: EmployeCompany
Entity 1: Company
Entity 2: Employee
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Company Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Employee Mandatory: Yes Dominant: No Min, Max: 1,1

EmployeeBType
Name: EmployeeBType
Entity 1: BloodType
Entity 2: Employee
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Blood Type Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, 1

EmployeeDepartment
Name: EmployeeDepartment
Entity 1: Department
Entity 2: Employee
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Department Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Employee Mandatory: Yes Dominant: No Min, Max: 1, 1

EmpDependents
Name: EmpDependents
Entity 1: Employee
Entity 2: Dependents
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Emp Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Dependents Mandatory: Yes Dominant: No Min, Max: 1, 1

EmployeeEmpCalPIn

Name: EmployeeEmpCalPln
Entity 1: Employee
Entity 2: EmployeeCalendar Planned
Cardinality: One to Many
. Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Employee Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpCalPIln Mandatory: Yes Dominant: No Min, Max: 1, 1

111

EmployeeQualification

Name: EmployeeQualification
Entity 1: Employee

Entity 2: Qualification
Cardinality: Many to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Employee Mandatory: Yes Dominant: No Min, Max: 1,n

Entity 2 — Entity 1: Role: Qualification Mandatory: Yes Dominant: No Min, Max: 1, n
EmployeeTitle

Name: EmployeeTitle
Entity 1: Title

Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Title Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, 1
EmpMainJobTitle

Name: EmpMainJobTitle
Entity 1: JobTitle

Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: JobTitle Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: Yes Dominant: No Min, Max: 1,1
EmpTraining

Name: EmpTraining
Entity 1: Employee

Entity 2: EmpTraining
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Employee Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Training Mandatory: Yes Dominant: No Min, Max: 1, 1
EmpVacEntitlement

'5 Name: EmpVacEntitlement
Entity 1: Employee
Entity 2: VacationEntitlement
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Emp Mandatory: No Dominant: No Min, Max: 0,n

Entity 2 — Entity 1: Role: VacEntitlement Mandatory: Yes Dominant: No Min, Max: 1, 1
Instructor

Name: Instructor

Entity 1: Employee

Entity 2: TrainingActivity
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Employee Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Training Mandatory: No Dominant: No Min, Max: 0, 1

112

Levellnstitution

Name: Levellnstitution
Entity 1: Level

Entity 2: Institution
Cardinality: Many to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Level Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Institution Mandatory: No Dominant: No Min, Max: 0, n

LocationPM

Name: LocationPM

Entity 1: Location

Entity 2: ProductionMachine
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Location Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PM Mandatory: No Dominant: No Min, Max: 0, 1

Manager

Name: Manager
Entity 1: Employee
Entity 2: Department
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Manages Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Managed By Mandatory: No Dominant: No Min, Max: 0, 1

Nationality

Name: Nationality
Entity 1: Country
Entity 2: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Country Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, 1

OrgStatOrgCalAct

Name: OrgStatOrgCalAct

Entity 1: OrganizationStatus

Entity 2: OrganizationCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: OrgStat Mandatory: No Dominant: No Min, Max: 0, n

Entity 2 — Entity 1: Role: OrgCalAct Mandatory: Yes Dominant: No Min, Max: 1, 1
OrgStatOrgCalPIn

Name: OrgStatOrgCalPIn

Entity 1: OrganizationStatus

Entity 2: OrganizationCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: OrgStat Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: OrgCalPIn Mandatory: Yes Dominant: No Min, Max: 1, 1

113

PMCalDowntimes

Name: PMCalDowntimes
Entity 1: PMCalendar
Entity 2: PMDownTimes
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: PMCal Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Downtimes Mandatory: Yes Dominant: No Min, Max: 1, 1

PMCalendarActivity

Name: PMCalendarActivity
Entity 1: PMCalendar

Entity 2: Activity

Cardinality: Many to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max: 1,n
Entity 2 — Entity 1: Role: Activity Mandatory: Yes Dominant: No Min, Max: 1,n

l PMCalendarPMSchedule
|| Name: PMCalendarPMSchedule
‘| Entity 1: PMCalendar

Entity 2: PMSchedule

Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: PMCalendar Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMSchedule Mandatory: Yes Dominant: No Min, Max: 1, 1

PMMachineType
Name: PMMachineType
Entity 1: MachineType
Entity 2: ProductionMachine
Cardinality: One to Many
Entity 2 dependent of Entity I: No

Entity 1 — Entity 2: Role: MachineType Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PM Mandatory: No Dominant: No Min, Max: 0, 1

PMPMCalendar

Name:

Entity 1:

Entity 2:

Cardinality:

Entity 2 dependent of Entity 1:

PMPMCalendar
ProductionMachine
PMCalendar

One to Many

Yes

Entity 1 — Entity 2: Role: PM Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max: 1, 1

PMQualification

Name:

Entity 1:

Entity 2:

Cardinality:

Entity 2 dependent of Entity 1:

PMQualification
Qualification
ProductionMachine
Many to Many

No

Entity 1 — Entity 2: Role: Qualification Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: ProductionMachine Mandatory: No Dominant: No Min, Max: O,n

114

PMStatusPMCalendar

Name: PMStatusPMCalendar
Entity 1: PMStatus

Entity 2: PMCalendar
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: PMStatus Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max: 1,1

ProductPMSchedule

Name: ProductPMSchedule
Entity 1: Product

Entity 2: PMSchedule
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Product Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMSchedule Mandatory: Yes Dominant: No Min, Max: 1, 1

Qualification

Name: Qualification
Entity 1: Qualification
Entity 2: TrainingActivity
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Qualification Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Training Mandatory: No Dominant: No Min, Max: 0, 1

ShiftEmpCalAct

Name: ShiftEmpCalAct

Entity 1: Shift

Entity 2: EmployeeCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Shift Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpCalAct Mandatory: Yes Dominant: No Min, Max: 1, 1

ShiftEmpCalPIn

Name: ShiftEmpCalPIn

Entity 1: Shift

Entity 2: EmployeeCalendar Planned
Cardmality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Shift Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: EmpCalPIn Mandatory: Yes Dominant: No Min, Max: 1,1

ShiftOrgCalAct

Name: ShiftOrgCalAct

Entity 1: Shift

Entity 2: OrganizationCalendar_Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Shift Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: OrgCalAct Mandatory: Yes Dominant: No Min, Max: 1, 1

115

ShiftOrgCalPIn

Name: ShiftOrgCalPIn

Entity 1: Shift

Entity 2: OrganizationCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Shift Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: OrgCalPln Mandatory: Yes Dominant: No Min, Max: 1, 1

ShiftPMCalendar

Name: ShiftPMCalendar
Entity 1: Shift

Entity 2: PMCalendar
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: Shift Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max: 1, 1

StationEmployee

Name: StationEmployee
Entity 1: Employee
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Station Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Employee Mandatory: No Dominant: No Min, Max: 0, 1

StationShuttle

Name: StationShuttle
Entity 1: Station
Entity 2: Shuttle
Cardinality: Many to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Station Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Shuttle Mandatory: No Dominant: No Min, Max: 0, n

| SuperDepartment
Name: SuperDepartment
Entity 1: Department
Entity 2: Department
Cardinality: One to Many

Entity 2 dependent of Entity 1: No
Entity 1 — Entity 2: Role: Super Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Sub Mandatory: No Dominant: No Min, Max: 0, 1

SuperPM
Name: SuperPM

| Entity 1: ProductionMachine
Entity 2: ProductionMachine
Cardinality: One to Many

Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Super Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: Sub Mandatory: No Dominant: No Min, Max: 0, 1

116

TMT

Name: TMT

Entity 1: TrainingMaster
Entity 2: TrainingActivity
Cardinality: One to Many
Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: TM Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Training Mandatory: Yes Dominant: No Min, Max: 1,1

TrainingEmpTraining

Name: TrainingEmpTraining
Entity 1: TrainingActivity
Entity 2: EmpTraining
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes

Entity 1 — Entity 2: Role: Training Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: EmpTraining Mandatory: Yes Dominant: No Min, Max: 1, 1

TStatus
Name: TStatus
Entity 1: TrainingStatus
Entity 2: TramingActivity
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: Status Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: TrainingStatus Mandatory: No Dominant: No Min, Max: 0, 1

TTypeTraining

Name: TTypeTraining
Entity 1: TrainingType
Entity 2: TrainingMaster
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: TT Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Training Mandatory: No Dominant: No Min, Max: 0, 1

WCTypeCrew
Name: WCTypeCrew
Entity 1: WorkCalendarType
Entity 2: Crew
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: WCType Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: Crew Mandatory: Yes Dominant: No Min, Max: 1,1

WorkTeamPMCalendar
Name: WorkTeamPMCalendar
Entity 1: WorkTeam
Entity 2: PMCalendar
Cardinality: One to Many
Entity 2 dependent of Entity 1: No

Entity 1 — Entity 2: Role: WorkTeam Mandatory: No Dominant: No Min, Max: 0,n
Entity 2 — Entity 1: Role: PMCalendar Mandatory: Yes Dominant: No Min, Max: 1, 1

184

WrkCalTypeOrgCalAct

Name: WrkCalTypeOrgCalAct
Entity 1: WorkCalendarType

Entity 2: OrganizationCalendar Actual
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: WrkCalType Mandatory: No Dominant: No Min, Max: 0,n

Entity 2 — Entity 1: Role: OrgCalAct Mandatory: Yes Dominant: No Min, Max: 1,1
WrkCalTypeOrgCalPin

Name: WrkCalTypeOrgCalPIn

Entity 1: WorkCalendarType

Entity 2: OrganizationCalendar_Planned
Cardinality: One to Many

Entity 2 dependent of Entity 1: Yes
Entity 1 — Entity 2: Role: WrkCalType Mandatory: No Dominant: No Min, Max: 0, n
Entity 2 — Entity 1: Role: OrgCalPln Mandatory: Yes Dominant: No Min, Max: 1,1

Conceptual Model of the Database

The initial E/R model is translated into the conceptual model in Sybase
PowerDesigner® (Data Architect). In this representation, following symbols shown in
Figure 5.3 are used for the entities and relationships in the model.

| |
" Location Area :
| COde |_ —>C—Locaﬂgn Aea [EOde i_kso |

Arealocation) ame
-Name A50 “ - P
Relationship Name
Other Attributes Type and roles
Entity Name
Attribute Data Type

Figure 5.3. Entity Relationship Representation in Conceptual Model

In Figure 5.4 the conceptual model of the database created by Data Architect is
given. This is a is a one-to-one translation of the original E/R Model into the Data
Architects conceptual model format. We will be using this conceptual model and the

features of the tool to compile and check to model and create the relational schema
{(physical model) from it. In the

118

g e SESPENE
wnimg — ———— 4
miy] o — o ﬁ o)
o aumy ey
= s oo AN Y =t vary P
= [wr g [e .]
S = [S wmaritey
miy [TE] g e
m@ i = A st - R .
vy 1 (2]
T YD
e Eaicat Ul
m_w * E = [o——r————= m— e - .il-ill!lu._:l._.lln
—l A] 45 D AGiat iatiuia}
= b o vamy Sy
o il T_r g 'Mﬁ “ " ¥
- i, W - L. 7] vein
by wawg ST rmr—— S aangyriemg |
— iui!lﬁ.l&llnﬂf e _ miv L] B]) et
A o T ey ¥ e Wy e
B o o frme
———— L. |l“ﬂ e E —— o wumyee P !. !I.u
ot fn Lo hasete] IV - [t b 4 g | - —— g i
] O t———) o e
_ o ...Iul. é%. #I e ——] W [vy — -
- o e drry | v vy
- i | R - - AR . 3 i — \ =
o e i e S——— a sty - R s
o vy e e S —s— o e |{o o g s o Lo 4 P — ot
v |M ! L] = R 5 = e LS
|] T —]
B A o vamprae s .
* - %. oW i e
o] i
. - e —
sov ooy
& G = i
o rumprn o
; . o ——— L. %
g g] — bt i‘ﬂhv - . L] o | N —] %
I - oo i ‘o —— el
-~ T 2 -
w____ W e [S 1]
s 1
L . * ==

weadei(q PPOA seqeie([enydaduo) 'S 2an3iy

5.4 Database Schema Creation (E/R To Relation Conversion)

In this Section we will give details of the database schema created from the E/R
(conceptual model) in previous section. Entities and relations ships are translated into
table objects in the physical database schema. Table details and their source objects
(entity or relationship) are given in Table 5.2. Further in the following section table
attributes, indexes, reference lists and schema domain list is given.

5.4.1. Tables

Table S.2. Table List

TABLE NAME SOURCE

T ACTIVITY Entity ACTIVITY

T AREA Entity AREA

T BLOODTYPE Entity BLOODTYPE
T CITY Entity CITY

T CLASSROOM Entity CLASSROOM
T COMPANY Entity COMPANY

T COSTCENTER Entity COSTCENTER
T COUNTRY Entity COUNTRY

T CREW Entity CREW

T CREWCALENDAR _ACTUAL

Entity CREWCALENDAR ACTUAL

T CREWCALENDAR PLANNED

Entity CREWCALENDAR PLANNED

T CREWSTATUS Entity CREWSTATUS

| T DEPARTMENT Entity DEPARTMENT
T DEPENDENTS Entity DEPENDENTS
T EMPLOYEE Entity EMPLOYEE

T EMPLOYEEACTIVITY

Entity EMPLOYEEACTIVITY

T EMPLOYEECALENDAR ACTUAL

Entity EMPLOYEECALENDAR ACTUAL

T EMPLOYEECALENDAR PLANNED

Entity EMPLOYEECALENDAR PLANNED

T EMPLOYEEHISTORY

Entity EMPLOYEEHISTORY

T EMPLOYEEJOBTITLE

Relationship EMPJOBTITLES

T EMPLOYEEQUALIFICATION

Relationship EMPLOYEEQUALIFICATION

T EMPTRAINING FEntity EMPTRAINING

T INSTITUTE Entity INSTITUTE

T INSTITUTELEVEL Relationship LEVELINSTITUTION
T JOBCATEGORY Entity JOBCATEGORY

T JOBTITLE Entity JOBTITLE

T LEVEL Entity LEVEL

T LOCATION Entity LOCATION

T MACHINETYPE Entity MACHINETYPE

ORGANIZATIONCALENDAR ACTUAL

Entity ORGANIZATIONCALENDAR ACTUAL

I ORGANIZATIONCALENDAR PLANNED

Entity ORGANIZATIONCALENDAR PLANNED

ORGANIZATIONSTATUS Entity ORGANIZATIONSTATUS
PMACTIVITYHOURS Relationship PMCALENDARACTIVITY
PMCALENDAR Entity PMCALENDAR
PMDOWNTIMES Entity PMDOWNTIMES

T PMQUALIFICATION Relationship PMQUALIFICATION
PMSCHEDULE Entity PMSCHEDULE
PMSTATUS Entity PMSTATUS
PRODUCT Entity PRODUCT
PRODUCTIONMACHINE Entity PRODUCTIONMACHINE
QUALIFICATION Entity QUALIFICATION

120

Table 5.2 Continued

T SHIFT Entity SHIFT

T SHUTTLE Entity SHUTTLE

T STATION Entity STATION

T STATIONSHUTTLE Relationship STATIONSHUTTLE
T TITLE

Entity TITLE

T _TRAININGACTIVITY

Entity TRAININGACTIVITY

T TRAININGMASTER

Entity TRAININGMASTER

T TRAININGSTATUS

Entity TRAININGSTATUS

T TRAININGTYPE

Entity TRAININGTYPE

T VACATIONENTITLEMENT

Entity VACATIONENTITLEMENT

T WORKCALENDARTYPE

Entity WORKCALENDARTYPE

T WORKTEAM

Entity WORKTEAM

Table 5.2 lists the tables created from the E/R (conceptual) model. Below, the details of

each table is given.

TABLE: ACTIVITY
Column List

Name Type P M

CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
DEFAULTAMOUNT numeric No No
Index List

Index Name P"| F U]| C Column Name Sort
T ACTIVITY PK Yes |[No |[Yes |No |CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T PMACTIVITYHOURS CODE ACTIVITYCODE
TABLE: AREA
Column List

Name Type P M

CODE integer Yes Yes
NAME char(50) No No
Index List

Index Name P F U G Column Name Sort
T AREA PK Yes |[No |Yes |No |CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T LOCATION CODE ARE CODE

'P: Primary Key, M: Mandatory

3 Primary Index, F: Foreign Index, U: User Defined, C: Clustered

121

TABLE: BLOODTYPE

Column List
Name Type P M
CODE integer wes Yes
NAME char(50) No No
Index List
Index Name P 1 U C Column Name Sort
T BLOODTYPE_PK Yes [No |Yes |[No |CODE ASC
Refercnce by List
Referenced by Primary Key Foreign Key
T EMPLOYEL CODE BLOODTYPECODE
TABLE: CITY
Column List
Name Type X M
CODE integer Yes Yes
NAME char(50) No No
Index List
Index Name P F U C Column Name Sort
il CITY PK Yes [No |Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T EMPLOYEE CODE ADDRESSCITYCODE
TABLE: CLASSROOM
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
Index List
Index Name P 0 U L& Column Name Sort
T_CLASSROOM PK Yes | No Yes | No CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T TRAININGACTIVITY CODE CLA_CODE
TABLE: COMPANY
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
ADDRESSHQ char(100) No No
PHONENUMBER char(11) No No
FAXNUMBER char(11) No No

Index List

Index Name P F U C Column Name Sort
T_COMPANY_PK Yes [No |[Yes [No |CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T_EMPLOYEE CODE COMPANYCODE
TABLE: COSTCENTER
Column List

Type L M
CODE char(20) ey Yes
DEPARTMENTCODE integer No No
JOBCATEGORYCODE integer No Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List

Index Name P F 8] & Column Name Sort
T_COSTCENTER_PK Yes [No |Yes [No |CODE ASC
DEPTCOSTCENTER_FK No |Yes [No |No |DEPARTMENTCODE ASC

[CCJOBCATEGORY_FK No |[Yes |[No |No |JOBCATEGORYCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T _JOBCATEGORY CODE JOBCATEGORYCODE
T DEPARTMENT CODE DEPARTMENTCODE
Reference by List

Referenced by Primary Key Foreign Key
T _EMPLOYEE CODE COSTCENTERCODE
TABLE: COUNTRY
Column List

Type P M
CoDL integer Yes Yes
NAME char(50) No No
ABBREVIATION char(5) No No
[ndex List

Index Name P 0 U C Column Name Sort
T _COUNTRY_PK Yes |No |[Yes |No |CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T EMPLOYEE CODE ADDRESSCOUNTRYCODE
T EMPLOYEE CODE NATIONALITYCODE

123

TABLE: CREW
Column List

Name Type P M
CODE integer Yes Yes
WORKINGCALENDARTYPECODE integer No Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F U ¢ Column Name Sort
T CREW_PK Yes |No |Yes |No |CODE ASC
WCTYPECREW FK No |Yes |No No WORKINGCALENDARTYPEC | ASC
ODE
Reference to List
Reference to Primary Key . Foreign Key
T_WORKCALENDARTYPE CODE WORKINGCALENDARTY
PECODE
Reference by List
Referenced by Primary Key Foreign Key
T_CREWCALENDAR_ACTUAL CODE CREWCODE
T_CREWCALENDAR _PLANNED [CODE CREWCODE
T EMPLOYEECALENDAR _ACT |CODE CREWCODE
UAL
T_EMPLOYEECALENDAR_PLAN | CODE CREWCODE
NED
T _EMPLOYEE CODE CREWCODE
T PMCALENDAR CODE CREWCODE
TABLE: CREWCALENDAR_ACTUAL
Column List
Name Type P M
CREWCODE integer Yes Yes
CALENDARDATE date Yes Yes
CREWSTATUSCODE integer Yes Yes
TOTALAMOUNT real No No
NOTES char(50) No No
Index List g
Index Name P F u C Column Name Sort
T CREWCALENDAR_ACTUA |No No |Yes |No CREWSTATUSCODE ASC
L_PK CREWCODE ASC
3 CALENDARDATE ASC
CREWCREWCALACT_FK No [Yes |No |No |CREWCODE ASC
CSCCACT _FK No |Yes [No [No |CREWSTATUSCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T CREW CODE CREWCODE
T CREWSTATUS CODE CREWSTATUSCODE

124

TABLE: CREWCALENDAR_PLANNED

Column List

Name Type P M
CREWCODE integer Yes Yes
CALENDARDATE date Yes Yes
CREWSTATUSCODE integer Yes Yes
TOTALAMOUNT real No No
NOTES char(50) No No
Index List
Index Name P F U ¢ Column Name Sort
T _CREWCALENDAR_PLANN |[No |[No |Yes |No |CREWSTATUSCODE ASC
ED_PK CREWCODE ASC
CALENDARDATE ASC
CREWCREWCALPLN _FK No Yes |No |[No CREWCODE ASC
CSCCPLN_FK No |[Yes |No |No |CREWSTATUSCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T _CREW CODE CREWCODE
T_CREWSTATUS CODE CREWSTATUSCODE
TABLE: CREWSTATUS
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F U C Column Name Sort
T_CREWSTATUS_PK Yes |No |Yes [No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T_CREWCALENDAR_ACTUAL CODE CREWSTATUSCODE
T CREWCALENDAR PLANNED |CODE CREWSTATUSCODE
TABLE: DEPARTMENT
Column List
Name Type P M
CODE integer Yes Yes
SUPERDEPARTMENTCODE integer No No
MANAGERCODE integer No No
NAME char(50) No No
DESCRIPTION char(100) No No
MANAGERSINCE date No No
Index List
Index Name P F U C Column Name Sort
T_DEPARTMENT_PK Yes |[No |Yes |No |CODE ASC
R_SUPERDEPARTMENT FK |No |Yes |[No |No |SUPERDEPARTMENTCODE [ASC
R_EMPLOYEEDEPARTMENT |No |Yes |[No |[No |MANAGERCODE ASC
MGR _FK

Relerence to List

Reference to Primary Key Foreign Key
T _EMPLOYEE CODE MANAGERCODE
T _DEPARTMENT CODE SUPERDEPARTMENTCOD
E
Reference by List
Referenced by Primary Key Foreign Key
T_PRODUCTIONMACHINE CODE DEPARTMENTCODE
T_WORKTEAM CODE DEPARTMENTCODE
T_COSTCENTER CODE DEPARTMENTCODE
T EMPLOYEE CODE DEPARTMENTCODE
T_DEPARTMENT CODE SUPERDEPARTMENTCOD
E
TABLE: DEPENDENTS
Column List
Name Type P M
EMPLOYEECODE integer Yes Yes
FIRSTNAME char(50) No No
LASTNAME char(50) No No
RELATIONSHIP char(25) No No
[ndex List
Index Name P F U C Column Name Sort
T_DEPENDENTS_PK Yes |[Yes |Yes [No |EMPLOYEECODE ASC
Referencc lo List
Reference to Primary Key Foreign IKey
T EMPLOYEE CODE EMPLOYEECODE
TABLE: EMPLOYEE
Column List
Name Type P M
CODE integer Yes Yes
COMPANYCODE integer No Yes
DEPARTMENTCODE integer No Yes
CREWCODE integer No Yes
COSTCENTERCODE char(20) No No
TITLECODE integer No No
FIRSTNAME char(50) No No
LASTNAME char(50) No No
USERNAME char(8) No No
SSN char(20) No No
BANKACCOUNTNO char(25) No No
BIRTHDATE date No No
BIRTHPLACE char(50) No No
MOTHERSNAME char(50) No No
FATHERSNAME char(50) No No
MARITALSTATUS char(1) No No
SEX char(1) No No
ADDRESSLINE1 char(50) No No
ADDRESSLINE2 char(50) No No
ADDRESSLINE3 char(50) No No
POSTALCODE char(10) No No

126

Name Type P M
ADDRESSCITYCODE integer No No
ADDRESSCOUNTRYCODE intzger No No
HOMEPHONENUMBER char(11) No No
WORKPHONENUMBER char(11) No No
WORKEXTENSION char(5) No No
FAXNUMBER char(11) No No
EMAIL char(100) No No
CONTACTFIRSTNAME char(50) No No
CONTACTLASTNAME char(50) No No
CONTACTADDRESS char(250) No No
CONTACTPHONENUMBER char(11) No No
DATEJOINED date No No
LEFTSERVICE char(1) No No
DATELEFTSERVICE date No No
BLOODTYPLECODE inleger No No
EDUCATIONLEVELCODE integer No No
INSTITUTIONCODE integer No No
JOBTITLECODIE integer No No
STATIONCODE integer No No
NATIONALITYCODE integer No No
PICTURL long binary No No
POSTLOCATION char(5) No No
Index List

Index Name P F U C Column Name Sort
T EMPLOYEE _PK Yes |[No |[Yes [No |[CODE ASC
R_EMPLOYEEDEPARTMENT_|No |Yes |[No |No |DEPARTMENTCODE ASC
FK
R_EMPLOYEETITLE_FK No Yes |No No TITLECODE ASC
EMPLOYEEBLOODTYPE FK | No Yes |No No BLOODTYPECODE. ASC
EMPADDRESSCITY_FK No Yes |No No ADDRESSCITYCODE ASC
EMPADDRESSCOUNTRY_FK |[No Yes |No No ADDRESSCOUNTRYCODE ASC
EMPLOYECOMPANY FK No |[Yes [No |[No [COMPANYCODE ASC
EMPCOSTCENTER_FK No Yes |No No COSTCENTERCODE ASC
EMPJOBTITLE _FK No Yes |No No JOBTITLECODE ASC
CREWEMPLOYEE_FK No Yes |No No CREWCODE ASC
STATIONEMPLOYEE_FK No Yes |No No STATIONCODE ASC
NATIONALITY K No Yes |No No NATIONALITYCODE ASC
Reference o List
Reference to Primary Key Foreign Key
T CREW CODE CREWCODE
i CITY CODE ADDRESSCITYCODE
T_COUNTRY CODE ADDRESSCOUNTRYCODE
T COSTCENTER CODE COSTCENTERCODE
T COMPANY CODE COMPANYCODE
T _BLOODTYPE CODE BLOODTYPECODE
T DEPARTMENT CODE DEPARTMENTCODE
T_INSTITUTELEVEL LEVELCODE EDUCATIONLEVELCODE
INSTITUTIONCODE INSTITUTIONCODE

& TITLE CODE TITLECODE
T JOBTITLE CODE JOBTITLECODE
T COUNTRY CODE NATIONALITYCODE
T STATION CODE STATIONCODE

Reference by List

Referenced by Primary Key Foreign Key
T_DEPENDENTS CODE EMPLOYEECODE
T _CEMPLOYEECALENDAR_ACT |CODE EMPLOYEECODE
UAL
T_EMPLOYEEHISTORY CODE CODE
T_EMPLOYEEQUALIFICATION | CODE EMPLOYEECODE
T EMPLOYEEJOBTITLE CODE EMPLOYEECODE
T_EMPLOYEECALENDAR_PLAN | CODE EMPLOYEECODE
NED
T EMPTRAINING CODE EMPLOYEECODE
T VACATIONENTITLEMENT CODE EMPLOYEECODE
T_TRAININGACTIVITY CODE INSTRUCTORCODE
T_DEPARTMENT CODE MANAGERCODE
TABLE: EMPLOYEEACTIVITY
Column List
Name Type r M
CODE integer Yes Yes
ABBREVIATION char(2) No No
NAME char(50) No No
DESCRIPTION char(100) No No
ACTIVITYTYPE char(2) No No
WORKACTIVITY numeric(1) No Yes
UNITOFACTIVITY char(1) No No
DISPLAYORDER smallint No Yes
DISPLAY numeric(1) No Yes
Index List
Index Name I F U | & Column Name Sort
T EMPLOYEEACTIVITY PK |Yes [No |[Yes |[No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T EMPLOYEECALENDAR ACT |CODE EMPLOYEEACTIVITYCO
UAL DE
T_EMPLOYEECALENDAR_PLAN | CODE EMPLOYEEACTIVITYCO
NED DE
TABLE: EMPLOYEECALENDAR ACTUAL
Column List
Name Type 4 M
CALENDARDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
EMPLOYEECODE integer Yes Yes
EMPLOYEEACTIVITYCODE integer Yes Yes
TOTALAMOUNT real No No
NOTES char(50) No No
CREWCODE integer No No
Index List
Index Name P F U & Column Name Sort
T EMPLOYEECALENDAR AC|No |[No |Yes |[No |EMPLOYEECODE ASC
TUAL_PK EMPLOYEEACTIVITYCODE |ASC
SHIFTCODE ASC

128

Index Name P F U C Column Name Sort
CALENDARDATE ASC
T _EMPLOYEECALENDAR AC [No |No |Yes |No |EMPLOYEECODE ASC
TUAL _PK EMPLOYEEACTIVITYCODE | ASC
SHIFTCODE ASC
CALENDARDATE ASC
EMPACTEMPCALACT _FK No Yes |No No EMPLOYEEACTIVITYCODE |ASC
EMPEMPCALACT FK No Yes |[No No EMPLOYEECODE ASC
CREWEMPCALACT_FK No Yes |No No CREWCODE ASC
SHIFTEMPCALACT_FK No |Yes [No |No |SHIFTCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T _CREW CODE CREWCODE
T_EMPLOYEEACTIVITY CODE EMPLOYEEACTIVITYCO
DE
T EMPLOYEE CODE EMPLOYEECODE
T SHIFT CODE SIIFTCODE
TABLE: EMPLOYEECALENDAR PLANNED
Column List
Name Type P M
CALENDARDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
EMPLOYEECODE integer Yes Yes
EMPLOYEEACTIVITYCODE integer Yes Yes
CREWCODE integer No No
TOTALAMOUNT real No No
NOTES char(50) No No
Index List
Index Name P F U C Column Name Sort
T EMPLOYEECALENDAR_PL |No No Yes |No EMPLOYEECODE ASC
ANNED_PK EMPLOYEEACTIVITYCODE |ASC
SHIFTCODE ASC
CALENDARDATE ASC
EMPACTEMPCALPLN _FK No Yes | No No EMPLOYEEACTIVITYCODE | ASC
SHIFTEMPCALPLN_FK No |Yes |No |[No |SHIFTCODE ASC
EMPLOYEEEMPCALPLN_FK |No Yes |No No EMPLOYEECODE ASC
CREWEMPCALPLN_FK No [Yes |No [No |CREWCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T _CREW CODE CREWCODIE
T_EMPLOYLEEACTIVITY CODE EMPLOYEEACTIVITYCO
DE
T EMPLOYEE CODE EMPLOYEECODE
T_SHIFT CODE SHIFTCODE

129

TABLE: EMPLOYEEHISTORY
Column List

Name Type P M
CODE integer Yes Yes
RECORDDATI: date No No
EDUCATIONLEVIEL char(50) No | No
INSTITUTILE char(50) No No
JOBTITLI char(50) No No
COMPANY char(50) No No
NOTES char(100) No No
DEPARTMENT char(50) - No No
Index List
Index Name P F U & Column Name Sort
T_EMPLOYEEHISTORY PK Yes |Yes |Yes |[No |CODE ASC
Reference to List
Reference to Primary Key Foreign Key
T EMPLOYEE CODE CODE
TABLE: EMPLOYEEJOBTITLE
Column List
Name Type P M
JOBTITLECODE integer Yes Yes
EMPLOYEECODE integer Yes Yes
DATEFROM date No No
DATETO date No No
ACTIVE numeric(1) No Yes
Index List
Index Name r 0 U 6 Column Name Sort
T EMPLOYEEJOBTITLE_PK Yes |No | Yes |No JOBTITLECODE ASC
EMPLOYEECODE ASC
JOBTITLE_FK No Yes |No |No JOBTITLECODE ASC
EMPLOYEE FK2 No |Yes |No |No |EMPLOYEECODE ASC
Reference to List
Reference to Primary Key Foreign Key
T_EMPLOYEE CODE EMPLOYEECODE
T JOBTITLE CODE JOBTITLECODE
TABLE: EMPLOYEEQUALIFICATION
Column List
Name Type P M
EMPLOYEECODE integer Yes Yes
QUALIFICATIONCODE integer Yes Yes
DATEFROM date No No
DATETO date No No
ACTIVE numeric(]) No Yes
Index List
Index Name P F U e Column Name Sort
T EMPLOYEEQUALIFICATIO |Yes |No |Yes |[No EMPLOYEECODE ASC
N_PK QUALIFICATIONCODE ASC
EMPLOYEE FK No Yes |No No EMPLOYEECODE ASC

130

Index Name P F U 0 Column Name Sort
QUALIFICATION_FK2 No |Yes |No [No |QUALIFICATIONCODE ASC
Reference to List

Reference to Primary Key Forcign Key

T EMPLOYEL CODE EMPLOYEECODE
T _QUALIFICATION CODLE QUALIFICATIONCODE
TABLE: EMPTRAINING
Column List

Name Type P M
TRAININGCODE integer Yes Yes
EMPLOYEECODE integer Yes Yes
RESULT char(50) No No
NOTES char(100) No No
Index List

Index Name P Ir U C Column Name Sort

T _EMPTRAINING_PK Yes |No |Yes [No |TRAININGCODE ASC

' EMPLOYEECODE ASC
EMPTRAINING_FK No |[Yes |[No |No |EMPLOYEECODE ASC
TRAININGEMPTRAINING FK |No |[Yes [No |No |TRAININGCODE ASC
Reference to List

Reference to Primary Key Foreign Key
T EMPLOYEE CODE EMPLOYEECODE
T TRAININGACTIVITY TRAININGCODE TRAININGCODE
TABLIE: INSTITUTELEVEL
Column List

Name Type P VL

LEVELCODE integer Yes Yes
INSTITUTIONCODE integer Yes Yes
Index List

Index Name P F U C Column Name Sort

T RELATION_ 294 PK Yes |No |Yes [No |LEVELCODE ASC
INSTITUTIONCODE ASC

RELATION_ 294 FK2 No |Yes |No ([No |LEVELCODE ASC
RELATION_294 FK No |Yes [No |No [INSTITUTIONCODE ASC
Reference to List

Reference to Primary Key Foreign Key
T_INSTITUTE CODE INSTITUTIONCODE
T LEVEL CODE LEVELCODE
Reference by List

Referenced by Primary Key Foreign Key
T _EMPLOYEE LEVELCODE EDUCATIONLEVELCODE

INSTITUTIONCODE INSTITUTIONCODE

131

TABLE: INSTITUTION
Column List

Name Type p M
CODE integer Yes Yes
NAME char(50) No No
Index List
Index Name P F U ¢ Column Name Sort
T INSTITUTE_PK Yes [No |Yes [No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T_INSTITUTELEVEL CODE INSTITUTIONCODE
TABLE: JOBCATEGORY
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F U [Column Name Sort
T JOBCATEGORY_PK Yes [No |Yes |[No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T COSTCENTER CODE JOBCATEGORYCODE _
TABLE: JOBTITLE
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F U C - Column Name Sort
T _JOBTITLE_PK Yes |[No |Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T EMPLOYEE CODE JOBTITLECODE
T:EMP LOYEEJOBTITLE CODE JOBTITLECODE
TABLE: LEVEL
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No

132

Index List

Index Name P F U C Column Name Sort
T _LEVEL_PK Yes |[No |[Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T_INSTITUTELEVEL CODE LEVELCODE
TABLE: LOCATION
Column List
Name Type P M
ARE_CODE integer Yes Yes
CODE integer Yes Yes
NAME char(50) No No
Index List
Index Name P F U ¢ Column Name Sort
T LOCATION_PK Yes [No |Yes |[No |ARE_CODE ASC
CODE ASC
AREALOCATION_FK No |Yes |[No |[No |[|ARE CODE ASC
Reference to List
Reference to Primary Key Foreign Key
T_AREA CODE ARE CODE
Reference by List
Referenced by Primary Key Foreign Key
T_PRODUCTIONMACHINE ARE CODE AREACODE
CODE LOCATIONCODE
TABLE: MACHINETYPE
Column List
Name Type r M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F 8] C Column Name Sort
T MACHINETYPE_PK Yes [No |Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T _PRODUCTIONMACHINE CODE MACHINETYPECODE
TABLE: ORGANIZATIONCALENDAR_ACTUAL
Column List
Name Type P M
CALENDARDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
WORKCALENDARTYPECODE integer Yes Yes
ORGANIZATIONSTATUSCODE integer Yes Yes
TOTALAMOUNT real No No
NOTES char(50) No No

[ndex List

Index Name P F U C Column Name Sort
T_ORGANIZATIONCALENDA [No |No |Yes [No |WORKCALENDARTYPECOD |ASC
R_ACTUAL_PK E ASC

ORGANIZATIONSTATUSCO |ASC
DE ASC
SHIFTCODE
CALENDARDATE
ORGSTATORGCALACT _FK No |[Yes |No |No |ORGANIZATIONSTATUSCO |ASC
DE
SHIFTORGCALACT _FK No |Yes [No |No |SHIFTCODE ASC
WRKCALTYPEORGCALACT_ [No |Yes [No |[No |WORKCALENDARTYPECOD |ASC
FK E

Reference to List

Reference to Primary Key Foreign Key

T_ORGANIZATIONSTATUS CODE ORGANIZATIONSTATUSC
ODE

T_SHIFT CODE SHII'TCODE

T WORKCALENDARTYPE CODE | WORKCALENDARTYPEC
ODE

TABLE: ORGANIZATIONCALENDAR_PLANNED

Column List
Name Type P M
CALENDARDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
WORKCALENDARTYPECODE integer Yes Yes
ORGANIZATIONSTATUSCODE integer Yes Yes
TOTALAMOUNT real No No
NOTES char(50) No No
[ndex List
Index Name p F U C Column Name Sort
T _ORGANIZATIONCALENDA |No |No |[Yes |No WORKCALENDARTYPECOD | ASC
R_PLANNLED PK E ASC
ORGANIZATIONSTATUSCO |ASC
DE ASC
SHIFTCODE
el |- CALENDARDATE
ORGSTATORGCALPLN_FK No |Yes |No ‘|No ORGANIZATIONSTATUSCO | ASC
DE
SHIFTORGCALPLN_FK No |Yes |No |No SHIFTCODE ASC
WRKCALTYPEORGCALPLN_ [No |Yes |No No WORKCALENDARTYPECOD | ASC
FK g E
Reference to List
Reference to Primary Key Foreign Key
T_ORGANIZATIONSTATUS CODE ORGANIZATIONSTATUSC
ODE
T _SHIFT CODE SHIFTCODE
T WORKCALENDARTYPE CODE WORKCALENDARTYPEC
ODE

134

TABLE: ORGANIZATIONSTATUS

Column List

Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name r ¥ U C Column Name Sort
T _ORGANIZATIONSTATUS_P |Yes |[No |[Yes |No |CODE ASC
K
Reference by List
Referenced by Primary Key Foreign Key
T _ORGANIZATIONCALENDAR | CODE ORGANIZATIONSTATUSC
ACTUAL ODE
T _ORGANIZATIONCALENDAR_ | CODE ORGANIZATIONSTATUSC
PLANNED ODE
TABLE: PMACTIVITYHOURS
Column List)
Name Type P M
PRODUCTIONDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
PRODUCTIONMACHINECODE integer Yes Yes
ACTIVITYCODE integer Yes Yes
DURATION numeric No No
Index List
Index Name P F U C Column Name Sort
T PMCALENDARACTIVITY P |No |[No |Yes |No |SHIFTCODE ASC
K PRODUCTIONMACHINECOD | ASC
E ASC
PRODUCTIONDATE ASC
ACTIVITYCODE
RELATION 583 FK2 No |[Yes |No |No |SHIFTCODE ASC
PRODUCTIONMACHINECOD | ASC
E ASC
PRODUCTIONDATE
RELATION 583 FK No |Yes |No ([No |ACTIVITYCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T _ACTIVITY CODE ACTIVITYCODE
T_PMCALENDAR SHIFTCODE SHIFTCODE
PRODUCTIONMACHINECODE |PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE

135

TABLE: PMCALENDAR
Column List

Name Type P M
PRODUCTIONDATE date Yes Yes
SHIFTCODE char(1) Yes Yes
PRODUCTIONMACHINECODE integer Yes Yes
CREWCODI integer No Yes
PMSTATUSCODLE integer No Yes
WORKTEAMCODL: integer No Yes
Index List
Index Name P F 4] C Column Name Sort
T PMCALENDAR_PK No |[No |Yes [No |SHIFTCODE ASC
PRODUCTIONMACHINECOD | ASC
E ASC
PRODUCTIONDATE
RELATION_532 FK No |Yes [No |[No |PRODUCTIONMACHINECOD [ASC
E
CREWPMCALENDAR K No |Yes [No |No |[CREWCODI ASC
SHIFTPMCALENDAR FFK No |Yes |No |No [SHIFTCODE ASC
PMSTATUSPMCALENDAR_F [No |Yes [No [No |PMSTATUSCODE ASC
K
WORKTEAMPMCALENDAR_F [No |Yes [No [No |WORKTEAMCODE ASC
K
Reference to List
Reference to Primary Key Foreign Key
T_CREW CODE CREWCODE
T PRODUCTIONMACHINE CODE PRODUCTIONMACHINEC
ODE
T _PMSTATUS CODE PMSTATUSCODE
T _SHIFT CODE SHIFTCODE
T _WORKTIEEAM CODE WORKTEAMCODE
Reference by List
Referenced by Primary Key Foreign Key
T PMDOWNTIMES SHIFTCODE - SHIFTCODE
PRODUCTIONMACHINECODE |PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE
T_PMSCHEDULE SHIFTCODE SHIFTCODE
PRODUCTIONMACHINECODE | PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE
T PMACTIVITYIOURS SHIFTCODE SHIFTCODE
PRODUCTIONMACHINECODE | PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE

136

TABLE: PMDOWNTIMES
Column List

Name Type P: M
PRODUCTIONDATE date Yes Yes
PRODUCTIONMACHINECODE integer Yes Yes
SHIFTCODE char(1) Yes Yes
STARTTIME time No No
ENDTIME time No No
Index List
Index Name 2 F U C Column Name Sort
T _PMDOWNTIMES_PK No Yes | Yes |No SHIFTCODE ASC
PRODUCTIONMACHINECOD | ASC
E ASC
PRODUCTIONDATE
Reference to List
Reference to Primary Key Foreign Key
T PMCALENDAR SHIFTCODE SHIFTCODE
PRODUCTIONMACHINECODE | PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE
TABLE: PMQUALIFICATION
Column List
Name Type P M
QUALIFICATIONCODE integer Yes Yes
PRODUCTIONMACHINECODE integer Yes Yes
REQUIRED numeric(1) No Yes
REQUIREDAMOUNT numeric No No
Index List
Index Name P I U C Column Name Sort
T PMQUALIFICATION PK Yes | No Yes | No QUALIFICATIONCODE ASC
PRODUCTIONMACHINLECOD | ASC
E
QUALITFICATION _FK No Yes | No No QUALIFICATIONCODE ASC
PRODUCTIONMACIHINE_TK No Yes | No No PRODUCTIONMACHINECOD | ASC
E
Reference to List
Reference to Primary Key Foreign Key
T PRODUCTIONMACHINE CODE PRODUCTIONMACHINEC
ODE
T QUALIFICATION CODE QUALIFICATIONCODE

IZMIR YUKSEK TEKNOLOJI ENSTITUSL

REKTORLUGU |

Kiriphane ve Dokimantasyon Daire B;k'

137

TABLE: PMSCHEDULE

Column List

Type P M
SHIFTCODE char(1) Yes Yes
PRODUCTIONMACHINECODE integer Yes Yes
PRODUCTIONDATE date Yes Yes
PRODUCTCODIE integer No Yes
PLANNEDPRODUCTIONAMOUNT numeric. No No
ACTUALPRODUCTICNAMOUNT integer No No
DEFECTS integer No No
Index List
Index Name P I U C Column Name Sort
T PMSCHEDULE PK Yes |[Yes |Yes |No |SHIFTCODE ASC
PRODUCTIONMACHINECOD | ASC
E ASC
PRODUCTIONDATE
RELATION_573_FK No |Yes |[No |No |PRODUCTCODE ASC

Reference to List

Reference to Primary Key Foreign Key
T PMCALENDAR SHIFTCODE SHIFTCODE
PRODUCTIONMACHINECODE | PRODUCTIONMACHINEC
PRODUCTIONDATE ODE
PRODUCTIONDATE
T PRODUCT CODE 'PRODUCTCODE
TABLE: PMSTATUS
Column List
Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P F U C Column Name Sort
T PMSTATUS PK Yes |No |Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T PMCALENDAR CODE PMSTATUSCODE
TABLE: PRODUCT
Column List
Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P ig U c Column Name Sort
T PRODUCT_PK Yes |No |Yes |No CODE ASC

Reference by L.ist

Referenced by

Primary Key

Foreign Key

T PMSCHEDULE CODE PRODUCTCODE
TABLE: PRODUCTIONMACHINE
Column List
Name Type P M
CODE intcger Yes Yes
DEPARTMENTCODE integer No No
NAME char(50) No No
DESCRIPTION char(100) No No
ACTIVE char(1) No No
AREACODE integer No No
LOCATIONCODE integer No No
SUPERPRODUCTIONMACCODE integer No No
MACHINETYPECODE integer No No
Index List
Index Name P F U C Column Name Sort
T_PRODUCTIONMACHINE P |Yes |No |Yes |No CODE ASC
K
DEPARTMENTIPM FK Yes | No No DEPARTMENTCODE ASC
LOCATIONPM IFK Yes |No No AREACODE ASC
LOCATIONCODE ASC
RELATION 317 FK Yes |No No SUPERPRODUCTIONMACCO | ASC
DE
PMMACIHINETYPE FK Yes |No |No MACHINETYPECODE ASC
Reference to List
Reference to Primary Key Foreign Key
T_DEPARTMENT CODE DEPARTMENTCODE
T_LOCATION ARE_CODE AREACODE
CODE LOCATIONCODE
T MACHINETYPE CODE MACHINETYPECODE
T_PRODUCTIONMACHINE CODE SUPERPRODUCTIONMAC
CODE
Reference by List
Referenced by Primary Key Foreign Key
T _PMCALENDAR CODE PRODUCTIONMACHINEC
ODE
T PMQUALIFICATION CODE PRODUCTIONMACHINEC
ODE
T PRODUCTIONMACHINE CODE SUPERPRODUCTIONMAC
CODE
TABLE: QUALIFICATION
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No

139

[ndex List

Index Name P I U e Column Name Sort
T _QUALIFICATION_PK Yes [No |[Yes |No |CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T EMPLOYEEQUALIFICATION | CODE QUALIFICATIONCODE
T PMQUALIFICATION CODE QUALIFICATIONCODE
T_TRAININGACTIVITY CODE QUALIFICATIONCODE
TABLE: SHIFT
Column List

Name Type P \%

CODE char(1) Yes Yes
NAME char(50) No No
STARTTIME time No No
ENDTIME time No No
SEQUENCE smallint No No
Index List

Index Name P F U € Column Name Sort
T_SHIFT_PK Yes [No |Yes |No |CODE ASC
Reference by 1.ist

Referenced by Primary Key Foreign Key
T _EMPLOYLECALENDAR_ACT |CODE SHIFTCODE
UAL
T_EMPLOYEECALENDAR_PLAN | CODE SHIFTCODE
NED
T_ORGANIZATIONCALENDAR_ | CODE SHIFTCODE
ACTUAL
T_ORGANIZATIONCALENDAR_ | CODE SHIFTCODE
PLANNED
T PMCALENDAR CODE SHIFTCODE
T _STATIONSIHUTTLI: CODE SHIFTCODE
TABLE: SHUTTLE
Column List

Name Type P M

CODE integer Yes Yes
REGNUMBELER char(10) No No
DRIVER char(50) No No
REMARKS char(100) No No
CAPACITY integer No No
Index List

Index Name P F U C Column Name Sort
T SHUTTLE PK Yes [No [Yes [No |[CODE ASC
Reference by List

Referenced by Primary Key Foreign Key
T STATIONSHUTTLE CODE SHUTTLECODE

140

TABLE: STATION
Column List

Name Type E M
CODE integer Yes Yes
STATIONNAME char(50) No No
ADDRESS char(100) No No
Index List
Index Name 3 F U C Column Name Sort
T_STATION PK Yes [No |Yes [No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T STATIONSHUTTLE CODE STATIONCODE
T _EMPLOYEE CODE STATIONCODE
TABLE: STATIONSHUTTLE
Column List
Name Type P M
CALENDARDATE d Yes Yes
SHIFTCODE char(1) Yes Yes
STATIONCODE integer Yes Yes
SHUTTLECODI: mteger Yes Yes
PICKUPTIMLE t No No
[ndex List
Index Name P F U C Column Name Sort
T_STATIONSHUTTLE PK No |[No |Yes |No [STATIONCODE ASC
SHUTTLECODE ASC
STATION_FK No |Yes |No |[No |STATIONCODE ASC
SHUTTLE FK No |Yes |No |No |SHUTTLECODE ASC
Reference to List
Reference to Primary Key Foreign Key
T SHUTTLE CODE SHUTTLECODE
T_SHIFT CODE SHIFTCODE
T _STATION CODE STATIONCODE
TABLE: TITLE
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
Index List
Index Name P F U C Column Name Sort
T -TITLE PK Yes |[No |Yes |No |[CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T_EMPLOYEE CODE TITLECODE

141

TABLE: TRAININGACTIVITY

Column List

Name Type P M
TRAININGCODE integer Yes | Yes
TRANINGSTATUSCODE integer No |No
QUALIFICATIONCODE integer No [No
INSTRUCTORCODE integer No |No
DATEFROM date No |No
DATETO date No |No
CAPACITY integer No |No
NOTES char(100) No |No
CLASSROOMCODIE integer No |No
[ndex List
Index Name r 0 U & Column Name Sort
T_TRAININGACTIVITY_PK Yes |Yes |Yes [No |TRAININGCODE ASC
TSTATUS FK No Yes [No |No |TRANINGSTATUSCODE ASC
INSTRUCTOR_IFK No Yes |No No INSTRUCTORCODE ASC
QUALIFICATION_FK3 No |Yes |[No |No |QUALIFICATIONCODE ASC
CLASSROOMTRAINING FK |No |Yes [No [No |CLASSROOMCODE ASC
Reference to List
Reference to Primary Key Foreign Key
T_CLASSROOM CODE CLASSROOMCODE
T EMPLOYEE CODE INSTRUCTORCODE
T QUALIFICATION CODE QUALIFICATIONCODE
T TRAININGMASTER CODE TRAININGCODE
T TRAININGSTATUS CODE TRANINGSTATUSCODE
Reference by List
Referenced by Primary Key Foreign Key
T _EMPTRAINING TRAININGCODE TRAININGCODE
TABLE: TRAININGMASTER
Column List
Name Type P M
CODI: integer Yes Yes
TRAININGTYPECODIE integer No No
NAME char(50) No No
DESCRIPTION char(100) No No
NOTES char(100) No No
Index List
Index Name P ¥ U C Column Name Sort
T_TRAININGMASTER_PK Yes |No |Yes |No CODE ASC
TTYPETRAINING _FK No |[Yes |[No |No |TRAININGTYPECODE ASC
Reference to List
Reference to Primary Key Foreign Key
T TRAININGTYPE CODE TRAININGTYPECODE
Reference by List
Referenced by Primary Key Foreign Key
T TRAININGACTIVITY CODE TRAININGCODE

142

TABLE: TRAININGSTATUS
Column List

Name Type P M
CODE integer Yes Yes
NAME char(50) No No
[ndex List
Index Name P F U C Column Name Sort
T_TRAININGSTATUS_PK Yes |No |Yes |[No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T _TRAININGACTIVITY CODE TRANINGSTATUSCODE
TABLE: TRAININGTYPE
Column List
Name Type P M
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name r I U 5 Column Name Sort
T TRAININGTYPE PK Yes |No |Yes |No |CODE ASC
Reference by List
Referenced by Primary Key Foreign Key
T TRAININGMASTER CODE TRAININGTYPECODE
TABLE: VACATIONENTITLEMENT
Column List
Name Type P M
ENTITLEMENTYEAR smallint Yes Yes
EMPLOYEECODE integer Yes Yes
VACATIONENTITLEMENT real No No
VACATIONREMAINING real No No
COMPENSATIONBALANCE real No No
Index List
Index Name P F U C Column Name Sort
T_VACATIONENTITLEMENT _ | No No |[Yes |No |[EMPLOYEECODE ASC
PK ENTITLEMENTYEAR ASC
EMPVACENTITLEMENT FK No Yes [No |No |EMPLOYEECODE ASC
Reference to List
Reference to Primary Key Foreign Key
T EMPLOYEE CODE EMPLOYEECODE
TABLE: WORKCALENDARTYPE
Column List
Name Type P VI
CODE integer Yes Yes

143

Name Type r M
NAME char(50) No No
Index List
Index Name P F U C Column Name Sort
T_WORKCALENDARTYPE P [Yes [No |Yes |[No |CODE ASC
K
Reference by List
Referenced by Primary Key Foreign Key
T CREW CODE WORKINGCALENDARTY
PECODE
T_ORGANIZATIONCALENDAR_ | CODE WORKCALENDARTYPEC
ACTUAL ODE
T_ORGANIZATIONCALENDAR_ | CODE WORKCALENDARTYPEC
PLANNED ODE
TABLE: WORKTEAM
Column List
Name Type P M
DEPARTMENTCODE integer No Yes
CODE integer Yes Yes
NAME char(50) No No
DESCRIPTION char(100) No No
Index List
Index Name P r U C Column Name Sort
T _WORKTEAM _PK Yes |No [Yes [No |CODE ASC
R_DEPARTMENTWORKTEAM |No |Yes |No |No |DEPARTMENTCODE ASC
_FK
Reference to List
Reference to Primary Key Foreign Key
T _DEPARTMENT CODE DEPARTMENTCODE
Reference by List
Referenced by Primary Key Forecign Key
T PMCALENDAR CODI WORKTEAMCODE

144

5.4.2. Domains

Table 5.3 Domain List

Domain Name Code Data Type
d_bankaccountno D_BANKACCOUNTNO char(25)
d_code D_CODE Integer
d_description D_DESCRIPTION char(100)
d_name D NAME char(50)
d sex D SEX char(1)
d_ssn D_SSN char(20)
d username D USERNAME char(8)

d vesno D _YESNO char(l)

5.4.3. Physical Database Schema

Figure 5.5 shows the physical database schema diagram based on the definitions above.
All tables and references between the tables are shown in the physical database model
diagram. The physical model shows all actual attributes and attributes definitions (data
types), primary keys and foreign keys of the tables. Indexes, key constraints, user
constraints are also embedded in this model. Triggers, procedures for integrity
constraints are defined within the physical model. In fact all these settings are the last
step before the creation of the actual database scheme in the given DBMS environment.

We have not shown the implementation of the actual database for our schema since we
are not going to include the database implementation phase in this thesis. The
implementation phase would require the setup of views, database procedures, security
grants, user groups and fine tuning the setting (i.e. table spaces, database log spaces)
depending on the volume of the data, number of users and DBMS restrictions.

The next step of the implementation would be the development of user interfaces
(applications for data processing, query and reporting). This would be, along with the
implemented database schema, a management information systems for man-power
planning. Another point to remember is the internal and external links of the database
schema to other data sources. While some of the data would actually come from other
information systems (i.e. transaction processing systems, automated data collection
system), some of the data in our database would be utilized by other systems in the
organizations (i.e. payroll, training department, logistics) Figure 5.6. shows the
interfaces of our database systems to other possible systems. In other words the data
flow from our system to other business systems in the organization and vice versa.
These interfaces are shown at a high-level in the figure.

In this chapter, we have tried to implement a database model for a given problem, that
we call the man-power planning, within a typical organization we have pictured for our
model. We did not show the implementation our theoretical requirements analysis
which lead us to the database requirements as a starting point for our model. We have
detailed the process of entity design, E/R modeling, conceptual

145

i

I L :
n1mﬂiﬁ.ﬁﬁi{%ﬁuﬁﬁ%ﬁﬁ.i.nm!f?-——%
' L |

Sl et

schema design and finally translating our system into an actual relational database
schema. Our design criteria and methods were based on the study we have had in
Chapter 3 and 4 where we have used the E/R techniques to design our database.

Middle Level Production Data
Payroll System Management Collections Systems
(Reporting & (Automated / Manual)
Planning)
A
Production
Plans & Actual
Employee Activities Related data
Man Power
Planning Database
Plans
Reports
Plans, Requirements
v
Logistics
Human Training Module
Resources

Figure 5.6 Interfaces To Other Business Systems and Areas

147

Chapter 6

CONCLUSION

In this study we have discussed various aspects of information systems, database
systems and we ended-up with a database development case study for the problem of
“man-power planning” in organizations.

Information system have gone through various phases and roles throughout the
last fifty years. There has been an ever increasing volume of utilization of information
systems within the organizations. The daily dependency of the businesses to
information systems has increased more and more. As the technical abilities of system
development increased so did the information requirements of the organizations, thus
leading to functionally and architecturally more complex and sophisticated information
systems. What is more, different types of information systems have evolved for
different groups of people (users) and different nature of businesses. Today, different
technological platforms work together to compose the overall organizational
information system. While “old” legacy systems are still in place and serving the
organizations in on way or the other, new systems are being developed with different
architectures and features. In any given organizations it is possible to see transaction
processing systems, office automation systems, management information systems and
decision support systems together. Information systems are like any other tool, that
people develop and use for their purposes. The fact with information systems is that
they are difficult, and costly to build and maintain. It is also true that achieving desired
targets and providing successful information systems is not an easy task. This requires a
good understanding of what information systems are for and who is going to use them.
Given the amount of expertise, time and effort, put into information systems, the
expectancy of “success”, “effectiveness and “user satisfaction™ is at a very high level.
System developers are facing challenges from both business and technology angels.

A major component in the information systems are the databases and database
management systems. A successful information systems should surely sit on a
successfully implemented database system. Information systems are not just a few
applications on users work stations. They process data. Data has to be well defined and
organized. This has to reflect the nature of the business and the nature of the
organization. Data has to be shared and available to multiple people. It has to be
maintainable and accessible. Various database models have been in place since the early
network model. Hierarchical model, relational model, object-relational model and
finally the recent object oriented model are the various categories. Today, the most
widely used database model is the relational model. Major DBMS solutions are based
on relational and object-relational models. We have studied the relational model in this
thesis. We have given various problems associated with relational model and also
various solutions. E/R modeling, schema refinement, normalization are among the
concepts we have discussed. These formed the base for our case study of database
schema development.

148

As the case study we have worked on a database schema design and
development task. This is a database model proposal for man-power planning problem.
The database requirements are summarized at the start of the development process. The
development process has been a demonstration of database development cycles from
initial entity design to final physical schema generation. While doing this we have
utilized the sophisticated design tool Sybase PowerDesigner.

It is important in any database development process to identify the entities and
relationships among them. The design has to serve its purpose and should be as refined
as possible. The whole schema in fact should be the answer of many questions in the
problem area. In other words, a data solution for information needs of users. While the
initial solution is still a manual task, using a design tool like in our case, enabled us to
generate accurate, structural and well documented results. E/R model (conceptual
model) was the initial solution for our problem. This is then followed by refinement and
creation of the actual database schema. Every database design in one way or the other
should go through an initial definition phase and modeling followed by a refinement
process. Normalization, redundancy, integrity constraints have to be taken into
consideration before the final product.

Man-power planning is chosen for our case study. Every organization somehow has the
challenge of man-power planing. Activities around people at work are in many various
nature, predictable, unpredictable, easy to plan etc. Man-power planning is associated
with almost every business function in an organization. Production, training, logistics
are some of the examples we can give here. In our model we have chosen a theoretical
organization in manufacturing area. We have placed our employee entity at the center
and stared building up the model as described in the database requirements summary.
There are many enterprise resource planning tools, crew scheduling packages on the
marketplace. Our development rather is based on a theoretical problem of man-power
planning in a theoretical organization and is to provide a small proposal of how to solve
it. and while doing so to show the well defined and documented database development
process. We are not proposing any real life solution with this study. To be a real life
solution, this study has to be brought further and deeper in analyzing the problem. What
is more, it is not a complete solution. We have not developed any package or
application. Our scope was defined as the database model development. Developing a
complete package would require various analysis and decisions on technology and
implementation. We have seen our solution as independent from any implementation
strategy. The importance of such a customized design is the business orientation of it.
Similar problems would exists in different organizations but how far the solution will
go, would depend on the choices and decisions for each organizations.

Big business solution packages do have modules for human resource
management, production planning, training scheduling etc. But this still does not solve
the problem of achieving customized organization specific requirements quickly and
easily. This is not a debate of package vs. in-house development. Along with different
packages purchased organizations do have system analysts, designers and architects to
implement in-house solutions. What we have done here is a very similar small
approach. Only this time we have defined our organization, given it a problem and tried
to solve it.

149

SUMMARY

Information systems study is at the center of many concepts mainly, people,
software, data, communication, hardware, organization and procedures which makes
information system development more than just an information technology (IT) task.
Information systems are a part of an organizational solution, based on information
technology, to a challenge posed by environment.

The term information systems has been defined as the effective design, delivery,
use and impact of information technology in organizations and society. Another way of
seeing them is that information system are systems which assemble, store, process and
deliver information relevant to an organization (or to society), in such a way that the
information is accessible and useful to those who wish to use it, including staff,
managers, clients, citizens.

There are different architectures (types) of information systems. Defined by their
functionality and processing. These are, transaction processing systems, office
automation systems, knowledge work systems, management information systems,
decision support systems and executive information systems. This categorization is
made based on their target users and their funtionality. These different types can co-
exists in organizations to built-up the overall organizational information system.

A major component of the information systems is the database system or the
database management systems that provide a platform for storing, organizing and
querying data by information systems. A database is a collection of data, typically
describing the activities of one or more related organizations. For example, a university
database might contain information about entities such as students, faculty, courses and
classroom; relationships between entities, such as students enrolments in courses,
faculty teaching courses and the use of classrooms for courses. A database management
systems, or DBMS, is a software designed to assist in maintaining and utilizing large
collections of data. Different database systems have been developed over the past years.
These are network model, hierarchical model, relational / object-relation model and the
recently object oriented model. The relation (and object-relational) model is the most
widely used model today. Relation model is based on the relational theory in
mathematics. Relations are the main entities in the relational model. Relational model
has its own problems of schema refinement and normalization.

The design of a relational database schema mostly starts with the E/R modeling
of the required systems. This is then followed by E/R to relational schema conversion
and schema refinement leading to the final product. In real life, the full implementation
of a database schema also includes various DBMS and platform dependent issues, such
as security, access grants, DBMS tuning etc.

Our database development model and the process in this study stops at the point
of the actual implementation. We have developed a database model for man-power
planning problem, where we have used E/R method, a database design tool Sybase
PowerDesigner. We have generated the physical database schema as a combination of
the tool output and schema refinement .

150

OZET

Bilgi sistemleri aragtirmalar farkli kavramlarin - insan, yazihm, veri, iletigim,
donanim, organizasyon ve prosedirler- Kkesistigi bir noktada bulunmaktadir. Bu
nedenle de bilgi sistemleri tasarimi sadece bir teknolojik ¢aligma degildir. Bilgi
sistemleri, organizasyonlarda, ¢evreden ve isin dogasindan gelen problemlere ve
gereksinimlere bir ¢oziim bulma gabasidir.

Bilgi sistemleri, bilgi teknolojisinin etkin tasarimi, strimi, ve kullanimi olarak
gortlebilir. Bir bagka yaklagim, bilgi sistemlerini veri toplayan, igleyen ve kullanicilara
faydali ve gerekli bilgiyi tireten sistemler olarak gormektir.

Bilgt sistemlerin farkli tipleri bulunmaktadir. Bu farklilik fonksiyonel a¢idan
tamimlanmugtir. Farkli tipler, “transaction processing systems®, “office automation
systems®, “management information systems®,“decision support systems ve “executive
information systems® seklinde siralanabilir. Bu farkli tipler organizasyonlarda bir arada

bulunarak, organizasyonel bilgi sistemini olugturur.

Bilgi sistemlerinin buyiikk bir pargasi, veri tabanlari ve veri tabani yonetim
sistemleridir. Veri tabani, organizasyonel verilerin yapisal bir toplamidir. Ornegin bir
Universite veri tabani sistemi, ogrenciler, dersler, bolumler vs. ile ilgili verileri ve
bunlarin arasindaki iliskileri bulundurur. Veritabam yo6netim sistemleri, veri
tabanlarinin igletilmesini ve kullanimim saglayan genis ¢apli yazilimlardir. Gegmisten
bugiine, degisik veri tabam sistemleri geligtirilmistir. “Network model®, “hierarchical
model, “relational (object-relational) model“ ve son donemlerde gelistirilen “object
oriented model* bu farkli sistemlerdir. “Relational model“ en yagin kullanilan veri
taban1 modelidir. “Relational model*, “normalization” ve “schema refinement® gibi
kendine 6zgu problemler barindirmaktadir.

“Relational® veri tabam tasarimi E/R modellemesi ile baglar. Bunu izleyen
islem, E/R modelin “relational® bir yapiya donustirilmesidir. Gergek yasamda veri
tababan1 tasarimi ve uygulamasi, veritabam yOnetim sisteminin se¢imi ve veri
givenligi, kullanict tammlanmasi gibi igletim ortamina bagli segeneklerin
tanimlanmasini gerektirir.

Bu c¢alismada verilen veri tabami modeli tasarimi, ger¢ek wveri tabaninin
uygulanmasi noktasinda birakilmigtir. Tasarladigimiz veri taban1 modeli, insan guci
planlamasina yonelik bir ¢aligmadir. Bu tasarim sirasinda, E/R modelleme yontemi ve
veri tabani tasarim paketi Sybase PowerDesigner kullanilmigtir. Caligmanin sonunda
fiziksel veri tabanit modeli Giretimigtir.

151

BIBLIOGRAPHY

American National Dictionary for Information Processing, Washington, DC : Computer
and Business Equipment Manufacturers Association (CBEMA), Report No. X3/Tr-1-
77, 1977 September.

Avison D E, and Fitzgerald, G., Information Systems Development : Methodologies,
Techniques and Tools, Second Edition, McGraw-Hill Companies, 1995

Bartholomew, D.J., Andrew F. F., Statistical Techniques for Man Power Planning,
Wiley Series, John Wiley & Sons, 1979

Chanliau M., Power Designer 7.0. The Next Generation., White Paper, URL:
www.sybase.com/, 1999.

Chen P. P., The Entity-Relationship Model - Toward a Unified View of Data, ACM
Transactions on Database Systems, Volume 1, Number 1, March 1976, p.9.

Codd E F., 1970, A Relational Model for Large Shared Databanks, Communications of
the ACM, Volume 13, Number 6, p.377-390, June 1970.

Codd E. F., The Relational Model for Database Management: Version 2, Addison-
Wesley Publishing Company, 1990.

Curtis Graham, Business Information Systems Analysis Design and Practice, Third
Edition, Addison Wesley Longman Ltd., 1998

Danielsen Asbjern, The Evolution Of Data Models And Approaches To Persistence In
Database Systems, M Sc. Essay, University of Oslo, Department of Informatics, 1998.

Department of Accounting and Business Law of the James J. Nance College of
Business Administration at Cleveland State University, URL:
http://www.csuohio.edu/accounts/

Elmasri R., Navathe S., Fundamentals of Database Systems, 2™ Edition, The Benjamin
/ Cummins Publishing Company, 1994

Everest C. Gordon, Database Management Objectives, System Function &
Administration, international student edition, McGraw-Hill Book Company, 1986

Farris M,. Sybase Development Tools' "Best Kept" Secret, White Paper, URL :
www.sybase.com, 1999

152

Fertuck L., System Analysis and Design With Modern Methods, Dubuque : Business &
educational Technologies/Wm.C.Brown, 1995

Gordan B. Davis and Margrethe H. Olson, Management Information Systems:
Conceptual Foundations, structures, and Development, second edition, McGraw-Hill
Book Company, 1985

Grimes Set, Modeling Object/Relational Databases, DBMS, Volume 11, Number 4,
April 1998, p.51

Han, J., Database Systems and Structures, Lecture Notes, CPMT7354, 1995, School of
Computer Science, Simon Fraser University, URL: http://www.csuchio.edu

Hart Dennis & Toomey Warren, History of Computer and Information Systems, URL:
http://www.cs.adfa.edu.au/teaching/studinfo/csis/Lectures/topic3.html

Hirschheim Rudy, A Comparison of Five Alternative Approaches to Information
Systems Development, Australian Journal of Information Systems Volume 5, Number

1, 1997

Kanellakis P.C., Elements of Relational Database Theory, Technical Report CS-89-39,
Brown University, Department of Computer Science, 1989

Kelly Floyd, Implementing an EIS (Executive Information System), EIS References,
(Watson & Rainer, 1991), URL: http://www.ceoreview.com/papers/eis.htm

King Nelson H., Object DBMSs : Now or Never, DBMS Online, Volume 10, Number
8, July 1997, p.62.

Kroenke David, Management Information Systems, McGraw-Hill Book Company, 1989

Looney Kevin, Koch George, Orace 8I: The Complete Reference, Osborne/McGraw-
Hill, 2000

Munshi J., A Framework for MIS Effectiveness, Working Paper, For presentation to the
Academy of Business Administration, Athens, International Conference, July 1996, p.1

National Institute of Standards and Technology (NIST) SQL Project, URL:
http://www.nist.gov/

Ozkarahan Esen, Database Management. Concepts, Design and Practice, Prentice-Hall
International Editions, 1990

Post V. Gerald, Database Management Systems, Designing and Building Business
Applications, Irwin McGraw-Hill, p.3, 1999

Ramakrishnan Raghu, Gehrke Johannes, Database Management Systems, Second
Edition, McGraw-Hill Higher Education, 2000.

153

Rennhackkamp Martin, Extending Relational DBMSs, DBMS, Volume 10, Number 13,
December 1997, p. 45

Sommerville lan, Software Engineering, Fifth Edition, Addison-Wesley Publishing
Company, 1996

Sol Selena, Network Databases, Web Developers Virtual Library, 16 August 1998,
URL: ttp://www.stars.com/Authoring/DB/

Terrance Hanold, An Executive View of MIS, Datamation (18:11), 1972 November, p.
66.

The New Oxford Dictionary of English, Oxford University Press, Oxford, New York,
1998, page 468

The Rise of Relational Databases, Funding a Revolution: Government Support for
Computing Research, National Research Council Report, National Academy Press,
Washington, D.C. 1999, Part-II Case Studies in Computing Research.

Topics Reading on Database Management Systems by A.A. Verstraete, Revised: May
22,1998, URL: http://misweb.smeal.psu.edu/database/

Uludag Memet, 00 Yilina Hazirmisiniz?, TMMOB Elektrik Muhendisleri Odasi Izmir
Subesi Bulteni, Yil: 11, Sayi:110, Haziran, p.20, 1999

University of Pennsylvania School of Engineering & Applied Science,
http://www.seas.upenn.edu: 8080/~museum/overview.html

University of Wolverhampton, The School of Computing and Information Technology
(SCIT), CP4011 Database Concepts and Techniques, URL: http://scitsc.wlv.ac.uk/

Watson R.T., Data Management : databases and organizations, Second Edition, New
York Chichester, Wiley, 1999

Webster’s New World Dictionary, College Edition, Toronto, Canada, 1962
Zdonik S., What Makes Object-Oriented Database Management Systems Different,
Advances in Object-Oriented Database Systems, NATO ASI Series, Series F: Computer

and System Science, Vol. 130, 3-26, Springer Verlag, Berlin Heidelberg New York,
1994

154

