LEVEL BASED LABELING SCHEME FOR
EXTENSIBLE MARKUP LANGUAGE (XML) DATA
PROCESSING

A Thesis Submitted to
The Graduate School of Engineering and Sciences of
Izmir Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Beray ATICI

September 2010
IZMIR

We approve the thesis Beray ATICI

Assist. Prof. Dr. Belgin ERGENC

Supervisor

Assist. Prof. Dr. Tolga AYAV
Committee Member

Assist. Prof. Dr. Murat Osman UNALIR

Committee Member

23 September 2010

Prof. Dr. Sitki AYTAC Assoc. Prof. Dr. Talat YALCIN
Head of the Department Dean of the Graduate School of
of Computer Engineering Engineering and Science

ACKNOWLEDGEMENTS

I would like to thank all those people who haveotlgh their support enabled
me to complete this thesis. Firstly, | would likethank my supervisor Assist. Prof. Dr.
Belgin Ergenc¢ for her guidance and especially histadce support throughout the
course of this thesis.

| am thankful to my ex-colleague Res. Assist. BalLDIZ for all his help and
guidance throughout my studies.

Special thanks to my friend Onur Can UgAor all his vocabulary support,
patience and many helpful suggestions.

Last but not least, | wish to express my gratitidemy family for their

encouragement support and patience during my studie

ABSTRACT

LEVEL BASED LABELING SCHEME FOR EXTENSIBLE MARKUP
LANGUAGE (XML) DATA PROCESSING

With the continuous growth of data in businessekthe increasing demand for
reaching that data immediately, raised the nedthwing real time data warehouses. In
order to provide such a system, the ETL mechaniginneed to be very efficient on
updating data. From the literature surveys, it basn observed that there are many
studies performed on efficient update of the retal data, while there is limited
amount of study on updating the XML data.

With the extensible structure and effective perfance on data exchange, the
usage of XML data structure is increasing day by. dake relational databases, real
time XML databases also need to be updated conisiyoThe hierarchic characteristic
of XML required the usage of tree representatiamsifdexing the data since they
provide necessary means to capture different oglsitiips between the nodes.

The principal purpose of this study is to definel @ompare algorithms which
label the XML tree with an effective update meclkami Proposed labeling algorithms
aim to provide a mechanism to query and updatXMEe data by defining all relations
between the nodes. In the experimental evaluataoh gf this thesis, all algorithms is

examined and tested with an existing labeling éligor.

OZET

GENISLETILEBILIR ISARETLEME DILI (XML) VERI ISLEMEDE
KULLANILACAK SEV IYE TABANLI ETIKETLEME CERCEVE$S

Gittikce artan veri miktari ve kurumlarin karar armsistemlerinde giincel veriye
sahip olmak istemeleri gercek-zamanl veri ambarldrtiyacini d@urmustur.
Gergek-zamanli veriambarlarl sayesindegigen verinin aninda veri ambarlarina
gonderilmesiyle yiinsal yuklemelerden kurtulma planlagtm. Bu konuda ise en
blyuk yuk ETL slemine digmektedir. Glncellenen veriyi aninda hedef verianmazar
yuklemek icin iyi performanslhi ETL gerekmektediruBez kapsaminda yuritilen
calismalar sirasinda; XML yapidaki verinin aktariimasn#ullanilan ETL glemi
Uzerinde odaklanilrgtir.

XML veri yapisi, esnetilebilir olgu ve veri aktarimi agisindan gadig
avantajlar sayesinde bircok uygulama tarafindanlakuhi hizla artmaktadir.
Gunumuzde 6zellikle web tabanl uygulamalar kulfab&cok kurum, organizasyonel
verisini XML biciminde saklamaya Beamistir. Bu tipteki verinin de ikkisel
ortamlarda oldgu gibi guncellenme gereksinimi bulunmaktadir. XMLerwin
hiyeragik olusu ve @ac yapisinda tutulabiliyor olmasi XML datanin glfesanesi
konusunda yuruttlen camalara ilskisel veri tabanlarinda olgundan daha farkh bir
boyut kazandirmtir. Agac Uzerindeki her bir giimin birbirleriyle olan hiyeraik
ili skilerini tutarak istenilen veriye ¢cok daha hizlisebilme yollari bulunmgtur.

Bu calsmada XML a&ac yapisini etiketlemede veri giincellemesini ettarak
yapabilen algoritmalar sunulstur. Onerilen algoritmalar, XML ga¢ yapisinda
bulunan veriyi, dgimler arasindaki gkilerin bulunabilecgi sekilde etiketleyerek,
istenen veriye daha kolay wébilmeyi hedeflemektedir. Caina sonunda, Onerilen
algoritmalarin bgarimlari mevcut bir etiketleme algoritmasi ile «lstirilarak

yapiimstir.

TABLE OF CONTENTS

LIST OF TABLES ...t ettt e et e e e e e en e e e e aan s VIII
LIST OF FIGURES ... reremme ettt s e e e e e e e e IX
CHAPTER 1. INTRODUCTIONcutiitiieiiiiiees e e e aesnstseeeaeeessnssneeeeeessnnsssssessnnnes 1
CHAPTER 2. BACKGROUND INFORMATION ...ttt 4
Y220 S (01 1 To [To{ 1 o] o PP 4
2.2. Data INtegrationcouuuiiuruuiaeeeeeeeeiiiiiiaar s e e e e e e e e eeeeeeeeeeenrnnnes 5
2.2.1. Real-Time Data WarehOUSEScceeeeeeeeeeriiiiiiiiiiiiiiieeeeeee 7
2.2.2. Need for Real-Time Data Warehousesc..cccccceeeeeeinniinnnn, 8
2.2.3. Data Warehouse StrUCIUIeeeceemeeeeeeieeeeeeeeiiiviiii e 9
2.3. XML Data Managementoiieiiiiiiiieneeeeeeii e 10
2.3.1. How are XML Data Stored?ooucccceeeeeeeeieeiiviiieeee 11
2.3.2. How are XML Data Queried?..........cceeemmeeerriieeeeeeeiiiin e, 14
2.4. ETL with Relational Dataooeeeeeeeuuiiiiiiieee e 16
2.5. ETL with Hierarchical Data.............cccceeviiiiiiiiiiiiicee e 16
2.6, CONCIUSION ..eiiiiiiiiiiiieeee ettt 18
CHAPTER 3. XML LABELING SCHEMES.coiiiimmmeiiiee e 20
3.1, INtrOAUCTION ... 20
3.2. XML Labeling APProaches cmmmseerennaanneeaeeaeeaeeeeeeeeeennnnnns 21
3.2.1. Prefix-Based Labeling SChemes ... eeeeeeeeeeeeeenniniinnnnnn. 21
3.2.2. Range Based Labeling Schemes......ccccceeeei oo, 25
3.3, CONCIUSION ettt e e e beenas 30
CHAPTER 4. LEVEL BASED LABELING SCHEMES......ccccciiiiiiiii e, 32
4.1, INTrOAUCTIONccoiiiiiii e e e 32
4.2. Basic Level Based Labeling e eeeeeveeiiiiiiiciiieee e 33
4.2.1. Determining the relationships ... 34
4.2.2. Updating datal.......ccooeeieieeeeieiieeeeeee e 5.3

Vi

4.3. Single Linked Level Based Labeling.......cccccooooooiiiiiiiiiiiiiiiiicnn, 37
4.3.1. Determining the Relationships....... . ceeeeeiiieeiiiiiiiiiiiinnnn.. 38

VARG T U oTo -V g To [D - PR 38
4.4. Double Linked Level Based Labelingccccccvvvvvviiiiiiiiiiiieeeeeee, 39
4.4.1. Determining the relationships ... 40
4.4.2. UPdating Datalcoooeeeeeeeeeeeiieeeeeeeeeiiiii e 40
4.5, CONCIUSIONuiiiiiiiiiiiiiiieiie et e e e e e e e e e e e e e e e seand 41
CHAPTER 5. PERFORMANCE EVALUATION ...ttt 43
5.1, INrOAUCHIONciiiiiiie e e e eeeeeeees 43
5.2. Experimental Evaluation..............oouuuiiiiiiiiieee 43
5.2.1. Labeling Performance................commmmmeeeeeeeeeeeeeeieiiiiiinnenneeens 44
5.2.2. Space ReqUIrEMENTS.......cccoeeeeei e e e 45
5.2.3. Query Performanceoooiiiiceeeeeiiieieeeeei e 46
5.2.4. Update PerformancCe.............oouimiiimieiiiiiieeeiiicee e 50
5.3. Discussion on Results and ConcluSioNn ...cceecccooovviiiiiiiiiiiiiinnee. 53
CHAPTER 6. CONCLUSION ..ottt e e e 54
REFERENCESottt e e s et e e e e e e e e e e e e e e e e e s ssnnneeeneeaaaaeeas 56
APPENDIX A. SOFTWARE IMPLEMENTATION ...ccooiiiiiiiiiiiieeeeeeeee e 58

vii

Table
Table 5.1. Test datasets

LIST OF TABLES

viii

LIST OF FIGURES

Eigure Page
Figure 2.1. The architecture of mediator basedrmédion integration system..............
Figure 2.2. The architecture of data warehOUuSEBYSL............cooviiiiiiiiiiiiiiii s e 7
Figure 2.3. An example of a data warehouse model.................ccociiiiiiiiiiieeenn, 10
Figure 2.4. An example of XML dOCUMENL......cceeeereeiieiiiiiiiiiieieee e e e eeeeeeeeeeeesieeees 11
Figure 2.5. AN XML OCUMENTcevviiiiiiiiimmmcme e et e e e e e e e e e e e e e e aeeeeeeeeeees 12
Figure 2.6. AN XML dOCUMENTIEEoiiiiceeeeeiiiiiee e 13
Figure 2.7. The four staging steps of a data wargho..................eviiiiiinnnneeeenneeee 16
Figure 2.8. A XML AOCUMENT ...cevvviiiiiiiiiiriiiee s s e e e e e e e e e e e e e e eeeeaaeeenn s 17
Figure 2.9. A DTD JOCUMENTceviiiiiiiiimmmmmmeseeee e e e e e e e eeeeeeeeeeeenenann s 17
Figure 3.1. Simple Prefix Labeling..........coeooiiiie e 22
Figure 3.2. Dewey ID Rabeling Schemecccccco oo, 22
Figure 3.3. ORDPATH [ahelingccoiiiii e 24
Figure 3.4. Order-sensitive update of proposedraehe............cccoeeeeeeiiiiiiiiiiiiiiiiin 24
Figure 3.5. Tree Location Address Labeling .eecce.oooeeviiiiiieiiiiciiiee e, 25
Figure 3.6. Extended Pre-order Traversal.. o .oeeeeeeiieiiieiiiiiiiiiiiiineesseeeeenn. 26
Figure 3.7. Tree Traversal ENCOAINGuceeeariiiiiiiiiiiiiiii e 26
Figure 3.8. K-ary complete tree labeling SChemM@ u.......uuveeiiiiiiiiiiiiiiieeeiiiieeee 27

Figure 3.9. Containment Labeling SCheme ... o eeeieeeiiiieeeiiiieeiieinns 28

Figure 3.10. Bottom Up And Top Down Approaches @fre-Number Labeling

SCREME ... e 29
Figure 4.2. Basic Level-Based Labeling Scheme................c.ccoiccccen s 33
Figure 4.3. Parent Child Relationship in BasiC LBL..............ccoooiiiiiiiiiiiiiiiens 34
Figure 4.4. Ancestor-Descendant Relationship indlaBL...................oooeiiiiiiinnnee. 34
Figure 4.5. Sibling and Order Relationships in BA®BLccoovvvvivviiiiiiinneennn. 35
Figure 4.6. Insertion of the node labeled as <2,3,1.........cccccceeiiiiiiiiieeeiiiieeieiieees 35
Figure 4.7. Deletion of the node labeled as <2,2,1>..............ccccciiiiiiiiiiiiiiiieenn. 36
Figure 4.8. Insertion of the node labeled as 42,2,..........cccccoiiiiiiiiiiiiiiiiiiieeee 36
Figure 4.9. Deletion of the node labeled as <1,2,1>..........ccccoeeiiiiiiiiiiiiiiiiiiiiieens 36
Figure 4.10. Label parts of Single LINKed LBLwweevvvvveiieieiieieeeeieeeeeeeeee 37

Figure 4.11. Order Relationship in Single LinkedLLB................oiiiiiiiiiiinenennnn. 38

Figure 4.12. Insertion of the node labeled as 4123,ccccooiiiiiiiieeeeeeee 39
Figure 4.13. Label parts of Double LINKed LBL cee..ccooeivieeeceieee e, 39
Figure 4.14. Order Relationship in Double LinkedLLB...............ccccovvviiviiiiinnnennn. 40
Figure 4.15. Insertion of the node labeled as 4112>cccoeiiiiiiiiiiin 41
Figure 5.1. Labeling performanCe........... e oeeeeeeeeeeeieiieiieiiiiiiiinns s seeeeesen e 44
Figure 5.2. SpPace reqUIrEMENTS.o e eeeeeeittiie s e e e e e e e e e e eeeeeeeeeeeeeeeeeeeeeees 45
Figure 5.3. P-C Querying performancCeccooeuuuiiiiiiiiniieeee e e 47
Figure 5.4. A-D Querying performManCe........cccccuurrriiiiiieeeeeeeeeeeeeeeeeeesesvnnnnnaaeees a7
Figure 5.5. Sibling querying PerforMancCeccecee..eeeeieiiiieieeeeeeeeeeeeeeeeeieinennnaneens 48
Figure 5.6. Forward order querying performanCe............coouuuuiiiiiiiiiineieeeeeeeeeeeeea 49
Figure 5.7. Backward order querying performanCe.........ccccoeeeeeeeiiieieeiiiiiniiinnas 50
Figure 5.8. Uniform insertion performancecooovvvvviiiiiiiiiiiiiee e eeeeeeeeeeeeeeea, 51
Figure 5.9. Skew insertion performance..............ceeiiieiiieeeeeeeeeeeeee e 52
Figure 5.10. Complex insertion performanceccoooeveeeeieiiiiiieiieiiiiieaee 52

CHAPTER 1

INTRODUCTION

With the use of data warehouse concept in busiaress researches were started
to develop different ETL (extract-transform-loadgtimods. ETL has been providing to
load the of the organizations transactional dat@data warehouses with daily, weekly or
monthly bulk loads. But the increasing amount afadaas a big bottleneck for these
bulk loads. Both the required storage and the tioméng the loads were increasing. On
the other hand, the organizations were lookingways to detect business events in
production systems as they happen because thethase events to trigger a response
in another system. This introduced real time (Ba@04). Besides, the internet platform
was started to search a data structure which cé&ekp up with its continuous
development

The lack of structured data over web was a bottlelm® accessing the valuable
information. As a solution to this problem, a neatadformat called eXtensible Markup
Language (XML) was developed (W3C). XML is a semustured data format for
information exchange over World Wide Web. The gtricee of XML makes it usable as
a semantic preserving data exchange format on éhe With the internet’'s broader use
within time, it became a global data exchange ptaifand the interest in XML has
grown.

For many years, there was a problem of the ensapmvhile they were trying to
extract the useful, concise and handy informatimmfthe entire data stored in their
complex information systems. After the use of in&trin their business and
communication channels, the data changed its formt@tXML. Thus, the importance
of integrating XML data to data warehouse environmis becoming increasingly
higher. Now, some data warehousing and ETL tooppsrt extraction of XML data
from source to feed the warehouse.

Trying to update the XML data is an important pesblwhile the XML data
warehouse wanted to be kept up-to-date. To redblse issues, many researches are
going on. One of the solutions is about effectivielgeling XML data trees. Labels

define the type of relationships presented amordes@nd are important blocks for

structural join algorithms and important complensewit structural indexes. Choosing a
suitable labeling scheme requires different factorbe taken into consideration which
are storage, nature of data, query type and efiigieof maintaining that labeling
scheme. For a document tree, a labeling schemstis@ural summary of a specific set
of tree relations. Each node in the tree is assigng/pically unique node label, so that
any of these relations between the nodes can egeadffrom their labels.

A labeling scheme supporting dynamic XML data sHobk able to keep
computational cost of labeling, label size and gl re-labeling with inserts and
deletes at minimum while providing several relasioips. Briefly; a labeling algorithm
should have quick indexing and easy retrieval whdieg minimum space for labels.

To supply these requirements, many labeling schehae® been proposed.
XML labeling approaches can be classified into tategories. The first one is prefix
based labeling algorithms (Sans et al., 2008). alperithms in this group label a node
with using its parent’s label as prefix of its lab&his property of this group causes a
bottleneck on the size of labels. The second cayegaange based approaches (Ko et
al., 2006, Zhang et al., 2001). This group of sok®igenerally focus on the position of
the node in the XML document and they always reegate the labels for the XML
tree. This has a degrading effect on the performaman update intensive environment.

In this thesis project a labeling scheme calledel-8ased-Labeling (LBL) is
proposed in three versions. All versions aim toedwaine four basic relationships;
Parent-Child (P-C), Ancestor-Descendant (A-D), isthland ordering relationships;
among nodes while requiring inexpensive computafmn construction of a label,
minimum re-ordering with inserts and deletes andsoeable label length with
increasing level and fan-outs. Each version is gatosbme of these requirements. The
first version, Basic LBL, aims to have minimum lals&ze with keeping the all the
nodes in order. This ordering the data issue caas@rformance bottleneck on
updating data. To handle this issue second verstamgle Linked LBL, and third
version, Double Linked LBL, aims to avoid relabglithe nodes after each insert, but
this increases the size of the labels. Besidesetheo versions are efficient on
determining the relations between nodes. At thistppouble Linked LBL has much
better performance on determining the backwardrorgeelation than Single Linked
LBL.

Experimental study of this project consists of 4fedent test cases which

compare the performance of all versions of the LBith another labeling scheme;

2

containment (Zhang et al., 2001). Containment @seh since it is popular and similar
to LBL with its node structure.

The remainder of the report is organized as follo®kapter 2 gives some
background information on data warehousing and Efflictures on both relational and
hierarchical data types. Chapter 3 discusses taedework on XML labeling. Chapter
4 proposes new labeling scheme, called Level-BX9éH labeling scheme with three
versions. Chapter 5 contains the detailed perfoo@atudy and analysis comparing the
test results of the three version of Level Baséellag scheme. Chapter 6 sums up the

work and discusses the results reached.

CHAPTER 2

BACKGROUND INFORMATION

2.1. Introduction

Recent advances in computing, communications, angitad storage
technologies, together with the development of Higbughput data-acquisition
technologies, have made it necessary to gathestanel incredible volumes of data. At
this point, data integration come into picture whis the process of combining data
residing at different sources and providing the wgéh a unified view of these data.

There are many approaches to combine distributiedadal access them through
a unified view. One of these approaches is virtlgth integration. This integration
technique provides an access to distributed da¢a avmediated schema with a query
interface and do not replace data physically. Aeottata integration approach is data
warehousing which provides extracting the histdrd@ta from operational databases
and loading them to data warehouses.

By time, the business needs grew, data volumegeénational data stores, such
as online transaction data, inventory data, antbous information became greater in
size. The larger the data volumes become, the mesmurces and time are required by
the ETL processes. Also the standard architectorea ftraditional data warehouse is
based on periodic batch extracts from the sourte, aehich then flows through the
system. Reporting was done from warehouses which wadated on a daily or weekly
basis. When the real-time nature of the data warshdoad becomes sufficiently
urgent, the batch approach breaks down.

Real time business intelligence is the processetiveling information about
business operations without any latency. Real tn@ans delivering information in a
range from milliseconds to a few seconds afterlihsiness event. While traditional
business intelligence presents historical infororatio users for analysis, real time
business intelligence compares current businesg®wath historical patterns to detect

problems or opportunities automatically.

At the same time XML data type is rapidly becomangridely used data format.
Soon, it can be expected that large volumes of Xdta will exist. Large amount of
data needed for decision-making processes aralstotbe XML data format, which is
widely used for e-commerce and internet-based nmétion exchange. Thus, as more
organizations view the web as an integral parhefrtcommunication and business, the
importance of integrating XML data into data wanesiog environments become
increasingly higher by time.

In all the real time business approaches, an irapbpoint which is the design
model of the data sources is escaped from observalihey mostly are deliberated as
relational database systems but rapidly increagsage of XML raised a need to be
integrated in an ODS system too. When situationoiscerned, many researches has
been started to try to find out a solution approashstoring and querying XML data.
But the storing and querying is not enough for Byfefficient real time XML data
warehouse. The main problem is how to design amdygguch a data mart that carried
out starting directly from an XML source with a gbperformance.

In this chapter the concepts of data integrati@ba dvarehousing and ETL will

be explained and how XML data is integrated in ¢h@gstems will be discussed.

2.2. Data Integration

Data integration is a huge topic for IT becausendtely IT aims to make all
systems as they are working together. In many case®us data integration must take
place between the primary transaction systems @fotiganization and user queries.
Generally, this data integration is complete, sl organization’s decision-making
systems have settled on a single system, all irapbrénterprise resource planning
system and transaction-processing systems seftiatl a

Data integration is the process of combining detding at different sources
and providing the user with a unified view of thefsta. This process emerges in a
variety of situations. The increasing data volumd aeed of sharing existing data on
all systems of an enterprise discloses the neddtafintegration.

The problem of combining heterogeneous data souwioeer a single query

interface is not a new one. The rapid adoptionatblases after the 1960s naturally led

to the need to share or merge existing repositofies merging can be done at several
levels in the database architecture.

Two popular approaches for data integration ardudlirData Integration and
data warehousing. The idea behind Virtual Datagiratiéon, which is first mentioned by
Wiederhold in 1992 (Wiederhold et al., 1992), isptovide a uniform query interface
over a mediated schema. This query is then tramgi into specialized queries over
the original databases. This process can also Il s view based query answering
because we can consider each of the data sourdss doview over the (nonexistent)
mediated schema (Figure 2.1). This data integrasiolution may address to many
problems by considering these external resourcenadsrialized views over a virtual
mediated schema, resulting in "virtual data integrd. Even though there has been
much progress in this area, in Kiani et al. (2001 realized that more work is required
to overcome the challenges such as lacking of eergemmodel for virtual data
integration, availability of the global schema orpiossibility of updating through the

mediator based integration systems.

Info.
Source

Figure 2.1. The architecture of mediator basedrmétion integration system

In Data Warehousing, data from several sourcex@racted, transformed, and
loaded into a common source and can be queriedavdimgle schema. This idea was
first mentioned in 1988, by IBM researchers Bargvin and Paul Murphy (Devlin et
al., 1988). This can be perceived architecturadlyaaightly coupled approach because
the data reside together in a single repositoguaty time.

A data warehouse is an integrated collection ofeggfed, historical data from
internal and external sources grouped into a comsabect matter, such as a business

area or business function. As seen on Figure2.2a lmm various operational

applications and other sources are selectivelyaetdd and organized on the d
warehouse database. The data warehouse then becoswmesca for use by analyt

applications and user queri

i N

Warehouse

DBMS

ETL Tools
XML Sources

\ {offiine)
Warehoused lables Data in HH

\ J common
schema Rel. Sources

Cluery

Figure 22. The architecture of data warehouse sy

A data warehouse provides a common data model lfodata of interest
regardless of the data's source. This makes it maagier to report and analy
information rather than using multiple data modeten disparate sources in order
retrieve informabn such as sales invoices, order receipts, geleslgér charges, et

2.2.1.Real-Time Data Warehouses

Traditionally data warehouses do not contai-to-date data. They are usua
loaded with data from operational systems at mestkly or in some caseightly, but
are in any case a snapshot of the past. As todi@gsions in the business wo
become more redime, the systems that support those decisions twekdep up. It i
only natural that Data Warehouse, Business Intgllig, Decision Suppc and OLAP
systems quickly begin to incorporate -time data.

A strict definition of ree-time in (Baer, 2004)mplies that any data chan
occurring in a source system is automatically arsfaintaneously reflected in the d
warehouse. This would methat all changes in the data warehousing envirohmade
place simultaneously with the change in the sogystem— something that is onl
achievable when both changes are part of the sammic transaction. Ever

mechanism that does not adhere torule is in reality only ‘near re-time’ and always

shows some delay between the source system'sdtammsand the equivalent entries in
the data warehousing system.

2.2.2.Need for Real-Time Data Warehouses

ETL (extract, transform and load) is the procesd #mterprises use to build the
consolidated data stores required for effectiveimass Intelligence (BI). Traditionally,
ETL processes have been run periodically, on g daiekly or monthly basis, and use
a bulk approach that moves and integrates theeentaita set from the operational source
systems to the target data warehouse. While thggroaph was acceptable for
enterprises over the years, current business ¢onslitequire a new way of integrating
data - in real time and in an efficient manner.

The demand for real-time integration explainedAnKorion , 2005) and (IBM ,
2008) as;

- Business globalization and 24x7 operationsgn the past, enterprises could

stop online systems during the night or weekendgyravide a window of time

for running bulk ETL processes. Today, running abgl business with 24x7
operations means smaller or no downtime windows.

- Need for up-to-date, current data. Customer demand, competitive

pressure and improved decisions require timelyrméiion. To make the most

of Bl in today's ever-accelerating business climat@nagers should not be
working with last week's or yesterday's data. Todbkecision-makers need data
that is updated a few times a day or even in fesd.t

- Data volumes are increasingAs time passes and the business grows, data

volumes in operational data stores, such as onferesaction data, inventory

data, and customer information, become larger. [8hger the data volumes
become, the more resources and time are requiratebfzTL processes. This
trend challenges the bulk extract windows thatgatting smaller and smaller.

« Cost reduction. Bulk ETL operations are costly and inefficient, they

require more processing power, more memory and mengork bandwidth. In

addition, as bulk ETL processes run for long pesiofltime, they also require

more administration and IT resources to manage.

« Growing need to detect and react to business evends they happen.
Many organizations are looking for ways to detagtibess events in production
systems and have those events trigger a responsdther system. For
example, a cell phone company would like to setekimessage to a customer
running low on minutes asking if him if he woul#dito purchase more.

+ The need to track all changes for auditing purposesOrganizations need
to comply with regulations, which often require rihéo continuously track all
changes to data and not just the net result oktbhbanges.

« Increasing need to keep data in sync across the enprise. Customers
want up-to-the-minute access to order, paymentiavehtory data so they can
buy products, pay bills and check delivery statukne. Employees need much
of the same so they can better service custometsnaake wise business
decisions. To accomplish this, eCommerce data néedse in sync with
business applications and data needs to flow irtirea across the enterprise.

2.2.3.Data Warehouse Structure

The main approach for storing data in a data warehas the dimensional
approach. In a dimensional approach, transactitan ate partitioned into either "facts”,
which are generally numeric transaction data, anéssions"”, which are the reference
information that gives context to the facts. Thetdaare the measurement processes. A
measurement is a real-world observation of a pteshjounknown value. Measurements
are overwhelmingly numeric, and most measuremeats lie repeated over time,
creating a time series. A single measurement @eatesingle fact table record.
Conversely, a single fact table record correspdads specific measurement event on
dimension tables (Kimball et al., 2004). In Fig@a, illustrates this structure of data
warehouses.

A fact table (WarehouseArchitect, 1999) storesalde numerical values related
to aspects of a business. For example, sales, ueydmdget. These are usually the
values you want to obtain when you carry out asierisupport investigation. A fact
table is at the intersection of dimension tablea gtar schema.

A dimension table (WarehouseArchitect, 1999) stolas related to the axis of

investigation of a fact. For example, geographweti product. A warehouse model can

have any number of dimension tables. Dimensioretabte connected to a central fact
table. The primary key in the dimension table ntiggaas a foreign key in the fact table.

Dimension tables can also be connected to othegmbian tables to form a hierarchy of

dimensions.
‘ Policy dimension }7 Policy Key
Customer Key —{ Customer dimension ‘
‘ Agent dimension }7 Agent Key
Coverage Key —{ Coverage dimension ‘

‘ Item dimension }7 ltem Key
Transaction Type Key —{ Transaction Type dimension ‘

‘ Effective Date dimension }7 Effective Date Key
Amount (fact)

Figure 2 3. An example of a data warehouse model
(Source: WarehouseArchitect, 1999)

With the usage of XML data in business intelligelatea and storing it in data
warehouses, many studies are going on to form thMd Xlata to load into this
dimensional model. Before discussing these appesadhe structure of XML data, the
approaches that propose where to store it and bayuery it will be explained in the

next section.

2.3. XML Data Management

In response to the need for a more powerful languBgy modeling web
information, the eXtensible Markup Language, XMlasyproposed by the World Wide
Web Consortium (W3C), in 1997. XML is a subset ¢drtslard Generation Markup
Language (SGML) which is the meta-language of HTMimplified upon the
requirements of web applications.

XML is a hierarchical data format for informatiorolange in the World Wide
Web. An XML document consists of nested elemenicsires, starting with a root
element. Element data can be in the form of afiiebwor sub-elements. Figure 2.4
shows an XML document that contains information wbe book. In this example in

(Shanmugasundaram et al., 1999), there is a baokesit that has two sub-elements,

10

booktitle and author. The author element has aattiibute with value “Dawkins” and

is further nested to provide name and addressnrdton.

<book=
<booktitle> The Selfish Gene </booktitle>
<author id = “dawkins™>
“name>
<firstname> Richard </firstname>
<lastname> Dawkins </lastname>
</hame>
<address>
<city> Timbuktu </city>
<Zip> 99999 <fzip>
<faddress>
<fauthor>
</book>

Figure 2.4. An example of XML document
(Source: Shanmugasundaram et al., 1999)

2.3.1.How are XML Data Stored?

In general, numerous different options to store gudry XML data exist. In
addition to a relational database, XML data cam &ls stored in a file system, in an
object-oriented database or in a special-purposasdmi-structured) system. It is still

unclear which of these options will ultimately fimdde-spread acceptance.

Text Files
A file system could be used with very little efféa store XML data, but a file

system would not provide support for querying tidLXdata (Florescu et al., 1999).

Native XML Databases

As defined by the XML DB consortium, the formal ihéion of a Native XML
Database (Nicola et al., 2005) states that; a HaXivIL Database defines a (logical)
model for an XML document and stores and retriedesuments according to that
model. At a minimum, the model must include elersgmittributes, PCDATA, and

document order. Native XML Database has an XML doent as its fundamental unit

11

of logical storage, just as a relational database dirow in a table as its fundamental
unit of logical storage.

“Native” means that XML documents are stored ork giages in tree structures
matching the XML data model. This avoids the maggietween XML and relational

structures, and the corresponding limitations.

<depi=
<employes id=%01=
<name=John Dog</name:
<phone=408 555 1212</phone>
<office=344</offices
<lemployes:
<employee id=902=
<name:=Peter Pan< nama=
<phone= 408 555 9918</phong=
=0ffice =216=/offica=
</amployes:
</ depl=

Figure 2.5. An XML document
(Source: Nicola et al., 2005)

To insert XML data into the database, client agtions send XML documents
in their textual representation to the server. Séever uses a parser to check incoming
documents for wellformedness and to perform optigakdation. The parser events are
converted into a hierarchical representation of XML document. For the sample
document in Figure 2.5, this hierarchy looks simitathe document tree in the upper

part of Figure 2.6.

12

amployaa

amployaa

unique StringlDs

phong

String table
dapt Tag names and
smployes namespace URIs
name P .
d get replaced by

N EE LRG| e N

Figure 2.6. An XML document tree
(Source: Nicola et al., 2005)

Converting to different data types

There are various ways to solve the problem ofcéffe, automatic conversion
of XML data into and out of relational databasestdbase vendors such as IBM,
Microsoft, Oracle, and Sybase have developed ttwmlgssist in converting XML
documents into relational tables.

Generally XML document elements are modeled adlaction of nested tables
or they are stored either as BLOB-like objects ®rdacomposed into a set of tables.

Some vendors use a data type as OPENXML whictsw@ded by Microsoft.

Mapping XML files into RDBMS tables

When using an RDBMS, there are many different weystore XML data
(Florescu et al., 1999).

One option is to infer from the DTDs of the XML donents how the XML
elements should be mapped into tables. It is ing@sdible to use standard commercial
relational database systems to evaluate powerkriegiover XML documents. The key
that makes this possible is the existence of Doctirigpe Descriptors (DTDs) or an
equivalent, such as DCDs or XML Schemas. A DTDnigffect a schema for a set of
XML documents. Without DTDs or their equivalent, XMvill never reach its full

13

potential, because a tagged document is not vafylugithout some agreement among
inter-operating applications as to what the tagarmé&o apply this approach to query
XML documents; first a DTD is processed to genewmateelational schema. Second,
XML documents are parsed for conforming to DTDs &atling them into tuples of
relational tables in a standard commercial DBMSird;rsemi-structured queries over
XML documents are translated into SQL queries twercorresponding relational data.

Another option is to analyze the XML data and tlpexted query workload.
This technique is for using a RDBMS to store, quemg manage semi-structured data.
Semi-structured data can always be stored as aryerelation, since the data is an
edge-labeled graph, but this is no better thanrggdhe schema with the data. Instead,
this technique relies on an aggressive mapping tlmmsemi-structured data model to
the relational model.

This technique can be used 1) to store and man#fgBertly existing
semi-structured data sources, and 2) to convetioahl sources into a semi-structured

format, such as XML.

2.3.2. How are XML Data Queried?

Many XML querying languages are used to query dadm different XML

storage platforms.

XSLT
The Extensible Stylesheet Language for transfoonatis an official

recommendation of the World Wide Web Consortium chpublished in 1999. It
provides a flexible, powerful language for trangforg XML files and uses XML
syntax to define transformation rules that are i@ppto an input XML document to
result in a text document that has not to be an Xddcument. This result can be an
HTML document, another XML file, PDF, SVG, java @dr a text file (DuCharme,
2001).

XSU
Oracle created the XML SQL (XSU) Java API to conv@vlL to SQL, and vice

versa. Before such mapping is performed, the tableyhich the XML document will

14

be mapped, must be created. XSU maps XML elementpéecified database table

columns.

XPath

XPath is a language for addressing parts of an Xddcument which is a
standard recommended by W3C. XPath defines a{ilmiastandard functions but is not
itself written in XML because it defines how to &e parts of an XML document,
forms the basis for a query language on XML, si&IX< or Xquery. XPath models
an XML document as a tree of nodes of which theee different types, including

element nodes, attribute nodes and text nodes.

XQuery

XQuery is currently still under development by WWSC (XQuery 1.0), and is
also known as W3C XML Query. The purpose of XQusrgxtracting data from entire
XML documents, collections of XML documents, or ypdlocument fragments. XQuery
is derived from an XML query language called Quathich in turn borrowed features
from several other languages, including XPath XQL, XML-QL, SQL, and OQL.
XQuery 1.0 is the superset of XPath 2.0 both irtasyand semantics.

With the growing importance of XML documents as @am to represent data in
the World Wide Web, there has been a lot of eftortdevising new technologies to
process queries over XML documents. The majoricglat database systems have been
providing XML support for several years, predomitiyaby mapping XML to existing
concepts such as LOBs (Large Object Data) or (tbjetational tables. This causes
limitations with these approaches in research addstry as functional constraints and
performance constraints. Generally, storing XMLadas large objects allows for fast
insert and retrieval of full documents but suffdrem poor search and extract
performance due to XML parsing at query executioret Because of these drawbacks,
many researches are proposing to store XML dataiive XML databases, query this
data with appropriate query language. In decisioppsrting systems XML data is
queried with that appropriate language and load XKML data warehouses. The
structure of these warehouses is the same asrttensiional data warehouses’, consist
of facts and dimensions. But XML data which will beaded to data warehouse is

processed slightly different than relational dafde definition of its facts and

15

dimensions is formed from the DTD graph of the XMéata. The nodes are extracted
and loaded to target warehouse according to thms & an XML tree.
The next section will describe the ETL process ismdteps which relational and

hierarchic data take.

2.4. ETL with Relational Data

The back room and the front room of the data warskoare physically,
logically, and administratively separate. In oteards, in most cases the operational
source database and analytic target database adkfferent machines, depend on
different data structures. Preparing the data,nofi@lled data management, involves
acquiring data and transforming it into information

There are four staging steps found in almost e Ery process of a data
warehouse. A properly designed ETL system extrdata from the source systems,
enforces data quality and consistency standaragpigus data so that separate sources
can be used together, and finally delivers data presentation-ready format so that

application developers can build applications amdl esers can make decisions.

‘ Operaticons: Scheduling, Exception Handing, Recovery, Rsstart, Cuality Chack, Aslsase, Support

Figure 2.7. The four staging steps of a data warsdo

2.5. ETL with Hierarchical Data

XML data sets are not generally used for persisstaging in ETL systems.
Rather, they are a very common format for both tnpuand output from the ETL
system. The hierarchical capabilities of XML needifferent method to be integrated

more deeply with the data warehouse queryabledable

16

cwebTraffics
«clicks
<zhogt hoatId- ares.csr.unibo.it =
«naticn-italy=/nations
< /o8t
cdate=23-MAY-2001</datex
ctime=l6:43 125« /cimes
<url urlID- DLOOI3D =
<gite sitelD- www.hr =
«hatlcn>Ccroatliac /mations
«/zitax
«fileType=shtml«/fileType=
=urlCatcgorys>catalog« furlCat cgorys
< furl -
wfClick=-
eclicks

wfclick-

«/webTraffics

Figure 2.8. A XML document
(Source: Golfarelli et al., 2001)

A DTD (Document Type Definition) defines elementsdaattributes and tr
nesting and occurrences of each element in an >document. A document Tyj
Declaration defines the constraints on the sequamck nesting of element tag a
attributes. There are four kinds of declaration®WD; elements, attribute lists, entiti

and notations.

Figure 2.9. A DTD document
(Source: Golfarelli et al., 2001)

Semiautomatic approac(Golfarelli et al., 2001xan be used for building tt
conceptual schema of a data mart starting fromXiw. sources. Starting with th
assumption that the XML document has TD and conforms to it, the methodolo

consists of the following stef

17

1. Simplifying the DTD

2. Creating a DTD graph

3. Choosing facts

4. For each fact:

4.1 Building the attribute tree from the DTD graph
4.2 Rearranging the attribute tree
4.3 Defining dimensions and measures

These steps are applied to a XML document as fatigwFirst the DTD of the
XML document should be simplified because it mawehaeen declared in a
complicated and redundant way. After simplifying thTD, a DTD graph representing
its structure can be created. Its vertices cormedpo elements, attributes and operators
in the DTD. Attributes and sub-elements are notirtisiished in the graph since, they
are considered as equivalent nesting mechanisnmen dhe or more vertices of the
DTD graph are chosen as facts; each of them bectiraa®ot of a fact schema. Some
further arrangements should be made to the attrilnge which is derived from the
DTD graph. And finally to normalize a star schemf XML data warehouse,
dimensions and facts are defined.

After ability of loading the XML data in data wamlse, the problem of the
need of accessing to the data in real time is dagdso in XML warehouses. The main
problem is to query and extract the XML data froatedsource easily and to reflect the
data changes to the target at the same time wathipldate occurs on the source. One of
the alternative solutions for these problems igxmug the XML tree with labels. And

several researches have been started in this area.

2.6. Conclusion

The chapter’s overall goal was to provide an owwwof the literature in the areas
covering this research: the concept of data warghguand real time ETL processes,
the structure of XML data, XML data warehouses tailr ETL systems.

Two popular data integration approaches have be#@oduced; virtual data
integration and data warehousing. The growing needetect and react to business
events as they happen, increasing need to keeprdatanc across the enterprise and

need for up-to-date, current data increased a deérfanreal time data warehouses.

18

Also with the migration of business systems intdowthe data changed its form as
XML. In this chapter all those data integration heets, data warehouse structures and
real time demand is explained to prepare a backgrdor the rest of this project. The
background information has been given becauserty@ped XML labeling algorithm

iIs recommended to use in all XML updating systematuding the ETL system of XML
data warehouses.

In this master thesis, all these XML labeling agatees which focused on to
supply a better update performance on XML datastudied. In the next chapter these
approaches will be explained briefly and their adages and disadvantages will be
discussed.

19

CHAPTER 3

XML LABELING SCHEMES

3.1. Introduction

The extensible structure of XML data makes itselbapular data format on
many data interchange areas. With the usage of X&th type in several areas such as
decision making processes, e-commerce and intbassd information exchange; and
storing XML data in several platforms as text fileslational databases, object oriented
databases or special purpose systems have broegbtrpance problems on querying
and updating XML data with them. Many researcheghis topic find out that XML
data could be kept on a XML tree with labels, amthechanged data could be
transferred with its label to the target database.

For a document tree, a labeling scheme is a smalcsummary of a specific set
of tree relations. Each node in the tree is assigngypically unique node label, so that
any of these relations between the nodes can leeréaf from their labels. Edges in
XML data trees represent structural relationshigtwben data nodes. The basic
relationships to be determined in XML query proaggsire ancestor-descendant (A-D),
parent-child (P-C), sibling and ordering relatioipsh The main purpose of all schemes
is to satisfy all these relationships in orderuport effective indexing mechanisms for
guerying. Each scheme uses different methods tageahem.

Besides, the aim of providing an efficient mechani®r querying XML data,
update performance of the labeling scheme with olypaXML data intensive
environments should be considered too. To enhapdate performance a group of
schemes predefine extra labels for potentiallytegsnodes. With this property, they
aim to never re-order the XML tree. Another grodpsoheme never allocates extra
space but they reorder the XML tree after everyabpdSeveral labeling schemes have
been introduced to develop an optimized retriesace they provide a quick way to
determine the type of relationships that are preaemong the nodes. In this chapter

some of these XML labeling schemes will be expldine

20

3.2. XML Labeling Approaches

There has been a great diversity of labeling sckeineSu-Cheng et al., (2009)
the labeling schemes are classified into 4 categpisub-tree labeling, prefix-based
labeling, multiplicative labeling, hybrid labelingku et al., (2005) analyses labeling
schemes with respect to their top-down/bottom-uppagation patterns regarding
renumbering when XML updates occur. Besides aB, ttost popular classification
(Sans et al., 2008; Wu et al., 2004; Ko et al.,&2QW et al., 2004) divides the labeling
algorithms into two categories; prefix based lalgpbchemes and range (interval) based

labeling schemes.

3.2.1.Prefix-Based Labeling Schemes

Prefix-based schemes directly encode the fatharmafde in a tree, as a prefix of
its label using for instance a depth-first treevéraal. In the prefix labeling scheme, the
label of a node is that its parent’s label concaties its own label (self_label). For any
two nodes u and v, u is an ancestor of v iff laljei§¢ a prefix of label(v). Node u is a
parent of node v iff label(v) has no prefix whemaying label(u) from the left side of
label(v) (Hu et al., 2006).

Simple Prefix Labeling

Cohen et al., (2002) proposed a prefix based lapedcheme where each label
inherits its parents label as prefix of its owndba@-igure 3.1). The first child of the root
is labeled with “0”, the second child with “10”, Ifowed by the third and fourth with
“110” and “1110" respectively. For any node L(v)nd¢ing the label of v, the first child
of v is labeled with L(v) “0”, the second child bfv) “10”, and the ith child with L(v)
“(1...1)i-10". This labeling scheme does not needé¢ regenerated for any arbitrarily
heavy update such as deletion or addition of nadesubtree to each right side of a
subtree. The limitation of this technique is thag¢ size of simple prefix is often too
huge (Su-Cheng et al., 2009).

21

10
00 010

Figure 3.1. Simple Prefix Labeling

11010

1100

Dewey ID Labeling

Dewey ID (Tatarinov et al., 2002) is based on tleevBy Decimal Classification
System which is widely used by librarians. The DgW@ labeling is very similar to
tree location address, except that dot separaterpr@asent in Dewey ID labeling to
differentiate each label inherited from each leskkheir ancestors (Figure3.2). With
Dewey Order, each node is assigned a vector thaesents the path from the
document’s root to the node. Each component optib represents the local order of
an ancestor node. Using this labeling scheme,tstialaelationships between elements

can be determined efficiently (Hu et al., 2006).

F hxﬁl
._,,,-*. P ".i-jl\"\\
g & f‘j-"' ‘.—f'_ ™
¥ . i o i1
(s (12 (s
Iy N —.
~. ”T‘“ . L_\ &
L ’r_E‘J/_ 11 \tJTlElJ ice:_.le/ 1.22
prag v
| #text 11211

/
Figure 3.2. Dewey ID Rabeling Scheme

P-Prefix encoding

The main idea to determine the P-C relationshiph& the parent index of a
node is stored together with the index of this n¢lmilar to P-Containment), called
P-Prefix-I1.

To facilitate the ancestor-descendant relationstigtermination, based on

P-Prefix-1l, the second_prefix_label is indexed éwmery certain number depth, called

22

P-Prefix-11l index. Based on PPrefix-11l index, tlheD relationship can be determined
at a higher level firstly, then at a lower level @t al., 2005).

P-Prefix-I

To reduce the redundancy of the prefix schemepteix_labels and self labels
are separated, the duplicated prefix_labels ar@vethand appeared later, and a unique
index number (called P-Prefix-I) is given to eactdwplicated prefix_label. It gives the
sibling determination as, node u is a sibling ol@w iff P-PIndexI(u). = P-PIndexI(v),
where PPIndexl means the P-Prefix-l index; and randedetermination as, node u is
before (after) node v in document order iff 1) Rfexl(u) < (> resp) P-PIndexI(v); or 2)
P-PIndexI(u) = PPIndexI(v) and self_label(u) < ésp) self_label(v).

P-Prefix-1 guarantees that the sibling relationstgtermination is only one
comparison and the ordering relationship deternonas at most two comparisons no

matter how deep the XML tree is.

P-Prefix-1l

The main idea to determine the P-C relationshkiphat the parent index of a
node is stored together with the index of this naadled P-Prefix-1I. If the parent index
iIs built on the labels instead of the prefix_labelke parent-child relationship
determination only needs one comparison (in P-RigfiBut in that way, the sibling
and ordering relationship determinations are expenghen the XML tree is deep.

P-C determination in P-Prefix-Il is; node u is agyd of node v iff P-PIndexI(u)
= P-PParentindexI(v) and self_label(u) = second_lsddel(v), where P-PParentindexl
means the parent PPrefix-1 index.

This property of the scheme guarantees that thedet€mination is only two
comparisons no matter how deep the XML tree is #mal sibling and ordering

determinations are still the same as P-Prefix-I.

P-Prefix-111

To facilitate the ancestor-descendant relationstigtermination, based on
P-Prefix-1l, every certain number depth is indexeith a second prefix label called
P-Prefix-11l index. Based on P-Prefix-IIl index,gt\-D relationship can be determined

at a higher level firstly, then at a lower level.

23

ORDPATH Labeling

ORDPATH (O’Neil et al., 2004) encodes the P-C relathip by extending the
parent's ORDPATH label with a component for theahThe main difference between
ORDPATH and Dewey ID is that even numbers are vesefor further node insertions
in ORDPATH (Su-Cheng et al., 2009). So it supparsert/update efficiently without
changing any existing label. It is not suitable di@ep trees because the label’s length
scales up quadratically as number of fan-out amdl lecreases. The labels are shown

in Figure 3.3.

Figure 3.3. ORDPATH labeling

Binary String Based Labeling Scheme

A binary string based labeling scheme (Ko et &Q6) is developed by the need
to efficiently support queries and updates in cgdeXML trees. The proposed scheme
can allocate any number of new labels without mauiif already allocated labels, and
does not need to re-label existing nodes or redtatie any values when inserting order-

sensitive nodes into the XML tree. It illustratedFigure 3.4.

1110 (g

L
= 111101
-‘-\.-‘I-
~41110.4101
()
1010 10110 11010 110410 111040 1110110 1111010 11110.110

Figure 3.4. Order-sensitive update of binary stbaged scheme
(Source: Ko et al., 2006)

24

In prefix based labeling schemes, the nodes inltieeit parents’ labels as the
prefix to their own labels. New nodes can be irgkwvithout affecting thelabels of the
existing nodes. Also this allows one to determihe existence of an ancestor-
descendant relationship by simply examining whetherprefix relationship exists in
the labels of the two nodes. By the way, it hasaavback on the XML trees which have
large depth size and fan-out size. With the groeththe tree the labels reach to

uncontrollable sizes.

3.2.2.Range Based Labeling Schemes

In range (interval) based labeling schemes, ahdigst traversal of the XML
tree is carried out to assign to each node a paialaes that cover the range of values
in the labels of its descendant nodes (Ko et 8062 These kind of labeling schemes
require re-labeling of the entire XML tree whenduent insertions and deletions of

nodes occur.

Tree Location Address Labeling

In this approach, each identifier of an ancestalenig a prefix of its descendant
(Figure 3.5). A node id (nid) is the concatenatudrthe nid through the path from the
root to the respective node. For example, node hid&ns the second child of the first
child of the first child of the root. With this,R:C relationship can be easily detected.
However using this method requires variable spacsdre the identifiers (Su-Cheng et
al., 2009).

111 112 131

Figure 3.5. Tree Location Address Labeling

25

Extended Pre-order Traversal

In this approach (Li et al., 2001), each node m XML tree is labeled with a
pair of numbers <order, size> (Figure 3.6). A gloferdering is necessary when all
the reserved space have been consumed. Moreasemnat clear how one can assign a

large enough value for “size”.

fllcﬂ}/\

(10.30), w (4L

(11.5) / 'iu:ﬁ_ﬂ\ (£5.5)

(17.3)

Figure 3.6. Extended Pre-order Traversal

Interval Encoding
The earliest labeling scheme proposed is IntermabHing (Santoro et al. 1985)

which is a well-known technique for post order &eal and numbering of rooted trees.

Figure 3.7. Tree Traversal Encoding

One kind of this interval encoding method is Treaversal encoding. In this scheme,
each node is relabeled with a pair of unique imegmnsisting of preorder and

postorder traversal sequences (in Figure 3.7).

26

K-ary Complete Tree Schem

K-ary Complete Treecheme was introduced in (Lee at, 1996) which use
tree traversal order to determine the anc-descendant relationship between any
of nodes in the tree. As reported in (Li et al.02Pand (Xu et al., 2005), one probl
of this scheme is that it requires a large numigesipace when the-ary and height of
the complete tree are getting lai

This technique enumerates nodes usinc-ary tree, where k is the maxin
fan-out of nodes. Here, each internal node is supptsdthve the same number
fan-out k. Thus, virtual nodes are created to balaheenumber of fa-outs. Starting
from each lgel, each node is assigned a label starting witthger 1 from top to bottol
and from left to right as depicted

The virtual nodes created are shown only until ll&/edue to space constrai
In other labeling schemes two already known idesrf e used to determine tl
parentehild relationships, where the UID technique hasraeresting property for th
parent node to be determined, based on the idemtfithe child node. Given a no

having the identifier i, the parent id can compaggnequation (1):

(G-2)
k

parent(i) = +1 (1)

Nevertheless, the major drawbacks are exed in (Li et al., 2001) an
(SuCheng et al., 2009) for this labeg scheme. Firstly, this labeling scheme reqt
recursive queries to retrieve-D relationship. Secondly, when a new node is ieserd

=contact>
zname>John Cage</name>
spluores

soffloprS54455 /of flcax 1 I =virlual node
A iy -] W -
of P 4 5566/ fuiies contact [T
= { phonar L

</contact >) --_._._________._.-—-'"—"--.___________-_-_-_-
2 3
name phone
4 5 i | & | '
“John Cage” ';:”{" offica

Figure 38. K-ary complete tree labeling scheme

27

new identifier must be assigned to the node. Dudst@numeration method, which
begins from left to right, all sibling nodes to thght of the inserted node are increased
by one. In addition, all the descendant nodes mééd to be changed. Finally, the

number of children nodes inserted is restrictethieypredefined value k.

Containment Scheme Encoding

In containment labeling scheme the labeling medmardonsiders both levels of
the nodes and ancestor-descendant relations (Ztaag, 2001). Labeling scheme is
used in which every node is assigned three vatstst, end, level’. For any two nodes
u and v, u is an ancestor of v if u.start < v.stéand v.end < u.end. In other words, the
interval of v is contained in the interval of u. dou is a parent of node v if u is an
ancestor of v and v.level — u.level = 1 (Hu et 2006). The labels are shown in Figure
3.9.

Although the containment scheme is efficient toedweine the ancestor-
descendant (A-D) relationship, the insertion obdawill lead to a re-labeling of all the
ancestor nodes of this inserted node and all thdesafter this inserted node in
document order. This problem may be alleviatechd interval size is increased with
some values unusedHowever, large interval size wastes a lot of narsbwhich causes

the increase of storage, while small interval szeasy to lead to re-labeling.

532 ’{9; 1017“‘\?1?2
’\4 8.3 {1314,3 (15,163
Figure 3.9. Containment Labeling Scheme

P-Containment Encoding

Different from the traditional containment schen#hdng et al., 2001), the
“parent_start” value is stored rather than theélevalue. The “parent_start” value of a
node is the “start” value of its parent. With tlsisheme determining the parent-child

relationship is faster, and determining the sibliatationship is much faster (Li et al.,
2005).

28

For two different nodesu and v, node u is a parent of nodes iff the
“parent_start” value of node is equal to the “start” value of node based on P-
Containment.

For two different nodes andv which are not the root of the XML tree, nades
a sibling of nodey iff the “parent_start” value of nodeis equal to the “parent_start”
value of noder based on P-Containment.

The ancestor-descendant and ordering relationskiprminations based on

P-Containment are the same as the traditional zonént scheme.

Prime-number Labeling Scheme

(Wu et al., 2004) proposed using prime numbersliellthe XML tree via top-
down and bottom-up approaches (Figure 3.10). Ambwotp approach, a prime number
is assigned to each leaf node. Then, for each qubst level, the parent’s label
becomes a product of their child labels. This appihohas two drawbacks. Firstly, it
will cause relatively large numbers to be assigioeithe nodes at the top. Secondly, it is

not possible for nodes with a single child only (étwal., 2006).

185 ()
,/ g \--.\'\

Iy ,

3 5 7 1
Bottom-up labeling scheme

label 1
(parent label x self label)

10 14 33 39
(2 % 5) @x7) (3x11) (3x13)

Top-down labeling scheme

Figure 3.10. Bottom Up And Top Down Approactd<Prime-number Labeling
Scheme (Source: Wu et24lQ4)

29

Another disadvantage of the prime number labelclteme is that each prime
number can only be used once. Thus, the size ofatted increases as it reaches the
bottom of the tree (Su-Cheng et al., 2009).

Behind these disadvantages, it supports dynamiatepdrequires no updates.

Region-based numbering schemes are the most popufabering schemes.
They can determine the ancestor—descendant redatpnbetween two elements
efficiently. While such a numbering scheme can tyemprove query performance,
renumbering large amount of elements caused bytepdaecomes a performance
bottleneck if XML documents are frequently updatedertion or deletion of nodes into
a labeled XML tree may result in a total re-labglof the XML tree.

3.3. Conclusion

The chapter’s overall goal was to provide an owwfor the related work in
this research. Each algorithm that mentioned irs tthapter provides a labeling
algorithm for XML trees. All aim to reach to theeaied node in an efficient way, but to
do this they use different methods which have s¢vadvantages and disadvantages.
Each node in the tree is assigned a typically unigade label, so that any of these
relations between the nodes can be inferred frain kabels.

Several labeling schemes have been introduced t®laje an optimized
retrieval, since they provide a quick way to defesnthe type of relationships as
Parent-Child (P-C), Ancestor-Descendant (A-D),istpland ordering relationships that
are present among the nodes. A labeling approamhiciconsider the characteristic of
the data, the maximum depth and fan-out of the Xik&les, space requirement of the
labeling algorithm, label size and requirementadéloeling need.

Range based labeling schemes hold the startingndin@ positions of an
element in a document to identify the element sat tthe ancestor—descendant
relationship between two elements can be deternbgaderely examining their codes.
While such a numbering scheme can greatly impraerygperformance, renumbering
large amount of elements caused by updates becampedormance bottleneck if XML
documents are frequently updated. Prefix baseditgboechemes assign each node a

vector that represents the path from root to thaentself. However such a labeling can

30

determine the structural relationships efficientlye size of labels increases while the
depth of the tree increases.

Here, by focusing on these drawbacks, a new XMIellag algorithm, Level
Based Labeling (LBL), is proposed. Three versiohdBL are proposed. All LBL
versions are flexible on the child number of thelee Second and third versions also
reduce the need of relabeling after each inseefeevhen compared to containment
labeling scheme. Also all versions have fix-siZgelg, in spite of the depth of the tree
increases; it still uses the same size of labelshé next chapter all these properties of

LBL will be explained.

31

CHAPTER 4

LEVEL BASED LABELING SCHEMES

4.1. Introduction

Labeling schemes provide the type of relationspiigsent among nodes and are
important block for structural join algorithms amdportant complement of structural
indexes. Choosing a suitable labeling scheme resjuiifferent factors to be taken into
consideration as storage, nature of data, query &yl efficiency of maintaining that
labeling scheme. A labeling scheme supporting dyoatviL data should be able to
keep computational cost of labeling, label size eetpiired re-labeling with inserts and
deletes at minimum while providing Parent-Child@R-Ancestor-Descendant (A-D),
sibling and ordering relationships. From this pahwview, it is observed that there are
many researches on labeling XML data. The propcsgaioaches in these works
present many different methods. Some provide e¥ecperformance by defining
relationships, while the others provide this perfance gain by avoiding from
relabeling the nodes.

In this thesis, three versions of a labeling schealked Level-Based-Labeling
(LBL) are proposed. All of the versions of it prdeiall four basic relationships among
nodes. Basic LBL requiring inexpensive computatimnconstruction of a label while
Single Linked LBL and Double Linked LBL require nmmum re-ordering with inserts
and deletes. They have a reasonable label lengithimgreasing level and fan-outs.

LBL is focused on to determine all 4 relationshipsprovide effective query
performance. This scheme handles parent-child, ringle ancestor-descendant and
sibling relations by requiring reasonable space eetdbeling with updates. In this
thesis, three different versions of LBL, which daendle these relationships and have
an efficient update on XML trees, are proposed.hElaBL version is efficient on a
different characteristic of a XML document. Thesfiversion Basic LBL is effective on
labeling the less frequently updated XML trees,l&vldingle and Double Linked LBL
are effective on frequently updated XML trees. Hogre they are both less effective on
initial labeling of the trees. The main featurelwé third version is that it is effective for

32

reversal ordering scans.
In this chapter the new labeling schemes are peahdbke structures of them are
defined and the relationship determination and tipganechanism are explained with

some examples.

4.2. Basic Level Based Labeling

Each node of Basic Level Based Llabeling (B-LBLhame is labeled with three
values, <level, order, parent-order>. As it cansken in Figure 4.1, the numbers in
node labels represent the level of the node, tberaf the node at the same level and
the order of the node’s parent node respectively.

The proposed labeling scheme does not uses pratdbh labels for potentially
insertion of data. This provides for the algorittmmuse an optimized space for labeling.
Nevertheless, in some cases insertion or deletioth® nodes requires relabeling.
Whereby using level and orders of the nodes, thiabeling is processed only on
necessary nodes.

B-LBL is appropriate for less frequently updated XMles. B-LBL keeps its
computational cost at minimum. The initial labeliofan XML tree is at minimum
level with this approach. Besides it has reasonktlel length without considering the

depth of the XML tree or fan-out of the nodes.

211 221 231 242 252 262 272

Figure 4.1. Basic Level-Based Labeling Scheme

33

4.2.1.Determining the relationships

Since every node in XML tree is assigned valuewvet|eorder, parent-order>,
every node of a child holds the order number ofpasent This provides access to
parent node directly.

For any nodes u and v, to satisfy Parent-Child Relation we can say, iff

u.level+1=v.level and u.order=v.parent-order thes parent of v.

comesponds
to parent's
order number

21 221 2,31

Figure 4.2. Parent Child Relationship in B-LBL

Similarly by knowing the level of the node and theder of its ancestor,
Ancestor-Descendant (A-D) relationship is satistaed can be stated as, for any nodes
node u and v, iff v.level = u.level-1land v.paremtey=u.order then v is the ancestor of
u (Figure 4.3).

of U

Figure 4.3. Ancestor-Descendant Relationship inB&-L

In this scheme to determine the sibling and oréé&tionships, the label holds

the order number of the node. This order numberessmts the order of the node on its

34

level.
For any nodes v and v, iff vi.parent=y.parent, vy.level=w.level and
vi.ordettv,.order then y and ¢ are siblings. Iff vy and v are siblings andworder <

Vp.order then yis in previous order thenMFigure 4.4)

SIBIngs
ghit in the
sgme
afder

211 221 23

Sadfne sakne
level parent

Figure 4.4. Sibling and Order Relationships in BLLB

4.2.2.Updating data

LBL scheme is an optimized class labeling schenme @operty of this labeling
scheme is that it does not relabel all the nodésr @n update occurs. Because of
holding the order numbers of nodes on a label, @aie may effect on the order of
other nodes. Addition or deletion of a node incesasr decreases the number of nodes

on a label. So this update requires renumberiranbf the order numbers of the nodes.

21,1 252 2622012 282

2,31

Figure 4.5. Insertion of the node labeled as <2,3,1

35

In B-LBL, when an update occurs, only the followingdes on the same level
and parent-order part of the descendant nodesdbeulelabeled in this scheme. Figure

4.5 and Figure 4.6 illustrates an example for kinsl of relabeling.

2.1.1 _21'2-:;1- 2'2'1 21312 2-4'2 2|5I2 2,6,2

Figure 4.6. Deletion of the node labeled as <2,2,1>

If the reordered nodes have child nodes, the pareler part of their labels
should be updated as shown in Figure 4.7 and €@&use the parent-order represents

the order number of the parent node.

210 220 231 2429052 262 272

Figure 4.8. Deletion of the node labeled as <1,2,1>

36

4.3. Single Linked Level Based Labeling

Different from the first version, Single Linked LB[SL-LBL) has four-part
labels. The first, second and third parts are #mesas in B-LBL; level, order and

parent-order. The fourth part holds the order nunolbéhe right-side node (Figure 4.9).

| y

parent- right- parent- right-
level order level order
order order order order
node 1 node 2

Figure 4.9. Label parts of SL-LBL

By holding the right-order, SL-LBL aims to avoicdim relabeling of the nodes
which are at the same level. Inserting a new nagtesden nodel and node2 requires
relabeling of only the right-order part of nodelftek insertion, right-order part of
nodel is equal to order number of the new nodeladew node’s right order is equal
to order of node2. The best result of this linkiaghe right node is that child nodes are
not affected from insertion as in B-LBL.

In SL-LBL, the number of relabeled nodes after msert or delete is always 1.
By means of the links between nodes, no reordesimgquired, because a new inserted
node getsthe maximum order number of the level *ak order number and takes its
place between the required nodes right order links. Also these links supply an
efficient querying on the XML tree.

When it is compared with B-LBL, one of the drawbsci SL-LBL is its space
requirement. Although it has fixed-size labelshats one more part than B-LBL. So it
consumes 1,33 times of space of Basic LBL.

Another drawback is its initial label constructitme. Organization of the links

of the labels consume some more time than theviinstion.

37

4.3.1.Determining the Relationships

In this second versiolSL-LBL still provides the 4 relations between nodelse
P-C, AD and sibling relations are the same -LBL.

The linking mechanism provides a better performannequerying ordere
nodes. When querying t forward order of a node, following the ri-order node
numbers brings an easy way to determine ordernogktip

In the Figure 4.0 the ordering relation between the nodes on " level is
illustrated. The ¥ node is a node that is inserted betv the 4" and ™ nodes on the™
level of the tree after its initial labeling. Afténat update the node 4 shows the noi
and the node 7 shows the node 5 as their nexts

01,00

2112 2213 3-3-1-1} 4272725 2526 2620
Figure 410. Order Relationship in SL-LBL

4.3.2. Updating Data

The Figure 4.1 explains this updating mechanisim.the figure, a new node
inserted between <1,1,1,2> and <1,2,1,0>. The maxirarder number of level 1 is
When a new node is inserted it takes 3 as the omderber. So the nodel,1,1,2>'s
right-order is relabeled as 3. New label of node 1 i4,413>. Node 3 takes 2 as ri-
order, and its label is <1,3,1,2>. Order of nodea2 not been changed, so parent-
order numbersf its child nodes are not affected from this itisa. The relabeled noc

number is always equals tc

38

01,00

21102 2213 2314 3425 2526 2627 2720

Figure 4.11. Insertion of the node labeled as 4123,

4.4. Double Linked Level Based Labeling

The third version of LBL is Double Linked LBL (DL&L). It differs from the
other versions by its label parts. This versiorsuse-part labels. The first 3 part of the
label is as the same as B-LBL. The last two paotd the order numbers of right and
left nodes (Figure 4.12).

y E— [—

t-[left- | right- t-[left- | right- t-| left- | right-
paren] rigl level | order paren] rigl level | order paren e rig
order | order | order order | order | order order | order | order
node 1 node 2 node 3

level | order

Figure 4.12. Label parts of DL-LBL

By holding the left-order and right-order, DL-LBIlinas to avoid from relabeling
that B-LBL has to be done. Inserting a new nodeveeh nodel and node2 requires
relabeling of only two nodes. The right-order pairtits pre-node and left-order of its
next-node are updated as the new node’s order fifthipart of the label gains no more
update performance than SL-LBL but it gains perfamge on backward order querying.
If the XML database is queried much for backwardeorof a node then this version
may be more appropriate for labeling.

Each update requires relabeling only on two notles;right and the left side
nodes of the inserted one. This gains performamcedntinuously updated XML trees.

As its disadvantage space requirement issue caormdered. DL-LBL is the
worst between all LBL versions. It uses one moret paan SL-LBL to hold the
backward links. This one more part means one muaegeér value for each element.

Totally, it consumes1.66 times of space of B-LBId dn25 times of space of SL-LBL.

39

The initial labeling of theDL-LBL spends more time. As SL-LBL, its initial

label construction time is more than the first \@rs

4.4.1.Determining the relationships

The 3 relationsF-C, A-D and siblingjbetween nodes are provided as the s
as B-LBL. Thelevel order andparent_orderparts of the labels provide determinat
of these relationsDL-LBL also provides a forwardordering relationship wit
right_order parts of its labe, as in SL- LBL. In ddition to that this version determin
a backward ordering relation between the same levéés with the help deft_order

parts of its labels. Figure <3 illustrates this linking mechanism DBL-LBL.

01,000

21102

Figure 413. Order Relationship in DL-LBL
4.4.2.Updating Data

In the Figure 4.4, a new node is inserted between <1,12&@&nd <1,2,1,0>.
The maximum order number of level 1 is 2. When & nede is inserted it takes 3
the order number. So the node <1,0,2>’s rightorder is relabeled as 3. New label
node 1is <1,1,1,0,3Node<1,2,1,1,0%s left order is relabeled as 3 and its new lab
<1,2,1,3,0>.Node 3 takesl as left order and 2 as rigbtder, and its label |
<1,3,1,1,2>. Ordersf nodel and 2 have not been chang&a. this insertion is nc

affected on any other nod The relabeledade number is always equals 1.

40

01,000

11103 12130

1.3.1,1,2

21103 27280

268257
22413 24235

Figure 4.14. Insertion of the node labeled as 41132>

4.5. Conclusion

The chapter’s overall goal was to introduce theppsed labeling algorithms.
All versions of the LBL labeling algorithm are eapied with all their updating and
relabeling mechanisms.

As introduced in the chapter, B-LBL labeling schedetermines all the four
relationships with its three-part fix-size labetdl the labels on the tree do not need to
be regenerated after each insert; only the requicetts should be relabeled. Also the
depth or fan-out number of the tree does not efbecthe size of the labels. From the
labeling point of view, the scheme is not flexible a continuously updating XML tree.
The requirement of relabeling causes a performbaonttéeneck on insertion. But for less
frequently updated XML trees this version is thestmappropriate version of LBL,
because of its initial labeling and space requimme

SL-LBL uses four-part fix-size labels. This founplart provides a link between
the nodes on the same level. By the help of tmk BL-LBL avoids relabeling. It
requires relabeling only on 1 node after each wpdas B-LBL, the depth or fan-out
number of the tree does not effect on the sizeheflabels. All 4 relationships are
provided on this version. In addition it providesoavard ordering mechanism with its
right-order links. Although it consumes more sptwn the B-LBL and more time for
initial labeling, its updating time is consideraldgtter than the first version. So this
version is more appropriate for continuously uptaXML trees.

DL-LBL is a five-part fix-size labeled labeling same. This version aims to
meet the deficiency of backward ordering of SL-LBIn this version nodes are
connected to each other with forward and backwarkls! If the XML database is

permanently updated and also queried for backweddred nodes, then this version

41

may be preferred.

In the performance tests, LBL versions will be camga with containment
labeling scheme which is also a range based sch@orgainment labeling scheme is
one of the most popular XML labeling schemes. dbalses three-part fixed-size labels,
which hold level of the node with one of their gain the next chapter, 4 test cases are

going to be performed and performance results @ireggo be evaluated.

42

CHAPTER 5

PERFORMANCE EVALUATION

5.1. Introduction

In this chapter the performance of three versidnsBd. schemes are evaluated
and compared with another level based labeling rseherhis labeling scheme is
containment labeling scheme. Containment (Zharg.e2001) is a relabel-dependent
labeling scheme which labels with 3-part labelse Tinst part of the label holds start
number, the second part holds end number and ittaegidrt holds the level of the node.
This labeling determines A-D, P-C and level relasioThe first version of LBL is an
optimized labeling scheme which has 3-part ladetsan determine the A-C, P-C, order
and sibling relationships. The second version ok LBes 4-part labels. After updates it
requires relabeling on one node. And the thirdiearsf LBL has 5-part labels, which
supply both forward and backward ordering whileuiggg minimum relabeling after
each update.

The performance tests are made for 4 differents;dabeling performance tests,
space requirements of all 4 algorithms, queryind apdating performance on XML
datasets. There were 3 test datasets with differieatacteristics that are formed from
the real world data and be used in the performaests. The details of these
performance tests are explained in the Appendix A.

This chapter includes the labeling performance¢spaquirement, updating and
guerying performance comparison tests on 4 labelppyoaches.

5.2. Experimental Evaluation

All of the schemes are implemented in Java anthallexperiments are carried
out on a Intel Core 2 Duo 2.53 GHz processor witiBBRAM running Windows XP
Professional.

Table 3.1 shows the characteristics of the testsg#s. All 3 datasets are all real-

43

world XML data (University of Washington). Thesetatets are chosen because they
have different characteristics, i.e. their fileesiZan-out, depth, and total number of

nodes.
Table 5.1. Test datasets
max- |avg- max
filename description file size elements| attributes 9 fan-
depth |depth
outs
o Line items 30 MB 1022976 1 3 2,94117 60175
lineitem.xml
nasa.xml gzttg’”om'ca' 23 MB 476646 | 56317 | 8 558314 2435
Partially-
treebank_e.xml encrypted 82 MB 2437666 | 1 36 7,87279 56384
treebank

5.2.1.Labeling Performance

Labeling performance of all algorithms is testedadinthe datasets. All XML
files in a given dataset is read and placed in d_Xldta trees with node labels.

Labeling time by datasets
7000
6000
= 5000
E
o
£ 4000
L d
2 3000
K}
2
£ 2000
1000
N e B
lineitem nasa treebank
(depth 3) (depth 8) (depth 36)
M cont 513,2 437,47 5014,3
B-LBL 496,53 421,47 4873,3
mSL-LBL 825,13 717,73 6149,73
m DL-LBL 862,13 748,47 6234,8

Figure 5.1. Labeling performance

44

In the test, each algorithm is executed on thrge dats, for 15 times. The
values on the graph of Figure 5.1 show the aveexgeution times of these repeated
results.

The execution time of these labeling algorithmgeds by the structure of the
tested xml files. In all cases of labeling fileglwdifferent depths, it has been observed
that B-LBL algorithm performs better than the camt@ent scheme and other two LBL
versions. The initial labeling time of SL-LBL andLELBL are more than other two
cases. This is because in these two versions theslare connected to its next or
previous nodes with thenight_order or left_order parts. This initial organization of
labels consumes much time but with the help ofd@Heks, these algorithms require

minimum relabeling.

5.2.2.Space Requirements

The performance study to understand the spaceresgent while storing the
labels is done on lineitem, nasa and treebank elsta&ll the xml files in a dataset are
labeled with containment and LBL algorithms respety. The graph in Figure 5.2
shows the total space of all the labels that alextfor each data set.

Space requirement

50,00
45,00
40,00
35,00
30,00
25,00
20,00
15,00
10,00

5,00

0,00

Total label size (MB)

lineitem

nasa

treebank

M cont

11,71

5,4547

27,8968

B-LBL

11,71

5,4547

27,8968

mSL-LBL

15,609

7,273

37,195

mDL-LBL

19,511

9,091

46,494

Figure 5.2.

Space requirements

In this test, all algorithms used integer values label the XML trees.
Containment uses 3 integers for each of its lali2IsBL is also uses 3 integers for a
label of an element. Because SL-LBL uses 4-pasl$alits labels consume 16 byte (4
integers) space for each element, while DL-LBL u&@dyte (5 integers) for its 5-part
labels.

The graph in Figure 5.2 shows that DL-LBL usesrtiwest space for labeling the
datasets. Because of containment and B-LBL usewt3gbels they consume the same
space for the same datasets.

The range of the numbers which all LBL versions issemaller. Containment
scheme labels the elements with both a start vaheean end value, so it can label
maximum max_value_of datatype/2 elements. All LBlhesmes use level or order
values. So they can label maximum max_value_oftylaaelements. If it is assumed
that only integer values are used while labelihgan be observed that all LBL schemes
can label a XML tree with more depth and fan-oute Tmaximum depth could be
1073741823 while labeling with containment labelischeme where LBL schemes
could label a 2147483647 depth tree.

5.2.3.Query Performance

In the experimental studies of this paper, the yymmrformance is evaluated
with three versions of LBL and containment labelsaipeme. In this test, relationship
guerying performance is compared, so this tesbmgpteted in five parts; querying P-C,

A-D, sibling, forward ordering and backward orderin

P-C Querying

In this part of the test, the children nodes oiveeig parent node are queried. The
results showed that SL-LBL and DL-LBL performs thest performance on querying
P-C relations. B-LBL and containment schemes héwses performance on querying
the child nodes. However, B-LBL performs far betp@rformance than containment
scheme. The main reason of this better performandbe parent_orderpart of the

labels of LBL schemes.

46

P-C Querying by datasets
180
160
g 140
< 120
£ 100
g &
= 60
S
3 40
20
0
lineitem nasa treebank
B cont 55 50,6 158
B-LBL 52,5 36,2 104
W SL-LBL 47,8 22,2 29,2
mDL-LBL 53,2 24,8 34,2
Figure 5.3. P-C Querying performance
A-D Querying

In this part of performance tests, the ancestora given element are queried.
Since containment scheme is a range based labskhgme it performs better
performance on A-D relationships. B-LBL queries @meestor nodes in a recursive way

which causes worse performance than others.

A-D Querying by datasets
1000
900
- 800
£ 700
."g’ 600
=}
2
Z
g 300 391,6
c 200
100
o M e
lineitem nasa treebank
M cont 57,8 95,8 128
B-LBL 391,6 6842 7758,6
mSL-LBL 54,8 847,4 880,4
mDL-LBL 49 926 889,6

Figure 5.4. A-D Querying performance

47

Sibling querying

180
160
140
120
100
80
60
40
20
0

querying time (ms)

Sibling querying by datasets

lineitem

nasa

treebank

M cont

114,2

93,6

132,2

B-LBL

74,4

55

158,4

mSL-LBL

109,2

55

70,6

mDL-LBL

102,8

55

76,6

Figure 5.5. Sibling querying performance

While querying the sibling of a node, the totalneéat number effects on the
total query time for containment and B-LBL. SL-LBAnd DL-LBL uses links for
detecting the siblings of nodes. So only the fahraumber effects on the performance

on querying the siblings of a node.

Order querying

SL-LBL and DL-LBL usesright_order parts of their labels to detect forward
orders of a node. Also these two schemes seardoltbeing orders only on the nodes
which are on the same level.

Relabeling characteristic of B-LBL keeps all nodesrder with a sequential
order number. This pre-ordering provides a betterfgpmance than containment
scheme on detecting the document order.

After the graph on the Figure 5.6 is analyzedait be noticed that SL-LBL and
DL-LBL have very close results on querying the fard/ order nodes. This result is
much longer for B-LBL and many times longer for tinment labeling scheme. It can
be said that, DL-LBL is %7460 better than containmscheme, while SL-LBL is
%7422 better and B-LBL is %4141 better than comt&int labeling scheme.

48

Querying Forward Order

1000
900
800
700
600
500
400
300
200
100

0

Querying time (ms)

lineitem nasa treebank

Hcont 93519 302,2 78887,6
B-LBL 1437,4 201,2 1368,2

mDL-LBL 797,2 180,4 761,2

W LBLv3 784,4 179,2 767,8

Figure 5.6. Forward order querying performance

For detecting the backward order nodes, DL-LBL wffaleft_order part on its
labels. This part holds the order of the node wligcin the previous order. With the
help of this part, DL-LBL performs much better merhance on backward order
detecting. Also B-LBL has a good performance onrgjug the backward order. Since
it keeps the node order numbers in order by reldpelfter each update, this scheme
can detect the previous orders by finding the ondenbers on the descending order.

When the time performances on Figure 5.7 are aad|ythe results are; B-LBL
queries the backward order nodes %7283 better ¢hatainment scheme; SL-LBL
queries with %173 better performance and DL-LBL rpse with %7471 better
performance than containment scheme.

SL-LBL may not be a preferable labeling schemeafoXML database which is
also queried for the backward order, because & doekeep the order numbers in order
and does not have any label part to hold previades.

Containment scheme is a range based labeling schammihis property is not
enough for detecting the document order. With thhp of level part of containment
labels, the order of the children of a node camberied. However, its performance is

the worst when it is compared with LBL schemes.

49

Querying Backward Order

1000
900
800
700
600
500
400
300
200
100

0

Querying time (ms)

lineitem nasa treebank

M cont 88488,6 338,2 77525,4
B-LBL 820,6 156,4 715,6
mSL-LBL 49900,4 247,8 37119,4
mDL-LBL 729,8 113,4 777,7

Figure 5.7. Backward order querying performance

5.2.4.Update Performance

In the update performance tests, 3 cases are ¢évdlukhe first case performs a
uniform insertion. For every dataset new nodesraerted after every 50th node on the
same level. The aim of this case is to observaigtate performance of the algorithms
against uniformly insertions.

Second case inserts 250 new nodes to a particoilalr. fhis test is evaluated to
observe how algorithms respond to insertions thatoacurred between two particular
siblings.

Third case is the union of the first two cases. 6@ nodes are inserted to
different three points of the tree.

Since containment labels keeps both start and ahy, this scheme needs to
re-label the existing nodes at each time when ansdnserted into the XML. This
causes a bottleneck on updates.

B-LBL re-labels only the nodes that are on the skawel with the inserted node.
The aim of the algorithm is to keep the nodes deobased on thearder numbers. So
relabeling is required after any update on the s&wel. In SL-LBL to avoid this
relabeling requirementight_orderlinks are used. So the updating process relalndys o
one node for each insert; the previous node. Timigosvers the update performance of

this algorithm. We can observe the same performagaia for DL-LBL. It uses

50

right_order andleft_order parts to avoid relabeling. It overcomes the rdiabessue
with these two parts.
The graphs 5.8, 5.9 and 5.10 show the total upuate of the algorithms on

these test cases respectively.

Uniform Insertion

Total updating time (ms)
N
(03]

lineitem

nasa

treebank

M cont

14301,53

12161

19500,1

B-LBL

11644,33

6455,267

10153

mSL-LBL

1,191133

1,1203

0,4513

mDL-LBL

1,341067

1,2245

0,5326

Figure 5.8. Uniform insertion performance

In the Graph 5.8, the total updating time diffeehacan be seen obviously.
According to this graph B-LBL has %167 better parfance than containment scheme
where SL-LBL has approximately %2206966 and DL-LBlas approximately
%1914428 better performance than containment ladpsitheme.

Graph 5.9 indicates the total updating time of skesertions to one point of the
tree. SL-LBL and DL-LBL have noticeable performarngan on this insertion test.
SL-LBL is approximately %2563793 more efficient thaontainment scheme. For
DL-LBL this ratio is %2009311 and for B-LBL it is ¥42.

Figure 5.10 illustrates the result of another itisartest case. In this test, skew
insertions are performed to three different pooftthe tree. This graph shows the total
insertion time for all three datasets. In this,t&t-LBL is the most efficient labeling
algorithm again. It is %3052347 more efficient theontainment labeling scheme.

51

DL-LBL also has a noticable difference than coma@nt scheme. Its performance gain
IS 92565311 with respect to containment scheme.

Skew insertion to one point

5
4,5
4
3,5
3
2,5
2
1,5
1
0,5
0

Total updating time (ms)

lineitem

nasa

treebank

M cont

6278,917

5033,818

27029,22

= B-LBL

4771,813

2682,273

13518,22

mSL-LBL

0,5073

0,533

0,4925

mDL-LBL

0,6596

0,639

0,6332

Figure 5.9. Skew insertion performance

5
4,5
4
3,5
3
2,5
2
1,5
1
0,5
0

Total updating time (ms)

Skew inseriton to three points

lineitem

nasa

treebank

M cont

15036,07

12240,6

63526,5

= B-LBL

11386,87

6449,533

30292,2

mSL-LBL

0,9805

1,1357

0,9683

mDL-LBL

1,2234

1,2388

1,1563

Figure 5.10. Complex insertion performance

52

5.3. Discussion on Results and Conclusion

Experimental study of this paper consists of 4edédht test cases which compare
the performance of versions the LBL schemes witthedher and containment labeling
scheme. Containment labeling algorithm is choseralee of its range-based and level
based labeling property. It is also good at deteimgi the A-D relationship.

The first test case is about labeling the staticLX\ta. In this test we observed
that B-LBL scheme has better performance than atlggrithms. SL-LBL and DL-
LBL consume much time than B-LBL and containmenmtifdtial labeling.

The second test case is about space requiremehes We total label spaces are
calculated, it is observed that containment andBB-lconsume the same space, while
SL-LBL and DL-LBL consumes much more space becafiskeir label length. Also it
can be analyzed that containment labeling scheméate! half of the elements that all
LBL versions can do with the same label range.

From the querying P-C, sibling and order relatignaphs, it can be analyzed
that all LBL algorithms provide a good performamcedetecting those relations. When
LBL versions are compared between each other SL-BBil DL-LBL respond more
quickly to the queries on the tests. Especiallypackward order querying DL-LBL has
an acceptable performance gain than the others.

Update tests show that SL-LBL and DL-LBL have a icedble better
performance than containment and B-LBL, since tth@yot need to relabel more than

one or two nodes at any update.

53

CHAPTER 6

CONCLUSION

Motivated by the need to support XML data updatesdynamic XML
environments, in this thesis, a new XML labelinheme, Level-Based labeling (LBL),
is proposed in three versions. While the main stinecof the algorithm is the same for
all versions, each version focuses on differentgoerance requirement. The aim of all
versions of the labeling algorithm is to keep labigle and required re-labeling with
inserts and deletes at minimum while providing salveelationships. The first version,
Basic LBL focuses on ordering the nodes on the dawet and keeping the label size at
minimum. Because of its label structure, its compahal cost of labeling is at
minimum. The second version, Single Linked LBL is @pgrade of Basic LBL on
relabeling issue. It uses links between consecutoges, and relabels only one node
after each update. These links also provides ay masement on the nodes. Double
Linked LBL supplies the deficiency of Single LinkédBL on backward ordering. It
uses backward links on its labels.

Basic LBL can be applied widely to less frequentipdated XML data
integration schemes or other applications to effity query the XML data. Single
Linked LBL can be applied to continuously updateiX database because of its
efficiently updating mechanism. Double Linked LBancagain be applied to dynamic
XML data which is frequently queried in the backd/arder. Experimental study of
this project compares the performance of the LBksio&s with each other and a
labeling scheme; containment labeling scheme. &sis are performed with 4 different
cases; labeling the XML data, space requiremengrygyerformance and update
performance. Containment is chosen since it islamd LBL with its label structure
and comparison would reveal out labeling, spaceuireqent, query and update

performances.

The results of the performance tests confirm that;
i) Basic LBL is more efficient than containment lahglischeme in
labeling the xml trees

54

Basic LBL has the same space requirement to haddlabels with
containment scheme because they both use thretpald

Double Linked LBL consumes the most space whilelialy the nodes
Basic LBL’'s querying performance is better than taomrment scheme
although both of them uses level wised informatiothe labels

Basic LBL needs less renumbering than containmemree in case of
updates done on the XML tree where Single and Dolbtked LBL

need almost no relabeling with the same update

As a summary we can say that the proposed labstingmes have strengths as

all are flexible to changing fan-outs

each provides level wised information in its labetsulting in better
performance for certain types of queries

all have a very simple label logic which does natech heavy
computation

second and third versions require reasonable anauatabeling in case

of updates

55

REFERENCES

Alkhatib R.; Scholl M. H.Compacting XML Structures Using a Dynamic Labeling
SchemeBNCOD, 2009

Ankorion |. Change Data Capture — Efficient ETL for Real-Time BM Review
Magazine, Januarg005

Baer H.On-Time Data Warehousing with Oracle DatabaselQgfermation at the
Speed of your Businessn Oracle White Paper, Mar@b04

Cohen E.; Kaplan H.; Milo TLabeling Dynamic XML Tree$roceedings of PODS,
2002

Devlin B. A.; Murphy P. T.An Architecture for a Business and Information Syst
IBM Systems Journal,988 21 (1).

DuCharme BXSLT QuicklyManning Publications Ca2001

Duong M.; Zhang Y .Dynamic Labelling Scheme for XMRata Processing,On the
Move to Meaningful Internet Systems: OTRHO8

Florescu D.; Kossmann [storing And Querying Xml Data Using An RdmBsilletin
Of The IEEE Computer Society Technical Committeelta Engineeringl, 999

Golfarelli M.; Rizzi S.; Vrdoljak B.Data Warehouse Design from XML Soutces
Proceedings of the 4th ACM International Workshap @ata Warehousing and
OLAP, 2001

Hu M.; Ling T. W.; Li C. Efficient Processing of Updates in Dynamic XML Data
Proceedings of the 22nd International ConferencBata Engineering2006

IBM Information Management software White PapEwaluating real-time data
integration solutionsJanuary2008

Kaplan H.; Milo T.; Shabo RCompact Labeling Scheme for XML Ancestor Queries,
Theory of Computing Systema007, 40 (1), 55-99.

Kiani A.; Shiri N. Generalized Model for Mediator Based Informatiorielyration
IEEE, 2007.

Kimball R.; Caserta JThe Data Warehouse ETL ToolkWiley Publishing Inc.2004
pp 29-52.

Ko H. K.; Lee S.An Efficient Scheme to Completely Avoid Re-labelmgXML
Updates WISE, 2006

Lee Y. K.; Yoo S. J.; Yoon KIndex Structures for Structured Documemi€M First
International Conference on Digital Libraries, MafL996

56

Li C.; Ling T. W.; Lu J.; Yu T.On Reducing Redundancy and Improving Efficiency of
XML Labeling Scheme€IKM, 2005

Li Q.; Moon B. Indexing and Querying XML Data for Regular Path Eegsions
Proceedings of the 27th VLDB Conference, Romay,|2001

Lu J.; Ling T. W.Labeling and Querying Dynamic XML Tre@soceedings of 6th Asia
Pacific Web Conference, APWe2)04

Nicola M.; Linden B.Native XML Support In DB2 Universal Databasehe 31st
VLDB Conference, Trondheim, Norwa®005

O’Neil et al. ORDPATHSs: Insert-Friendly XML Node Labe®GMOD,2004

Sans V.; Laurent D.Prefix Based Numbering Schemes for XML:Techniques,
Applications and PerformanceBVLDB '08, Augus2008

Santoro N.; Khatib RLabeling and Implicit Routing in Network§he Computer
Journal,1985 28 (1).

Shanmugasundaram, J. et Relational Databases For Querying XML Documents:
Limitations And OpportunitiesThe 25th VLDB Conference, Edinburgh, Scotland,
1999

Su-Cheng H.; Chien-Sing INode Labeling Schemes in XML Query Optimization: A
Survey and Trend$ETE Technical Review2009

Tatarinov et al.Storing and Querying Ordered XML Using a Relatiomzdtabase
SystemACM SIGMOD, 2002

University of Washington XML Repository Database.
http://www.cs.washington.edu/research/xmldatagatslessed July 10, 2010).

WarehouseArchitect User's Gujd@owerDesigner Version 6.1.3, Document number:
AA04531, Chapter 14:Defining Multidimensional Oklgc Sybase, Inc. and its
subsidiaries, Jah999

Wiederhold GMediators in the Architecture of Future Informati®ystemsThe IEEE
Computer Magazine, Marct992

The World Wide Web Consortium (W3C) Homepage, Hitpvw.w3.org (accessed 18
August, 2009).

Wu X.; Lee M.; Hsu WA Prime Number Labeling Scheme for Dynamic Ordedisti
Trees Proceedings of the 20th International Conferemc®ata Engineerin@004

Xu J.; Luo D.; Meng X.; Lu HDynamically Updating XML Data: Numbering Scheme
Revisited World Wide Web: Internet and Web Information &ys$,2005 8, 5-26.

Zhang et alOn Supporting Containment Queries in Relationaldbase Management
SystemsACM SIGMOD, 2001

57

APPENDIX A

SOFTWARE IMPLEMENTATION

The test cases are implemented in Java on a Irdet @ Duo 2.53 GHz
processor with 3 GB RAM running Windows XP Professil. 4 test cases are tested
and 3 real world datasets (University of Washinytare used in these test. All data is
stored as text files.

These datasets are;

Lineitem.xml file is a 30 MB line item database. It has 10228I&nents at all.
The maximum depth of the tree is 3 and maximumadfainef a node is 60175.

Nasa.xmlis a 23 MB XML file. This database has 476646 withximum 8
depths. The maximum fan-out of the tree is 2435.

Treebank_e.xml is a Partially-encrypted treebankfile. Its size8& MB, its
maximum depth is 36 and maximum fan-out is 5638 flle has 2437666 elements.

There are 4 test cases; labeling performance, spageirements, query
performance and update performance. The follownegeaplaining the software of the
tests.

Labeling Performance
In labeling performance codes which are writtenJava, the .xml file of the
dataset is read from its folder and labeled.

The file is read from the dataset folder as below;

File f = new File(xmlIFilePath + "/* + xmlFile + ".x ml");

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory. new nst ance();

DocumentBuilder dbuilder = dbFactory.newDocumentBui Ider();
Document doc = dbuilder.parse(f);

Element root = doc.getDocumentElement();

A new instance is created as the typeDoicumentBuilderFactoryhich is a
class of Java API. ThBocumentBuilderFactorynstance is assigned tolcument
builder. Each builders parses the xml file and assigns the first elentent root

variable. TheElement rooholds the root of the XML data tree.

58

Afterwards each version of LBL labels the XML tregth its own labeling

method.

Basic LBL

Each node starting from the root is assigned tarable namedoot, is labeled
with the numberdevel, orderand pOrder. ‘level is the variable that holds the level
number for each nodéevel is incremented by 1 afteoot variable is assigned to the
child of the current nodeotder is the variable that holds the order of tioet variable.
Order is incremented by one while tlhevelis constant. Whelevelis incremented the
order is assigned t@ again. ThepOrder holds the order number of the current node’s
parent. When a node is labeled with kieel, orderandpOrder variables, it is put in an

array list,XmlindexList.The code of this labeling process is below.

public void traverseXMLfile(Element root, int level
ArrayList<XmINode> XmlindexList, int orderList[]) {
int pOrder=0;
int order=0;

Il gets the children of the root node
NodeList children = root.getChildNodes();
level++;

I if the node is not a leaf node, it is put in th e array list
with //labels
if(root instanceof Element){
pOrder=orderList[level-1];
orderList[level]++;
order=orderList[level];
XmINode newData = new XmINode(level,order,pOrder, root);
XmlindexList.add(newData);

}

for (inti=1; i < children.getLength(); i=i+2) {
Node child = children.item(i);

boolean hasChldNodes = child.hasChildNodes();

/I If the root has chidren the ‘label’ method is ca lled

Ilrecursively with assigning the ‘child’ element to root.

if (hasChldNodes == true && child.getChildNodes().g etLength()>2) {
traverseXMLfile((Element) child, level, Xmlindex List,

orderList);

Il If root is a leaf node, it is labeled with its
/Nlevel,order,pOrder then put in the index array.
else {
if (child instanceof Element) {
pOrder=orderList[level];
orderList[level+1]++;
order=orderList[level+1];

59

XmINode newData = new
XmINode(level+1,order,pOrder,(Element)child);
XmlindexList.add(newData);

Single Linked LBL
Single linked LBL holds all XML tree as a vector lofked lists. Each level of

the tree is placed on a link list and all link distre connected each other with a vector.

Figure A.1 illustrates this structure.

xml tree vector

linklistl-> Ilevell |-:=- |r1|::|del|

linklist2-» Ilevelz |-:=- |r1c|del|r1c|dezl

linklist3-> |Ieve|3 |-:> |nudel|nudezlnud93|

linklist4-= Ilevel-:l |-:=- |nndel|nudez|nuded|nud25|nudeﬁ|nude?|

Figure A.1. Link list structure of Single Linked LB

In this algorithm, the main idea of labeling is th&me as Basic LBL, but the
structure is different. When a node is read fromttiee it is hold byjewNodevariable.
It s labeled withlevel order, pOrder andrOrder numbers. Each node is added to an
array list regarding to itevelnumber. Then each array list is added to thegeleidice
of the XmlindexListvector corresponding to its level numbers. Theaweode of this

algorithm is below;

public void label(Element root, int level,
Vector<ArrayList<XmINode>> XmllndexList, int order List[1[) {
int pOrder = 0;
int order = 0;

Il gets the children of the root node
NodeList children = root.getChildNodes();

ArrayList<XmINode> levelBase = new ArrayList<XmINo de>();
if (XmlIndexList.size() == 0)
XmlindexList.add(level, levelBase);
level++;
if (XmlIndexList.size() < level + 1)
XmlindexList.add(level, levelBase);

60

I if the node is not a leaf node, it is put in th
with //labels
if (root instanceof Element) {

pOrder = orderList[level - 1][0];

orderList[level][0]++;

order = orderList[level][0];

int size = XmlIndexList.get(level).size();

XmINode newData = new XmINode(level, order, pOrde
root);

XmlindexList.get(level).add(newData);

if (size 1= 0)

XmlindexList.get(level).get(size - 1).rOrder = o

}

for (inti=1; i< children.getLength(); i=i+
Node child = children.item(i);
boolean hasChldNodes = child.hasChildNodes();

/I If the root has chidren the ‘label’ method is ¢
Ilrecursively with assigning the ‘child’ element to
if (hasChldNodes == true &&
child.getChildNodes().getLength() > 2) {
traverseXMLfile((Element) child, level, Xmlindex
orderList);

/I If root is a leaf node, it is labeled with its
/Nlevel,order,pOrder then put in the index array.
else {
if (child instanceof Element) {

ArrayList<XmINode> levelBaseChild = new

ArrayList<XmINode>();
if (XmlindexList.size() == level + 1)
XmlindexList.add(level + 1,
levelBaseChild);
pOrder = orderList[level][O];
orderList[level + 1][0]++;

int size = XmlIndexList.get(level + 1).size();

order = orderList[level + 1][0];

e array list
r, 0,
rder;
2){
alled
root.
List,

XmINode newData = new XmINode(level + 1, order,

pOrder, 0,(Element) child);

XmlindexList.get(level + 1).add(newData);

if (size 1= 0)

XmlindexList.get(level + 1).get(size -

1).rOrder = order;

}

Double Linked LBL

The structure of labeling algorithm of Double LatkLBL is similar with Single
Linked LBL. The only difference is Double Linked LBholds backward linkdOrder,

within its node structure. The link lists which repent the levels of the tree are double

61

links lists. As the only difference on the softwdager, the previous node’s order
number is hold and assignedl@sder while labeling the current node. The source code

is shown below.

public void traverseXMLfile(Element root, int level ,
Vector<ArrayList<XmINode>> XmlindexList, int orderL istlI) {
int pOrder=0;
int order=0;

Il gets the children of the root node
NodeList children = root.getChildNodes();
ArrayList<XmINode> levelBase = new ArrayList<XmINo de>();
if(XmlIndexList.size()==0)
XmlindexList.add(level, levelBase);
level++;
if(XmlindexList.size()<level+1)
XmlindexList.add(level, levelBase);
I/l if the node is not a leaf node, it is putin th e array list
with //labels
if(root instanceof Element){

pOrder=orderList[level-1][O];
orderList[level][0]++;
order=orderList[level][0];
int size=XmlIndexList.get(level).size();
XmINode newData = new XmINode(level,order,pOrder, 0,0,root);
XmlindexList.get(level).add(newData);
if(size!=0)
XmlindexList.get(level).get(size-1).rOrder=order ;
if(size>0)
XmlindexList.get(level).get(size).lOrder=order-1
}

for (inti = 1; i < children.getLength(); i=i+2) {
Node child = children.item(i);
boolean hasChldNodes = child.hasChildNodes();
/I If the root has chidren the ‘label’ method is ¢ alled
Ilrecursively with assigning the ‘child’ element to root.
if (hasChldNodes == true &&
child.getChildNodes().getLength()>2) {
traverseXMLfile((Element) child, level, Xmlindex List,
orderList);

I/l If root is a leaf node, it is labeled with its
/Nlevel,order,pOrder then put in the index array.
else {
if (child instanceof Element) {
ArrayList<XmINode> levelBaseChild = new
ArrayList<XmINode>();
if(XmlindexList.size()==level+1)
XmlindexList.add(level+1,
levelBaseChild);

pOrder=orderList[level][O];
orderList[level+1][0]++;

int size=XmlIndexList.get(level+1).size();
order=orderList[level+1][0];

62

XmINode newData = new
XmINode(level+1,order,pOrder,0,0,(Element)child);
XmlindexList.get(level+1).add(newData);
if(size!=0)
XmlindexList.get(level+1).get(size-
1).rOrder=order;
if(size>0)

XmlindexList.get(level+1).get(size).|Order=order-1 ;
}

}

Space Requirements

Space requirement is calculated after labelinghal datasets. The amount of
space that is required for a dataset shows theo$athnodes of a dataset. For the range
of the labels, integer values are used. An integprals to 4 bytes in Java and the
maximum range is +2,147,483,647.

For each scheme the space requirement of the #@lgwriis calculated as
number_of label_parts x 4bytes x number_of_elements

Containment scheme uses 3parts x 4 bytes = 12 foyteach element.

Basic LBL is also uses 3parts x 4 bytes = 12 bigegach element, because it
uses 3-part labels as containment labeling scheme.

Single Linked LBL uses 4parts x 4 bytes = 16 bytesach label.

Double Linked LBL uses 5 parts x 4 bytes = 20 byte

Query Performance
The query performance tests are performed on detemgnthe relationships of
the algorithms. In this test 5 cases are evaluajedrying P-C, A-D, sibling, forward

order and backward order.

Parent-Child Querying

For the parent-child querying the level and ornaéormation is taken from the
user and the children of the node are listed. IsiBBBBL it is coded as;

public void queryPC(int rOrder,int rLevel,ArrayList <XmINode>
XmlindexList){
for (int i=0;i<XmlIndexList.size();i++){
if(XmlindexList.get(i).level==rLevel+1 &&
XmlindexList.get(i).pOrder==rOrder){

63

System. out .printin("Child:"+XmlIndexList.get(i). XMLnode.getNo deN
ame());

System. out .printin(XmlindexList.get(i).level+"."+XmlIndexList .ge
t(i).order+"."+XmlindexList.get(i).pOrder);
}

}

Single Linked LBL and Double Linked LBL get the sanevel and order
information and searches only the next level of tiee for the children of the node.
Here the"vector of link lists” structure gains performance with reducing the eaoiy
nodes to be searched. The determination of thadioel is coded in these two versions

as below;

public void queryPC(int rOrder,int rLevel,Vector<Ar rayList<XmINode>>
XmlindexList){
for(int i=0;i<XmlindexList.get(rLevel+1).size();i+ +){
if(XmlindexList.get(rLevel+1).get(i).pOrder==rOrd er)
System. out .printin(XmlindexList.get(rLevel+1).get(i).XMLnode. get
NodeName());

}

Ancestor-Descendent Querying

In the test, the descendants of a given node ameegll The level and the order
number of the node are taken from the useO©ader andrLevel Then the all
descendant nodes are found vgetAlIChildrenmethod and put in an array list,
children

Its source code in Basic LBL is;

public void queryAD(int rOrder, int rLevel, ArrayLi st<XmINode>
XmlindexList) {

Element parent = null;

for (int t = 0; t < XmlindexList.size(); t++)

if (XmlindexList.get(t).level == rLevel
&& XmlindexList.get(t).order == rOrder)
parent = XmlindexList.get(t).XMLnode;
int s = parent.getChildNodes().getLength();

if (s>2){
ArrayList<int[][]> children = new ArrayList<int[] 0>0;
XmlTreeLabel. get Al 'l Chi | dr en((Element) parent, XmlindexList,

children);
for (int t = 0; t < children.size(); t++)
System. out .printin("child:" + children.get(t)[0][O] +

+ children.get(t)[0][1]);

64

public static void getAllChildren(Element node,
ArrayList<XmINode> XmlindexList, ArrayList<int[][1>
children) {
NodeList chList = node.getChildNodes();

for (inti=1; i< chList.getLength(); i =i + 2) {
Node child = chList.item(i);
int tmp(][] = {{0,0}};
tmp[0][0] = get Level (child, XmlindexList);
tmp[O0][1] = get Or der (child, XmlindexList);
children.add(tmp);
boolean hasChldNodes = child.hasChildNodes();
if (hasChldNodes == true &&
child.getChildNodes().getLength() > 2) {
get Al | Chi | dr en((Element) child, XmlIndexList,
children);

}

Its source code in Single Linked LBL and Doublelad LBL is;

public void queryAD(int rOrder,int rLevel,Vector<Ar rayList<XmINode>>
XmlindexList){
ArrayList<int[][]> children = new ArrayList<int[][1>0;

XmliTreeLabel. get Al | Chi |l dr en(rLevel, rOrder, XmlindexList,
children);

for (int s = 0; s < children.size(); s++)
System. out .printin(children.get(s)[0][0] + "-"
+ children.get(s)[0][1]);

}
public static void getAllChildren(int rootLevel, in t rootOrder,
Vector<ArrayList<XmINode>> XmlIndexList, ArrayLis t<int[][]>
children) {
int childLevel = rootLevel + 1,
if (XmlindexList.size() != childLevel)
for (inti = 0; i < XmlindexList.get(childLevel). size();
i++) {

if (XmlindexList.get(childLevel).get(i).pOrder = =

int tmp[I[] = {{0, 0} };
tmp[0][0] = XmlIndexList.get(rootLevel +

rootOrder) {

1).get(i).level;

tmp[0][1] = XmlIndexList.get(rootLevel +
1).get(i).order;

int childOrder = tmp[0][1];

children.add(tmp);

if (childLevel + 1 < XmlIindexList.size()) {

get Al | Chi | dr en(childLevel, childOrder,

XmlindexList,children);

}

65

Sibling Querying

While detecting the sibling relationship, the ordad level of the node are taken from
the user. The nodes whdseelandpOrderare equal are found out as siblings.

It is coded in Basic LBL as;

public void querySib(int order, int level, ArrayLis t<XmINode>
XmlindexList) {
int pOrder = 0;
for (int t = 0; t < XmlIindexList.size(); t++) {
if (XmlindexList.get(t).level == level
&& XmlindexList.get(t).order == order)
pOrder = XmlIndexList.get(t).pOrder;
}
for (int t = 0; t < XmlIndexList.size(); t++) {
if (XmlindexList.get(t).level == level
&& XmlindexList.get(t).pOrder == pOrder
&& XmlindexList.get(t).order != order) {
System. out .printIn("Child:"
+

XmlindexList.get(t). XMLnode.getNodeName());
System. out .printin(XmlindexList.get(t).level + "."
+ XmlindexList.get(t).order + "."
+ XmlindexList.get(t).pOrder);

Also in second and third versions, only the sammellaodes are searched for siblings.
Its code in Single Linked LBL and Double Linked LBt below;

public void querySib(int order,int level,Vector<Arr ayList<XmINode>>
XmlindexList){
for(int i=0;i<XmlindexList.get(level).size();i++){

if(XmlIndexList.get(level).get(i).order!'=order&&Xm [IndexList.get
(level).get(i).pOrder==XmlIndexList.get(level).get(order-1).pOrder)

System. out .printin(XmlindexList.get(level).get(i).XMLnode.get Nod
eName());

}

}

Order Querying

The order numbers of the labels make it easy t the document orders of the
nodes. For this issue Basic LBL relabels the ordenber of the nodes after each insert

or delete. So it aims to keep all consecutive nodesder. For the same issue Single

66

and Double Linked LBL have a different approacheylaim not to relabel the nodes
after inserts and deletes. These two versionsgivew, unused order number for a new
inserted node. And the arrangement of the ordeatiosl is set up with links to next
nodes. These links provide a quick detection oéond). The main difference of Double
Linked LBL from its previous version is that, itsal arranges backward links between
nodes.

In the performance tests, two kind of orderingf tae performed; forward order
querying and backward order querying. In forwardeorquerying the node is taken
from the user and the nodes which are in the foligworder are returned. While
searching the nodes, Basic LBL uses the incrementigr numbers. In the code below,
therOrder is assigned to the order number which is requdsyetie user. After finding
that noderOrder number is incremented by 1, and then the seanstade for the new

order number. This loop continues until all siblimgdes are found.

public void queryFOrd(int rOrder, int rLevel,
ArrayList<XmINode> XmlindexList) {
int pOrder = 0;
for (int t = 0; t < XmlIindexList.size(); t++) {
if (XmlIndexList.get(t).level == rLevel
&& XmllndexList.get(t).order == rOrder)
pOrder = XmlIindexList.get(t).pOrder;
}
for (int t = 0; t < XmlIindexList.size(); t++) {
if (XmlindexList.get(t).level == rLevel
&& XmlindexList.get(t).order == rOrder + 1
&& XmlindexList.get(t).pOrder == pOrder) {
System. out .printin("Child:"
+
XmlindexList.get(t). XMLnode.getNodeName());
System. out .printin(XmlindexList.get(t).level +"."
+ XmlindexList.get(t).order + "."
+ XmlindexList.get(t).pOrder);
rOrder = XmlindexList.get(t).order;

Single and Double LBL uses th@rder parts of the labels. They begin with the
order number that the user is requested. It chéeksOrder of the label, then sets the
rOrder number as new order number and searcheéearew order. It continues to this
loop until all the sibling nodes are listed.

public void queryFOrd(int rOrder,int rLevel,Vector< ArrayList<XmINode>>
XmlindexList){

67

int nextOrder=XmlIndexList.get(rLevel).get(rOrder- 1).rOrder;
int parent=XmlindexList.get(rLevel).get(rOrder-1). pOrder;
while(nextOrder>0){
if(XmlindexList.get(rLevel).get(nextOrder-
1).pOrder==parent){

System. out .printin(XmlindexList.get(rLevel).get(nextOrder-

1).level+"."+XmlIndexList.get(rLevel).get(nextOrder -1).order+"-
"+XmlindexList.get(rLevel).get(nextOrder-1).XMLnode .getNodeName());
nextOrder=XmlindexList.get(rLevel).get(nextOrder -
1).rOrder;
}
}
}

For backward querying only Double Linked LBL hargltee performance bottleneck
and provides a backward ordering relationship vi#thbackward links. Here double link
lists are used for each label. The code belowesl tier backward querying in Double
Linked LBL;

public void queryBOrd(int rOrder,int rLevel,Vector< ArrayList<XmINode>>
XmlindexList){

int preOrder=XmlIndexList.get(rLevel).get(rOrder-1).IOrder;

int parent=XmlindexList.get(rLevel).get(rOrder-1). pOrder;

while(preOrder>0){
if(XmlindexList.get(rLevel).get(preOrder-
1).pOrder==parent){
System. out .printin(XmlindexList.get(rLevel).get(preOrder-

1).level+"."+XmlIndexList.get(rLevel).get(preOrder- 1).order+"-
"+XmlindexList.get(rLevel).get(preOrder-1).XMLnode. getNodeName());
preOrder=XmlindexList.get(rLevel).get(preOrder-
1).I10rder;
}
}
}

Update Performance

To insert a node to the XML, the parent node ardsibling node are asked to
the user. Then the new daparent_level+land neworder is sent to insert method to
convert it to a new node with its label. Basic LBlvessibling_order+1 as the new
node’s order number and relabels the following so&ngle and Double Linked LBL
gives a new order number to the node and assignadi node’®©rder number to its
sibling’srOrder or IOrder parts.

The source codes of this insertion part for eackioe are as below;

68

Basic LBL

public void insertToXml(int newLevel, int newOrder, int pOrder,
Element newNode, ArrayList<XmINode> XmlindexList) {
XmINode newData = new XmINode(newLevel, newOrder, pOrder,
newNode);

XmlindexList.add(newData);
for (inti = 0; i < XmlindexList.size(); i++) {
while (i < XmlIndexList.size()) {
if (XmlindexList.get(i).level == newLevel
&& XmlindexList.get(i).order >= newOrder
&& XmlindexList.get(i).XMLnode !=
newNode)
XmlindexList.get(i).order =
(XmlindexList.get(i).order) + 1;

if (XmlindexList.get(i).level == newLevel + 1
&& XmlindexList.get(i).pOrder >=
newOrder)
XmlindexList.get(i).pOrder++;
i++;

break;

Single Linked LBL

public void insertToXml(int newLevel,int pOrder, EI ement
newNode,Vector<ArrayList<XmINode>> XmlindexList, in t orderList[][],int
sOrder) {

int rOrder=0;

orderList[newLevel][0]++;
int order = orderList[newLevel][0];
if(sOrder!=0){

rOrder=XmlIndexList.get(newLevel).get(sOrder-1).r Order;
XmlindexList.get(newLevel).get(sOrder-1).rOrder = order;
}
else{
rOrder=1;
orderList[newLevel][1]=order;
}

XmINode newData = new XmINode(newLevel,
order,pOrder,rOrder,newNode);
XmlindexList.get(newLevel).add(newData);
}

Single Linked LBL

public void insertToXml(int newLevel, int pOrder, E lement newNode,
Vector<ArrayList<XmINode>> XmlIndexList, int orde rList[][],
int sOrder) {
int IOrder = 0;
int rOrder = 0;

orderList[newLevel][0]++;
int order = orderList[newLevel][0];
if (sOrder !=0) {
rOrder = XmlindexList.get(newLevel).get(sOrder - 1).rOrder;

69

XmlindexList.get(newLevel).get(sOrder - 1).rOrder

[Order = XmlindexList.get(newLevel).get(sOrder -

XmlindexList.get(newLevel).get(sOrder).|Order = o

}else {

rOrder = orderList[newLevel][1];

XmlindexList.get(newLevel).get(orderList[newLevel
1).10rder = order;

orderList[newLevel][1] = order;

XmINode newData = new XmINode(newLevel, order, pOr
rOrder,newNode);

XmlindexList.get(newLevel).add(newData);
}

= order;
1).order;
rder;

1111

der, |Order,

70

