

QUALITY LIFE CYCLE OF OBJECT
ORIENTED SOFTWARE DEVELOPMENT

IN EXTREME PROGRAMMING

A Thesis Submitted to
The Graduate School of Engineering and Sciences of

İzmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree

of

MASTER OF SCIENCE

in Computer Software

by
Gökçe MUTLU

September 2008
İZMİR

We approve the thesis of Gökçe MUTLU

Assoc. Prof. Dr. Ahmet Hasan KOLTUKSUZ
Supervisior

Prof. Dr. Şaban EREN
Committee Member

Dr. Serap ATAY
Committee Member

03 September 2008

Prof. Dr. Sıtkı AYTAÇ
Head of the Computer Engineering
Department

Prof. Dr. Hasan BÖKE
Dean of the Graduate School of

Engineering and Sciences

ABSTRACT

QUALITY LIFE CYCLE OF OBJECT ORIENTED SOFTWARE

DEVELOPMENT IN EXTREME PROGRAMMING

Although there are many teams using Extreme Programming, many people still

think that applying its values, principles and practices will cause catastrophic results.

However extreme programming is not only compatible with today’s software standards,

technologies and most importantly with the changes at every phase of software

development but also improves the quality of software. In my thesis I analyze its values,

principles, and practices and how they increase the quality comparing to old software

development methodologies.

iii

ÖZET

UÇ PROGRAMLAMADA NESNEYE YÖNELİK YAZILIM

GELİŞTİRMENİN KALİTE YAŞAM DÖNGÜSÜ

Uçdeğer yazılım geliştirmeyi uygulayan bir çok takım olmasının yanı sıra

getirdiği değerleri, ilkeleri ve pratikleri yetersiz bulan ve yazılımları felaketle

sonuçlandıracağına inan da az değildir. Ancak uçdeğer yazılım geliştirme günümüz

yazılım standartlarına, teknolojilerine ve en önemlisi yazılımın her aşamasında olan

değişime ayak uydurmakla kalmayıp eski yazılım süreçlerine oranla ortaya çıkan

yazılımın kalitesini de arttırmaktadır. Tezimde uçdeğer yazılım geliştirme degerlerini,

ilkelerini ve pratiklerini inceleyip kaliteyi nasıl arttırdığına dair bulgularımı

aktarıyorum.

iv

TABLE OF CONTENTS

LIST OF FIGURES.. vii

LIST OF TABLES.. viii

CHAPTER 1. INTRODUCTION... 1

 1.1. Background... 1

 1.2. Motivation... 1

 1.3. Research Problem... 1

 1.4. Structure and Outline of the Thesis...................................... 2

CHAPTER 2. OBJECT ORIENTED PROGEAMMING............................... 3

 2.1. Elements of Object Oriented Approach................................ 3

 2.2. Terminology.. 4

CHAPTER 3. EXTREME PROGRAMMING.. 7

 3.1. Extreme Programming Values, Principles, and
Practices..

7

 3.1.1. Values.. 7

 3.1.2. Principles... 9

 3.1.3. Practices.. 12

 3.1.3.1. Primary Practices... 12

 3.1.3.2. Corollary Practices... 17

 3.2. Extreme Programming life Cycle... 20

CHAPTER 4. SOFTWARE QUALITY... 21

 4.1. Definition.. 21

 4.1.1. IEEE Definition.. 21

 4.1.2. Pressman’s Definition... 21

 4.2. Definition from XP Perspective.. 22

 4.2.1. McBreen's Definition.. 22

 4.2.2. Ambler’s Definition.. 22

 4.3. Models of Software Quality Properties................................. 22

v

 4.3.1. McCall’s Model.. 22

 4.3.2. Alternative Models of Software Quality
Properties..

24

 4.3.3. Comparison of Property Models..................................... 25

 4.3.4. A Property Model from XP Perspective......................... 26

CHAPTER 5. QUALITY ACTIVITIES IN EXTREME
PROGRAMMING...

28

 5.1.

Map of Activities of OO Software Development
in XP...

28

 5.2. Extreme Programming Practices Affecting
Software Quality...

34

 5.3. Object Oriented Programming Practices Affecting
Software Quality...

35

 5.3.1. Traditional Metrics.. 35

 5.3.2. Chidamber and Kemerer Metrics Model........................ 37

 5.3.3. Metrics for Object Oriented Design Metrics
Model..

39

 5.3.4. Summary of Metrics for Extreme Programming............ 45

 5.4. Bad Smells in Extreme Programming................................... 45

 5.5. Comparison: Waterfall vs. XP.. 48

CHAPTER 6. THE WHOLE TEAM.. 50

CHAPTER 7. CONCLUSION.. 52

REFERENCES... 53

vi

LIST OF FIGURES

Figure Page

Figure 3.1. A map of energized work from... 14

Figure 3.2. Extreme Programming Life Cycle from.. 20

Figure 5.1. The Value of DIT for the class hierarchy.. 37

Figure 5.2. Life cycles of Waterfall and XP methodologies.................................... 48

Figure 5.3. QA Activities in XP... 49

vii

LIST OF TABLES

Table Page

Table 1. The Description of Software Quality Properties.. 26

Table 2. Quality Activities in XP and OO Software Development......................... 33

viii

CHAPTER 1

INTRODUCTION

1.1. Background

Extreme programming software development values, principles, and practices

have claimed to improve the quality of the software product since their inception. The

extreme programming practitioners have also claimed that use of the extreme

programming approach has greatly improved the quality of their products. However,

software quality is a rather complex concept. In fact some have defined the entire

discipline of software engineering as the production of quality software.

1.2. Motivation

In the existing extreme programming literature there has not been a

comprehensive definition of which characteristics of software quality are improved by

the use of extreme programming practices in developing object oriented software.

1.3. Research Problem

In this thesis, quality life cycle of object oriented software development in

extreme programming (XP) is explored. An innovative technique is introduced for

evaluating XP practices and object oriented practices in order to determine which

properties of software quality they improve. The technique uses a set of adapted

software quality factors as defined by McCall. However these factors are reconstructed

according to XP.

The whole software quality life cycle is introduced and there are two important

parts for explaining it. One of them is XP practices which affect software quality and

the other is object oriented practices in order to measure and as a result improve it. In

1

this thesis, I answer which practices to use, how these practices are combined and the

responsibilities of the roles in the life cycle of software.

1.4. Structure and Outline of the Thesis

Chapter 2 is about object oriented programming. Elements of object oriented

approach and its terminology are briefly explained.

Chapter 3 is a comprehensive introduction to extreme programming to

understand its values, principles, and practices and to understand the technique which is

introduced in this thesis. We also look at the general life cycle of a software

development in extreme programming.

In chapter 4 software quality definitions of both classical and extreme

programming perspective are mentioned. We also look at several software quality

models in order to understand the technique introduced in this thesis.

In chapter 5 the technique is introduced comprehensively. Extreme

programming and object oriented practices are discussed and also bad smells of extreme

programming projects are introduced in order to show unproductive practices.

Chapter 6 is about roles in extreme programming and their involvement in

quality life cycle.

Thesis ends with a conclusion giving ideas about possible future studies.

2

CHAPTER 2

OBJECT ORIENTED PROGRAMMING

2.1. Elements of Object Oriented Approach

Class, object, method, message, instance variable, and inheritance are the basic

concepts of the Object Oriented (OO) programming. OO metrics measure how these

concepts are used in the design and development process. Therefore, a short review of

definitions is in order.

The basic element in an object-oriented system is an object. An object is an

encapsulation of both data and functionality with the added support of message passing

and inheritance. The data in an object is its attributes, while the functionality of the

object is provided by its methods. Attributes and methods form a single logical entity

which is called an object.

Objects themselves are created through an instantiation process that uses a

general template called a class. The template contains the characteristics of the class,

without containing the specific data that needs to be inserted into the template to form

the object. This lack of specification is analogous to the well-known concept of

referencing a stack without specifying what is in the stack. That is, certain stack features

are well known and understood, although we do not yet know the type of elements in

the stack.

Classes are either super classes (root classes) which created with a set of basic

attributes and methods, or subclasses which inherit the characteristics of the parent class

and have the ability to add (or remove) functionality when needed. An abstract class is a

class that has no instances, created to facilitate sharing of state data and services among

similar, more specialized subclasses. A concrete class is a class that has instances.

3

From the perspective of the class that inherits the characteristics of another class,

the inheritance forms an IS-A relationship. This type of relationship forms a class

hierarchy lattice.

Aggregate classes interact through messages, which are directed requests for

services from one class which is called a client, to another class which is called a server.

The class that makes the request depends upon the collaborating server class; the client

is said to be coupled to the server. The serving class may have no dependence on the

class using the requested material, so clearly this relationship is not commutative. The

relationship in which two or more different classes form a component, consequently

developing a HAS-A relationship.

2.2. Terminology

The term object is a primitive term. Objects have attributes, methods, and

identity (a name). The following terminology is a partial adaptation of Booch's set of

terms shown in (Archer and Stinson 1995).

Abstraction: The essential characteristics of an object that distinguish it from

all other kinds of objects, and thus provide the process of focusing upon the essential

characteristics of an object.

Aggregate object (aggregation): An object composed of two or more other

objects.

Attribute: A variable or parameter that is encapsulated into an object.

Class: A set of objects that share a common structure and behavior manifested

by a set of methods; the set serves as a template from which objects can be created.

Class structure: A graph whose vertices represent classes and whose arcs

represent relationships among the classes.

4

Cohesion: The degree to which the methods within a class are related to one

another.

Collaborating classes: If a class sends a message to another class, the classes

are said to be collaborating.

Coupling: Object X is coupled to object Y if and only if X sends a message to

Y.

Encapsulation: The technique of hiding the internal implementation details of

an object from its external view.

Information hiding: The process of hiding the structure of an object and the

implementation details of its methods. An object has a public interface and a private

representation; these two elements are kept distinct.

Inheritance: A relationship among classes, wherein one class shares the

structure or methods defined in one other class (for single inheritance) or in more than

one other class (for multiple inheritance).

Instance: An object with specific structure, specific methods, and an identity.

Instantiation: The process of filling in the template of a class to produce a class

from which one can create instances.

Message: A request made of one object to another, to perform an operation.

Method: An operation upon an object, defined as part of the declaration of a

class.

Polymorphism: The ability of two or more objects to interpret a message

differently at execution, depending upon the superclass of the calling object.

5

Superclass: The class from which another subclass inherits its attributes and

methods.

Uses: If object X is coupled to object Y and object Y is coupled to object Z, then

object X uses object Z.

6

CHAPTER 3

EXTREME PROGRAMMING

3.1. Extreme Programming Values, Principles, and Practices

3.1.1. Extreme Programming Values

Values which are defined in (Beck and Andres 2004) are the roots of the things

we like and do not like in a situation. Extreme programming has five values to guide

software development. These are communication, simplicity, feedback, courage, and

respect.

Communication

Communication is important to be a team and it creates an effective teamwork.

Problems occur and there is no escape from them. If team members communicate they

will either find out that someone in the team already knows the solution or learn about

it, if the problem is new, to prevent it in the future.

Simplicity

Making the solution as simple as possible so that it works is another value of

extreme programming. The solution we found may be either simple or complex in the

future. When we need change to make our solution simple again, we should know

where we were and find a way to where we want to be.

Simplicity depends on a team’s expertise and experience. The same problem can

be solved in different ways by different teams.

7

Feedback

Extreme programming teams have comprehension of the fact that the sooner

they know the sooner they adapt. Creating the perfect system at once is not possible.

The most important thing that makes it impossible is change. Change is unavoidable in

software development and it creates the need of feedback. Extreme programming teams

use feedback to achieve their goals easily and quickly.

Courage

People in software development feel fear and courage helps them face their

fears. Courage appears differently and requires different actions. If somebody knows the

problem, doing something about it is courage. However if s/he feels that there is a

problem but does not know about it, waiting for its emergence is also courage. When it

is used alone, it can be dangerous. Doing something without being aware of the results

creates problems for whole team and this does result an ineffective teamwork.

These values balance and support each other. Communication discards unneeded

or deferrable requirements and helps achieve simplicity. When simplicity is achieved

there is less need of communication. Feedback is a part of communication and

feedbacks are useful to create simple systems. The courage to speak truths encourages

communication, to remove failing solutions fosters simplicity, and to seek answers

creates feedback.

Respect

The previous four values are important when team members respect each other.

Otherwise extreme programming does not work and failures are inevitable.

8

3.1.2. Extreme Programming Principles

Values and practices are two distinct points. It is not possible to guide practices

by only following values because values are too abstract. Principles connect these

points.

Humanity

There is an inescapable fact in software development – People develop software.

Software development does not meet human needs all the time. In (Beck and Andres

2004), it is mentioned that there are four main topics to describe what people need to be

good developers.

 Basic Safety: freedom from hunger, physical harm, and treats to loved ones.

Fear of job loss threatens this need.

 Accomplishment: the opportunity and ability to contribute to their society.

 Belonging: the ability to identify themselves within a group.

 Growth: the opportunity to expand their skills and perspective.

 Intimacy: the ability to understand and be understood deeply.

People who have responsibilities in software development can be successful if

their needs are satisfied. Otherwise there is no escape from the costs and disruption of

high turnover.

Economics

Software development is successful if two aspects are successful. One is

technical success and the other one is business success. Projects have to have business

values, meet business goals, and serve business needs. If these are not satisfied then

projects are not successful even they are technically great.

9

Mutual Benefit

Every activity should benefit all the people in software development teams.

Mutual benefit in extreme programming searches practices that benefit team members

and their customers now and in the future.

Self Similarity

When nature finds a shape that works it uses it everywhere it can. The same

principle applies to software development. However there can be problems which need

unique solutions.

Improvement

In (Beck and Andres 2004), perfect is classified as a verb not an adjective

because there is nothing which is perfect. However teams can perfect their tasks.

Waiting for perfection is a waste of time and improvement principle aims at finding a

start place, getting started, and improving from there.

Diversity

Teams need a variety of skills and perspectives in today’s competitive

environment. You can see that big companies often hire people from all around the

world. Teams which have alike people have less conflicts however they have less skills,

attitudes and perspectives to see problems, to think of multiple ways to solve problems,

and to implement solutions. Diversity is required to overcome this situation.

Reflection

Reflection comes after action. For example; learning is action reflected. Good

teams do not only do their works but also they think about how and why they work.

They analyze why they succeeded or failed. They do not try to hide their mistakes, but

expose them and learn from them.

10

Flow

The practices of extreme programming are biased towards a continuous flow of

activities rather than discrete phases. Flow in software development is delivering a

steady of valuable software by engaging in all the activities of development

simultaneously. Deploying software less frequently, integrating software less often, less

feedback, responding to feedbacks less often and like activities interrupt the flow of

software development which creates big problems.

Opportunity

Software developments have problems but it is important to see them as

opportunity for change. To perfect software development, problems need to turn into

opportunities for learning and improving. This way maximizes strengths and minimizes

weakness.

Redundancy

Defects are a critical problem. They decay trust which is a great waste

eliminator. Defects are addressed in many practices of extreme programming such as

pair programming, continuous integration, sitting together, real customer involvement,

and daily deployment. Although some of the practices seem to be redundant, there is a

high chance to catch defects and increase trust within team and with customer. While

redundancy can be wasteful, be careful not to remove redundancy that serves a valid

purpose.

Failure

Failure is not a waste if it improves knowledge. However this is not intended to

excuse failure when you know something. If you know the best way to implement a

story then implement it that way. However if you know three ways and you are not sure

which one is the solution then try it all three ways. Even if they all fail, you will learn

something valuable.

11

Quality

Projects do not go faster by accepting lower quality and they do not go slower

demanding higher quality. Pushing quality higher often results in faster delivery while

lowering quality standards often results in later, less predictable delivery.

Baby Steps

Big changes done at once are dangerous. Continuous small changes can be done

rapidly that projects seem to be leaping. Baby steps are expressed in practices like test-

first programming, which proceeds one test at a time, and continuous integration, which

integrates and tests a few hours’ worth of changes at a time.

Accepted Responsibility

Responsibility cannot be assigned. It can only be accepted. Extreme

programming suggests that whoever signs up to do work also estimates it. Similarly a

person who is responsible for implementing a story is eventually is responsible for the

design, implementation, and testing of the story.

3.1.3. Extreme Programming Practices

3.1.3.1. Primary Practices

Sit Together

Sit together practice aims at more face to face time so the project is more

productive. Providing an open space for the whole team meeting the need for privacy by

having small spaces nearby is the best action for this practice. However if a team

located in different places, it is important to arrange more face to face time.

12

 Whole Team

To succeed in a project teams should embrace people with all the required skills.

These people also should have the sense of being a team. As mentioned in (Beck and

Andres 2004), if people think that they belong, they are in this together, and they

support each others’ work, growth and learning, then they constitute a team.

As change in software development is inevitable, teams should be dynamic. If

new skills are required a person should be brought to the team and when he is no longer

required s/he should not be in the team.

Informative Work Space

Workspaces must have information about project going on. It can be achieved

by putting story cards on a wall. Therefore a new team member is able to get a general

idea of how the project is going on in a short time and can get more information by

looking at more closely to the wall. Another implementation of the informative

workspace is visible charts. Workspaces should be used for important and active

information.

Energized Work

People can work affectively when they are healthy and have free and fresh mind.

For example when a person is sick, s/he should not come to the work. In order to

support energized work practice, work hours are limited to eight hours per week in

extreme programming. Figure 3.1 shows a map of how to balance energized work.

13

Figure 3.1. A map of energized work from

Pair Programming

Writing all code with two people sitting at one machine is tiring but satisfying.

Because pair programmers support each other to concentrate on their tasks, brainstorm

and clarify ideas. When one person in the pair is stuck, the other one can take an

initiative. This practice requires rotating pairs frequently. However personal space must

be respected for both parties to work well.

Stories

Plans are made using units of customer-visible functionality. These units

represented as story cards. They should have short names, short descriptions or

graphical description.

Weekly Cycle

Plan work a week at a time. Have a meeting at the beginning of every week.

During this meeting:

14

 Review progress to date, including how actual progress for the previous

week matched expected progress.

 Have the customers pick a week's worth of stories to implement this week.

 Break the stories into tasks. Team members sign up for tasks and estimate

them.

Start the week by writing automated tests that will run when the stories are

completed. Then spend the rest of the week completing the stories and getting the tests

to pass.

Quarterly Cycle

Plan work a quarter at a time. Once a quarter reflect on the team, the project, its

progress, and its alignment with larger goals.

During quarterly planning:

 Identify bottlenecks, especially those controlled outside the team.

 Initiate repairs.

 Plan the theme or themes for the quarter.

 Pick a quarter's worth of stories to address those themes.

 Focus on the big picture, where the project fits within the organization.

A season is another natural, widely shared timescale to use in organizing time

for a project. Using a quarter as a planning horizon synchronizes nicely with other

business activities that occur quarterly. Quarters are also a comfortable interval for

interaction with external suppliers and customers.

Slack

In any plan, include some minor tasks that can be dropped if you get behind.

You can always add more stories later and deliver more than you promised. It is

important in an atmosphere of distrust and broken promises to meet your commitments.

A few met commitments go a long way toward rebuilding relationships.

15

Ten-Minute Build

Automatically build the whole system and run all of the tests in ten minutes. A

build that takes longer than ten minutes will be used much less often, missing the

opportunity for feedback. A shorter build does not give you time to drink your coffee.

Continuous Integration

Integrate and test changes after no more than a couple of hours. Team

programming is not a divide and conquer problem. It is a divide, conquer, and integrate

problem. The integration step is unpredictable, but can easily take more time than the

original programming. The longer you wait to integrate, the more it costs and the more

unpredictable the cost becomes.

Test-First Programming

In extreme programming writing a failing automated test before starting

programming or changing any code is another important practice. Test-first

programming addresses many problems at once:

 Scope does not creep. By stating explicitly and objectively what the program

is supposed to do, you give yourself a focus for your coding. If you really

want to put that other code in, write another test after you've made this one

work.

 If it is hard to write a test, it is a signal that you have a design problem, not a

testing problem. Loosely coupled, highly cohesive code is easy to test.

 It is hard to trust the author of code that does not work. By writing clean

code that works and demonstrating your intentions with automated tests, you

give your teammates a reason to trust you.

 It is easy to get lost for hours when you are coding. When programming test-

first, it is clearer what to do next: either write another test or make the

broken test work. Soon this develops into a natural and efficient rhythm test-

code-refactor, test-code-refactor...

16

Incremental Design

The question is not whether or not to design, the question is when to design.

Incremental design suggests that the most effective time to design is in the light of

experience. If small, safe steps are how to design, the next question is where in the

system to improve the design. Eliminate duplication is the starting point. If there is the

same logic in two places, it is an improvement to make one copy. Designs without

duplication tend to be easy to change. You do not find yourself in the situation where

you have to change the code in several places to add one feature. As a direction for

improvement, incremental design does not say that designing in advance of experience

is horrible. It says that design done close to when it is used is more efficient. As more

teams invest in daily design, they notice that the changes they are making are similar

regardless of the purpose of the system. Refactoring is a discipline of design that

codifies these recurring patterns of changes.

3.1.3.2. Corollary Practices

Real Customer Involvement

The point of customer involvement is to reduce wasted effort by putting the

people with the needs in direct contact with the people who can fill those needs.

Incremental Deployment

When replacing a legacy system, gradually take over its workload beginning

very early in the project. After finding a little piece of functionality or a limited data set

you can handle right away is the time to deploy the system. In order to make big

deployment work you spend months not adding any new functionality just getting ready

for the deployment day.

17

Team Continuity

This practice means keeping effective teams together. There is a tendency in

large organizations to abstract people to things, plug-compatible programming units.

Value in software is created not just by what people know and do but also by their

relationships and what they accomplish together. Keeping teams together does not mean

that teams are entirely static. New members begin contributing to established extreme

programming teams quickly.

Shrinking Teams

As a team grows in capability, keep its workload constant but gradually reduce

its size. This frees people to form more teams. When the team has too few members,

merge it with another too-small team.

Root-Cause Analysis

Every time a defect is found after development, eliminate the defect and its

cause. The goal is not just that this one defect will not ever recur, but that the team will

never make the same kind of mistake again.

Shared Code

When extreme programming teams develop a sense of collective responsibility it

is time to have a shared code. Anyone on the team can improve any part of the system at

any time. If something is wrong with the system and fixing it is not out of scope for

what I am doing right now, I should go ahead and fix it.

Code and Test

Customers pay for what the system does today and what the team can make the

system do tomorrow. Any artifacts contributing to these two sources of value are

themselves valuable. Everything else is waste. Code and test practice advice to maintain

18

only the code and the tests as permanent artifacts, generate other documents from the

code and tests, and rely on social mechanisms to keep alive important history of the

project.

Single Code Base

Multiple code streams are an enormous source of waste in software

development. I fix a defect in the currently deployed software. Then I have to retrofit

the fix to all the other deployed versions and the active development branch. Then you

find that my fix broke something you were working on and you interrupt me to fix my

fix and on and on.

There are legitimate reasons for having multiple versions of the source code

active at one time. Sometimes, though, all that is at work is simple expedience, a micro-

optimization taken without a view to the macro-consequences. If you have multiple

code bases, put a plan in place for reducing them gradually.

Daily Deployment

Put new software into production every night. Any gap between what is on a

programmer's desk and what is in production is a risk. If a programmer who is not

synchronized with the deployed software makes decisions without getting accurate

feedback about those decisions, his / her decisions are risky. Daily deployment is a

corollary practice because it has so many prerequisites. The defect rate must be at most

a handful per year. The build environment must be smoothly automated. The

deployment tools must be automated, including the ability to roll out incrementally and

roll back in case of failure. Most importantly, the trust in the team and with customers

must be highly developed.

Negotiated Scope Contract

You can move in the direction of negotiated scope. Big, long contracts can be

split. This practice advices to write contracts for software development that has fix time,

19

cost, and quality but calls for an ongoing negotiation of the precise scope of system, and

reduces the risk by signing a sequence of short contracts instead of a long one.

Pay-Per-Use

With pay-per-use systems, you charge for every time the system is used. Money

is the ultimate feedback. Connecting money flow directly to software development

provides accurate, timely information with which to drive improvement.

3.2. Extreme Programming Life Cycle

Life cycle of an extreme programming (XP) project highly depends on projects.

Every XP team may follow a different life cycle according to their experience and

project types. However Figure 3.2 forms the base life cycle of any XP project.

Figure 3.2. Extreme Programming Life Cycle

20

CHAPTER 4

SOFTWARE QUALITY

4.1. Definition

Quality is a rather abstract concept that is difficult to define but where it exists it

can be recognized. However some definitions of software quality exist for both classical

software development and extreme programming.

4.1.1. IEEE Definition

The definition suggested by IEEE (1991) is as below:

1. The degree to which a system, component, or process meets specified

requirements.

2. The degree to which a system, component, or process meets customer or user

needs or expectations.

4.1.2. Pressman’s Definition

Additional aspects of software quality are included in the definition suggested

by Pressman (2000).

Conformance to explicitly stated functional and performance requirements,

explicitly documented development standards, and implicit characteristics that are

expected of all professionally developed software.

21

4.2. Definition from XP Perspective

Classical definitions require requirements and standards documentation of

software. However, in extreme programming documentation is not used and this brings

out different software quality definitions.

4.2.1. McBreen's Definition

Response to changes as the customer requires. This implies that the frequent

delivery of working software according to the customer’s needs at the end of each

iteration.

4.2.2. Ambler’s Definition

Results of practices such as effective collaborative work, incremental

development, and iterative development as implemented through techniques such as

refactoring, test-driven development, modeling, and effective communication

techniques.

4.3. Models of Software Quality Properties

Quality properties are attributes of software development and maintenance

issues. The classic model of software quality properties, suggested by McCall (1977),

consists of 11 properties. Subsequent models, consisting 12 to 15 properties, were

suggested by Deutsch and Willis (1988) and by Evans and Marciniak (1987). The

alternative models do not differ substantially from McCall’s model.

4.3.1. McCall’s Model

There are 11 properties and these properties are grouped into three categories as

follows:

22

 Product operation properties: Correctness, Reliability, Efficiency, Integrity,

Usability.

 Product revision properties: Maintainability, Flexibility, Testability.

 Product transition properties: Portability, Reusability, Interoperability.

4.3.1.1. Product Operation Properties

Correctness is the ability of a system to perform according to defined

specification.

Reliability is the ability of a system that deals with failures to provide service.

Efficiency is the ability of a system to place as few demands as possible to

hardware resources, such as memory, bandwidth used in communication and processor

time.

Integrity is how well the software protects its programs and data against

unauthorized access.

Usability is the ability to deal with the scope of staff resources needed to train a

new employee and to operate the software system.

4.3.1.2. Product Revision Properties

Maintainability is determining the efforts that will be needed by users and

maintenance personnel to identify the reasons for software failures, to correct the

failures, and to verify the success of corrections.

Flexibility is the capability and effort of a system to support adaptive

maintenance activities.

Testability is the ability of a system to deal with testing of an information

system as well as with its operation.

23

4.3.1.3. Product Transition Properties

Portability is the ease of installing the software product on different hardware

and software platforms.

Reusability is the ability of a system to deal with the use of software modules

originally designed for one project in a new software project.

Interoperability is the ability to create interfaces with other software systems or

with other equipment firmware.

4.3.2. Alternative Models of Software Quality Properties

Two models, appearing during the late 1980s, are considered to be alternatives

to the McCall classic model.

 The Evans and Marciniak model

 The Deutsch and Willis model

A formal comparison of the models reveals:

 Both alternative models exclude one of the McCall’s 11 properties which is

the testability property.

 The Evans and Marciniak model consists of 12 properties that are classified

into three categories.

 The Deutsch and Willis model consists of 15 properties that are classified

into four categories.

Taken together, five new properties suggested by the two alternative models:

 Verifiability (by both models)

24

Verifiability requirements define design and programming features that enable

efficient verification of the design and programming.

 Expandability (by both models)

Expandability requirements refer to future efforts that will be needed to serve

larger populations, improve services, or add new applications in order to improve

usability. The majority of these requirements are covered by McCall’s flexibility

property.

 Safety (by Deutsch and Willis)

Safety requirements are meant to eliminate conditions hazardous to operations

of equipment as a result of errors in process control software.

 Manageability (by Deutsch and Willis)

Manageability requirements refer to the administrative tools that support

software modification during the software development and maintenance periods, such

as configuration management, software change procedures, and the like.

 Survivability (by Deutsch and Willis)

Survivability requirements refer to the continuity of service.

4.3.3. Comparison of Property Models

After comparing the contents of the property models, two of the five additional

properties, expandability and survivability, are similar to McCall’s model, though under

different names, flexibility and reliability. In addition, McCall’s testability property can

be considered as one element in his own maintainability property. This implies that the

differences between the three factor models are much smaller than initially perceived.

25

4.3.4. A Property Model from XP Perspective

This model has properties which define extreme programming quality. These

properties are the required properties after eliminating some properties which require

heavy documentation that is prescribed in plan-driven processes as a requirement for

quality.

Table 1. The Description of Software Quality Properties

Property Description

Correctness The ability of a system to perform according to defined

specification.

Robustness Appropriate performance of a system under cases not

covered by the specification. This is complementary to

correctness.

Extendibility A system that is easy to adapt to new specification.

Reusability The ability of a system to deal with the use of software

modules originally designed for one project in a new

software project.

Compatibility Software that is composed of elements that can easily

combine with other elements.

Efficiency The ability of a system to place as few demands as

possible to hardware resources, such as memory,

bandwidth used in communication and processor time.

Portability The ease of installing the software product on different

hardware and software platforms.

Timeliness Releasing the software before or exactly when it is

needed by the users.

Integrity How well the software protects its programs and data

against unauthorized access.

(cont. on the next page)

26

Table 1. (cont.) The Description of Software Quality Properties

Property Description

Verifiability and Validation How easy it is to test the system.

Ease of Use The ease with which people of various backgrounds can

learn and use the software.

Maintainability The ease of changing the software to correct defects or

meet new requirements.

Cost Effectiveness The ability of a system to be completed within a given

budget.

These are going to be discussed in chapter 5 in detail.

27

CHAPTER 5

QUALITY ACTIVITIES IN EXTREME

PROGRAMMING

The technique proposed here basically breaks extreme programming down into

practices. Then for each practice of extreme programming, an evaluation of what

software quality properties are met is done. This action is repeated until all the quality

factors are covered.

5.1. Map of Activities of OO Software Development in XP

Each of the factors defined in Table 1 is evaluated in relation to the

corresponding extreme programming practices that implement the properties.

The process starts by selecting a quality assurance parameter and analyzing the

meaning of the parameter. For example correctness means "The ability of a system to

perform according to defined specification". The analysis should then lead to the

identification of features of the development process that ensure performance of the

intended system to suit the defined specification.

For example when using XP user stories ensures that the requirements are

represented in a simple language that can be easily understood by customers. When user

stories are combined with the practice of test first programming then each

implementation of the user stories is tested as the system is developed. Continuous

testing ensures correctness.

Pseudo Code

DEFINE X as an integer, Matrix as a diagonal matrix

SET X equal to 1.

FOR each Property of Quality Properties

28

BEGIN

 ASSIGN the reference of Property to 1st column in Xth row of Matrix

 DEFINE Property List as a linked list

 FOR each Practice of Extreme Programming Practices

 BEGIN

 IF Property meets the definition of Practice

 BEGIN

 ADD Property to Property List

 END

 END

 ASSIGN the reference of Property List to 2nd column in Xth row of Matrix

 INCREMENT X by 1.

END

RETURN Practice Matrix

This approach is followed for each software quality assurance parameter.

An Iteration of the Algorithm

Correctness means "The ability of a system to perform according to defined

specification".

User stories ensure that the requirements are represented in a simple language

that can be easily understood by customers.

When user stories are combined with the practice of test first programming then

each implementation of the user stories is tested as the system is developed.

Continuous testing ensures correctness.

This approach is followed for each software quality property.

29

Compatibility

Extreme programming practices that ensure correctness of a system include the

following: A general feature of all Object-Oriented (OO) software development.

Possible improvement on the extreme programming approach includes design and

architectural considerations that aim for platform independency.

Cost Effectiveness

Extreme programming practices that ensure cost effectiveness of a system

include the following: controlling the scope, for example iterations in XP are used to

prevent sudden requirement changes. Each iteration has its stories and stories are

implemented according to their priorities. New stories can be introduced to iterations

but some stories can be left to following iterations.

Possible improvements include avoiding scope creep without locking

requirement changes. It is generally difficulty to convince a customer to sign a contract

for a project whose cost is based on the cost of each iteration. The advantage of costing

based on iterations however is that since iterations are short (one to four weeks) the

customer gets frequent feedback on the project costs.

Correctness

Extreme programming practices that ensure correctness of a system include the

following as obtained from the generic principles that guide XP development: writing

code from minimal requirements, specification, which is obtained by direct

communication with the customer, allowing the customer to change requirements, user

stories, and test-first development. Since all the development in XP is done iteratively

these practices ensure the correctness at iteration level before making the decision to

continue or cancel the project.

These extreme programming practices can be improved by implementing the

following: Consider the possibility of using formal specification in XP development

30

(which some developers are already using), possible use of general scenarios to define

requirements.

Ease of Use

Extreme programming practices that ensure ease of use of a system include the

following: since the customer is part of the team, and customers give feedback

frequently, they will likely recommend a system that is easy to use. The frequent visual

feedback that customers get during the delivery of an iteration allows them to provide

useful feedback to improve the usability of the system. These can be improved upon by

designing for the least qualified user in the organization.

Efficiency

Extreme programming practices that ensure efficiency of a system include the

following: application of good coding standards. The most efficient algorithms are

encouraged.

Extendibility

Extendibility of a system is a general feature of all Object-Oriented software

development however emphasis should be on technical excellence and good design. The

improvement on these practices includes the usage of modeling techniques for Object

Oriented software architecture.

Integrity

Integrity of a system is ensured at operating system level and also at the

development platform level. Improving the integrity of the techniques that define the

product would improve system integrity.

31

Maintainability

The application of Object-Oriented design principles leads to maintainable

systems. Development technologies that improve the interfaces between different object

modules can have a positive impact on maintainability.

Portability

Originally defined as a major part of Object-Oriented design and now further

enhanced by the concepts of distributed computing and web services, this quality factor

is generally implemented through the concepts of Object-Oriented design.

Reusability

This quality factor is generally implemented through the concepts of Object-

Oriented technology. More work on patterns can improve the reusability.

Robustness

Extreme programming practices that ensure robustness of a system originally

defined as a major part of Object-Oriented design which XP development follows. This

is case dependent however XP development ensures robustness in the general sense

through the development standards that are inherent to particular development platform

in use.

Timeliness

Extreme programming practices that ensure timeliness of a system include the

following: iterative development, quick delivery, and short cycles. This can be

improved upon by reducing the time for the deployment process.

32

Verifiability and Validation

Extreme programming practices that ensure verification and validation of a

system include the following: test-driven-development, unit tests and frequent

integration. The improvement on these practices can be automated testing approach.

Table 2 lists the identified practices for Extreme Programming (XP) and Object-

Oriented (OO) software development.

Table 2. Quality Activities in XP and OO Software Development

Software Quality Parameters XP Quality Activities

Correctness User stories, Unit tests, Customer

feedback, Informative workspace,

Acceptance testing

Robustness Generic OO design practices

Extendibility Simple design, Continuous improvement,

Refactoring, Shared code

Reusability Generic OO design practices

Compatibility Generic OO design practices

Efficiency Simplicity, Coding standard, Pair

programming, Shared code

Portability Generic OO design practices

Timeliness Iterative incremental development

Integrity Generic OO design practices

Verifiability and Validation Unit testing, Continuous integration,

Acceptance testing

Ease of Use Simple design, On-site customer

Maintainability Iterative development

Cost Effectiveness Iterative development, quick delivery

33

5.2. Extreme Programming Practices Affecting Software Quality

“Informative Work Space” embraces visible charts of the whole system for each

iteration. These charts are instead of a formal architecture. They present simple shared

stories of how the system works. The core flow of the system being built can bee seen

by looking at the charts. The main purpose for this is communication. It bridges the gap

between developers and users to ensure an easier time in discussion and in providing

examples.

Having a “Real Customer Involvement” is an important practice in extreme

programming because customers help developers refine and correct requirements. The

customer should support the development team throughout the whole development

process.

“Pair Programming” means two programmers continuously working on the same

code. Pair programming can improve design quality and reduce defects. This shoulder-

to-shoulder technique serves as a frequent design and code review process, and as a

result defect rates are reduced. This action has been widely recognized as continuous

code inspection.

Refactoring "is a disciplined technique for restructuring an existing body of

code, altering its internal structure without changing its external behavior. Its heart is a

series of small behavior preserving transformations. Each transformation (called a

'refactoring') does little, but a sequence of transformations can produce a significant

restructuring." Refactoring is the heart of “Incremental Design” practice. Because each

refactoring is small, the possibility of going wrong is also small and the system is also

kept fully functional after each small refactoring. Refactoring can reduce the chances

that a system can get seriously broken during the restructuring. During refactoring

developers reconstruct the code and this action provides code inspection functionality.

This activity reduces the probability of generating errors during development.

“Continuous Integration” means the team does not integrate the code once or

twice. Instead the team needs to keep the system fully integrated at all times. Integration

may occur several times a day. "The key point is that continuous integration catches

34

enough bugs to be worth the cost". Continuous integration reduces time that people

spend on searching for bugs and allows detection of compatibility problems early. This

practice is an example of a dynamic QA technique.

Acceptance testing is carried out after all unit test cases have passed. This

activity is a dynamic QA technique. A classical software development methodologies

include acceptance testing but the difference between extreme programming acceptance

testing and traditional acceptance testing is that acceptance testing occurs much earlier

and more frequently in an XP development. It is not only done once.

Early feedback is one of the most valuable characteristics of extreme

programming practices. The short release and moving quickly to a development phase

enables a team to get customer feedback as early as possible, which provides very

valuable information for the development team.

5.3. Object Oriented Programming Practices Affecting Software

Quality

In order to understand object oriented metrics we should understand traditional

metrics. Three of these metrics are explained in section 5.3.1. After this section two

popular object oriented metric suits are explored. These are Chidamber and Kemerer

(CK) metrics model and metrics for object oriented design (MOOD) metrics model.

5.3.1. Traditional Metrics

McCabe Cyclomatic Complexity (CC)

The measurement of CC by McCabe (1976) was designed to indicate a

program’s testability and understandability (maintainability). Cyclomatic complexity

(McCabe) is used to evaluate the complexity of an algorithm in a method. This metric is

based on graph theory. The general formula to compute CC is:

35

M = V(G) = e - n + 2p

where

V(G) = Cyclomatic number of G

e = Number of edges

n = Number of nodes

p = Number of unconnected parts of the graph

CC cannot be used to measure the complexity of a class because of inheritance,

but the CC of individual methods can be combined with other measures to evaluate the

complexity of the class.

To have good testability and maintainability, McCabe recommends that no

program module should exceed a CC of 10.

Source Lines of Code (SLOC)

The SLOC metric measures the number of physical lines of active code which

does not include blank or commented lines. The functionality is not interconnected with

SLOC however methods of large size always pose a higher risk in the attributes of

Understandability, Reusability, and Maintainability. SLOC can also be very effective in

estimating effort to develop methods.

Comment Percentage (CP)

The comment percentage is calculated by the total number of comments divided

by the total lines of code less the number of blank lines. A comment percentage of about

30% is the most effective percentage. Since comments assist developers and

maintainers, this metric is used to evaluate the attributes of Understandability,

Reusability, and Maintainability.

(5.1)

36

5.3.2. Chidamber and Kemerer Metrics Model

Chidamber and Kemerer (CK) metrics model is the most popular suite in object

oriented measurement suits. They claim that using their metrics it can be understood if

software is being developed with object oriented practices.

Weighted Method per Class (WMC)

WMC measures the complexity of a class. Complexity of a class can for

example be calculated by the cyclomatic complexities of its methods. High value of

WMC indicates the class is more complex than that of low values. So class with less

WMC is better. As WMC is complexity measurement metric, we can get an idea of

required effort to maintain a particular class.

Depth of Inheritance Tree (DIT)

DIT metric is the length of the maximum path from the node to the root of the

tree. So this metric calculates how far down a class is declared in the inheritance

hierarchy. Figure 5.1 shows the value of DIT for a simple class hierarchy. This metric

also measures how many ancestor classes can potentially affect this class. DIT

represents the complexity of the behavior of a class, the complexity of design of a class

and potential reuse.

Figure 5.1. The Value of DIT for the class hierarchy

37

If DIT increases, it means that more methods are to be expected to be inherited,

which makes it more difficult to calculate a class’s behavior. Thus it can be hard to

understand a system with many inheritance layers. On the other hand, a large DIT value

indicates that many methods might be reused.

Number of Children (NOC)

This metric measures how many sub-classes are going to inherit the methods of

the parent class. As shown in Figure 5.1, class C1 has three children, subclasses C11,

C12, and C13. The size of NOC approximately indicates the level of reuse in an

application. If NOC grows it means reuse increases. On the other hand, as NOC

increases, the amount of testing will also increase because more children in a class

indicate more responsibility. So, NOC represents the effort required to test the class and

reuse.

Coupling Between Objects (CBO)

An object is coupled to another object if two object act upon each other. A class

is coupled with another if the methods of one class use the methods or attributes of the

other class. An increase of CBO indicates the reusability of a class will decrease. Thus,

the CBO values for each class should be kept as low as possible.

Response for a Class (RFC)

RFC is the number of methods that can be invoked in response to a message in a

class. Pressman States, since RFC increases, the effort required for testing also increases

because the test sequence grows. If RFC increases, the overall design complexity of the

class increases and becomes hard to understand. On the other hand lower values indicate

greater polymorphism.

38

Lack of Cohesion in Methods (LCOM)

This metric uses the notion of degree of similarity of methods. LCOM measures

the amount of cohesiveness present, how well a system has been designed and how

complex a class is. LCOM is a count of the number of method pairs whose similarity is

zero, minus the count of method pairs whose similarity is not zero.

Example:

C is a class with three methods M1, M2, and M3. Let I1 = {a, b, c, d, e}, I2 = {a,

b, e}, and I3 = {x, y, x} where I1 is the set of instance variables used by the method M1.

Two disjoint set can be found: I1 ∩ I2 (= {a, b, e}) and I3. M1 and M2 share at least

one instance variable. Therefore; LCOM = 2-1 =1.

If LCOM is high, methods may be coupled to one another via attributes and then

class design will be complex. So, designers should keep cohesion high, that is, keep

LCOM low.

5.3.3. Metrics for Object Oriented Design Metrics Model

Metrics for object oriented design (MOOD) refers to a basic structural

mechanism of the object-oriented paradigm as encapsulation (MHF, AHF), inheritance

(MIF, AIF), polymorphism (POF), and message passing (COF). Each metrics is

expressed as a measure where the numerator represents the actual use of one of those

feature for a given design.

In MOOD metrics model, two main features are used in every metrics; these are

methods and attributes. Methods are used to perform operations of several kinds such as

obtaining or modifying the status of objects. Attributes are used to represent the status

of each object in the system.

MOOD metrics are discussed in the context of encapsulation, inheritance,

polymorphism, and coupling.

39

Encapsulation

The Method Hiding Factor (MHF) and Attribute Hiding Factor (AHF) were

proposed together as measure of encapsulation. MHF and AHF represent the average

amount of hiding between all classes in the system.

Method Hiding Factor (MHF)

The MHF metric states the sum of the invisibilities of all methods in all classes.

The invisibility of a method is the percentage of the total class from which the method

is hidden. The MHF denominator is the total number of methods defined in the system

under consideration. The MHF metric is defined as follows:

∑

∑ ∑

=

= =

−
= TC

i
id

TC

i

CM

m
mi

CM

MV
MHF

id

1

1

)(

1

)(

))(1(

where

TC

CMvisibleis
MV

jmi

TC

j
i

),(_
)(1
∑
==

{ mij M callcan C iff 1

otherwise 0
),(_ =jmi CMvisibleis

TC: total number of classes

Mmi: methods

Md(Ci): methods defined (not inherited)

V(Mmi): visibility – % of the total classes from which the method Mmi is visible

If the value of MHF is high (100%), it means all methods are private which

indicates very little functionality. Thus it is not possible to reuse methods with high

(5.2)

(5.3)

40

MHF. MHF with low (0%) value indicates all methods are public that means most of

the methods are unprotected.

Attribute Hiding Factor (AHF)

The AHF metric shows the sum of the invisibilities of all attributes in all classes.

The invisibility of an attribute is the percentage of the total classes from which this

attribute is hidden. MHF and AHF represent the average amount of hiding among all

classes in the system. The AHF metric is defined as follows:

∑

∑ ∑

=

= =

−
= TC

i
id

TC

i

CA

m
mi

CA

AV
AHF

id

1

1

)(

1

)(

))(1(

where

TC

CAvisibleis
AV

jmi

TC

j
i

),(_
)(1
∑
==

{ mij M referencecan C iff 1

otherwise 0
),(_ =jmi CAvisibleis

TC: total number of classes

Ami: attributes

Ad(Ci): attributes defined (not inherited)

V(Ami): visibility – % of the total classes from which the attribute Ami is visible

If the value of AHF is high (100%), it means all attributes are private. AHF with

low (0%) value indicates all attributes are public.

(5.4)

(5.5)

41

Inheritance

Inherited features in a class are those which are inherited and not overridden in

that class. Method Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF) are

proposed to measure inheritance.

Method Inheritance Factor (MIF)

The MIF metric states the sum of inherited methods in all classes of the system

under consideration. The degree to which the class architecture of an object oriented

system makes use of inheritance for both methods and attributes. MIF is defined as the

ratio of the sum of the inherited methods in all classes of the system as follows:

∑

∑

=

== TC

i
ia

TC

i
ii

CM

CM
MIF

1

1

)(

)(

Ma(Ci) = Md(Ci) + Mi(Ci)

Ma(Ci) = available methods

Md(Ci) = methods defined

Mi(Ci) = inherited methods

TC: total number of classes

If the value of MIF is low (0%), it means that there is no methods exists in the

class as well as the class lacking an inheritance statement.

Attribute Inheritance Factor (AIF)

AIF is defined as the ratio of the sum of inherited attributes in all classes of the

system. AIF denominator is the total number of available attributes for all classes. It is

defined in an analogous manner and provides an indication of the impact of inheritance

in the object oriented software. AIF is defined as follows:

(5.6)

42

∑

∑

=

== TC

i
ia

TC

i
ii

CA

CA
AIF

1

1

)(

)(

Aa(Ci) = Ad(Ci) + Ai(Ci)

Aa(Ci) = available methods

Ad(Ci) = methods defined

Ai(Ci) = inherited methods

TC: total number of classes

If the value of AIF is low (0%), it means that there is no attribute exists in the

class as well as the class lacking an inheritance statement.

Polymorphism

Polymorphism is an important characteristic in object oriented paradigm.

Polymorphism measure the degree of overriding in the class inheritance tree.

Polymorphism Factor (POF)

The POF represents the actual number of possible different polymorphic

situation. It also represents the maximum number of possible distinct polymorphic

situation for the class Ci. The POF is defined as follows:

∑

∑

=

=

×
= TC

i
iin

TC

i
io

CDCCM

CM
POF

1

1

)]()([

)(

Md(Ci) = Mn(Ci) + Mo(Ci)

DC(Ci) = descendant count

(5.7)

(5.8)

43

Mn(Ci) = new methods

Mo(Ci) = overriding methods

TC: total number of classes

The numerator represents the actual number of possible different polymorphic

situation. The denominator represents the maximum number of possible distinct

polymorphic situation for the class Ci.

POF is only really a valuable metric if the organization using it has strict

guidelines regarding the use of polymorphism, e.g. an overriding method must either

extend a template method or invoke the superclass method from within its body.

Without clear guidelines the value produced by POF will have little meaning in terms of

the quality of a system's design.

Coupling

It is a measure of dependency. Coupling is the degree to which one class relies

on another. In a perfect system, coupling should be low (loose), which means that

objects are highly self-contained and do not have to depend on other classes to do work.

Coupling Factor (COF)

TCTC

CCclientis
COF

TC

i

TC

j
ji

−
=
∑ ∑
= =

2
1 1

]),(_[

where

{ scsc C C C C iff 1

otherwise 0
),(_

≠∧⇒
=ji CCclientis

TC: total number of classes

TC2 – TC: maximum number of couplings in a system with TC classes

(5.9)

44

The client – server relation (sc CC ⇒) means that Cc (client class) contains at

least one non-inheritance reference to a feature (method or attribute) of class Cs (server

class).

The numerator represents the actual number of couplings not imputable to

inheritance. The denominator stands for the maximum number of couplings in a system

with TC classes.

5.3.4. Summary of Metrics for Extreme Programming

Chidamber and Kemerer Metrics or Metrics for Object Oriented Design Metrics

Model shows if code is developed according to object oriented practices. However these

suites must be automated. Tools can be used for this purpose.

One of the suites should be selected according to needs. The selected suite

should be applied every iteration and there are two phases. In the first phase developers

have responsibilities applying the suite to their code. The good time is after their entire

unit tests pass. The second phase is after integration and before acceptance test.

5.4. Bad Smells in Extreme Programming

Bad smells are the identification of early warning signals. To improve the

quality of projects, some parts of them should be rewritten, refactored. In this chapter

this definition is extended to the whole software development process in extreme

programming.

Amr Elssamadisy and Gregory Schalliol explained the bad smells in big projects

according to their experience in (Elssamadisy and Schalliol 2001).

Quartering the Chicken

Story cards are the fundamental units of Extreme Programming (XP). In each

development cycle new functionalities are introduced and these functionalities are

divided into stories. If one activity is similar to the previous activities, stories are

45

divided as previously done. However procedures used in previous iterations may not be

appropriate for the new iterations. Because of this in each new iteration, the

requirements should be reconsidered and story card division should be done at a more

granular level.

When Should the Customer Be Happy?

Real customer involvement is an important practice in XP because customers

have also tasks. They should provide honest and substantial feedback in each iteration.

If they do not say anything in the early iterations but they start complaining about many

things for all iterations, XP teams may have to pay for this. In (Elssamadisy and

Schalliol 2001), it is associated with the relation of a tailor and his / her customer. If the

customer does not return for new measurements to tailor’s shop, then the suit will not fit

the customer. In XP customers should provide useful feedback to XP teams from early

iterations.

Functions Work but just not Together

For complex applications if there is no complete overview about the overall

functionality, in the end of iterations when the stories are joined, interconnections may

not be established easily. There should be a picture that remind a XP team of the all

interconnections in a system that rapidly become complex. Story cards by themselves

are not enough to understand the whole application when it is complex. In XP there is

not up front design however for big projects there should be overview of applications.

Informative workspace practice also suggests this kind of pictures, diagrams or

graphics.

Finishing vs. “Finishing”

Estimation is an important activity in XP. XP empowers each member of a team

to estimate their own tasks. However estimation takes time to learn. Junior team

members may estimate incorrectly and this may lead them to finish their stories with

full of bugs. XP delivers high quality products therefore these bugs should be resolved

before delivery. It means that even a story card is told to be finished it is actually not

46

finished yet. If all the story cards are finished but it is still required to have more time

before delivery, XP teams should create a precise list of tasks that must be completed

before a story is considered finished.

Factory vs. Instances and Look-Ahead Design

In XP everybody should do the simplest thing that could possibly work. When a

team needs to develop a single object in the early iteration they only create it. In the

proceeding iterations they may need to develop a similar object with different

functionalities. After some iterations turning back and changing the design is difficult

and costly. XP teams should create a factory instead of creating different instances. In

(Elssamadisy and Schalliol 2001), it is advised to look ahead and use the common

sense. Even if teams do not need extra flexibility in the further iterations, the cost of

design is negligible in this case.

Large Refactorings Stink

If XP teams end up large refactoring they were lazy in early iterations and they

did not do small refactorings. It is important to refactor continuously and not to put

band-aids on the code.

Automated Functional Tests

All the unit tests may pass but the system may still be broken. It is important to

have automated functional test as well as unit tests. After a bug is fixed, functional tests

should be carried out as well.

Object Mother and the Special Instance of a Factory for Test Fixtures

The smell is extensive setup and teardown functions in unit tests and difficulty

in setting up complex objects in different parts of their lifetime. In order to test a

scenario developers need a business object or group of business objects in their different

states. Not to write large setup and teardown codes every time, developers should

prepare fixtures that return objects in different states.

47

5.5. Comparison: Waterfall vs. XP

Figure 5.2. Life cycles of Waterfall and XP methodologies

Figure 5.3. shows the QA activities in XP. Many of the extreme programming

quality activities such as customer feedback, unit testing, acceptance testing occur much

earlier than they do in waterfall model.

These activities are done more frequently in extreme programming than in

waterfall model and in each iteration, these activities will be included.

Extreme programming has more dynamic verification and this means it has more

test then analysis during the life cycle.

48

Figure 5.3. QA Activities in XP

49

CHAPTER 6

THE WHOLE TEAM

Extreme programming team includes testers, interaction designers, architects,

project managers, product managers, executives, technical writers, users, programmers,

human resources.

Roles on a mature extreme programming (XP) team are not fixed and rigid. The

goal is to have everyone contribute the best he has to offer to the team's success. At

first, fixed roles can help in learning new habits, like having technical people make

technical decisions and business people make business decisions. After new, mutually

respectful relationships are established among the team members, fixed roles interfere

with the goal of having everyone do his best. Programmers can write a story if they are

in the best position to write the story. Project managers can suggest architectural

improvements if they are in the best position to suggest architectural improvements.

Testers on an XP team help customers choose and write automated system-level

tests in advance of implementation and coach programmers on testing techniques. On

XP teams much of the responsibility for catching trivial mistakes is accepted by the

developers. Test-first programming results in a suite of tests that help keep the project

stable. Testers’ role in development is to help define and specify what will constitute

acceptable functioning of the system before the functionality has been implemented.

Architects on an XP team look for and execute large-scale refactorings, write

system-level tests that stress the architecture, and implement stories.

The role of technical publications on an XP team is to provide early feedback

about features and to create closer relationships with users.

Programmers on an XP team estimate stories and tasks, break stories into tasks,

write tests, and write code to implement features, automate tedious development

process, and gradually improve the design of the system. Programmers work in close

50

technical collaboration with each other, pairing on production code, so they need to

develop good social and relationship skills.

51

CHAPTER 7

CONCLUSION

Even though some agile practices are not new, agile methods themselves are

recent and have become very popular in industry. Extreme programming (XP)

introduces a paradigm shift in project management in the sense that every part of the

software development process is reviewed with the aim of reducing the activities and

number of deliverables to the minimum needed in any given situation. Such an

approach appears to take control away from a traditional project manager. The move is

in fact from a command oriented management structure to a facilitator oriented

management system. As seen from the way software quality factors are defined in XP

processes, the central players in the development process are the customer and

developer and not the manager. There is an important need for developers to know more

about the quality of the software produced. Developers also need to know how to revise

or tailor their XP methods in order to attain the level of quality they require.

In this thesis I have analyzed XP practices' quality assurance abilities and their

frequency. XP methods do have practices that have QA abilities, some of them are

inside the development phase and some others can be separated out as supporting

practices. The frequency with which these XP QA practices occur is higher than in other

traditional development processes development. XP QA practices are available in very

early process stages due to the XP process characteristics.

52

REFERENCES

Abreu, F.B. and W. Melo. 1996. Evaluating the impact of object-oriented design on
software quality.

Archer, C. and M. Stinson. 1995. Object-oriented software measures. Carnegie Mellon

University Software Engineering Institute Technical Report.

Beck, K. and C. Andres. 2004. Extreme programming explained, embrace change.
Boston: Pearson.

Chidamber, S.R. and C.F. Kemerer. 1993. A metrics suite for object-oriented design.
M.I.T. Sloan School of Management 53-315.

Elssamadisy, A. and G. Schalliol. 2002. Recognizing and responding to bad smells in
extreme programming. Proceedings of the 24th international Conference on
Software Engineering 617-622.

Galin, D. 2004. Software quality assurance, from theory to implementation. London:

Pearson.

Harrison, R. and S.J. Counsell and R.V. Nithi. 1998. An Evaluation of the MOOD set of
object-oriented software metrics. IEEE Transactions Software Engineering
24(6):491-496.

Huo, M. and J. Verner and L. Zhu and M.A. Babar. 2004. Software Quality and Agile
Methods. In Proceedings of the 28th Annual international Computer Software and
Applications Conference 520-525.

Lorenz, M. and K. Jeff. 1993. Object-oriented software metrics. New York: Prentice
Hall

Mnkandla, E. and B. Dwolatzky. 2006. Defining agile software quality assurance,

proceedings of the international conference on software engineering advances.
Washington: IEEE Computer Society.

Rosenberg, L.H. and L.E. Hyatt. 1997. Software quality metrics for object-oriented

environments.

53

