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In this research, characterization and modification of clinoptilolite minerals

from different deposits have been studied to determine its utility for different

applications.

Clinoptilolite minerals obtained from the source located in Western

Anatolian were characterized by using Fourier Transform Infrared Spectroscopy

(FTIR) to determine the structural properties. The FTIR spectra of the samples

showed the characteristic vibrations of the clinoptilolite framework. Thermal

properties were determined using Differential Thermal Analyzer (DTA), Thermal

Gravimetric Analyzer (TGA), and Differential Scanning Calorimetry (DSC). The

analysis showed that the structure of the samples were stable up to 650 DC and due

to the Fe203 present in the tuff, phase inversion was observed. Accelerated

Surface Area and Porosimeter (ASAP 2010) used to determine the adsorption-

related properties using N2 and Ar adsorption isotherms. The samples showed

different adsorption behaviour toward each gas. The pore size distribution of

clinoptilolite samples showed that they have mesaporous structure.

The clinoptilolite was modified by ion exchange using 1N NaCI sa]t

solution in waterbath, and in microwave maintained at 80 DC for 10 min, 60 min

and 120 min. The efficiency of each method on ion exchange was compared. The

Na+ amount in the zeolite was found to be 2.25 and 3.24 % by weight after 2 hours

of exchange in waterbath and microwave, respectively. The results showed that

microwave method used for modification was more efficient.



Bu ara~tmnada degi~ik yataklardan ahrum~ klinoptilolit minerali, ye~itli

uygulama alanlannda kullamlabilmesinin belirlerunesi iyin karakterize ve modifiye

edildi.

Batl Anadolu'daki yataklardan alman klinoptilolit mineralinin yaplsal

ozelliklerinin FTIR Spectrometresi kullanI1arak belirlendi.FTIR Spectralanndan alman

sonuylara gore hlitlin klinoptilolit ornekler karakteristik klinoptilolit adsorpsiyon

bandlanm gosterdi. Klinoptilolit mineralinin lSlsal ozellikleri lSlsal analiz sistemleri

kullamlarak belirlendi. Analizler yah~I1an orneklerin 650 °C'ye kadar yapI1annda bir

degi~iklik olmadlgl, yatakta mevcut olan Fe203 'ten kaynaklanan faz degi~imi oldugu

gozleruni~tir. Ylizey alan ve gozenek tayin cihazl ile klinoptilolitin adsorpsiyona baglI

ozellikleri N2 ve Ar adsorpsiyonu ile belirlendi. Ornekler kullamlan gazlara gore fakh

adsorpsiyon davram~l gostermi~tir. Klinoptilolit orneklerinin mesaporous (ortaboy

gozenek) olduklarl bulurunu~tur.

Daha soma Bigadiy minerali iyon degi~im yontemi ile modifiye edildi. iyon

degi~imi, IN NaCl cozeltisi ile slcakhgl 80°C ye sabitleruni~ su banyosu ve

mikrodalgada 10, 60 ve 120 dak. yapI1dl. Mikrodalga ve subanyosu ile iyon degi~iminin

modifikasyona etkileri yapI1an analizler sonucunda kar~lla~tmldl. iki saat sonunda

mikrodalga ve subayosunda yapI1an katyon degi~imi sonunda zeolit iyindeki Na+

yUzdesi SlraSI ile 3.24%, 2.25 % olarak bulurunu~tur. Bu sonuylar mikrodalganm daha

etkin oldugu gostermi~tir.



2.1 History of Zeolites 3

2.2 Structure and Fundemental Structural Units of Zeolites 5

2.3 Properties of Zeolites 7

2.4 Natural Zeolites 8

2.5 Clinoptilolite 9

2.6 Application Areas of Zeolites 11

3.1 Structural Properties 14

3.2 Adsorption Related Properties 16

3.2.1 Surface Area 19

3.2.1.1 Langmuir Model 19

3.2.1.2 B.E.T Model 20

3.2.3 Characterization of Macro-Mesapores

3.2.3.1 Kelvin Equation

3.2.3.2 BJH Method

I
IIMIR YUKSEK T~~NOl~Jiv ENSriTOsu

REKTORLUGU
k'tininhnne D L-, ... ,ve oi\Umantasyon Daire B<k

"..__ l'



3.3 Thermal Properties

3.3.1 TGA Method

3.3.2 DTA Method

3.3.3 DSC Method

24

24
25

27

4. MODIFICATION OF ZEOLITES

4.1 Acid Leaching

4.2 Ion Exchange

4.3 Microwave Heating

5. EXPERIMENTAL

5.1 Materials and Methods

5.2 Material Characterization

5.3 Modification by Ion Exchange

6. RESULTS AND DISCUSSION

6.1 FTIR Analysis

6.2 Thermal Analysis

6.3 Adsorption Analysis

6.4 Ion Exchange Studies

6.5 Thermal Studies ofIon Exchanged Bigadi<; clinoptilolite





Table 4 % Weight losses of original clinoptilolite minerals kept

in ambient air

Table 5 % Weight losses of original clinoptilolite minerals kept

in 75% RH air at 25 DC

Table 6 Peak minimum temperatures of clinoptilolite minerals in DTG

curves 50

Tables 11 The effect of degas temperature on Ar Adsorption results

of Bigadic;:clinoptilolite

Table 12 The effect of free-space analysis on Ar Adsorption results

of Bigadic;:clinoptilolite



Table 13 : The values of rP at different PIPo values for nitrogen

at 77.4 K.(Sing and Gregg ,1981)

Table 15 Chemical analysis of original Bigadiy clinoptilolite by

different methods

Table 17 The weight % of cations in Bigadiy clinoptilolte at different

times

Table 19 % Weight losses of cation exchanged Bigadiy clinoptilolite

in waterbath

Table 20 Dehydration behaviour of cation exchaged Bigadiy clinoptilolite

in microwave (DT A

Table 21 Dehydration behaviour of cation exchaged Bigadiy clinoptilolite

in waterbath (DTA)



Figure 1 Presentation of (Si04)4- and (Al04)5- tetrahedra

Figure 2 Tetrahedra linked together to create a three dimensional

Structure

Figure 3 The secondary building units in zeolite framework

single four ring, single six ring, single eight ring

double four ring, double eight ring, complex 5-1, complex 4-4-1

Figure 7 Effect of temperature on Na-Zeolite A for

adsorption of Nitrogen

Figure 8 Gas Adsorption by Zeolite-A molecular sieve

at low temperatures

Figure 9 TGA curve of different c1inoptilo1ites

a)88% zeolite content Gordes b) 90% zeolite content Gordes

a) 90% zeolite content Bigadiy d) 95% zeolite content Bigadiy

(Esen1i&Kum basar, 1994)



Figure 10 DT A curve of different clinotilolites

a)88% zeolite content Gordes b) 90% zeolite content Gordes

b) 90% zeolite content Bigadiy d) 95% zeolite content Bigadiy

(Esenli&Kumbasar,1994)

Figure 15 Normalized absorbance values ranged at 3400-3700 cm-1

Wavenumber

Figure 16 Normalized absorbance values ranged at 1600 cm-1

Wavenumber

Figure 17 Normalized absorbance values ranged at 609 cm-1

Wavenumber

Figure 19 FTIR Spectrum of original and moist Gordes 2nd mine

I
IIMIR YUKSEK rEpWL~Jiw f~STlrOSO

REKTORlUGU
~IJt(jDhane ve Dokiimontosyon Doire Bsk.

--'



Figure 24 Normalized absorbance values ranged at 609 cm-1

Wavenumber

Figure 25 Normalized absorbance values ranged at 450 cm-1

Wavenumber

Figure 28 FTIR Spectrum of original and washed Gordes 2nd mine

Figure 29 TGA curves of clinoptilolite minerals from different

origins a)Dedetepe b)Gordes 1st mine c)Avdaldere d)Kuankoy

e)Gordes 2 nd mine f)Bigadic;:

Figure 30 TGA and DTG curves of clinoptilolite minerals from

different origins. a) Gordes 1st mine b) Gordes 2nd mine c)Avdaldere

d) Kuankoy e)Bigadic;: f) Dedetepe



Figure 34 N2 Adsorption isotherm of Bigadiy clinoptilolite

(Log scale)

Figure 37 Pore size distribution of different clinoptilolite samples

determined by BJH method for N2 adsorption

Figure 38 The changes in cation amounts of Bigadiy clinoptilolite

in waterbath

Figure 39 The changes in cation amounts of Bigadiy clinoptilolite

III mIcrowave 68

Figure 41 The maximum exchangeable and exchanged amount of

Na+ in Na-Bigadiy in waterbath 71

Figure 42 The maximum exchangeable and exchanged amount of

Na+ in Na-Bigadiy in microwave 71

Figure 43 TGA curve of cation exchanged Bigadiy clinoptilolite

in waterbath 72



Figure 45 DTA curve of cation exchanged Bigadiy clinoptilolite

ill mIcrowave

Figure 46 DT A curve of cation exchanged Bigadiy clinoptilolite

in water bath



Zeolites are crystalline aluminosilicates of group IA and IIA elements such as

sodium, potassium, barium, magnesium and calcium. The physical structure is porous

with interconnected cavities in which metal cations and water molecules are present.

The fundamental building unit of the zeolite is a tetrahedron of four oxygen atoms

surrounding a relatively small silicon or aluminium atom. They have been known since

the eighteenth century but they remained as a curiosity for scientists and collector until

their unique physical and chemical properties determined by many researches. These

minerals are recognised as some of the most important silicates in volcanic rocks. These

are mostly formed by reaction of pore-waters with volcanic glass and also by alteration

of pre-existing feldspars, feldspathoids, poorly crystalline clays and biogenic silica.

Because of their ion-exchange, adsorption and molecular sieve properties, as well as

large deposits existing in different parts of the world many researches have focused on

different applications of zeolites among which wastewater treatment, stack -gas clean-up,

natural gas purification, petroleum production, agricultural and aquaculture are just few

examples.

Ion exchange property of zeolite has been studied for many years, it is mostly

used to modify the zeolite properties in order to prepare new types of conductors, semi-

conductors, visual display units, dielectric gas sensor and catalyst. Both the synthetic

and natural zeolites widely used as ion exchanger for these purposes but often limited to

countries having their own deposits.

Clinoptilolite is the widespread natural zeolite mineral found in nature with high

purity. Schaller considered this kind of zeolite a new mineral in 1923. In 1934, Hey and

Bannister showed that clinoptilolite considered to rich silicon heulandite. This mineral

has high thermal resistance. Heating up to 750°C does not modify its original structure.

This feature, according to Mumpton, is due to the high silicon concentration. Mason and



Sand state that the thermal resistance is due to its main exchangeable cations. ( Alietti,

1972) Clinotilolite belongs a structural group 7 and has a monoclinic symmetry and a

Si/Al ratio between 4.25 and 5.25. Its structure is presented by a series of interconnected

channels.

The purpose of this research is to examllle the clinoptilolite from differ~nt

deposits in Western Anatolian that is available as many sedimentary deposits. The

present work consists of two parts; the first part includes the characterization of the

clinotptiloite using different methods, the second part includes it structure modification

by ion exchange using microwave and waterbath.

In chapter two of the present work, general information about zeolites including

its structure, types and uses are discussed. The methods and the instruments that are

used to characterize the clinoptilolite are given in the following chapter. In chapter four

the modification method are described. Finally, the experimental work and the results

of characterization and modification are examined.



Zeolites form a family of minerals, which have been known since the 18th

century but they remained a curiosity for scientist until their unique physico-chemical

properties attracted the attention of many researches. The history of zeolites begins in

1756 with the discovery of first zeolite mineral stilbite, by the Swedish mineralogist

Cronsdent. He recognised zeolites as a new class of mineral consisting of hydrated

alumino silicate of the alkali and alkaline earths. 1777 Fontana described the

phenomenon of adsorption on charcoal. In 1840 Damour observed the crystal of zeolites

could be reversibility dehydrated with no apparent change in their transparency or

morphology. The history followed by the discovery of some important properties of

zeolite. Way and Thompson in 1850 clarified the nature of ion exchange in soil [5]. In

1857 Damour demonstrated the hydration-dehydration properties [32]. In 1858 Eichorn

demonstrated that the zeolite minerals chabazite and natrolite were capable of

exchanging Na+ and Ca++ cations from dilute solutions. In the intervening years,

extensive studies both on synthetic zeolites have been demonstrated [42].

Grandjean in 1909 observed that dehydrated chabazite adsorbs ammonia, air,

hydrogen and other molecules. In 1925 Wiegel and Steihoff reported the first molecular

sieve effect. The Leonard described the first use of X-Ray diffraction for identification

in mineral synthesis. The first structures of zeolites were determined in 1930 by Taylor

& Pauling. In 1932 Mc.Bain established the term 'Molecular Sieve' to define porous

solid materials that act as sieves on a molecular scale and still this term is used. By the

mid-1930s the ion exchange, adsorption, molecular sieve and structural properties of

zeolite minerals as well as a number of reported synthesis of zeolite was described in

literature [5]. Barree's work in 1938, Samanish's in 1929, Samanishi and Hemmi's in

1934 on the zeolite adsorption and molecular sieve phenomena were carried out .on

crystals from basalt vugs. Soon zeolite included developing processes based on the



natural materials. In the late 1940s Linde Division of Union Carbide Corporation in

Tonawanda, instituted a program of zeolite synthesis under the direction of M. Milton

and D. Breck to produce chabazite for air separation and other adsorption and molecular

sieve application [32].

Although, zeolites have attractive properties they did not find significant use

commercially until the late 1960s. The first industrial production of the zeolites dates

back to 1954 when Union Carbide Cooperation first commercialised the Linde

molecular sieve a new class of industrial materials for separation and purification

proceess. In 1959 a zeolite Y-based catalyst was marketed by Carbide as an

isomerization catalyst. The use of zeolites as catalyst was followed by the introduction

of zeolite X as a cracking catalyst in 1962 by Mobil Oil Company. In 1969 Grace

described the modification chemistry based on steaming zeolite Y to form an 'ultra-

stable' zeolite Y. In 1967 and 1969 Mobil oil reported the synthesis of the high silica

zeolites beta and ZSM5. In 1974 Henkel introduced zeolite A in detergents as a

replacement for the environmental suspect phosphates. In 1977 Union Carbide

introduced zeolites for ion-exchange separations. In the 1980s there has been extensive

work carried out on the synthesis and applications of ZSM5 and a growing number of

other members of the high silica zeolite family. The 80's saw major developments in

secondary synthesis and modification chemistry of zeolites [5].

At present time, there are number of other new applications of zeolite in various

stages of developments. The growing knowledge of their properties together with the

growing needs for many industrial applications the zeolite promise an exciting future in

the developing industry.



Zeolites are porous crystalline, hydrated alumina silicates of group I and II

elements, in particular with sodium, potassium, and barium. Structurally the zeolite

framework consists of an assemblage of Si04 and AI04 tetrahedra, joined together in

various regular arrangements through shared oxygen atoms, to form an open crystal

lattice containing pores of molecular dimensions into which quest molecules can

penetrate. The zeolite framework is open, contain channels and interconnected voids

filled with exchangeable cations and the water molecule [5].

The structural formula of a zeolite is best expressed for the crystallographic unit

M is the cation valance n, w is the number of water molecules and the ratio y/x

(that is Si/AI) usually has the values of 1-5 depending upon the structure. The sum (x+y)

is the total number of tetrahedra in the unit cell. The portion within the parenthesis

represents the framework composition [8]. The fundamental building unit of zeolite is

given in Figure 1.

Figure 1: Representation of Si04 -4 or AI04-5 tetrahedra

As stated earlier all zeolites have framework three-dimensional structures

constructed by joining Si04
4
- or AI04

5
- coordination polyhedra. By definition these

tetrahedra are assembled together such that the oxygen at each tetrahedra comer is

shared within that identical tetrahedra (Si or AI) [10]. These tetrahedra come together to

form the 3D structure as shown in Figure 2. Since the positive charge of an silicon atom



is higher than an aluminium atom the net charge on the each site of an aluminium

tetrahedron is negative and it is balanced by one of the exchangeable cations present in

the framework [4].

The variety of natural zeolite types results from differences in the way in which

the tetrahedra may link in space in one, two or three dimensions; and from the type of

other ions that substitute within the interstices. The tetrahedra of oxygen atoms are

arranged in four, five, six, and eight member rings commonly called secondary building

unit (SBU), which are combined to form the channels and cavities of the various

zeolites given in Figure 3 [5]. The nature of the void spaces and interconnecting

channels in dehydrated zeolite is important in determining the physical and chemical

properties. The channels in natural zeolites contain water that make up the lO-25 % of

their weight. The adsorbed water may be driven-off by heating under vacuum at several

hundred °C. The percentage of water may be removed from a zeolite by this procedure is

a good measure of its adsorption capacity, since the void left by the water molecules will

be available for the adsorption of other molecules.



<=> C)6 8

B~4-4

d
5-1

Figure 3: The secondary building units in zeolite framework

Single four ring, single six ring, single eight ring, and double four ring,

double eight ring, complex 5-1 complex 4-4-1

The following are some of the important properties of zeolites that make them an

important material compared to other crystalline inorganic oxide materials. [5]

i. Zeolites have microporous character with uniform pore dimensions.

ii. Zeolites have molecular sieve property.

iii. Zeolites have ion-exchange property.

iv. Zeolites are used as catalysts.

v. Zeolites have high thermal stability
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A & X (Na, K, Ca forms)O

Y(Na, Ca, NH4, rare earth forms)

L ( K, NH4 forms)

Omega & Zeolon, Mordenite

(Na, H forms)

ZSM-5 (Various forms) and etc ...

Clinoptiloite

Morderute

Chabazite

Eroinite

Zeolite minerals are recogrused as some of the most important authigenic

silicates in altered pyroclastic and volcaniclastic rocks. These are mostly formed by

reaction of porewaters with volcanic glass and also by alteration of pre-exisitng

feldspors, feldpathoids, poorly crystalline clays, and biogenic silica [37].

A natural zeolite is framework of alumina-silicate whose structure contains

channels filled with water and exchangeable cations where ion exchange is possible at

most 100°C.

The general formula for the natural zeolite is:

(Li,Na,K)a (Mg,Ca,Sr,Ba)d [AI (a+2d) Si (n-(a+2d) 0 (2n)] mH20

There are many natural zeolite sources available in Turkey and most of the

encountered types are clinoptilolite, analism as indicated in Table 2 [36].



Balikesir, Bigadic

Emet, Yukari Yoncaaga<;:

Izmir Urla

Kapodokya Yoresi (Tuzkoy-Karain)

Gordes

Bah<;:ecik" Giilpazari, Goyntik

Polatli, Miilk, Oglak<;:i,Ayas

Nalihan, <;ayirhan, Sabanozti

Kalecik, <;andar, Sabanozu,Hasayar

Clinoptilolite

Clinoptilolite

Clinoptilolite

Clinoptilolite

Clinoptilolite

Analsim

Clinoptilolite, silica rich zeolite, is a member of a heulandite group of natural

zeolite. It is iso-structural with the zeolite heulandite, which it differs in having higher

Si/AI and monovalent/divalent cation ratios. The higher thermal stability of

clinoptilolite compared with heulandite was obtained in terms of an elevated Sil Al ratio.

The Si/AI ratio is between 4.25-5.25 for c1inoptilolite and 2.7-4 for heulandite.

Heulandite transforms into other phase at about 230°C and becomes noncrystalline at

about 350 °C. Clinoptilolite survives its crystal structure up to about 700°C. [15]

Clinoptiloilte mineral is colourless. Some may be colored as brick red, white

due to the presence of finely oxides of iron or similar impurities. It has glassy lustre or

silky luster. The density of c1inoptilolite range between 1.7 and 2.3 glee [8]. It has

uniform and regular pore size. The composition, purity and property change among the

deposits.
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According to literature the structure of clinoptilolite consists of a two

dimensional system of the three types of channels; two parallel channels, channel A (10

member ring), channel B(8 member ring) and they are perpendicularly intersected by

channel C (8 member ring) with sizes 4.4*7.2 AO, 4.1 *4.7 AO and 4.0*5.4 AO ,

respectively. The c-axis projection of the clinoptilolite structure is given in Figure 4

O-K O-'lc.::c ]
I " ".1)-~.;t'I . " n.O'::I ~. L

M(1), located in channel A, coordinated with two framework oxygen atoms and

five water molecules. One of these molecules may not be directly associated to M( 1),

giving pseudo-octahedral system. Ca+2 and preferably Na+ occupy this site.

M(2), is situated in channel B, coordinated with three framework oxygen atoms

and five water molecules. M(2) is occupied by Na+ and preferably by Ca+2
.

M(3), in channel C, coordinated by six framework oxygen atoms and three water

molecules. This site is occupied by K+ and preferably by Ba+2
. Because this position is

very close to M(1) a simultaneous occupancy of both sites is not possible.

M(4), which is located in channel A like M(1), but a center of inversion. Six

water molecules achieve its octahedral coordination and occupied by Mg+2 [3].



2.6 Application Areas of Zeolites

Since their introduction as a new class of commercial adsorbent and mineral in

1954, molecular sieve zeolites have grown into industry and have lead to the creation of

a new branch of chemical technology. Both the natural and synthetic form zeolites are

used as adsorbent and desiccant in drying and gas purification systems. They have

greatly commercialised in the hydrocarbon-processing field and used as catalysts in

synfuel production, petroleum refining and petrochemical industries. Besides their

general common uses recently few other practical uses of zeolites as ion exchangers are

emerged. But it is commonly known that not all zeolites can do all things. For example

clinoptilolite will react differently in systems depending on its exact elemental

composition, purity, porosity, hardness and other extensive properties of the rock.

Similarly, even though a given zeolite possess attractive properties for a given

application, it may not be the best economic choice for the application, compared with

some other natural or synthetic zeolites [29].

The most important recent uses of zeolites as ion exchangers:

•. Water/Waste water treatment

-Ammonia & Heavy metal Removal from Wastewater.

-Treatment of Radioactive Wastes.

-Detergent Industry

-Soil conditioning & related uses.

- Animal feed supplements

S.K. Ouki et al. studied the potential use of natural zeolite in Pollution Control

and recovery of metal. What they conclude is the usefulness of natural zeolites for

pollution control applications depends primarily on their ion exchange capabilities and

their porous, 3D framework structure [21].



Zeolites are widely used as ion exchangers in wastewater treatment for the

removal of ammonium ions, heavy metals and radioactive wastes. Mercer et al. found

that clinoptilolite was the most promising ion-exchanger for the ammonium removal

from wastewater. In many regions of the world where clinoptilolite, mordenite,

phillipsite & chabazite are available as a cheap mineral, they have been much used for

the processes in wastewater treatment. Among theses clinoptilolite is the most often

used natural zeolite mineral for this purpose [2,30]. Hazard of lead in drinking water

and soils is obvious and it should be removed before it is taken in by humans and

animals. Studies confirm the ability of synthetic zeolite A to take up this element from

water and soil. In Russia zeolite is being used in gold-processing plant as cation

exchange filter to remove gold from wash and wastewater [10].

When spent nuclear fuel elements are removed from a nuclear reactor they are

stored under water in ponds. Fission products (especially radioisotopes Cs & Sr) build-

up in pond water during this storage period. This contaminated pond water is the main

source of medium-level radioactive waste and must be decontaminated. Zeolites have

been used for this and related purposes by the nuclear industry for many years [10]. The

earliest recorded use of clinoptilolte for this purpose was in 1960 by Ames. He used

minerals from. Hector deposit to selectively remove Cs and Sr from low-level

radioactive wastewater created by nuclear reactors [32]. Additionally incorporation of

clinoptilolite into diet of sheep grazing on grass contaminated by Chernobyl accident

has reduced the level of Cs uptake into the sheep [10].

Growing awareness of the environmental damage created by the use· of

polyphosphates in detergent industry caused a search of less hazardous replacements in

the recent years. The function of the polyphosphate was as to build up the cleaning

efficiency of detergents primarily by removing Ca+land Mg+2 ions from washing water

to prevent their precipitation by surfactant molecules. The use of zeolites as builders

was suggested in the 1970s and since then it has been demonstrated that they can

effectively carry out the water softening exercise needed for successful laundering [I 0].



Clinoptilolite and mordenite is used to control soil pH, moisture content and

manure malodour. The control of pH is related to the ability of the zeolite to function as

a slow release agent to improve nitrogen retention in the soil. Generally 5-10% by

weight of clinoptilolite is being used in horticultural applications. Most of the studies

have promising results that; plants grow larger and have more extensive root systems

and need only the addition of water for months [8].

Since 1970s, after the idea of producing bigger meat animals, clinoptilolite about

3-5% is normally added to the diets of chickens, pigs, cattle, sheep and rabbits. For

example studies in the USA, Australia, Cuba and etc has confirmed generally that pigs

taking in clinoptilolite show beneficial weight gains and are less subject to diseases than

pigs fed by normal diets [8].

Additionally, zeolites are being used in odour control such as; ill medical

treatment rooms, truck cabs, ashtrays and toilets [32].



Before a zeolite can be used for a certain application it's necessary to

characterize the zeolite, to see if it has the desired properties for that applications. If not,

another synthesis method should be used or the zeolite must be modified, to meet the

specifications. Zeolite synthesis, modification, characterisation and application are

strongly related to each other [5].

In the determination of some important characteristic properties of zeolites s~ch

as; structural, thermal and adsorption related properties various characterisation

techniques are available. In determination of structural, thermal and adsorption-related

properties, XRD and Fourier transform Infra-red (FTIR), thermal analysis (TGA, DTA,

DSC) and gravimetric or volumetric adsorption systems can be used, respectively.

The X-Ray Powder Diffraction analysis is the main method of investigation of

zeolite containing rocks and is used to identify the crystalline phase of zeolite. Method

is based on the fact that every crystalline material has its own characteristic X-Ray

diffraction pattern. The intensity of the diffraction peaks can be used to determine the

crystallinity of the sample. For that purpose the intensity of the particular peak (or

peaks) is compared with the intensity ofthe same peak of a standard sample [5].

Ulkli S., (1984) had studied the possible utilization of natural Turkish zeolite in

water treatment. The zeolites tested were taken from Bigadi9-Balikesir. The X-Ray

Powder Diffraction method was applied to identify the crystalline phase and the

chemical analysis of the same zeolite was performed [47].



IR spectroscopy has been widely used for studying the structure and properties of

materials. IR spectrum gives information about the presence of the impurities, organic

and inorganic materials in the zeolite structure. The fundamental vibrations of the

framework of a zeolite have been studied in literature.

According to Breck, IR spectra can be divided into two classes. The first class of

vibmtions arises due to internal vibrations of the T04 tetrahedron, which is the primary

unit of structure, and is not sensitive to other structural units. The second class of

vibrations is related to the linkages between tetrahedra. The intense and adsorption

characteristics of clinoptilolite are given in Table 3 [8].

CLASS VIBRATION

• Asymmetry Stretch 1250 cm-'-950 cm-I

[O-Si(AI)-O
stretching ]

Internal Tetrahedra • Symmetry Stretch 750 cm-1_ 650 cm-1

• T-0 Double Ring 500 cm-1_ 420 em-I

• T-0 Double Ring 650 cm-1_ 500 cm-1

External Linkages • Pore Opening 420 cm-1_ 300 cm-1

• Symmetry Stretch 750 cm-1_ 820 cm-1

• Asymmetry Stretch 1150 cm-1-l050 cm_1

Additional • H bonded H2O, 3400 em-I
H-O stretching

• Isolated OH 3700 cm-1

Stretching



Valentina N. et aI., (1995) studied the quantitative determination of the

heulandite and c1inoptilolite content of zeolitic tuffs by IR spectroscopy. All zeolites

appear to exhibit a typical IR pattern, and are given in Figure 5 [14].

_ /w· 17_ _ a.o ~
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3.2 Adsorption Related Properties (Surface Area, Pore Volume, Micropore

Surface Area and Pore Size Distribution)

Physical adsorption measurements are widely used to determine the adsorption

characteristics such as; surface area, pore volume and pore size distribution.

The first step in the presentation of the adsorption isotherm is the identification

of the isotherm type and hence the natures of the adsorption process. In this way it is

possible to obtain information about the type or pore structure of the adsorbent and this

is the most commonly used computational procedure for quantitative evaluation of the

isotherm. The pysisorption isotherms are generally in six forms and presented in Figure
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Type I is characteristic of adsorbent having extremely small pores and

external surfaces. (e.g. activated carbons, molecular sieve alumina and certain

porous oxides) Type II isotherm is inductive of either non-porous or

macroporous adsorbent. It represents the unrestricted monolayer - multilayer

adsorption. The inflection point on the isotherm often taken to indicate the stage

at which monolayer coverage is complete and multilayer adsorption about to

begin. Type III isotherm represents an uncommon case where adsorbate-

adsorbent interactions play an important role. Type IV isotherm is the

characteristic features of the hysteresis loop. This type of isotherm attributed to

monolayer-multilayer adsorption since it follows the same path as the

corresponding part of a type II isotherm. Type V isotherm is related to the type

III isotherm where adsorbent-adsorbate interaction is weak, but it is obtained

with certain porous adsorbents. Type VI isotherm, represents stepwise multilayer

adsorption with non-porous solid. [38,47]

As mentioned above, adsorption related properties of the zeolite samples

were derived from N2 and Ar adsorption carried out at a cryogenic temperature

either LN2 or LAr at their boiling temperatures of 77 K and 87 K, respectively. A

contraction, of the channels by chilling to low temperatures damps vibrations of

the atoms, shrinks the effective diameter of the apertures and cuts down the

kinetic energy of gas molecules. Therefore, for specific gases a sharp drop of the



diffusion rate occurs at distinct critical temperatures. Such specific effects on

adsorption are illustrated in Figure 7 for Na-Zeolite A to show the behaviour of

nitrogen.

Figure 7: Effect of temperature on Na-Zeolite A for adsorption of

nitrogen.

The large nitrogen atom is in the centre of the oxygen cage. The arrows

indicate thermal vibration, which is greatly damped at very low temperatures.

The smaller sphere indicates sodium ion near the cavity. The vibrations of the

atoms at low temperatures explains the characteristic temperature functions of

gas adsorption as shown in Figure 8 below -100 DC and -150 DC for nitrogen and

argon, respectively. The gases are trapped below the critical temperatures [50].

Figure 8: Gas adsorption by Zeolite A molecular SIeve at low

temperatures.



The Langmuir and B.E.T adsorption methods are still the most widely

used procedures for the determination of the surface area of finely divided and

porous materials.

The simplest theoretical model for monolayer adsorption is due to

Langmuir model. The Langmuir model was originally developed to represent

chemisorption on a set on a distinct localized adsorption sites. The basic

assumptions on which the model is based on are as follows;

1. Molecules are adsorbed at a fixed number of well-defined localized

3. All sites are energetically equal.

4. There is no interaction between molecules adsorbed on neighbouring

PIPV = bVm + Vm [1]

Where;

P is the pressure

Po is the saturation pressure

Va is the quantity of gas adsorbed at pressure P

Vm is the quantity of gas adsorbed at monolayer

b is the empirical constant



The B.E.T model has been used to interpret Type II isotherm and named

from the surnames of its originators, Branauer, Emmett, and Teller. It is the most

widely used procedure for the determination of surface area of finely divided and

porous material. The B.E.T model is based on assumption that each molecule in

the first adsorbed layer is considered to provide one site for the second and

subsequent layers. The molecules in the second and subsequent layers, which are

in contact with other sorbate molecules rather than with the surface of the

adsorbent, are considered to behave essentially as the saturated liquid. In this

manner the equilibrium constant for the first layer molecules in contact with the

surface of the adsorbent is different [38].

According to the theory, C is a constant, which is related exponentially to

the heat of adsorption of the first layer. In practice, the value of C can be used to

define the measure of heat of adsorption. A high value of C (= 100) is associated

with a sharp knee in the isotherm. If C value is low «20) the sharp knee cannot

be identified as a single point in the isotherm [16].

3.2.2 Characterization of Micropores : Pore Size Distribution

MP, Dubinin-Radushkevich, Dubinin-Astakhov and Horvath-Kawazoe

methods are the evaluated mathematical models for pore size distribution.

Mikhail et al. proposed a method for constructing pore size distribution

from the t-plot. The t-plot is a plot of t, the statistical thickness, versus the

relative pressure, PlPo. The t-plot employs a composite t-curve obtained from

the data on number of nonporous adsorbents with BET C constants similar to



those of the microporous sample being tested. The standard t-curve is expressed

by the empirical de Boer equation [43].

t(AO)= 13.99/[log(P/Po)+O.034] [3]

MP method consists of determining the slope at each point on the t-pl.ot,

which presumably gives the surface area accessible to N2 molecules at that

particular temperature (or pressure). The decrease in surface area between

successive points, then, gives the volume of pores filled for presumed pore

shape. For slit-shaped pores the volume filled is;

Atl and At2 are surface areas, t[ and t2 thickness of two successive

points on the t-plot, the mean slit pore group is W= (t)+t2 )/2 . Thus, a

cumulative pore-volume curve may be constructed, from which the differential

PSD may be obtained [7].

The second means of determining PSDs of microporous materials from

gas adsorption measurements is based on the theory of volume filling of

micropores. The theory of filling of micropores (TVFM) is applied most widely

for describing the physical adsorption of gases and vapours in micropores. This

theory is based on the assumption that the characterization adsorption equation is

expressing the distribution of the degree of filling of the adsorption space. This

theory incorporates earlier work by Polanyi in regard to the adsorption potential

A which is defined as [48];



e ~Exp [I::aJ[Ln' ~ ]H [8]

Where; 8 degree of filling of adsorption volume

Eo characteristic energy of the adsorption

$ is the affinity coefficient

G. Horvath and K.Kawazoe developed a method of calculating the

effective micropore size distribution of slit-shaped pores in molecular sieves

from adsorption isotherm. Satio and Foley extended the HK approach to

cylindrical pores in order to give a better description of adsorption in zeoli tic



where;

Na the number of atoms per unit area of adsorbent

NA the number of the molecules per unit area of adsorbate

Aa & AA are constants in Lennard-Jones potential for adsorbent & adsorbate

cr is the distance between a gas atom and the nuclei of the surface at zero

interaction energy.

3.2.3 Characterization of Macro-Mesopores

The Kelvin equation, BJH adsorption and desorption method are used in

the characterization of the mesoporous and macroporous materials.

In porous adsorbent there IS continuous progreSSIOn from multilayer

adsorption to capillary condensation in which the smaller pores become

completely filled with liquid sorbate. This occurs because the saturation vapor

pressure in a small pore is reduced by the effect of surface tension [38].

The mesopore size is usually calculated with the aid of the Kelvin

equation in the form.

Ln ;: = -[ 2y :;~:se] (10]

where;

p. is the critical condensation pressure

y is the liquid surface tension

8 is the contact angle between the solid and the condensed phase

rm the mean radius ofthe curvature of temperature liquid meniscus



BJH method uses the Kelvin Equation for calculating the pore size

distribution. This method involves an imaginary emptying of condensed

adsorptive in the pores in a stepwise manner as relative pressure is likewise

decreased. The mathematics of the technique is equally applicable whether

following the adsorption branch of the isotherm from high to low pressure or the

desorption branch. Barrett, Joyner and Ha1enda, hence called BJH, described this

method [48].

The dehydration properties of zeolites are important in case where they

are used in adsorption and related applications. The crystal structures of some

zeolites do not change after the application of thermal process and can easily

adsorb water again. However, in some zeolites the irreversible change in

structure occurs as a result of dehydration. Differential Scanning Analysis,

Thermoravimetric Analysis and Differential Thermal Analysis give information

about the dehydration properties of zeolites.

The continuos and uninterrupted thermo gravimetric analysis curve states

that there is no change in its structure, if curve exists as steps then it means its

structure has been changed. Mumpton (1960) have been investigated the thermal

behaviour of clinopti101ite and reported that c1inopti101ite showed no noticeable

breaks in the weight loss curve [25].

A1ietti et al. (1975) and Reenwijk (1974) have been investigated the

dehydration behaviour and water content of c1inopti10Iite. They found that there

are three types of water exists in the natural zeolite structure having different

volatility; 'external', 'loosely bound zeolite' and 'tightly bound zeolite' water.

Based on their study 'external' water released up to 85°C, 'loosely bound' water



is lost rapidly up to 185°C, and then more gradually to 185 0c. After 285°C the

clinoptilolite started to loose its 'tightly bound 'water. After 700°C there is no

noticeable weight loss takes place in the structure [25].
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Figure 9: TGA curve of different clinoptilolites a) 88% zeolite content

G6rdes b) 90% Zeolite content G6rdes c) 90% Zeolite content Bigadic;:

d) %95 zeolite content Bigadic;:(Esenli and Kumbasar, 1994)

Differential thermal analysis determines the temperature at whIch

thermal reaction takes place within the sample. The degree and nature of the

reactions that is whether endothermic or exothermic changes are involved is

obtained from this analysis curve. The low temperature endotherm represents the

loss of water while the high temperature endotherm represents conversion of the

zeolite to another amorphous or crystalline phase. The high temperature

exotherm represents the loss of structure [8].

Aliberti et al. (1975) investigated the thermal behaviour of clinoptilolite

by means of DTA and derivative thermogravimetry (DTG). He reported that the

clinoptilolite exhibited strong dehydration effect centred on 130°C and weaker

dehydration effect about 400 °c [25].



Bish (1995) studied the thermal behaviour of zeolites. He reported that in

the determination of thermal stability of zeolites amount and type of extra

framework cations, Al/Si ratio, presence or absence of water, time, temperature

and heating rate are the important effects [17].

Mumpton (1960) have investigated the dehydration behaviour of

clinoptilolite using differential thermal analysis. He reported that aside from a

broad endothermic peak between 0 °c and 400°C, clinoptilolite exhibited no

thermal reactions up to about 1000 °c [25].

Esenli and Kumbasar (1994) had studied the thermal behaviour of

clinoptilolite samples from Bigadic, Gordes and Kemalpa~a regions of Turkey.

The DT A curves of some samples show endotherm at 120°C and 750 °c , while

the rest show three endotherms at 120°C, 230 °c and 730°C. The DTA curves

of the studied samples are given in Figure 10 [II].
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Figure 10: DTA curve of different samples a) 88% Zeolite content

Gordes b) 90% Zeolite content Gordes c) 90% Zeolite content Bigadiy

d) Zeolite content %95 Bigadiy (Esenli and Kumbasar, 1994)



3.3.3 DSC Method

Differential Scanning Calorimetry is another thermal analysis technique

can be used in the determination of thermal and dehydration behaviour of

clinoptilolite. Knowlton et al (1975) reported that desorption of three types of

water observed by TGA should yield three endothermic DSC peaks. However;

the broadness of the peaks for the 'external' and' loosely bound zeolite' water,

along with small amount 'tightly bound zeolite' water make three types of water

endotherms less visible.

Bish (1995) have studied the effects of composition on the dehydration

behaviour of clinoptilolite. He reported that the amount of water given off at

particular temperature varied with composition. The derivative TGA curves

resembles the DSC curves of the identical sample. He studied TGA and DSC

curves of different cationic forms of clinoptilolite samples and in Figure 11 and

Figure 12 the DSC curves Na and Ca formed clinoptilolite studied are given,

respectively. The Ca-clinoptilolite gives endotherm at lower temperature than

the Na-clinoptilolite [6].





Modification of a zeolite encompasses a variety of techniques to further control

the acid activity and/or the shape selectivity of a specific zeolite structure. After

modification, numbers of characterization techniques have been applied in order to

identify the changes brought about within the material upon treatment. The modification

of zeolite structure is done by several different methods and the most commonly used

ones are ion exchange and acid leaching. In the recent years, microwave heating is

being used both in industry and by researches.

4.1 Acid Leaching

It was early recognized that zeolite minerals are decomposed by acid, many- of

them with the subsequent formulation of gels. A detailed classification of silicate

minerals that is related to the internal structure was purposed. Silicates which are

decomposed by treatment with strong acids may be classified into one of two groups

a)those that separate insoluble silica without the formation of a gel b)those that

gelatinise upon the acid treatment. The rule generally fallowed is that those zeolites that

have a framework structure silicon/aluminium ratio greater than 1.5 generally

decompose and form participate hydrous silica.

It is further observed that In acid leaching process, the first step of

transformation is the hydration of the aluminium tetrahedra with a change. in

coordination to octahedral. In the synthesis of layer type minerals the formation of these

short chains is the structure determining step rather than the 'grafting' of aluminium

octahedra onto already performed silica sheet.
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Delalumination depends on many parameters. Besides the type of the zeolite and

the nature of the reactant (the size of which might play an important role because of

sieving effects) the temperature periods of dealumination determines the degree of

dealumination. Also known that; the alumination dissolution is increased by increasing

in acid concentration.

In general, corroborated with a large number of similar dealuminating to take

place the reactant molecule must be chemisorbed as a positive ion, in thermal and

electrostatic interaction, this eliminate 0(-2) from the framework and shares the

constituent of higher electronegativity with the structural AI(+3) ion. As a result; an

empty nest (actually a framework vacancy) is created which under special circumstances

may undergo same stabilization.

One of the most important properties of zeolites is their ability to exchange

cations. The type and distribution of cations influence the adsorption behaviour of

zeolites; thus by ion exchange, sorbent with different molecular sieve and adsorption

properties can be prepared [46].

Clay minerals because of their two-dimensional framework structure may

undergo swelling or shrinking with ion exchange process. Zeolites and felspathoids do

not undergo any appreciable dimensional change with ion exchange since they have

three-dimensional structure.



The cation exchange behaviour of the zeolite mineral depends upon:

1.The nature of the cation species, the cation size both anhydrous and hydrated

and the cation valance.

2.The temperature

3.The concentration of the cation species in solution

4.The anion species associated with the cation in the solution

5.The solvent

As mentioned above, ion exchange depends as much on the properties of the

exchanger as on the properties of the ions undergoing exchange. The affinity of an ion

towards a given ion exchanger for example the ion exchangeability depends primarily

on the charge of the ion, the ionic radius and the degree of hydration. The larger the

charge on the ion the greater is the force which it is attracted by the functional groups of

opposite charge on the ion exchanger. In the case of equivalent ions the magnitude of

their radii is decisive for their ion exchange capacity. The greater the volume of the ion,

the weaker is its electric field in the solution and thus the smaller is its degree of

hydration. The so-called hydrodynamic radii of ions decrease with increasing atomic

weight and hence their exchange energy (energy which the ion is transported from the

solution to the ion exchanger).

The ion exchange process may be presented as follows,
- -

zSAZA + zsBzS ~ Zs AZS + ZABZS

In the equation above, ZA& Zs are the valances of the ions, AZA initially in the

solution, BZS initially in the zeolite, characters with a bar related to a cation inside the

zeolite crystal.

Simple examples are:
- .
Na+ + K+ -.---

2 Na+ + ~2 for uni-divalent exchange
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The heating and processing of materials with microwave is becoming

increasingly popular for industrial applications, such as curing, sintering, joining and

drying. In microwaves, a form of radiowaves (neither nuclear nor ionizing radiation)

passes through the material instead of direct heating. (Figure 13)
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The molecules in the material then act like miniature magnets attempting to

align themselves with the electric field. Under the influence of this high frequency

alternating electrical field, the particles oscillate about their axes intermolecular friction,

which presents itself as heat.

Since the mid-1980s uses of in chemical analysis have been widely investigated.

Many organic and inorganic reactions could proceed under microwave condition with

much higher rate than the conventional methods. Besides the rapid reaction rate,

microwave heating has some other advantages. In the conventional heating the heat

source causes the molecules react from the surface toward the center but microwaves

produce a volume heating effect that molecules are set in action at he same time. It also

prevents temperature gradients.



As far as the synthesis of zeolite is concerned, microwave heating is commonly

applied to obtain pure and/or perfect crystals of uniform size or with different Si/Al

ratios, than obtained using conventional heating methods [18,49].

Han et al. [18] had studied the synthesization of zeolites usmg mIcrowave

heating. The study showed that, zeolite A membranes have been successfully

synthesized in microwave in much shorter time than the conventional methods and the

zeolite crystals obtained in this way are small and uniform in size. The researches

concluded that microwave heating could be considered as rapid, simple and valid

method in synthesis of zeolite membranes.



Clinoptilolite mineral used in this study was obtained from two

different zeolatic formations, Bigadiy and Gerdes, Western Anatolia.

Experiments were performed in two parts. In the first part, the samples were

characterized using different instrumental techniques. In the second part,

clinoptilolite samples were modified by ion exchange and the modified zeolites

were characterized to examine the changes in their structure.

Clinoptilolite minerals from Bigadiy and Gerdes deposits were first

crushed into small pieces using hammer and sieved into different size ranges.

The final Bigadiy grain size fraction was between 2-4.75 mm and used in ion

exchange experiments for modification of the clinoptilolite structure. Some of

the crushed samples were washed with bidistilled water at 100°C to remove

soluble impurities. This procedure was repeated for several times until effluent

water was clear. Then the washed zeolite particles were dried at 160 °c under

vacuum for 4 hours. The washed and unwashed samples were then ground and'

sieved using stainless steel sieves. The final powder was in 45-75fl size ranges

and used to carry out the characterization experiments.

The parent material contains calcium, magnesium, barium, sodium and

etc as exchangeable cations. The clinoptiloite samples were analysed by

Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP 96, Varian)

to determine the chemical composition of the cations in the structure is given in

Table 14. The samples were dissolved as follows. The certain amount (=0.1 gr)

of clinoptilolite powder was put into 6.4 ml HF solution and heated on hot

plate in self-sealing crucible until all the liquid was evaporated. This procedure.



was repeated with addition of 2 ml HF and then sample was dried in oven at

400°C for 1 hour. The calcined sample was dissolved in 6 ml HN03 and 3 ml

HCl. The solution was then diluted to concentration ranges available for

measurements.

The original clinoptilolite minerals from vanous ongms of the

sedimentary deposits were characterised usmg different instrumental

techniques.

The infra-red spectra of all original, washed and humidified

clinoptilolite samples were taken by Fourier Transform Infrared

Spectrophotometer (FTIR-820 1, Shimadzu) using KBr pellet techniques.

Typical pellet contains 1-2 %wt sample in KBr and was prepared by mixing

0.004 mgr zeolite powder with 0.2 mgr of KBr. The amount of the zeolite in

the KBr pellet was chosen so to provide the linear dependence of optical

density of characteristic IR. bands vs zeolite content. The original clinoptilolite

minerals were kept in desiccator for several weeks and then IR spectrums were

taken. In order to provide constant relative humidity saturated NH4Cl solution

was placed in desiccator which provides 75% relative humid air at 25°C were

then analysed by FTIR.

The adsorption related properties of the zeolite samples were derived

from Nz and Ar adsorption data collected from volumetric adsorption system.

(Micromeritics ASAP 2010) The powdered samples «45 fl) were dried in

vacuum oven at 160°C at least 4 hours prior to the adsorption measurements

the samples. Then they were degassed at either 350 °c or 450°C for 24 hours.

In each run the effect of degassing condition was determined. The volumetric

adsorption systems measure the quantity of gas n (of standard volume Va, or

general quantity q) taken up or released at a constant temperature (T) by an

initially clean solid surface as a function of gas pressure P. The quantity of gas

adsorbed is expressed as its volume at standard conditions of T, P while the·

pressure is expressed as a relative pressure which is the actual gas pressure P is



divided by the vapour pressure (Po) of the adsorbing gas (PI Po ). The analysis'

was carried out at a cryogenic temperature either LN2 or LAr at their boiling

temperatures of 77 K and 87 K, respectively [35].

Thermal behaviour of original and modified clinoptilolite samples from

different sedimentary deposits were established by Differential Scanning

Calorimeter (DSC 50, Shimadzu), Differential Thermal Analyser (DTA50,

Shimadzu), Thermogravimetric Analyser (TGA-51151 H, Shimadzu). The

powdered form of the zeolite samples was heated in a dry N2 stream up to

1000 DCat a heating rate of laD C/min.

The exchange experiments were carried out both in constant waterbath

and microwave maintained at 80 °C. In the experiment carried out in water-

bath, 100 gr. of clinoptilolite sample was put into 1600 cm3 IN NaCl solution

for 2 weeks. The Na-exchanged samples were washed with distilled water until

all Cl - is removed, dried in oven and kept in desiccator.

The exchange was also carried out in microwave with frequency and

maximum power of the microwave radiation of 2.450 GHz 1.2 KW,

respectively. Approximately 0.5 gr. of clinoptilolite samples and 10 ml of 1 N-

NaCl solution were placed in a specially made Teflon-lined polyamid vessel

through which microwave radiation can transmit. The temperature and pressure

inside the vessels were controlled automatically by control vessel. The safety

pressure, temperature and power of the microwave were set 120 psia, 80 °C,

and 300 watts, respectively. The temperature reached to set value within 3

minutes and samples were held at that temperature for 10 minutes, 1 hour and 2

hours. Then left to cool down. The Na-exchanged samples were then washed

with distilled water until all Cl - is removed, dried in oven and kept in

desiccator.



The IR spectrums of original clinoptliolite samples from different

origins are given in Figure 14.
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Figure 14: The IR Spectrums of different clinoptilolite minerals

from different origins.

The range between 1200 cm-I and 400 cm-I wavenumber was examined

because in the IR spectrums of zeolites this range has been used to determine

the structural properties. All of the samples showed the same structural

properties and following adsorption bands were observed. The samples

exhibited asymmetric stretch vibration around 1200 em-I. The 850-750 cm-l



The IR spectrums of original clinoptliolite samples from different

origins are given in Figure 14.
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Figure 14: The IR Spectrums of different clinoptilolite minerals

from different origins.

The range between 1200 cm-1 and 400 cm-1 wavenumber was examined

because in the IR spectrums of zeolites this range has been used to determine

the structural properties. All of the samples showed the same structural

properties and following adsorption bands were observed. The samples

exhibited asymmetric stretch vibration around 1200 em-I. The 850-750 em-I



band observed in the spectrum refers to the symmetry stretch due to external

linkages between tetrahedra. The bands at 1050 cm-1 and 450 em-I are assigned

to asymmetry stretch and T-0 bending mode, respectively which are related to

internal tetrahedron vibrations. The 609 em-I band in the spectrums is related to

T-0 double ring vibration of free tetrahedral group.

The original and moist forms of clinoptilolite samples from different

sedimentary deposits were examined by normalizing their absorbance values at

3400 cm-1_ 3700 em-I, 1600 em-I and 609 em-I wavenumbers. The normalized

absorbance values of 3400 cm-I-3700 em-I, 1600 cm-1 and 609 em-I peaks are

given in Figure 15, Figure 16 and Figure 17, respectively.
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Figure 15: Normalized absorbance values of different clinoptilolite

samples ranged at 3400-3700 em-I wavenumbers
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Figure 16: Normalized absorbance values of different clinoptilolite samples

at 1600 cm-1 wavenumber
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Figure 17: Normalized absorbance values of different clinoptilolite samples

at 609 cm-1 wavenumber



In all moist clinoptilolite samples the absorbance values at three wavenumbers

were increased and gave higher peaks. The increase in the normalized absorbance values

at 3400-3700 em-I, 1600 cm-1 was expected because all of the clinoptilolite samples

were kept in desiccator at constant relative humidity maintained by saturated NH4Cl

solution and absorb water. This situation was also supported by TGA analysis of the

moist Gordes 15t and 2nd mine samples.

The normalized absorbance values of the samples were increased at 609 cm-1

wavenumber. This may result from the movement of the water molecules that are

located in sites or between the tetrahedral rings. The exchangeable cations in the zeolite

structure are bound to the pore walls with water molecules and in the presence of

humidity the length of these cation-water bound increases. As a result the amplitude of

the intensity at 609 cm-I wavenumber may became larger. Thus, using 609 cm-l band as

criteria for clinoptilolite content should be made with care. The samples should be in the

state of the same moisture content for a healthy comparison.

The original and moist FTIR spectra of different clinoptilolite minerals were

given in Figure 18, Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23. The IR

spectrums all samples showed one or more adsorption bands near 1600 cm-1 caused by

deformation of water molecules and in the stretching region (3400-3700 em-I) the

spectra contains adsorption bands caused by the isolated H20 molecules [8].

Figure 18: FTIR Spectrum of original and moist Gordes 15t mine.
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The influence of washing on the clinoptilolite content of zeolites from different

sedimentary deposits was examined by investigating the 609 cm-l and 450 cm I bands.

The absorbance values of these peaks were normalized and given in Figure 24 and

Figure 25.
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Figure 24: Normalized Absorbance values of different clinoptilolite samples

at 609 cm-1 wavemumber



cuc.l 1.2 -=eo:
.&:i 1 -t-
o
'/l 0.8 -.&:i

~ 0.6 -"0
cu.~ 0.4 -
eo:

0.2 -a
t-
o 0-
Z

GCrdes1 GCrdes2

Natural zeolite

Figure 25: Normalized Absorbance values of different clinoptilolite samples

at 450 cm-I wavenumber

The 609 cm-I and 450 cm-1 peaks are the typical clinoptilolite bands which

represents the amount of pure clinoptilolite amount in the rock. The absorbance values

of 609 cm-I peak of Gordes 1st mine and Bigadiy samples were increased when they

were washed. It shows that the washing improved the clinoptilolite content because,

soluble impurities on the external surface of the mineral were removed by washing.

However, it was just the opposite for Gordes 2nd mine natural zeolite sample. When the

sample was washed the clinoptilolite in the mineral maybe thrown away with the

effluent water and caused decrease in the absorbance value at 609 em-I.

The IR spectra of original and washed clinoptilolite samples from different

origins are given in Figure 26, Figure 27 and Figure 28.
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Figure 28: FTIR Spectrum of original and washed Gordes2nd mine
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TGA curves of the clinoptilolite samples from different ongms are

given in Figure 29.
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Figure 29: TGA curves of clinoptilolite minerals from different origins

a)Dedetepe b)Gordes 15t mine c)Avdaldere d)Klrankoy e)Gordes 2 nd

mine f)Bigadis:

Clinoptilolite samples from different origins were examined by TGA

using the procedure outlined Knowlton and White (1976). The smooth and

continuos exhibited TGA curves show that no structural deformation occurred

when they were heated up to 1000 °c only water content of the samples were

changed. The percent lost of 'external' water, 'loosely and tightly bound

zeolite' water is given in Table 4. The samples showed the same dehydration

behaviour. External water, loosely bound and tightly bound water content in all

samples were about 3.5%, 5.5% and 2.0%, respectively. After 500°C there

weight loss was observed as indicated in Table 4 which may be due to the

CaC03 present in the samples.



NATURAL
ZEOLITE < 85°C 85°-285°C 285-500oC >500oC Total

external loosely bound tightly bound
water water water

Avdaldere 4.35 5.84 1.70 0.78 12.70

Gordes 1st 3.66 5.17 2.27 1.09 12.19
mine

Gordes 2nd 4.27 6.07 1.72 1.50 13.50
mine

Bigadi~ 3.28 6.07 2.68 1.46 13.51

Klrankoy 3.05 6.32 2.25 1.23 12.85

Dedetepe 3.04 5.45 1.93 1.05 11.59

In order to examine the thermal behaviour and water content changes in

moist forms of the samples they were kept in ambient and 75 % relative humid

air and then their TGA analysis were done and compared.



Table 5: % Weight losses of original clinoptilolite minerals kept in 75% RH

air at 25°C.

NATURAL
ZEOLITE < 8S °c 8So-28SoC >28SoC Total

external loosely bound tightly bound
water water water

Gordes 151 mine 3.62 5.63 3.28 12.51

Gordes 2nd mine 5.11 5.58 3.29 13.90

Because all of them were kept in constant relative humid desiccator

supplied by saturated Nl-LtCI solution the moist forms of the clinoptilolite

minerals have higher % H20 as expected, as given in Table 5. During the

storage in desiccator the samples were absorbed water, also supported by FTIR

analyses.

The derivative TGA (DTG) curves for the original samples are given in

Figure 30 that are useful in pinpointing the breaks in TGA curves.
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Figure 30: TGA and DTG of different clinoptilolite minerals from

different origins a)Gordes 15t mine b) Gordes 2nd mine c) Avdaldere

d) Klrankoy e)Bigadiy f) Dedetepe



1 -

0 -

mW
.\ -

-2 -

-3 -

-4 -

-5 -

-6

0

Natural Zeolite Peak minimum

(oC)

Gerdes 15t mine 52.03

Gerdes 2no mine 50.01

Avdaldere 51.23

Kuankey 51.35

Bigadiy 51.41

Dedetepe 51.87

The DSC curves for clinoptilolite samples from different ongms IS

given in Figure 31.
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Figure 31: DSC curves of clinoptilolite minerals from different origins



Differential thermal analysis curves of clinoptilolite samples from

different sedimentary deposits are given in Figure 32 and are useful in

characterizing the zeolites.
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The DTA patterns of the samples indicated that clinoptilolite was stable

toward dehydration. The samples have broad endotherms at lower

temperatures, which is the characteristic of natural zeolites. At higher

temperatures second endotherm exhibits but it was not certain as the main

endotherm indicates the conversion of zeolite to another amorphous or

crystalline phase. On the DTA curves it was understood that no thermal

reaction took place within the samples to higher temperatures at about 650°C.

The dehydration behaviour of the clinoptilolte samples was given in Table 8.



NATURAL Endotherm at Peak maximum at

ZEOLITE (DC) (DC)

Bigadi<; 62.4 833

Avdaldere 65.2 850

Klrankoy 54 903

Gordes 2nd mine 60.8 837

Dedetepe 62 847

In DTA patterns of all samples the characteristic broad endotherms·

were observed at low temperature ranges. Bigadi<;, Kuankoy, Dedetepe and

Avdaldere clinoptilolites gave first endotherm nearly at same temperatures

while Gordes 2nd mine sample has rather lower first endotherm temperature

corresponding to presence of water in the structure. The high temperature

second broad endotherms for all clinoptilolite samples were centred at 550 Dc.
lt may be the starting temperature of the conversion of clinoptilolite to another

amorphous or crystalline phase or conversion of the Fe203 present in the tuff to

another phase.

All samples have peak maxima nearly at the same temperature around

835 DC except Kuankoy showing the inversion to another phase. Klrankoy has

peak maximum at 903 DC and it is more stable toward phase inversion

compared to other samples. This phase inversion is maybe due to Fe203


