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ABSTRACT

ON δ-PERFECT ANDδ-SEMIPERFECT RINGS

In this thesis, we give a survey of generalizations of right-perfect, semiperfect and

semiregular rings by considering the class of all singularR-modules in place of the class of

all R-modules. For a ringR and a rightR-moduleM , a submoduleN of M is said to be

δ-small inM if, wheneverN +X = M with M
/

X singular, we haveX = M . If there exists

an epimorphismp : P → M such thatP is projective andKer(p) is δ-small inP , then we say

thatP is a projectiveδ-cover ofM . A ring R is calledδ-perfect (respectively,δ-semiperfect)

if every R-module (respectively, simpleR-module) has a projectiveδ-cover. In this thesis,

various properties and characterizations ofδ-perfect andδ-semiperfect rings are stated.
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ÖZET

δ-MÜKEMMEL VE δ-YARIM ÜKEMMEL HALKALAR ÜZEṘINE

Bu tezde, tümR-modül sınıfı yerine tüm tekilR-modül sınıfını alarak, sağ-mükemmel

halka, yarımükemmel halka ve yarıdüzenli halkaların genellemesi üzerine bir inceleme yaptık.

R bir halka veM bir sağR-modül için, eğerN +X = M veM
/

X tekil olduğundaX = M

oluyorsa,N ’e M modülününδ-küçük altmodülü denir. EğerP projektif ve Ker(p) P ’de

δ-küçük olacak şekildep : P → M bir epimorfizma var ise,P modülüneM ’nin projektif

δ-örtüsü denir. Eğer herR-modülün (sırasıyla, basitR-modülün) projektifδ-örtüsü varsaR

halkasınaδ-mükemmel (sırasıyla,δ-yarımükemmel) halka denir. Bu tezde,δ-mükemmel ve

δ-yarımükemmel halkaların çeşitli özellikleri ve karakterizasyonları verilmiştir.
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LIST OF SYMBOLS

R an associative ring with unit unless otherwise stated

Mod-R the category of rightR-modules
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CHAPTER 1

INTRODUCTION

Covers and envelopes of modules play an important role in Module and Ring Theory.

In 1953, Eckmann and Schopf proved the existence of injective envelopes of modules over any

associative ring. The existence of projective covers was studied by Bass in1960. After that,

different kinds of covers and envelopes have been described. For example, Enochs introduced

the torsion free coverings of modules, and Warfield investigated the pure injective envelopes

of modules. Then in1981, Enochs gave a categorical definition of covers and envelopes for a

class of modules.

Throughout this thesis,R denotes an associative ring with identity and modules are

unitary rightR-modules unless otherwise indicated.

A ring R is called perfect if everyR-module has a projective cover. If every finitely

generatedR-module has this property, thenR is called semiperfect. In this thesis, we study

the generalizations of perfect and semiperfect rings by considering the class of all singular

R-modules in place of the class of allR-modules.

In chapter2 we give some results related with our work and used in following chapters.

For the results in this chapter we refer to (Bland, Paul E., 2010), (Anderson, F.W., Fuller, K.

R. 1992), (Wisbauer, R., 1991), (Nicholson, W. K., 1976) and(Goodearl, K. R., 1976).

In chapter3 we give a survey of generalizations of right perfect, semiperfect and

semiregular rings from (Zhou, Y., 2000). It is of interest toknow how far the old theories

extend to the new situation. The concept of small submoduleswhich leads to the definition

of projective covers, is certainly the key in introducing perfect, semiperfect and semiregular

rings. As a generalization of small submodules, (Zhou, Y., 2000) introducesδ-small sub-

modules and obtains various characterizations and properties for a ringR, for which every

R-module (respectively simpleR-module, cyclically presentedR-module) has a projectiveδ-

cover. From these properties, it is clear that if a ringR is semiperfect, thenR is δ-semiperfect.

For the converse, we need some extra condition.

In chapter4 we study whenδ-semiperfect rings are semiperfect. (Büyükaşık, E.,

Lomp, C., 2009) introduce that an arbitrary associative unital ring R is semiperfect if and

only if it is semilocal andδ-semiperfect. They characterize finitely generatedδ-supplemented

modulesM as those which are sums of simple andδ-local modules or equivalently which

satisfy the property that every maximal submodule ofM has aδ-supplement.
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CHAPTER 2

PRELIMINARIES

In this chapter we give some fundamental properties of ringsand modules that will be

used later.

2.1. Radical of a Module

Definition 2.1 For a right R-moduleM , a submoduleS of M is said to be small or super-

fluous inM if for any submoduleL of M , S + L = M impliesL = M . This is denoted by

S ≪ M . A right ideal ofR is small if it is small when viewed as a submodule ofRR.

Definition 2.2 The Jacobson radical ofR, denoted byJ(R), is the intersection of the maximal

right ideals ofR.

If J(R) = 0, thenR is said to be aJacobson semisimplering. It is also referred to as

J-semisimpleor semiprimitivering. The concept of the Jacobson radical ofR carries over to

modules. IfM is anR-module, then the radical ofM , denoted byRad(M), is the intersection

of the maximal submodules ofM . If M has no maximal submodules thenRad(M) = M .

For example, theZ-moduleQ
/

Z has no maximal submodules, soRad(Q
/

Z) = Q
/

Z.

Proposition 2.1 (Bland, Paul E., 2010)[Proposition 6.1.2] IfM is a nonzero finitely gener-

atedR-module, thenM has at least one maximal submodule.

SinceM has a maximal submodule,Rad(M) 6= M . Thus, we have the following

corollary.

Corollary 2.1 (Bland, Paul E., 2010)[Corollary 6.1.3] IfM is a nonzero finitely generated

R-module, thenRad(M) 6= M .

Example 2.1 SinceR is generated by1R, J(R) 6= R.

Proposition 2.2 (Bland, Paul E., 2010)[Proposition 6.1.4] If{Mα}∆ is a family ofR-modules,

then

Rad(
⊕

∆

Mα) =
⊕

∆

Rad(Mα).
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Proposition 2.3 (Bland, Paul E., 2010)[Proposition 6.1.5] IfF is a freeR-module, then

Rad(F ) = FJ(R).

Proposition 2.4 (Bland, Paul E., 2010)[Proposition 6.1.8] The following hold for any ring

R.

(i) J(R) is the intersection of the maximal right ideals ofR.

(ii) J(R) is an ideal ofR that coincides with the intersection of the right annihilator ideals

of the simple rightR-modules.

(iii) J(R) is the set of alla ∈ R such that1− ar has a right inverse for allr ∈ R.

Lemma 2.1 (Bland, Paul E., 2010)[Lemma 6.1.9] IfI is a right ideal ofR such thatI ⊆

J(R), thenMI ⊆ Rad(M) for everyR-moduleM .

Lemma 2.2 (Nakayama’s Lemma) IfI is a right ideal ofR such thatI ⊆ J(R), then the

following two equivalent conditions hold for every finitelygeneratedR-moduleM .

(i) If N is a submodule ofM such thatN +MI = M , thenN = M .

(ii) If MI = M , thenM = 0.

Now we will give some properties of the radical of projectivemodules.

Proposition 2.5 (Bland, Paul E., 2010) [Proposition 7.2.4, Proposition 7.2.8, Corollary

7.2.9] The following statements hold for a projectiveR-moduleM :

(i) Rad(M) = MJ(R),

(ii) M contains a maximal submodule,

(iii) Rad(M) ( M .

2.2. Local Rings

A ring R is a local ring in case the set of non-invertible elements ofR is closed under

addition.

Proposition 2.6 (Anderson, F.W., Fuller, K. R. 1992)[Theorem 15.15] For a ring R, the

following statements are equivalent:

(i) R is a local ring,

3



(ii) R has a unique maximal right ideal,

(iii) J(R) is a maximal right ideal,

(iv) The set of elements ofR without right inverses is closed under addition,

(v) J(R) = {x ∈ R | xR 6= R},

(vi) R/J(R) is a division ring,

(vii) J(R) = {x ∈ R | x is not invertible},

(viii) If x ∈ R, then eitherx or 1− x is invertible.

2.3. Covers of Modules

LetX be a class of rightR-modules. We assume thatX is closed under isomorphisms,

i.e., if M ∈ X andN ∼= M , thenN ∈ X . We also assume thatX is closed under taking

finite direct sums, and direct summands, i.e., ifM1, . . . ,Mt ∈ X , thenM1 ⊕ · · · ⊕Mt ∈ X ;

if M = N ⊕ L ∈ X , thenN,L ∈ X .

Definition 2.3 On the classX , for anR-moduleM , X ∈ X is called anX -cover ofM if

there is a homomorphismϕ : X → M such that the following hold.

(i) For any homomorphismϕ
′

: X
′

→ M with X
′

∈ X , there exists a homomorphism

f : X
′

→ X with ϕ
′

= ϕf , or equivalently

HomR(X
′

, X) −−−→ HomR(X
′

,M) −−−→ 0

is exact for anyX
′

∈ X .

(ii) If f is an endomorphism ofX withϕ = ϕf , thenf must be an automorphism.

If (1) holds (and perhaps not (2)),ϕ : X → M is called anX -precover. Note that an

X -cover (precover) is not necessarily surjective.

Theorem 2.1 (Xu, J. 1996)[Theorem 1.2.6] LetM be anR-module. Ifϕi : Xi → M , i=1,2,

are two differentX -covers, thenX1
∼= X2.

4



Theorem 2.2 (Xu, J. 1996)[Theorem 1.2.9] SupposeX is closed under an arbitrary direct

product, and for eachi, ϕi : Xi → Mi is anX -precover. Then the natural product
∏

ϕi :
∏

Xi →
∏

Mi is anX -precover.

Theorem 2.3 (Xu, J. 1996)[Theorem 1.2.10] Ifϕi : Xi → Mi is an X -cover for

i = 1, . . . , n, then
n
⊕

i=1

ϕi :
n
⊕

i=1

Xi →
n
⊕

i=1

Mi is anX -cover.

Let Ω be the class of all projectiveR-modules. A homomorphismf : F → M is an

Ω-cover ofM if and only if F is projective andf is a superfluous epimorphism.

Definition 2.4 A projective cover of anR-moduleM is a projectiveR-moduleP (M) together

with an epimorphismϕ : P (M) → M such thatKer(ϕ) is small inP (M).

By Theorem 2.1, we know that anX -cover of anR-module is unique up to isomor-

phism, so is a projective cover.

Example 2.2 (Bland, Paul E., 2010)

(i) Projective Modules. Every projective module has a projective cover, namely, itself.

(ii) Local Rings and Projective Covers. Let R be a commutative ring that has a unique

maximal idealm. ThenR together with the natural mappingR → R
/

m is a projective

cover ofR
/

m. If M is a finitely generatedR-module, thenM has a projective cover.

Proposition 2.7 (Bland, Paul E., 2010)[Proposition 7.2.3] Let{Mk}
n
k=1 be a finite family of

R-modules.

(i) If Sk is a small submodule ofMk, for k = 1, 2, . . . , n, then
n
⊕

k=1

Sk is a small submodule

of
n
⊕

k=1

Mk.

(ii) If eachMk has a projective coverϕk : Pk → Mk, then
n
⊕

k=1

Mk has a projective cover

n
⊕

k=1

ϕk :
n
⊕

k=1

Pk →
n
⊕

k=1

Mk and ifϕ : P →
n
⊕

k=1

Mk is a projective cover of
n
⊕

k=1

Mk,

then there is a family{Pk}
n
k=1 of submodules ofP such thatPk

∼= Pk for eachk.

Now, we will see that a projective cover of a module may fail toexist.

Example 2.3 Suppose thatR is a Jacobson semisimple ring. Ifϕ : P → M is a projective

cover ofM , thenKer(ϕ) is a small submodule ofP and

Ker(ϕ) ⊆ Rad(P ) = PJ(R) = 0.

5



Soϕ is an isomorphism. Thus over a Jacobson semisimple ringR, anR-moduleM has a

projective cover if and only if it is projective. For example, the ringZ is Jacobson semisimple,

so the onlyZ-modules with projective covers are the freeZ-modules. Thus,Zn does not have

a projective cover, sinceZn is not a freeZ-module for any integern ≥ 2.

2.4. Semiperfect Rings, Perfect Rings and Supplemented Modules

Since there are modules that do not have a projective cover, this brings up the question

are there rings over which every module has a projective cover? Such rings exist, and we will

characterize these rings. First, we define semiperfect rings.

Definition 2.5 AnR-moduleM is called finitely generated if there are finitely many elements

x1, . . . , xn ∈ M such thatM = x1R + x2R + · · ·+ xnR.

Definition 2.6 A ring R is said to be a semiperfect ring if every finitely generatedR-module

has a projective cover.

Proposition 2.8 (Wisbauer, R., 1991) The following are equivalent for a ringR:

(i) R is semiperfect,

(ii) The ringR
/

J(R) is semisimple and idempotents ofR
/

J(R) can be lifted moduloJ(R),

(iii) The rightR-moduleRR is a sum of local modules,

(iv) The ringR has a complete set{e1, e2, . . . , en} of orthogonal idempotents such that

eiRei is a local ring fori = 1, 2, . . . , n,

(v) Every simple rightR-module has a projective cover,

(vi) Every finitely generated rightR-module has a projective cover.

Lemma 2.3 (Bland, Paul E., 2010) LetI be a right ideal in a ringR. Then the following

statements are equivalent:

(i) MI 6= M for every nonzeroR-moduleM ,

(ii) MI ≪ M for every nonzeroR-moduleM ,

(iii) FI ≪ F for the countably generated freeR-moduleF = R(N),

(iv) I is right T -nilpotent.

6



We will now characterize the right perfect rings.

Definition 2.7 A ringR is called right perfect if everyR-module has a projective cover. Left

perfect rings are defined similarly. A ring that is left and right perfect is called a perfect ring.

Bass has given the following characterizations of perfect rings.

Proposition 2.9 (Bland, Paul E., 2010)[Proposition 7.2.28] The following are equivalent for

a ringR:

(i) R is a right perfect ring,

(ii) R
/

J(R) is semisimple and every nonzeroR-module contains a maximal submodule,

(iii) R
/

J(R) is semisimple andJ(R) is right T -nilpotent.

Proposition 2.10 (Bland, Paul E., 2010)[Proposition 7.2.29] The following are equivalent

for a ringR:

(i) R is a right perfect ring,

(ii) R satisfies the descending chain condition on principal left ideals,

(iii) Every flatR-module is projective,

(iv) R contains no infinite set of orthogonal idempotents and everynonzero rightR-module

contains a simple submodule.

Definition 2.8 Let U be a submodule of theR-moduleM . A submoduleV ⊂ M is called

a supplement or addition complement ofU in M if V is a minimal element in the set of

submodulesL ⊂ M with U + L = M .

Lemma 2.4 (Wisbauer, R., 1991)V is a supplement ofU if and only ifU + V = M and

U ∩ V ≪ V .

Proof If V is a supplement ofU andX ⊂ V with (U ∩ V ) +X = V , then we have

M = U + V = U + (U ∩ V ) +X = U +X,

henceX = V by the minimality ofV . ThusU ∩ V ≪ V .

On the other hand, letU + V = M andU ∩ V ≪ V . ForY ⊂ V with U + Y = M ,

we have

V = M ∩ V = (U ∩ V ) + Y ,

that is,V = Y . Hence,V is minimal in the desired sense. �

7



Theorem 2.4 (Wisbauer, R., 1991)[41.1 Properties of supplements] LetU , V be submodules

of theR-moduleM . AssumeV to be a supplement ofU . Then:

(i) If K ≪ M , thenV is a supplement ofU +K.

(ii) For K ≪ M we haveK ∩ V ≪ V and soRad(V ) = V ∩ Rad(M).

(iii) For L ⊂ U , (V + L)
/

L is a supplement ofU
/

L in M
/

L.

Definition 2.9 AnR-moduleM is called supplemented if every submodule ofM has a sup-

plement inM .

If every finitely generated submodule ofM has a supplement inM , then we callM

finitely supplemented orf -supplemented.

Theorem 2.5 (Wisbauer, R., 1991)[41.2 Properties of supplemented modules] LetM be an

R-module.

(i) Let M1, U be submodules ofM with M1 supplemented. If there is a supplement for

M1 + U in M , thenU also has a supplement inM .

(ii) If M = M1 +M2, withM1,M2 supplemented modules, thenM is also supplemented.

(iii) If M is supplemented, then

(a) Every finitelyM-generated module is supplemented.

(b) M
/

Rad(M) is semisimple.

Theorem 2.6 (Wisbauer, R., 1991)[41.6 Supplemented modules, characterizations]

(i) For a finitely generated moduleM , the following are equivalent:

(a) M is supplemented,

(b) Every maximal submodule ofM has a supplement inM ,

(c) M is a (finite) sum of local submodules.

(ii) If M is supplemented andRad(M) ≪ M , thenM is an irredundant sum of local

modules.

Definition 2.10 M is called an amply supplemented module if for any two submodulesA and

B of M with A+B = M , B contains a supplement ofA.

If every finitely generated submodule ofM has ample supplements inM , then we call

M amply finitely supplemented.

8



Theorem 2.7 (Wisbauer, R., 1991) [42.6 Semiperfect Rings, characterizations] For a ringR

the following statements are equivalent:

(i) RR is semiperfect,

(ii) RR is supplemented,

(iii) every finitely generatedR-module is semiperfect inMod-R,

(iv) every finitely generatedR-module has a projective cover inMod-R,

(v) every finitely generatedR-module is (amply) supplemented,

(vi) R
/

J(R) is right semisimple and idempotents inR
/

J(R) can be lifted toR,

(vii) every simpleR-module has a projective cover inMod-R,

(viii) every maximal right ideal has a supplement inR,

(ix) RR is a (direct) sum of local (projective covers of simple) modules,

(x) R = e1R⊕ · · · ⊕ ekR for local orthogonal idempotentsei,

(xi) RR is semiperfect.

If R satisfies one of these conditions, thenR is called a semiperfect ring. The asser-

tions (b) - (j) hold similarly for leftR-modules.

2.5. Semiregular Modules and Rings

In this section a class of semiregular modules is introducedwhich contains all regular

and all semiperfect modules. In addition, several theoremsabout regular and semiperfect

modules are extended. Also, these results are applied to thestudy of ringsR (semiregular

rings) such thatRR is semiregular.

If M is anR-module, the dual ofM will be denoted byM∗ = HomR(M,R). A dual

basis forM is a pair of subsets{xi | i ∈ I} ⊆ M and{ϕi | i ∈ I} ⊆ M∗ (indexed by

the same setI) such that, for eachx ∈ M , ϕi(x) = 0 for all but finitely manyi ∈ I and

x =
∑

i xiϕi(x). It is well known thatM is (finitely generated) projective if and only if it has

a (finite) dual basis. An elementx in a moduleM is called regular ifxα(x) = x for some

α ∈ M∗. A moduleM is called regular if each of its elements is regular.

Definition 2.11 A submoduleN of a moduleM is said to lie over a summand ofM if there

exists a direct decompositionM = P ⊕Q with P ⊆ N andQ ∩N is small inM .

9



Lemma 2.5 (Nicholson, W. K., 1976)[Lemma 1.2] IfM is projective, a submoduleN lies

over a summand ofM if and only ifM
/

N has a projective cover.

Proposition 2.11 (Nicholson, W. K., 1976)[Proposition 1.3] IfM is any module, the follow-

ing conditions are equivalent forx ∈ M :

(i) xR lies over a projective summand ofM ,

(ii) There existsα ∈ M∗ such that(α(x))2 = α(x) andx− xα(x) ∈ Rad(M),

(iii) There exists a regular elementy ∈ xR such that x − y ∈ Rad(M) and

xR = yR⊕ (x− y)R,

(iv) There exists a regular elementy ∈ M such thatx− y ∈ Rad(M),

(v) There existsγ : M → xR such thatγ2 = γ, γ(M) is projective and

x− γ(x) ∈ Rad(M).

Definition 2.12 An elementx in a moduleM is said to be semiregular (inM) if the conditions

in Proposition 2.11 are satisfied. A moduleM is called a semiregular module if each of its

elements is semiregular.

The regular modules are precisely the semiregular modules with zero radical.

Theorem 2.8 (Nicholson, W. K., 1976)[Theorem 1.6] The following conditions are equiva-

lent for a moduleM :

(i) M is semiregular,

(ii) If N ⊆ M is a finitely generated submodule there existsγ : M → N such thatγ2 = γ,

γ(M) is projective and(1− γ)(N) ⊆ Rad(M),

(iii) Every finitely generated submodule ofM lies over a projective summand ofM .

Corollary 2.2 (Nicholson, W. K., 1976)[Corollary 1.7] A projective moduleM is semiregu-

lar if and only ifM
/

N has a projective cover for every finitely generated (cyclic)submodule

N .

Corollary 2.3 (Nicholson, W. K., 1976)[Corollary 1.8] A moduleM is regular if and only if

every finitely generated (cyclic) submodule is a projectivesummand.

Theorem 2.9 (Nicholson, W. K., 1976)[Theorem 1.10] IfM =
⊕

i∈I Mi is a direct sum of

modules thenM is semiregular if and only if eachMi is semiregular.
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Corollary 2.4 (Nicholson, W. K., 1976)[Corollary 1.11] A direct sumM =
⊕

i∈I Mi is

regular if and only if eachMi is regular.

An elementa of a ringR is said to be regular (in the sense of von Neumann) ifaba = a

for someb ∈ R. If each element of a ringR is regular,R is said to be a regular ring. It is clear

that an elementa in a ringR is regular if and only if it is regular inRR.

Lemma 2.6 (Nicholson, W. K., 1976)[Lemma 2.1] Leta be an element of a ringR. Thena

is semiregular inRR if and only if there existse2 = e ∈ Ra such thata(1 − e) ∈ J(R). An

analogues result holds forRR.

Proposition 2.12 (Nicholson, W. K., 1976)[Proposition 2.2] The following are equivalent

for an elementa of a ringR:

(i) There existse2 = e ∈ aR such that(1− e)a ∈ J(R),

(ii) There existse2 = e ∈ Ra such thata(1− e) ∈ J(R),

(iii) There exists a regular elementb ∈ R with a− b ∈ J(R),

(iv) There exists a regular elementb ∈ R with bab = b anda− aba ∈ J(R).

Definition 2.13 An elementa of a ringR is called semiregular (inR) if it satisfies the condi-

tions in Proposition 2.12. A ring is a semiregular ring if each of its elements is semiregular.

Theorem 2.10 (Nicholson, W. K., 1976)[Theorem 2.9] The following statements (and their

left-right analogues) are equivalent for a ringR:

(i) R is semiregular,

(ii) R
/

J(R) is regular and idempotents can be lifted moduloJ(R),

(iii) Every finitely generated (cyclic) right ideal lies over a direct summand,

(iv) Every finitely related (finitely related and cyclic) rightR-module has a projective cover,

(v) Every finitely generated (cyclic) right ideal has a complement inR.

2.6. The Singular Submodule

Definition 2.14 We shall useΓ(R) to stand for the set of all essential right ideals of the ring

R.
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Also if I is a right ideal ofR, and r ∈ R, we user−1I to denote the right ideal

{x ∈ R | rx ∈ I}.

Note that ifr is invertible inR, then this definition coincides with the product ofr−1

andI.

Proposition 2.13 (Goodearl, K. R., 1976) For a ringR, the following conditions hold.

(i) R ∈ Γ(R).

(ii) If I ≤ J ≤ RR andI ∈ Γ(R), thenJ ∈ Γ(R).

(iii) If I ∈ Γ(R) andr ∈ R, thenr−1I ∈ Γ(R).

Definition 2.15 Given any rightR-moduleA, we set

Z(A) = {x ∈ A | xI = 0 for someI ≤e R}

Equivalently,Z(A) is the set of thosex ∈ A for which the right ideal{r ∈ R | xr = 0}

belongs toΓ(R). It can be easily checked thatZ(A) is a submodule ofA, and it is called the

singular submodule ofA.

In a similar fashion, we define the singular submodule of any left R-moduleB:

Z(B) = {x ∈ B | Jx = 0 for someJ ≤e R}.

Actually, Z(−) defines a functor fromMod-R → Mod-R. Given any mapf : A → B in

Mod-R, it follows directly from our definitions thatf(Z(A)) ≤ Z(B) and hence we define

Z(f) : Z(A) → Z(B) to be the restriction off to Z(A). In particular, for any moduleA, we

havef
(

Z(A)
)

≤ Z(A) for all f ∈ EndR(A), so thatZ(A) is a fully invariant submodule of

A.

ConsideringR as a module, we see thatZ(RR) is thus a2-sided ideal ofR. The ideal

Z(RR) is known as the right singular ideal ofR, and is denoted byZr(R). Likewise we have

the left singular idealZl(R) which is the singular submodule ofRR.

Definition 2.16 A moduleA is called a singular module providedZ(A) = A, and is called a

nonsingular module ifZ(A) = 0.

Remark 2.1 The ringR is a nonsingular right module if and only ifZr(R) = 0 and in this

eventR is called a right nonsingular ring, andR is called a left nonsingular ring ifZl(R) = 0.

Z(R) 6= R (i.e.,R is not singular) unlessR = 0.

Zr(R) = {r ∈ R | rI = 0, I ≤e R} � R.
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Example 2.4 LetR = Z. (The details are similar for any commutative integral domain.) We

know that all nonzero ideals ofZ are essential inZ; henceΓ(Z) is just the set of all nonzero

ideals ofZ. Given aZ-moduleA and an elementx ∈ A, we thus havex ∈ Z(A) if and only if

x(nZ) = 0 for some positive integern, i.e., if and only ifx has finite order. Therefore,Z(A)

is just the torsion subgroup ofA. It follows thatA is singular if and only if it is a torsion

group, and thatA is nonsingular if and only if it is a torsion-free group. In particular, ZZ is

nonsingular; henceZ is a nonsingular ring.

Proposition 2.14 (Goodearl, K. R., 1976)

(i) A moduleC is nonsingular if and only ifHomR(A,C) = 0 for all singular modulesA.

(ii) A moduleC is singular if and only if there exists a short exact sequence

0 −−−→ A
f

−−−→ B
g

−−−→ C −−−→ 0

such thatf is an essential monomorphism.

Proof

(i) If A is singular,C is nonsingular andf : A → C is anR-homomorphism, then

f(A) = f(Z(A)) ≤ Z(C) = 0.

So,f = 0. Therefore,HomR(A,C) = 0 whenever A is singular, C is nonsingular.

Conversely, ifHomR(A,C) = 0 for all singular modulesA, then in particularHomR(Z(C), C) =

0. Now, the inclusion mapZ(C) → C is zero and henceZ(C) = 0.

(ii) First assume that we have such an exact sequence. Given any b ∈ B, we have a map

ϕ : R → B given byr 7→ br. Sincef(A) ≤e B, we haveϕ−1(f(A)) ≤e RR, that is, the

right ideal

I = {r ∈ R | br ∈ f(A)} ≤e R.

Now bI ≤ f(A) = Ker(g), henceg(bI) = g(b)I = 0. Sog(b) ∈ Z(C). Sinceg is epic, we

haveZ(C) = C.

Conversely assume thatC is singular, and choose a short exact sequence

0 −−−→ A
f

−−−→ B
g

−−−→ C −−−→ 0

such thatB is free. If{bα} is a basis forB, then for eachα, we haveg(bα)Iα = 0 for some

Iα ≤e RR. Hence,bαIα ≤ A. SinceIα ≤e RR for all α, we getbαIα ≤e bαRR for all α.
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Therefore,
⊕

bαIα ≤e
⊕

bαR = B. In as much as
⊕

bαIα ≤ A, we obtainA ≤e B and

thus, the inclusion mapA → B is an essential monomorphism. �

Example 2.5 Proposition 3.1 shows that,B
/

A is singular wheneverA ≤e B. Thus, for

example,E(A)
/

A is always singular.

The converse of this can easily fail; for example, letB = Z
/

2Z andA = 0. Then

B
/

A is a singularZ-module, and yetA �e B.

There are, however, two special cases in which this conversedoes work: One is given

by the next Proposition, and the other is the caseB = RR. Namely, ifI is a right ideal ofR

such thatR
/

I is singular, then we must have1J = 0 for someJ ∈ Γ(R). ThenJ ≤ I and so

I ∈ Γ(R), that isI ≤e RR. Since we already know thatR
/

I is singular wheneverI ≤e RR,

we conclude that

Γ(R) = {I ≤ RR | R
/

I is singular}.

Proposition 2.15 (Goodearl, K. R., 1976) LetB be nonsingular and letA ≤ B. ThenB
/

A

is singular if and only ifA ≤e B.

Proof If B
/

A is singular andx is a nonzero element ofB, thenxI = 0 for someI ≤e R.

That is,xI ≤ A. In as much asB is nonsingular, we havexI 6= 0. Thus,xR ∩ A 6= 0.

Therefore,A ≤e B. �

Proposition 2.16 (Goodearl, K. R., 1976)

(i) The class of all nonsingular rightR-modules is closed under submodules, direct prod-

ucts, essential extensions and module extensions.

(ii) The class of all singular rightR-modules is closed under submodules, factor modules

and direct sums.

Proposition 2.17 (Goodearl, K. R., 1976) Assume thatZr(R) = 0.

(i) Z(A
/

Z(A)) = 0 for all right R-modulesA.

(ii) A right R-moduleA is singular if and only ifHomR(A,C) = 0 for all nonsingular right

R-modulesC.

(iii) The class of all singular rightR-modules is closed under module extensions and essen-

tial extensions.

(iv) Γ(R) is closed under finite products.

Proposition 2.18 (Goodearl, K. R., 1976) IfA is any simple rightR-module, thenA is either

singular or projective, but not both.
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Proof In as much asA ∼= R
/

M for some maximal right idealM of R, we see thatA is

singular if and only ifM ≤e R. Thus, ifA is not singular, we must haveK ∩ M = 0 for

some nonzero right idealK of R. SinceM is a maximal right ideal,K ⊕M = R, whenceA

is projective.

Now, if A is projective, we haveK ⊕M = R for some right idealK, whenceM is

not essential inR and soA is not singular. �

Corollary 2.5 (Goodearl, K. R., 1976) Every nonsingular semisimple rightR-module is

projective.

Proof Any semisimple rightR-module has the form
⊕

Sα, where eachSα is simple. If
⊕

Sα is nonsingular, then everySα is nonsingular and thus projective, by Proposition 2.18.

Therefore,
⊕

Sα is projective. �

Corollary 2.6 (Goodearl, K. R., 1976) IfA is any nonsingular rightR-module, thenSoc(A) =

A Soc(R).

2.7. The Reject

Let ℘ be a class of modules. The reject of℘ in M is defined by

RejM(℘) =
⋂

{Kerh | h : M → U for someU in ℘}.

Example 2.6 If M is an abelian group, thenRejM(Q) is the intersection of all

K ≤ M with M
/

K torsion free. SoRejM(Q) is just the torsion subgroupT(M) of M ,

the unique smallest subgroup withM
/

T(M) torsion free. And of course

T (M
/

T(M)) = 0.

Clearly,RejM(Q) is a leftR-submodule ofM .

Proposition 2.19 (Anderson, F.W., Fuller, K. R. 1992)[Proposition 8.16] Let℘ be a class of

modules, letM andN be modules and letf : M → N be a homomorphism. Then

f(RejM(℘)) ≤ RejN(℘).

Corollary 2.7 (Anderson, F.W., Fuller, K. R. 1992)[Corollary 8.17] Iff : M → N is epic

andKer(f) ⊆ RejM(℘), then

f(RejM(℘)) = RejN(℘).

Definition 2.17 If RM is a module, then its (left) annihilator is
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ℓR(M) = {r ∈ R | rx = 0 (x ∈ M)},

and thatM is faithful in caseℓR(M) = 0.

Proposition 2.20 (Anderson, F.W., Fuller, K. R. 1992)[Proposition 8.22] Foreach leftR-

moduleM ,

RejR(M) = ℓR(M).

In particular,M is faithful if and only ifM cogeneratesR.

Motivated by this fact, we define, for a class℘ of left R-modules, its annihilator:

ℓR(℘) = RejR(℘).

Thus,ℓR(℘) is simply the intersection of all left idealsI of R such thatR
/

I embeds in some

element of℘.

Corollary 2.8 (Anderson, F.W., Fuller, K. R. 1992)[Corollary 8.23] For each class℘ of left

R-modules, the reject

RejR(℘) = ℓR(℘) is a two-sided ideal.

Let ℘ be the class of simpleR-modules. ThenRad(M) is just the reject of℘ in M .
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CHAPTER 3

δ-SEMIPERFECT AND δ-PERFECT RINGS

As a generalization of small submodules, (Zhou, Y., 2000) definedδ-small submod-

ules.

3.1. δ-small Submodules

Definition 3.1 (Zhou, Y., 2000) A submoduleN ofM is said to beδ-small inM if N +K 6=

M for any proper submoduleK of M with M
/

K singular. We useN ≪δ M to indicate that

N is a δ-small submodule ofM .

Examples 3.1

(i) Every small submodule ofM is δ-small inM .

(ii) Every nonsingular semisimple submodule ofM is δ-small inM :

Let N be a nonsingular semisimple submodule ofM . LetN + X = M with M
/

X

singular. Then

M
/

X = (N +X)
/

X ∼= N
/

(N ∩X)

is singular. SinceN is nonsingularN ∩ X ≤e N . But N is semisimple, so

N ∩X = N , i.e.,N ⊆ X. This gives thatX = M . Thus,N is δ-small inM .

(iii) The δ-small submodules of a singular module are small submodules:

Since factor module of a singular module is singular, we obtain that for a singular

module,δ-small submodules and small submodules coincide.

The second singular submodule, in other words, the Goldie torsion submoduleZ2(M)

of M is defined byZ
(

M
/

Z(M)
)

= Z2(M)
/

Z(M). The moduleM is calledZ2-torsion (or

Goldie torsion) ifM = Z2(M).

Lemma 3.1 (Zhou, Y., 2000) LetN be a submodule ofM . The following are equivalent:

(i) N ≪δ M ,

(ii) If X + N = M , thenM = X ⊕ Y for a projective semisimple submoduleY with

Y ⊆ N ,
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(iii) If X +N = M with M
/

X Goldie torsion, thenX = M .

Proof

(i)⇒ (ii) Let X +N = M . By Zorn’s Lemma, there exists a submoduleY of N with respect

to the propertyX ∩ Y = 0. First we need to show that(N ∩X) + Y ≤e N . Let 0 6= a ∈ N .

Assumea is not an element ofY . By the maximality ofY , we haveX ∩ (Y + aR) 6= 0. Take

0 6= x = y + ar ∈ X, wherey ∈ Y, r ∈ R. Thenar = x− y, soar ∈ (N ∩X) + Y . Since

X ∩ Y = 0, we havear 6= 0. Therefore(N ∩X) + Y ≤e N . Thus,

M
/

(X + Y ) = (X +N)
/

(X + Y ) = (X + Y +N)
/

(X + Y ) ∼= N
/

(Y + (N ∩X))

is singular. Since(X ⊕ Y ) +N = M andN ≪δ M , we haveM = X ⊕ Y .

To see thatY is semisimple, letA ≤ Y . ThenX + A + N = M . Arguing as above

with X + A replacingX, we haveX ⊕ A = X + A is a direct summand ofM . That is,

M = (X ⊕ A)⊕K for some submoduleK of M . Then

Y = Y ∩M = Y ∩ [(X ⊕ A)⊕K] = Y ∩ [(A⊕X)⊕K] = A⊕ [Y ∩ (X ⊕K)]

SoA is a direct summand ofY . Therefore,Y is semisimple. Now, we will show thatY is

projective. WriteY = Z(Y )⊕ Yn whereYn is nonsingular. Then

M
/

(X ⊕ Yn) = (X ⊕ Y )
/

(X ⊕ Yn) = (X ⊕ Yn ⊕ Z(Y ))
/

(X ⊕ Yn) ∼= Z(Y )

which is singular. SinceM = (X + Yn) + N andN ≪δ M , we haveX ⊕ Yn = M . This

shows thatZ(Y ) = 0. SinceY is semisimple and nonsingular,Y is projective by Corollary

2.5.

(ii)⇒ (iii) Let M = X +N with M
/

X Goldie torsion. By (ii),M = X ⊕ Y whereY is pro-

jective and semisimple. It follows thatM
/

X ∼= Y is Goldie torsion. SinceY is semisimple,

we can writeY =
⊕

Sα, whereSα is simple for allα. NowSα is simple and projective. Thus

by Proposition 2.18,Z(Sα) 6= Sα, i.e.,Z(Sα) is a proper submodule ofSα. SinceSα is simple

Z(Sα) = 0. ThereforeZ(Y ) =
⊕

Z(Sα) = 0. SinceY is Goldie torsion,Y = Z(Y
/

Z(Y )).

From these we haveZ(Y ) = 0 andZ(Y ) = Y , soY = 0. Therefore,M = X.

(iii)⇒ (i) By (iii), we haveX + N = M with M
/

X Goldie torsion, thenX = M . Since

every singular module is Goldie torsion, (i) is true. �

Lemma 3.2 (Zhou, Y., 2000) LetM be a module.

(i) For submodulesN , K, L ofM withK ⊆ N , we have

(a) N ≪δ M if and only ifK ≪δ M andN
/

K ≪δ M
/

K,

(b) N + L ≪δ M if and only ifN ≪δ M andL ≪δ M .
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(ii) If K ≪δ M andf : M → N is a homomorphism, thenf(K) ≪δ N . In particular, if

K ≪δ M ⊆ N thenK ≪δ N .

(iii) Let K1 ⊆ M1 ⊆ M andK2 ⊆ M2 ⊆ M andM = M1 ⊕M2, thenK1 ⊕K2 ≪δ M if

and only ifK1 ≪δ M1 andK2 ≪δ M2.

Proof Let N , K, L are submodules ofM with K ⊆ N .

(i)(a) Suppose thatN ≪δ M . ThenK ⊆ N ≪δ M . LetK +X = M with M
/

X singular.

SinceK+X = M , we haveN+X = M . SinceN+X = M , M
/

X singular andN ≪δ M ,

we haveX = M . Therefore,K ≪δ M . Let

N
/

K +X
/

K = M
/

K

with (M
/

K)
/

(X
/

K) ∼= M
/

X singular. ThenN
/

K+X
/

K = M
/

K implies thatN+X =

M . SinceM
/

X is singular andN ≪δ M , we haveX = M , i.e.,X
/

K = M
/

K. Therefore

N
/

K ≪δ M
/

K.

Conversely, suppose thatK ≪δ M andN
/

K ≪δ M
/

K. LetN+X = M withM
/

X

singular. Then(N+X)
/

K = M
/

K, soN
/

K+(X+K)
/

K = M
/

K. SinceM
/

X singular,

we haveM
/

(X +K) is singular by Proposition 2.16. Therefore,(X +K)
/

K = M
/

K, that

is, X + K = M . SinceK ≪δ M , X + K = M , andM
/

X singular we haveX = M .

ThereforeN ≪δ M .

(i)(b) Suppose thatN + L ≪δ M . Let N + X = M with M
/

X singular. Then we have

N + L + X = M with M
/

X singular. By assumption,X = M . Therefore,N ≪δ M .

Similarly,L ≪δ M .

Conversely, suppose thatN ≪δ M andL ≪δ M . Let (N +L) +X = M with M
/

X

singular. ThenN + (L + X) = M with M
/

X singular. SinceM
/

X is singular, we have

M
/

(L + X) is singular, by Proposition 2.16. Now,N ≪δ M givesL + X = M . Since

L ≪δ M , we haveX = M . ThereforeN + L ≪δ M .

(ii) Suppose thatK ≪δ M and f : M → N is a homomorphism. Suppose that

f(K) +X = N with N
/

X singular. Then for allm ∈ M , we can writef(m) = f(k) + x,

for somek ∈ K, x ∈ X. Thenm − k ∈ f−1(X). Thusm ∈ K + f−1(X). Hence

M = K + f−1(X). SinceK ≪δ M , we haveM = K ′ ⊕ f−1(X), whereK ′ is a projective

and semisimple submodule ofK, by Lemma 3.1. Thus,M
/

f−1(X) ∼= K ′ is nonsingular. So,

Hom(N
/

X,M
/

f−1(X)) = 0, by Proposition 3.1.

0 −−−→ X −−−→ N −−−→ N
/

X −−−→ 0




y

x





x




0





y





y

0 −−−→ f−1(X) −−−→ M
0

−−−→ M
/

f−1(X) −−−→ 0
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Therefore,M = f−1(X). Thus,f(K) ⊆ f(M) ⊆ X. Hence,X = N .

For the last part, letf be the inclusion map fromM to N . ThenK ≪δ M implies

K = f(K) ≪δ N .

(iii) Let K1 ⊆ M1 ⊆ M , K2 ⊆ M2 ⊆ M andM = M1 ⊕M2. Suppose thatK1 ⊕K2 ≪δ M .

We know thatδ-small submodules are preserved under homomorphisms. Now,consider the

canonical projection π1 : M → M1. Since K1 ⊕ K2 ≪δ M ,

π1(K1 ⊕ K2) ≪δ M1, i.e., K1 ≪δ M1. Also we have the canonical projection

π2 : M → M2. SinceK1 ⊕K2 ≪δ M , π2(K1 ⊕K2) ≪δ M2, i.e.,K2 ≪δ M2.

Conversely, suppose thatK1 ≪δ M1 andK2 ≪δ M2. ThenK1 ≪δ M andK2 ≪δ M

by (ii). Therefore,K1 ⊕K2 = K1 +K2 ≪δ M , by (i)(b). �

Definition 3.2 (Zhou, Y., 2000) Let℘ be the class of all singular simple modules. For a

moduleM , let

δ(M) = RejM(℘) =
⋂

{N ⊆ M | M
/

N ∈ ℘}

be the reject inM of ℘.

Lemma 3.3 (Zhou, Y., 2000) LetM andN be modules.

(i) δ(M) =
∑

{L ⊆ M | L is a δ-small submodule ofM}.

(ii) If f : M → N is anR-homomorphism, thenf(δ(M)) ⊆ δ(N). Thereforeδ(M) is a

fully invariant submodule ofM andMδ(R) ⊆ δ(M).

(iii) If M =
⊕

i∈I

Mi, thenδ(M) =
⊕

i∈I

δ(Mi).

(iv) If every proper submodule ofM is contained in a maximal submodule ofM , thenδ(M)

is the unique largestδ-small submodule ofM .

Proof

(i) We know that

δ(M) = RejM(℘) =
⋂

{Ker f ⊆ M | f : M → U, U is a singular simple module}.

Let A ≪δ M . Thenf(A) ≪δ U , i.e., f(A) 6= U . SinceU is simple andf(A) ⊂ U ,

f(A) = 0, i.e.,A ⊆ Ker f . Therefore,A ⊆ δ(M).

Conversely, let

U1 =
∑

{L ⊆ M | L is aδ-small submodule ofM}

U2 =
⋂

{N ⊆ M | M
/

N ∈ ℘}
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Let a ∈ U2. SupposeaR is not aδ-small submodule. Then there exists a maximal idealK of

M such thata is not an element ofK, aR+K = M with M
/

K singular. SinceK ≤maxM ,

M
/

K is simple. But then we haveM
/

K is singular and simple and a is not an element ofK,

this contradicts witha ∈ U2. Therefore,aR is aδ-small submodule.

(ii) Suppose thatf : M → N is anR-homomorphism. Then

f(δ(M)) =
∑

L≪δM
f(L).

SinceL ≪δ M , f(L) ≪δ N . Thus,f(δ(M)) ⊆ δ(N). Let m be a fixed element ofM .

Thenfm : RR → MR given byf(r) = mr, r ∈ R is a homomorphism. Thenfm(δ(RR)) =

mδ(RR). Sincefm(δ(RR)) ⊆ δ(MR), we havemδ(RR) ⊆ δ(MR). Hence

∑

m∈M

mδ(RR) = Mδ(RR) ⊆ δ(MR).

(iii) Let M =
⊕

i∈I

Mi. Thenδ(Mi) ⊆ M by (ii). Sinceδ(Mi) ⊆ (Mi), we have

∑

δ(Mi) =
⊕

δ(Mi) ⊆ δ(M).

Thus,
⊕

δ(Mi) ⊆ δ(M).

Conversely, letm ∈ δ(M). Then m =
∑

i∈I′⊆I mi, I ′ is finite, and let

πi : M → Mi be theith projection. Thenπi(m) = mi ∈ δ(Mi). Thus,m ∈
⊕

δ(Mi). So

δ(M) ⊆
⊕

δ(Mi). Therefore, we obtain that

δ(M) =
⊕

δ(Mi).

(iv) Suppose that every proper submodule ofM is contained in a maximal submodule ofM .

Let L � M andM
/

L singular. Then there existsK ≤max M such thatL ⊆ K. Since

M
/

L is singular, we haveM
/

(L + K) = M
/

K is singular. Thus,δ(M) ⊆ K. Then

L + δ(M) ⊆ K 6= M . Therefore,L + δ(M) 6= M , i.e.,δ(M) is δ-small inM . Sinceδ(M)

is the sum of allδ-small submodules ofM andδ(M) is δ-small inM , δ(M) is the largest

δ-small submodule ofM . �

Next we give some descriptions ofδ(RR) and some properties ofR related toδ(RR).

From now on, letδ(R) = δ(RR), Soc(R) = Soc(RR). For a moduleM , with I ⊆ R and

X ⊆ M , let

rR(X) = {a ∈ R | Xa = 0}

lM(I) = {x ∈ M | xI = 0}.

Theorem 3.1 (Zhou, Y., 2000) Given a ringR, each of the following sets is equal toδ(R):
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(i) R1 = the intersection of all essential maximal right ideals ofR,

(ii) R2 = the unique largestδ- small right ideal ofR,

(iii) R3 = {x ∈ R | xR +K = R ⇒ K ≤⊕ R},

(iv) R4 =
⋂

{ idealsP ofR | R
/

P has a faithful singular simple module},

(v) R5 = {x ∈ R | ∀y ∈ R, ∃ a semisimple right idealY of R such that(1− xy)R⊕ Y =

R}.

Proof

(i) For a right idealI of R, R
/

I is a singular simple module if and only ifI is an essen-

tial maximal right ideal ofR. Thusδ(R) = R1.

(ii) By Lemma 3.3,δ(R) = R2.

(iii) Because of Lemma 3.1, it is easy to check that forx ∈ R, xR ≪δ R if and only ifx ∈ R3.

Thusδ(R) = R3.

(iv) An ideal P of R is such thatR
/

P has a faithful singular simple module if and only if

P = rR(M) = RejR(M) for a singular simple moduleM . Let F be a complete set of

representatives of the singular simple modules. Then

δ(R) = RejR(℘) = RejR(
∏

F M) =
⋂

F

RejR(M)

Thusδ(R) = R4.

(v) Let x ∈ δ(R). For y ∈ R, we havexy ∈ δ(R). So (xy)R ≪δ R. Since

R = (1− xy)R+ (xy)R and(xy)R ≪δ R, we have by Lemma 3.1,(1− xy)R⊕ Y = R for

a semisimple right idealY of R. Thus,x ∈ R5.

Conversely, supposex ∈ R− δ(R). Thenx is not an element ofN for some essential

maximal right idealN of R. So,xR + N = R. Write 1 = xy + n wherey ∈ R, n ∈ N . If

x ∈ R5, then

R = (1− xy)R⊕ Y = nR⊕ Y

for some semisimple right idealY of R. Sincen ∈ N , we havenR ⊆ N , and sinceY is

a semisimple right ideal, we haveY ⊆ Soc(R) ⊆ N . Therefore,R = nR + Y ⊆ N , a

contradiction. So,x is not an element ofR5. This shows thatδ(R) = R5. �

Corollary 3.1 (Zhou, Y., 2000) For a ringR, δ(R)
/

Soc(R) = J
(

R
/

Soc(R)
)

. In particular,

R = δ(R) if and only ifR is a semisimple ring.

Proof Letx+Soc(R) ∈ δ(R)
/

Soc(R), x ∈ δ(R). By Theorem 3.1 (v), for ally ∈ R there

exists a semisimple right idealY of R such thatR = (1 − xy)R ⊕ Y . Then we can write

1 + Soc(R) = [(1− xy)r + y] + Soc(R). Sincey ∈ Y andY is semisimple,y ∈ Soc(R), so
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1 + Soc(R) = (1− xy)r + Soc(R) = [(1− xy) + Soc(R)][r + Soc(R)].

Thus,1−xy+Soc(R) is right invertible inR
/

Soc(R) for all y ∈ R. Hence,x ∈ J(R
/

Soc(R)).

Therefore,J
(

R
/

Soc(R)
)

⊇ δ(R)
/

Soc(R).

Conversely, sinceJ
(

R
/

Soc(R)
)

is the intersection of all maximal submodules ofR

which containsSoc(R), it is contained in the intersection of all maximal essential ideals ofR

which containsSoc(R). Therefore,J
(

R
/

Soc(R)
)

⊆ δ(R)
/

Soc(R). �

Theorem 3.2 (Zhou, Y., 2000) The following are equivalent for a ringR:

(i) R
/

δ(R) is a semisimple ring,

(ii) Every direct product of singular semisimple modules issemisimple,

(iii) Soc(M) ∩ Z(M) = lM(δ(R)) for anyR-moduleM .

In this case,Mδ(R) = δ(M) for any moduleM .

Proof

(i)⇒ (iii) Suppose thatR
/

δ(R) is a semisimple ring. We know that

(

Soc(M) ∩ Z(M)
)

δ(R) ⊆ δ
(

Soc(M) ∩ Z(M)
)

.

Let L ⊆ Soc(M) ∩ Z(M). That is,L is semisimple and singular. Soδ(L) = 0. Therefore,

δ
(

Soc(M) ∩ Z(M)
)

= 0, i.e.,

Soc(M) ∩ Z(M) ⊆ lM(δ(R)).

SincelM(δ(R)) is anR
/

δ(R)-module,lM(δ(R)) is semisimple. Thus,

lM(δ(R)) ⊆ Soc(M).

By (i) and Definition 3.2,δ(R) is a finite intersection of essential maximal right ideals. So

δ(R) ≤e R and thus

lM(δ(R)) ⊆ Z(M).

Therefore,

Soc(M) ∩ Z(M) = lM(δ(R)).

(iii)⇒ (ii) Let M be a product of singular semisimple modules. Sinceδ(R) annihilates every

singular semisimple module, we haveM = lM(δ(R)). By (iii), M = Soc(M).

(ii)⇒ (i) R
/

δ(R) is embeddable in a product of singular simple modules, and soRδ(R) is

semisimple by (ii).

For the last statement, note thatM
/

Mδ(R) is a semisimpleR
/

δ(R)-module and

hence a semisimpleR-module. WriteM
/

Mδ(R) = S ⊕ N , whereS is singular andN

is non-singular. SinceNδ(R) = 0, we haveN = 0, by (iii). Thus,
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δ(M
/

Mδ(R)) = δ(S) = 0.

But by Lemma 3.3,

[δ(M) +Mδ(R)]
/

Mδ(R) ⊆ δ(M
/

Mδ(R)).

It follows thatδ(M) ⊆ Mδ(R), and soδ(M) = Mδ(R), by Lemma 3.3. �

Lemma 3.4 (Zhou, Y., 2000) IfP is a projective module, thenδ(P ) = Pδ(R) andδ(P ) is

the intersection of all essential maximal submodules ofP .

Proof SinceP is a projective module,P is a direct summand of a free module. Assume

thatP ⊕ P ′ = R(∆). Then by Lemma 3.3,

δ(P )⊕ δ(P ′) = δ
(

R(∆)
)

=
(

δ(R)
)(∆)

= R(∆)δ(R) = Pδ(R)⊕ P ′δ(R).

SincePδ(R) ⊆ δ(P ) andP ′δ(R) ⊆ δ(P ′), we must havePδ(R) = δ(P ). We know that

δ(R) is the intersection of all essential maximal right ideals ofR, soδ(P ) = Pδ(R) is the

intersection of all essential maximal submodules ofP . �

3.2. Projectiveδ-covers

In this section, the notion of projectiveδ-covers is defined. Unlike projective covers,

the projectiveδ-covers of a module are not unique up to isomorphism, but theydiffer by only

a projective semisimple direct summand.

Definition 3.3 (Zhou, Y., 2000) A pair(P ; p) is called a projectiveδ-cover of the moduleM

if P is projective andp is an epimorphism ofP ontoM withKer(p) ≪δ P .

Every projective cover ofM is a projectiveδ-cover ofM . As we will see later, some

modules may not have projectiveδ-covers and some modules have projectiveδ-covers but no

projective covers.

Lemma 3.5 (Zhou, Y., 2000) LetM = M1 ⊕M2 ⊕ · · · ⊕Mn be such that allρi : Pi → Mi

are projectiveδ-covers. LetP = P1⊕P2⊕· · ·⊕Pn. Thenρ =
⊕

ρi : P → M is a projective

δ-cover.

Proof By Lemma 3.3,Ker(ρ) =
⊕

Ker(ρi) is δ-small inM . SincePi, i = 1, 2, . . . , n are

projectiveR-modules, we haveP = P1⊕P2⊕ · · ·⊕Pn is a projectiveR-module. Therefore,

ρ =
⊕

ρi : P → M is a projectiveδ-cover ofM . �
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Lemma 3.6 (Zhou, Y., 2000) Letp : P → M be a projectiveδ-cover. IfQ is projective and

q : Q → M is an epimorphism, then there exist decompositionsP = A⊕B andQ = X ⊕ Y

such that

(i) A ∼= X,

(ii) p|A : A → M is a projectiveδ-cover,

(iii) q|X : X → M is a projectiveδ-cover,

(iv) B is a projective semisimple module withB ⊆ Ker(p) andY ⊆ Ker(q).

Proof

Q
h

~~⑦
⑦

⑦

⑦

q

��

P
p

// M // 0

SinceQ is projective, there existsh : Q → P such thatq = ph. Thus, we have

P = h(Q) + Ker(p).

By Lemma 3.3, sinceKer(p) ≪δ P , we haveP = h(Q) ⊕ B, whereB is a projective

semisimple submodule withB ⊆ Ker(p).

p|A(A) = p(A) = p(A+B) = p(P ) = M ,

that is,p|A is an epimorphism. Sinceh(Q) = A is a direct summand ofP , A is projective.

SinceKer(p|A) ⊆ Ker(p) ≪δ P , Ker(p|A) ≪δ P . So,p|A : A → M is a projectiveδ-cover.

SinceA is projective,h : Q → A splits. So, there existsg : A → Q such thathg = 1A.

Thus

Q = X ⊕ Y = Im g ⊕Ker(h).

This givesA ∼= g(A) = X. SinceKer(p|A) ≪δ A, we have that

Ker(q|X) = Ker(p|A) ≪δ g(A) = X,

by Lemma 3.3. Note that

q(X) = (ph)(X) = (ph)(X + Y ) = (ph)(Q) = q(Q) = M .

Thus,q|X : X → M is a projectiveδ-cover. �
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Lemma 3.7 (Zhou, Y., 2000) LetP be a projective module andN be a submodule ofP . Then

the following are equivalent:

(i) P
/

N has a projectiveδ-cover,

(ii) P = P1 ⊕ P2 for someP1 andP2 withP1 ⊆ N andP2 ∩N ≪δ P .

Proof (i)⇒(ii) Consider a projectiveδ-coverq : Q → P
/

N . Let p : P → P
/

N be the

canonical epimorphism.

Q

h

}}④
④

④

④

④

q

��

P
p
// P
/

N // 0

Then we haveq = ph. So,

p = Ker(p) + Imh = N + Imh.

By Lemma 3.3 , there exists a decompositionP = X ⊕ Y such thatp|X : X → P
/

N is a

projectiveδ-cover andY ⊆ Ker(p) = N . ThusX∩N = Ker(p|X) ≪δ X.SinceX is a direct

summand ofP , X ∩N ≪δ P by Lemma 3.3. Now letP1 = Y andP2 = X.

(ii)⇒(i) Suppose (ii) holds. Letp : P2 → P
/

N be the canonical epimorphism. ThenKer p =

N∩P2 ≪δ P . Hence,Ker p is δ-small inP2, by Lemma 3.3. So(P2, p) is a projectiveδ-cover

of P
/

N . �

3.3. Rings Over Which Certain Modules Have Projectiveδ-covers

In this section various characterizations and properties are obtained for a ringR, for

which everyR-module (respectively simpleR-module, cyclically presentedR-module) has a

projectiveδ-cover.

Definition 3.4 (Zhou, Y., 2000) A ringR is called δ-perfect (respectivelyδ-semiperfect,

δ-semiregular) if everyR-module (respectively simpleR-module, cyclically presentedR-

module) has a projectiveδ-cover.

Examples 3.2

(i) Every right perfect ring isδ-perfect.

(ii) Semiperfect rings andδ-perfect rings areδ-semiperfect.
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We will show later that a ringR is calledδ-semiperfect if and only if every finitely

generatedR-module has a projectiveδ-cover. First we characterize theδ-semiregular rings.

Lemma 3.8 (Zhou, Y., 2000) Letx ∈ M . The following are equivalent:

(i) There exists a decompositionM = A ⊕ B such thatA is projective,A ⊆ xR and

xR ∩B ≪δ M ,

(ii) There existsα ∈ M∗ such that(α(x))2 = α(x) andx− xα(x) ∈ δ(M).

Lemma 3.9 (Zhou, Y., 2000) The following are equivalent for a moduleM :

(i) For any finitely generated submoduleA ofM , there is a decompositionM = M1 ⊕M2

such thatM1 ⊆ A andA ∩M2 ≪δ M ,

(ii) For any cyclic submoduleA of M , there is a decompositionM = M1 ⊕M2 such that

M1 ⊆ A andA ∩M2 ≪δ M ,

(iii) Every finitely generated (or cyclic) submoduleA of M can be written asA = N ⊕ S,

whereN is a direct summand ofM andS ≪δ M .

Proof (i)⇒(iii) Suppose that for any finitely generated submoduleA of M , there is a de-

compositionM = M1 ⊕M2 such thatM1 ⊆ A andM2 ∩ A ≪δ M . Then

A = A ∩ (M1 ⊕M2) = M1 ⊕ (A ∩M2).

(iii)⇒(ii) Let A be a cyclic submodule ofM . Then by assumption,A = N ⊕S, whereN is a

direct summand ofM andS is δ-small inM . WriteM = N ⊕N ′ and letπ : N ⊕N ′ → N ′

be the projection. ThenA = N ⊕ (A ∩N ′) and

A ∩N ′ = π(A ∩N ′) = π(N + (A ∩N ′)) = π(A) = π(N + S) = π(S).

SinceS ≪δ M , π(S) ≪δ N
′. ThereforeA ∩N ′ ≪δ N

′.

(i)⇒(ii) Clear.

(ii)⇒(i) The proof is obtained by induction on the number of generating elements of the

submodules ofM . The assertion in (ii) provides the basis.

Assume the assertion to be proved for submodules withn−1 generating elements and

consider

U = u1R + · · ·+ unR.

We choose an idempotente ∈ End(M) with e(M) ⊆ unR. We can write

M = e(M)⊕ (1− e)M .
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First we need to show thatunR ∩ (1 − e)(M) = (1 − e)(unR). If x ∈ unR ∩ (1 − e)(M),

then we have

x = unr = (1− e)m = m− em.

Sincee(M) ⊆ unR, em ∈ unR, thusm ∈ unR and sox ∈ (1 − e)unR. Conversely, if

x ∈ (1 − e)unR, thenx ∈ unR. Also we have(1 − e)unR ⊆ (1 − e)(M). Therefore,

x ∈ (1− e)M ∩ unR. Hence,

unR ∩ (1− e)(M) = (1− e)(unR) ≪δ M .

Now we formK =
∑

i<n(1− e)uiR. Frome(U) ⊆ unR ⊂ U , we obtain the relation

U = (1− e)U + e(U) = K + unR.

By induction hypothesis, we find an idempotentf ∈ End(M) with

f(M) ⊆ K andK ∩ (1− f)(M) = (1− f)(K) ≪δ M .

Then we haveM = f(M)⊕ (1− f)(M). Fromf(M) ⊂ K ⊂ (1− e)(M), we can write

f(m) ∈ K =
∑

i<n(1− e)uiR,

so

f(m) = (1− e)u1r1 + · · ·+ (1− e)un−1rn−1

and(1 − e)f(m) = f(m). Thus,f(m) ∈ (1 − e)f(M). Similarly, we can show that(1 −

e)f(m) ∈ f(M). Hence,(1− e)f = f , that is,ef = 0. Let g = e+ f − fe. Then

g2 = (e+ f − fe)(e + f − fe) = e+ f − fe = g,

that is,g = e + f − fe is an idempotent. So we can writeM = g(M)⊕ (1− g)(M). Then,

g(M) ⊆ f(M) + e(M) ⊆ K + unR = U

We have1− g = 1− e− f + ef = (1− f) + e(f − 1) = (1− f)(1− e). So,

(1− f)(1− e)(U) = (1− f)(1− e)(K) + (1− f)(1− e)(unR)

⊆ (1− f)(K) + (1− f)(1− e)(unR)

Since(1− f)(K) ≪δ M and(1− e)(unR) ≪δ M , we have

(1− f)(K) + (1− f)(1− e)(unR) ≪δ M

and hence(1− f)(1− e)(U) ≪δ M . Therefore,

(1− g)(M) ∩ U = (1− f)(1− e)(U) ⊂ (1− f)(K) + (1− f)(1− e)unR ≪δ M .

�
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Lemma 3.10 (Zhou, Y., 2000) The following are equivalent for a moduleM :

(i) For any submoduleA ofM , there is a decompositionM = M1⊕M2 such thatM1 ⊆ A

andA ∩M2 ≪δ M ,

(ii) Every submoduleA ofM can be written asA = N ⊕ S withN is a direct summand of

M andS is δ-small inM .

Proof (i)⇒(ii) Suppose that there is a decompositionM = M1 ⊕ M2 such thatM1 ⊆ A

andM2 ∩A ≪δ M . Then

A = A ∩ (M1 ⊕M2) = M1 ⊕ (A ∩M2).

SayN = M1 andS = A ∩M2.

(ii)⇒(i) Let A ≤ M , A = N ⊕ S with N is a direct summand ofM andS is δ-small inM .

Write M = N ⊕ N ′ and letπ : N ⊕ N ′ → N ′ be the projection. ThenA = N ⊕ (A ∩ N ′)

and

A ∩N ′ = π(A ∩N ′) = π(N + (A ∩N ′)) = π(A) = π(N + S) = π(S).

SinceS ≪δ M , we haveπ(S) ≪δ N
′, that is,

π(S) = A ∩N ′ ≪δ N
′ ⊆ M .

Therefore,A ∩N ′ ≪δ M . �

Theorem 3.3 (Zhou, Y., 2000) The following are equivalent for a ringR:

(i) R is a δ-semiregular ring,

(ii) Every finitely presentedR-module has a projectiveδ-cover,

(iii) Every finitely generated (or cyclic) right idealI of R can be written asI = eR ⊕ S,

wheree = e2 ∈ R andS ⊆ δ(R),

(iv) R
/

δ(R) is a Von-Neumann regular ring and idempotents lift moduloδ(R),

(v) For anya ∈ R, there existsb ∈ R such that(ba)2 = ba anda− aba ∈ δ(R),

(vi) For anya ∈ R, there existsb ∈ R such that(ab)2 = ab anda− aba ∈ δ(R).

Proof Let R = R
/

δ(R) be the factor ring and for anyx ∈ R let x = x+ δ(R).

(i)⇒(iv) Let a ∈ R. SinceR is δ-semiregular, every cyclically presentedR-module has a

projectiveδ-cover. So,R
/

aR has a projectiveδ-cover. Thus, by Lemma 3.7,aR lies over a

projective direct summand ofR. Hence, there exists a decompositionR = I ⊕ J such that

I ⊆ aR andaR ∩ J ≪δ R. ThenaR = I ⊕ (aR ∩ J). By Theorem 3.1,aR ∩ J ⊆ δ(R).

Write I = eR for an idempotente ∈ R. Then
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(

aR + δ(R)
)/

δ(R) =
(

eR + (aR ∩ J) + δ(R)
)/

δ(R) =
(

eR + δ(R)
)/

δ(R).

So,aR = eR is a direct summand ofR. Since every finitely generated (cyclic) submodule is

a projective direct summand,R is a regular ring.

To see the second part, leta be an idempotent inR. Thena2 + δ(R) = a + δ(R). As

aboveaR = eR. We can write

R = aR⊕ (1− a)R andR = eR ⊕ (1− e)R.

SinceaR = eR we have(1 − e)a = 0, that is,ea = a and(1 − a)e = 0, that is,ae = e. Let

f = e+ ea(1 − e). Then

f 2 = (e+ ea(1 − e))(e + ea(1− e)) = e+ ea(1 − e) = f .

So,f is an idempotent inR.

f = e + ea(1− e) = e+ a(1− e) = e + a− ae = a.

Therefore,f = a, that is, idempotents lift moduleδ(R).

(iv)⇒(i) Let a ∈ R. SinceR is regular,aR is a direct summand ofR. By (iv), there exists an

idempotente ∈ R such thataR = eR. Thus,

R = aR⊕ (1− e)R.

It follows thatR = aR+(1− e)R+ δ(R) andaR∩ (1− e)R ⊆ δ(R). Note thatδ(R) ≪δ R.

By Lemma 3.1,R = [aR + (1− e)R]⊕X whereX is a projective semisimple right ideal of

R. Thus,

R
/

aR =
(

aR + (1− e)R
)

⊕X)
/

aR ∼=
(

aR + (1− e)R
)/

aR ⊕X

∼= (1− e)R
/

(aR ∩ (1− e)R)⊕X.

SinceaR ∩ (1− e)R ⊆ δ(R), aR ∩ (1− e)R ≪δ (1− e)R, by Lemma 3.2. So,

φ : (1− e)R → (1− e)R
/(

aR ∩ (1− e)R
)

is a projectiveδ-cover of(1− e)R
/(

aR ∩ (1− e)R
)

. Therefore,

ϕ : (1− e)R ⊕X → (1− e)R
/(

aR ∩ (1− e)R
)

⊕X ∼= R
/

aR

is a projectiveδ-cover ofR
/

aR.

(i)⇒(ii) It suffices to show that for any finitely generated free moduleF , and any finitely

generated submoduleX of F , F
/

X has a projectiveδ-cover. Because of Lemma 3.9, we

can assumeX = xR is a cyclic submodule. By (i), we can writeF = F1 ⊕ F2 and assume
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any factor moduleFi (i = 1, 2) modulo a cyclic submodule has a projectiveδ-cover. Write

x = x1 + x2, wherex1 ∈ F1 andx2 ∈ F2. By Lemmas 3.7 and 3.8, there existsα ∈ F ∗
1 such

that

(α(x1))
2 = α(x1) andx1 − x1α(x1) ∈ δ(F1).

Extendα toF by definingα(F2) = 0. Let

y = x− xα(x) andyi = xi − xiα(x1) for i = 1, 2.

Sincey2 ∈ F2, andF2

/

y2R has a projectiveδ-cover, by Lemmas 3.7 and 3.8, there exists

β ∈ F ∗
2 such thatβ(y2) is an idempotent ofR andy2 − y2β(y2) ∈ δ(F2). Extendβ to F by

lettingβ(F1) = 0. Let

e = α(x) = α(x1) andf = β(y) = β(y2).

Sincefe = 0, e + f − ef is an idempotent. Define

γ = α + (1− e)(β − β(x)α) ∈ F ∗.

Then

γ(x) = e + (1− e)f = e + f − ef

is an idempotent and

x− xγ(x) = x− xe− xf + xef = (x− xe)− (x− xe)f = y − yβ(y)

= y1(1− β(y2)) + (y2 − y2β(y2)) ∈ δ(F1) + δ(F2) ⊆ δ(F ).

By Lemmas 3.7 and 3.8,F
/

xR has a projectiveδ-cover.

(ii)⇒(iii) Suppose that every finitely presented module has a projectiveδ-cover. ThenR
/

aR

has a projectiveδ-cover. By Lemma 3.7,R = A ⊕ B for someA andB with A ⊆ aR and

B ∩ aR ≪δ R. ThenA = eR for an idempotente ∈ R. Thus,

aR = A⊕ (aR ∩ B) = eR⊕ S whereS ⊆ δ(R).

(iii)⇒(i) Suppose that every cyclic right idealI = aR of R can be written asaR = eR ⊕ S,

wheree2 = e ∈ R andS ⊆ δ(R). Then by Lemma 3.9,R = A ⊕ B such thatA ⊆ aR

andB ∩ aR ⊆ δ(R). Therefore, by Lemma 3.7,R
/

aR has a projectiveδ-cover. ThusR is

δ-semiregular.

(iii)⇒(vi) For anya ∈ R, there existse2 = e ∈ R such thataR = eR ⊕ S, whereS ⊆ δ(R).

SinceeR ≤ aR, write e = ab anda = er + s whereb, r ∈ R ands ∈ S. Then we have,

e2 = (ab)2 = e = ab andea = er + es.
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a− aba = a− ea = er + s− er − es = s− es = s ∈ S ⊆ δ(R),

that is,a− aba ∈ δ(R).

(vi)⇒(iii) For I = aR, we haveb ∈ R such that(ab)2 = ab anda− aba ∈ δ(R). Let e = ab.

For anyr ∈ R, ar = ear+ (a− ea)r. ThereforeI = eR⊕S, whereS = (a− ea)R ⊆ δ(R).

(i)⇒(v) Suppose thatR is a δ-semiregular ring. Leta ∈ R. ThenR
/

aR has a projective

δ-cover. By Lemma 3.7,R = A⊕ B such thatA ⊆ aR andB ∩ aR ⊆ δ(R). So by Lemma

3.8, there existsb ∈ R such that(ba)2 = ba anda− aba ∈ δ(R).

(v)⇒(i) Suppose that for anya ∈ R, there existsb ∈ R such that(ba)2 = ba anda − aba ∈

δ(R). Then by Lemma 3.8, there exists a decompositionR = A ⊕ B such thatA ⊆ aR

andB ∩ aR ≪δ R. Then by Lemma 3.7,R
/

aR has a projectiveδ-cover, that is,R is a

δ-semiregular ring. �

Next we characterize theδ-semiperfect rings.

Theorem 3.4 (Zhou, Y., 2000) The following statements are equivalent for a ring R:

(i) R is a δ-semiperfect ring,

(ii) Every finitely generatedR-module has a projectiveδ-cover,

(iii) Every right idealI ofR can be written asI = eR⊕S, wheree = e2 ∈ R andS ⊆ δ(R),

(iv) R
/

δ(R) is a semisimple ring and idempotents lift moduloδ(R),

(v) There exists a complete orthogonal set of idempotentse1, e2, . . . , en such that, for each

i, eithereiR is a simpleR-module oreiR has a unique essential maximal submodule,

(vi) For any countably generated right idealI, R
/

I has a projectiveδ-cover.

Proof (i)⇒(ii) Suppose thatR is aδ-semiperfect ring, that is, every simpleR-module has

a projectiveδ-cover. So we can form a setΓ of R-modules such that every module inΓ is a

projectiveδ-cover of some simple module and every simple module has a projectiveδ-cover

in Γ. Thus,Γ generates everyR-module. LetM be a finitely generatedR-module. We may

assumeM is not semisimple. ThenM has a proper essential submoduleN . SinceM is

finitely generated, there exists a maximal submoduleL ≤ M such thatN ⊆ L. By Lemma

3.3 (ii),

Mδ(R) ⊆ δ(M) ⊆ L ⊂ M .

Thus,M
/

Mδ(R) 6= 0. There existsPi ∈ Γ (i = 1, 2, . . . , n) such that

P = P1 ⊕ P2 ⊕ · · · ⊕ Pn
µ

−−−→ M −−−→ 0
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Sinceµ(Pδ(R)) = µ(P )δ(R) = Mδ(R), µ induces an epimorphism

P1

/

P1δ(R)⊕ P2

/

P2δ(R)⊕ · · · ⊕ Pn

/

Pnδ(R) ∼= P
/

Pδ(R) → M
/

Mδ(R) → 0.

SincePi is a projectiveδ-cover of a simple module,Pi contains aδ-small maximal submodule

Xi. Thus,

Xi ⊆ δ(Pi) = Piδ(R) ⊆ Pi.

This shows thatPi

/

Piδ(R) is simple or0. Hence,M
/

Mδ(R) is a finite direct sum of

simple modules. By Lemma 3.5,M
/

Mδ(R) has a projectiveδ-cover. Note thatνµ :

P → M
/

Mδ(R) is onto, whereν : M → M
/

Mδ(R) is the natural homomorphism

of M onto M
/

Mδ(R). By Lemma 3.6,P has a decompositionP = X ⊕ Y such that

(νµ)|X : X → M
/

Mδ(R) is a projectiveδ-cover.

X
µ

yyt
t

t

t

t

t

µ

��

M
ν
// M
/

Mδ(R) // 0

M = µ(X) +M
/

Mδ(R).

By (ii) and (iv) in Lemma 3.3, we haveMδ(R) ≪δ M and so by Lemma 3.1, we have

M = µ(X)⊕ Z for a projective submoduleZ ≤ Mδ(R). Note that

Ker(µ|X) = Ker((νµ)|X) ≪δ X.

Soµ|X : X → µ(X) is a projectiveδ-cover ofµ(X). Thus

µ|X ⊕ f : X ⊕ Z → µ(X)⊕ Z = M

is a projectiveδ-cover ofM .

(ii)⇒(iii) Let I be a right ideal ofR. ThenR
/

I =< 1 + I > is cyclic. So it has a projective

δ-cover. By Lemma 3.7,R = eR⊕ (1− e)R such that

eR ⊆ I and(1− e)R ∩ I ≪δ R.

Then

I = I ∩ [eR⊕ (1− e)R] = eR⊕ [I ∩ (1− e)R].

SayS = I ∩ (1− e)R.

(iii)⇒(i) Let S be a simpleR-module. By (iii),

S ∼= eR whereR = eR⊕ (1− e)R.
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Thus,S is projective. So, every simpleR-module has a projectiveδ-cover, i.e.,R is a δ-

semiperfect ring.

(iii)⇒(iv) Suppose that every finitely generated module has a projective δ-cover and every

right idealI of R can be written asI = eR ⊕ S, wheree = e2 ∈ R andS ⊆ δ(R). By

(iii), and Theorem 3.3 (iii), every idempotent ofR
/

δ(R) can be lifted to an idempotent ofR.

Let I + δ(R)
/

δ(R) be a submodule ofR
/

δ(R). Then by assumption,I = eR ⊕ S, where

e = e2 ∈ R andS ⊆ δ(R). Then

R
/

δ(R) = (e+ δ(R))⊕
(

(1− e) + δ(R)
)/

δ(R) = I ⊕
(

1− e + δ(R)
)/

δ(R).

ThereforeR is semisimple.

(iv)⇒(i) Suppose thatR
/

δ(R) is a semisimple ring and idempotents lift moduloδ(R). LetX

be a singular simpleR-module. ThenXδ(R) = 0, soX is a simpleR
/

δ(R)-module. Since

R
/

δ(R) is semisimple,X ∼= I
/

δ(R) asR
/

δ(R)-module, whereI
/

δ(R) is a direct summand

of R
/

δ(R). Then there existse = e2 ∈ R such that

X ∼= I
/

δ(R) = (eR + δ(R))
/

δ(R).

Thus we have

X ∼= eR + δ(R)
/

δ(R) = eR
/

eR ∩ δ(R) = eR
/

eδ(R)

asR-modules. By Lemma 3.3 (iv),δ(eR) = eRδ(R) = eδ(R) ≪δ eR. SoeR is a projective

δ-cover ofX.

To prove (iv)⇒(v), we need the following proposition:

Proposition 3.1 (Bland, Paul E., 2010) LetI1, I2, . . . , In be left ideals of the ringR. Then

the following are equivalent about the leftR-moduleR:

(i) R = I1 ⊕ I2 ⊕ · · · ⊕ In,

(ii) Each elementr ∈ R, has a unique expressionr = r1+ · · ·+rn, ri ∈ Ii(i = 1, 2, . . . , n),

(iii) There exists a (necessarily unique) complete sete1, . . . , en of pairwise orthogonal idem-

potents inR with Ii = Rei(i = 1, 2 . . . , n).

Note in particular that ife1, . . . , en are idempotents inR that satisfy (iii), then for eachr ∈ R,

r = re1 + re2 + · · ·+ ren.

Now we can give the proof.

(iv)⇒(v) Let R = R
/

δ(R) be the factor ring anda = a + δ(R) for anya ∈ R. SinceR is

semisimple,R is a direct sum ofk minimal right ideals for somek. Let I1
/

δ(R) be a minimal

right ideal ofR and hence a direct summand ofR. By assumption, there exists an idempotent

f1 of R such thatI1 = f1R + δ(R). Thus, we have
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I1
/

δ(R) ∼= f1R
/

f1R ∩ δ(R) = f1R
/

f1δ(R) = f1R
/

δ(f1R).

SinceSoc(R) ⊆ δ(R) andR is semisimple,δ(R) ≤e R. Thus,f1R
/

δ(f1R) is singular. It

follows thatδ(f1R) is an essential maximal submodule off1R. By Lemma 3.4,δ(f1R) is the

unique essential maximal submodule off1R. If (1− f1)R 6= 0, then it has a direct summand

I2
/

δ(R) which is a minimal right ideal ofR. It follows that

I2 = [I2 ∩ (1− f1)R] + δ(R).

Let I = I2 ∩ (1 − f1)R. By Lemma 3.7, there exists a decomposition(1 − f1)R = X ⊕ Y

such thatX ⊆ I andI ∩Y ≪δ (1− f1)R. Thus,I ∩Y ⊆ δ(R). WriteX = fR with f 2 = f .

SincefR ⊆ (1− f1)R, we havef1fR ⊆ 0. Thus,f1f = 0. Let f2 = f(1− f1). Then

f 2
2 = f(1− f1)f(1− f1) = (f − ff1)(f − ff1) = f − ff1 − ff1f − ff1ff1

= f − ff1 = f(1− f1) = f2.

Thus,f 2
2 = f2 andf2f1 = f1f2 = 0. Also we have

f2f = f(1− f1)f = (f − ff1)f = f − ff1f = f .

If f2 ∈ δ(R), thenf = f2f ∈ δ(R). Thus,I = X ⊕ (I ∩ Y ) ⊆ δ(R) and soI2 = δ(R) which

gives a contradiction. Hence,f2 is not an element ofδ(R). SinceI2
/

δ(R) is simple,

I2 = δ(R) =
(

f2R + δ(R)
)/

δ(R) ∼= f2R
/(

f2R ∩ δ(R)
)

= f2R
/

f2δ(R) = f2R
/

δ(f2R)

As aboveδ(f2R) is the unique essential maximal submodule off2R. By a simple induction,

we can choose idempotentsf1, f2, . . . , fk in R such that

fi+1(f1 + · · ·+ fi) = (f1 + · · ·+ fi)fi+1 = 0

for i = 1, . . . , k − 1, each fiR has a unique essential maximal submodule, each

[fiR + δ(R)]
/

δ(R) is a minimal right ideal ofR, andR =
⊕k

i=1[fiR + δ(R)
/

δ(R)]. It

follows that fifj = 0 if i 6= j and 1 ≤ i, j ≤ k. Thus,
∑k

i=1 fiR =
⊕k

i=1 fiR and

R =
∑k

i=1 fiR + δ(R). By Lemma 3.1,

R = (
⊕k

i=1 fiR)⊕ Yk+1 ⊕ · · · ⊕ Yn,

where eachYj is a simpleR-module. Now by Proposition 3.1, there exists a complete or-

thogonal set{ei | i = 1, . . . , n} of idempotents such thateiR = fiR for i = 1, . . . , k and

ejR = Yj for j = k + 1, . . . , n.

(ii)⇒(vi) Suppose that every finitely generatedR-module has a projectiveδ-cover. LetI be

a countably generated right ideal ofR. SinceR
/

I =< 1 + I > is finitely generated, by
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assumptionR
/

I has a projectiveδ-cover.

(v)⇒(i) Let R = e1R⊕e2R⊕· · ·⊕enR. LetM be a simpleR-module. Then eithereiR → M

is a projectiveδ-cover ofM or eiR → eiR
/

δ(eiR) → M is a projectiveδ-cover ofM . So,

every simpleR-module has a projectiveδ-cover. Therefore,R is δ-semiperfect.

(vi)⇒(iv) By Theorem 3.3,R is δ-semiregular. So,R
/

δ(R) is regular and idempotents of

R
/

δ(R) lift to R. We need to show thatR
/

δ(R) is semisimple. It is enough to show thatR

is right Noetherian. If not, there exists a family{ui | i = 1, 2, . . . , n} of nonzero idempotents

of R such that

u1R ⊂ u2R ⊂ · · ·

is a strictly ascending chain. For eachi, writeui+1R = uiR⊕Ai for a right idealAi of R and

ui+1 = vi + li with vi ∈ uiR andli ∈ Ai. Then0 6= li = l2i anduiR = viR. Fork > i, we

haveli ∈ ukR = vkR ⊆ uk+1R and so

li = uk+1li = (vk + lk)li = vkli + lkli.

showslkli = 0. For eachi, there exists an idempotentei of R such thatei = li. Thus

eiej ∈ δ(R) for i > j. Let L = e1R + e2R + · · · . By Lemma 3.7,R = eR ⊕ (1 − e)R,

wheree = e2 such thateR ⊆ L and(1 − e)R ∩ L ≪δ R. SoL = eR ⊕ [(1 − e)R ∩ L] with

(1 − e)R ∩ L ⊆ δ(R). Write e = e1r1 + · · · + enrn for somen, whereri ∈ R. For i > n,

write ei = esi + ti, wheresi ∈ R andti ∈ δ(R). Then

ei = eiei = ei(esi + ti) = ei[(e1r1 + · · ·+ enrn)si + ti]

= eie1r1si + · · ·+ eienrnsi + eiti ∈ δ(R),

showsli = ei = 0 for all i > n, a contradiction. This contradiction shows thatR is right

Noetherian. ThereforeR is semisimple. �

Theorem 3.5 (Zhou, Y., 2000) The following statements are equivalent for a ring R:

(i) R
/

Soc(R) is a right perfect ring,

(ii) R
/

δ(R) is semisimple andδ(M) 6= M for every non-semisimple moduleM ,

(iii) R
/

δ(R) is semisimple andδ(M) ≪δ M for every non-semisimple moduleM ,

(iv) R
/

δ(R) is semisimple andδ(M) ≪δ M for every moduleM .

Proof (i)⇒(ii) Since R
/

Soc(R) is a right perfect ring,(R
/

Soc(R))
/

J(R
/

Soc(R)) is

semisimple. We know thatJ(R
/

Soc(R)) = δ(R)
/

Soc(R). Therefore,R
/

δ(R) is semisim-

ple. Supposeδ(M) = M for a non-semisimple moduleM . Note that, sinceR
/

δ(R) is
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semisimple,δ(M) = Mδ(R). Thus,M = δ(M) = Mδ(R) is non-semisimple. So there

exists a non-semisimple submodule. ThenMa1R is not semisimple for somea1 ∈ δ(R).

But Ma1R = Mδ(R)a1R, so there existsa2 ∈ δ(R) such thatMa2a1R is not semisim-

ple. A simple induction shows that there exists a sequencea1, a2, . . . ∈ δ(R) such that

Manan−1 · · · a2a1R is not semisimple for alln. ThusManan−1 · · · a2a1R * Soc(R) for

all n, i.e., anan−1 · · · a2a1R * Soc(R) for all n. Therefore,J(R
/

Soc(R)) is not rightT -

nilpotent and this gives us a contradiction.

(ii)⇒(iii) Let M be a non-semisimple module andM = δ(M) + K with M
/

K singular.

SupposeM
/

K is not semisimple. By (ii),

(δ(M) +K)
/

K = (Mδ(R) +K)
/

K = (M
/

K)δ(R) = δ(M
/

K) 6= M
/

K,

which implies thatM 6= δ(M) + K and this gives a contradiction. SoM
/

K is singular

semisimple. Thus,(M
/

K)δ(R) = 0, which shows thatδ(M) ⊆ K and soM = K. There-

fore,δ(M) ≪δ M .

(iii)⇒(iv) It suffices to show thatδ(M) ≪δ M for any semisimple moduleM . Write

M = S⊕N with S singular andN nonsingular. Thenδ(M) = δ(S⊕N) = δ(S)⊕δ(N). Non-

singular submodule of a semisimple module isδ-small inM , soN ≪δ M , i.e.,δ(N) = N .

We know that semisimple modules has no nonzero small submodule and ifX is a singular

module andK is aδ-small submodule ofX thenK is a small submodule ofX. Thus, sinceS

is singular and semisimple submodule ofM , δ(S) = 0. Hence,δ(M) = 0 +N = N ≪δ M .

Therefore,δ(M) ≪δ M .

To prove (iv)⇒(i) we need the following Lemmas:

Lemma 3.11 (Anderson, F.W., Fuller, K. R. 1992)[Lemma 28.1] Leta1, a2, . . . be a sequence

in R. LetF be the free leftR-module with basisx1, x2, . . ., let yn = xn − anxn+1, (n ∈ N)

and finally, letG be the submodule ofF spanned byy1, y2, . . .. Then

(i) G is free with basisy1, y2, . . .

(ii) G = F if and only if for eachk ∈ N, there isn ≥ k such thatak · · · an = 0.

Lemma 3.12 (Anderson, F.W., Fuller, K. R. 1992)[Lemma 28.2] With the hypothesis of

Lemma 3.11, ifG is a direct summand ofF , then the chain

a1R ≥ a1a2R ≥ · · ·

of principal right ideals terminates.

Now we can give the proof.

(iv)⇒(i) Let F ∼= R(ℵ0) have a free basisx1, x2, . . .. Let a1, a2, . . . be a sequence inδ(R)

andG =
∑∞

i=1(xi − xi+1ai). ThenF = G + δ(F ). By assumption,δ(F ) ≪δ F . Thus,
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F = G ⊕ Y for a semisimple submoduleY . Thus, by Lemma 3.12, there exists a numbern

such thatRan+1an · · · a1 = Ran · · · a1. Thenan · · · a1 = ran+1 · · · a1 for somer ∈ R and so

(1− ran+1)an · · · a1 = 0. Sinceran+1 ∈ δ(R), we have

ran+1 + Soc(R) ∈ δ(R)
/

Soc(R) = J(R
/

Soc(R)).

Therefore,(1 − ran+1) + Soc(R) is right invertible. Thus,an · · · a1 ∈ Soc(R). Hence,

δ(R)
/

Soc(R) = J(R
/

Soc(R)) is rightT -nilpotent. Therefore,R
/

Soc(R) is a right perfect

ring. �

Theorem 3.6 (Zhou, Y., 2000) The following are equivalent for a ringR:

(i) R is a δ-perfect ring,

(ii) Every semisimpleR-module has a projectiveδ-cover,

(iii) R is a δ-semiperfect ring andδ(M) ≪δ M for any moduleM ,

(iv) R
/

Soc(R) is right perfect ring and idempotents lift moduloδ(R).

Proof (ii)⇒(iii) Suppose that every semisimpleR-module has a projectiveδ-cover. Then

every simpleR-module has a projectiveδ-cover, i.e.,R is aδ-semiperfect ring and soR
/

δ(R)

is semisimple. By Theorem 3.5, it suffices to show thatδ(M) 6= M for any non-semisimple

moduleM . Suppose for the contrary thatδ(M) = M for some non-semisimple moduleM .

Since every module is an epimorphic image of a free module, there exists an epimorphism

f : P → M with P projective. SinceM is non-semisimple, we haveP is non-semisimple.

Then we obtain that

f(δ(P )) = f(Pδ(R)) = f(P )δ(R) = Mδ(R) = M .

We have the following diagram:

δ(P )
i

}}④
④

④

④

f

��

P
f

// M // 0

It follows that P = δ(P ) + Ker(f). We now show thatδ(P ) ≪δ P . SinceP
/

δ(P ) =

P
/

Pδ(R) is anR
/

δ(R)-module and hence a semisimpleR-module, it has a projectiveδ-

cover. By Lemma 3.7, there exists a decompositionP = A ⊕ B such thatA ⊆ δ(P ) and

δ(P ) ∩B ≪δ P . Soδ(P ) = A⊕ (δ(P ) ∩ B). But by Lemma 3.3 (iii),

δ(P ) = δ(A)⊕ δ(B).
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This implies thatA = δ(A) andδ(P )∩B = δ(B) ≪δ B. SinceA is projective, andδ(A) = A,

A must be semisimple. Thus,A ≪δ A. By Lemma 3.2,δ(P ) = A⊕ δ(B) ≪δ A ⊕ B = P .

FromP = δ(P )+Ker(f), by Lemma 3.1, we have thatP = Q⊕Ker(f) for some semisimple

Q. Then

M ∼= P
/

Ker(f) ∼= Q

is semisimple, a contradiction.

(i)⇒(ii) Obvious.

(iii)⇒(iv) Suppose thatR is a δ-semiperfect ring andδ(M) ≪δ M for anyR-moduleM .

ThenR
/

δ(R) is semisimple. SinceR is a δ-semiperfect ring,R
/

δ(R) is semisimple and

idempotents lift moduloδ(R), by Theorem 3.4. SinceR is aδ-semiperfect ring andδ(M) ≪δ

M for anyR-moduleM , we haveR
/

Soc(R) is right perfect by Theorem 3.5.

(iv)⇒(iii) Suppose thatR
/

Soc(R) is right perfect and idempotents lift moduloδ(R). Then

we have

R
/

Soc(R)

J(R
/

Soc(R))
=

R
/

Soc(R)

δ(R)
/

Soc(R)

is semisimple. SoR
/

δ(R) is semisimple. Therefore, by Theorem 3.4,R is a δ-semiperfect

ring and by Theorem 3.5,δ(M) ≪δ M for anyR-moduleM . �

3.4. Examples

In this section, some examples are given to illustrate the concepts introduced earlier.

Example 3.1 (Zhou, Y., 2000) Aδ-semiperfect and semiregular ring is not necessarily semiper-

fect.

Let Q =
∏∞

i=1 Fi, where eachFi = Z2. Let R be the subring ofQ generated by
⊕∞

i=1 Fi and1Q. ThenR is δ-semiregular but not semiperfect.

The simpleR-modules areF0 = R
/

(
⊕∞

i=1 Fi), F1, F2, . . .. To check thatR is δ-

semiperfect, we only need to verify that each singular simple module has a projectiveδ-cover.

F0 is the only singular simple module. SinceR is not semisimple,δ(R) 6= R. Note that
⊕

i=1 Fi = Soc(R) ⊆ δ(R). Thus,Soc(R) = δ(R) is δ-small inR. SoF0 has a projective

δ-cover. Thus,R is δ-semiperfect.

Example 3.2 (Zhou, Y., 2000) A semiregular ring is not necessarilyδ-semiperfect.

LetR be as in Example 3.1. Let

T =
{

(

a b

0 a

)

| a ∈ R, b ∈ Soc(R) =
⊕

i Fi

}
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ThenT is a ring under the matrix addition and multiplication. We have that

δ(T ) =
{

(

0 b

0 0

)

| b ∈ Soc(R)
}

T
/

δ(T ) ∼= R is regular but not semisimple. SoT is not δ-semiperfect. Clearly

J(T ) = δ(T ) and idempotents ofT
/

δ(T ) lift to idempotents ofT . SinceT
/

J(T ) = T
/

δ(T )

is regular and idempotents ofT
/

δ(T ) lift to idempotents ofT , we haveT is a semiregular

ring.

Example 3.3 (Zhou, Y., 2000) Aδ-perfect ring is not necessarily semiregular.

LetF be a field,

I =

(

F F

0 F

)

and, R = {(x1, x2, .., xn, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ I}. With componentwise

operations,R is a ring.R is not a semiregular ring. We see that

Soc(R) = {(x1, x2, . . . , xn, 0, 0, . . .) | n ∈ N, xi ∈ M2(F )},

δ(R) = {(x1, x2, . . . , xn, x, x, . . .) | n ∈ N, xi ∈ M2(F ), x ∈ J}

whereJ =

(

0 F

0 0

)

. Thus,

R
/

Soc(R) ∼=

(

F F

0 F

)

= I

is a right perfect ring. It is easy to check that idempotents of R
/

δ(R) lift to idempotents ofR.

SoR is δ-perfect.

Example 3.4 (Zhou, Y., 2000) A local ring is not necessarilyδ-perfect.

LetR be the ring of polynomials over a fieldK in countably many commuting inde-

terminatesx1, x2, . . . modulo the ideal generated by{x2
1, x

2
2 − x1, x

2
3 − x2, . . .}.

J(R) = (x1, x2, . . .)
/

(x2
1, x

2
2 − x1, x

2
3 − x2, . . .)

is the unique maximal ideal ofR andR has no minimal ideal. Thus,R is a local ring and

Soc(R) = 0. It is easy to see thatJ(R) is notT -nilpotent. SoR
/

Soc(R) is not perfect, and

henceR is notδ-perfect.
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CHAPTER 4

WHEN δ-SEMIPERFECT RINGS ARE SEMIPERFECT

Zhou definedδ-semiperfect rings as a proper generalization of semiperfect rings. The

purpose of this chapter is to discuss relative notions of supplemented modules and to show

that the semiperfect rings are precisely the semilocal rings which areδ-supplemented.

4.1. Introduction

H. Bass characterized those ringsR whose rightR-modules have projective covers and

termed them right perfect rings. He characterized them as those semilocal rings which have

a rightT -nilpotent Jacobson radicalJ(R). Bass’s semiperfect rings are those whose finitely

generatedR-modules have projective covers. Kasch and Mares transferred the notions of

perfect and semiperfect rings to modules and characterizedsemiperfect modules by a lattice

theoretical condition as follows.

Definition 4.1 A moduleM is called supplemented if for any submoduleN ofM , there exists

a submoduleX of M minimal with respect toM = N +X.

Definition 4.2 ForN,X ≤ M ,X is a supplement ofN inM if N+X = M andN∩X ≪ X.

The right perfect rings are then shown to be exactly those rings whose rightR-modules

are supplemented while the semiperfect rings are those whose finitely generated rightR-

modules are supplemented. Equivalently, it is enough for a ring R to be semiperfect if the

right (or left) R-moduleR is supplemented. Recall that a submoduleN ≤ M is said to be

small, denoted byN ≪ M , if N + X 6= M for all proper submodulesX of M , and that

N ≤ M is said to be essential inM , denoted byN ≤e M , if N ∩ X 6= 0 for each nonzero

submoduleX of M . Recall that a moduleM is said to be singular ifM ∼= N/X for some

moduleN and a submoduleX ≤ N .

Definition 4.3 A moduleM is calledδ-supplemented if every submoduleN of M has aδ-

supplementX in M , i.e.,M = N +X andN ∩X ≪δ X.

It is known that a ringR is δ-semiperfect if and only if it is aδ-supplemented module.
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4.2. δ-supplements

In this section we have seen that some of the technicalities on supplement submodules

have their relative equivalent. LetS be a nonsingular simple module. Then it is easy to see

that δ(S) = S. Also note that ifK is a maximal submodule which is essential inM , then

M
/

K is singular simple soδ(M) ≤ K.

Definition 4.4 A submoduleN ofM is said to be coclosed ifN
/

K ≪ M
/

K impliesK = N

for eachK ≤ N .

Example 4.1 Every supplement submodule of a module is coclosed:

LetN be a supplement submodule of a moduleX ≤ M . ThenX +N = M . So

M
/

K = (X +N)
/

K = (X +K)
/

K +N
/

K.

If N
/

K ≪ M
/

K, then(X +K)
/

K = M
/

K, i.e.,M = X +K. SinceN is minimal with

respect toX +N = M , we haveK = N . Therefore,N is coclosed.

Definition 4.5 LetM be anR-module andN ≤ M . We callN a δ-coclosed submodule of

M if, wheneverN
/

X is singular andN
/

X ≪δ M
/

X for someX ≤ N , we haveX = N .

Supplements are coclosed and so are theirδ-equivalents:

Lemma 4.1 (Büyükaşık, E., Lomp, C., 2009)[Lemma 2.3] LetM be any module andN ≤ M

be aδ-supplement inM . ThenN is δ-coclosed.

Proof LetN be aδ-supplement of a moduleK ≤ M . ThenN+K = M andN∩K ≪δ N .

SupposeN
/

X is singular andN
/

X ≪δ M
/

X for someX ≤ N . Then we have

N
/

X + (K +X)
/

X = M
/

X,

and

M
/

(K +X) ∼= N
/

(N ∩ (K +X))

is singular as a factor module of the singular moduleN
/

X. Therefore, we have

(K +X)
/

X = M
/

X asN ∩X ≪δ M
/

X. Then we getK +X = M , and so by modular

law N = (N ∩K) +X. SinceN ∩K ≪δ N andN
/

X is singular we haveX = N . SoN

is aδ-coclosed submodule ofM . �
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In the following proposition some properties ofδ-coclosed submodules are given.

Proposition 4.1 (Büyükaşık, E., Lomp, C., 2009)[Proposition 2.4] LetN be aδ-coclosed

submodule ofM . Then the following hold.

(i) If K ≤ N ≤ M andK ≪δ M , thenK ≪δ N . Hence,δ(N) = N ∩ δ(M).

(ii) If X is a proper submodule ofN such thatN
/

X ≪δ M
/

X, thenN = X ⊕ X ′ for

someX ′ ≤ N .

(iii) If N is singular, thenN is coclosed.

Proof (i) Let K ≪δ M and suppose thatK +X = N for someX ≤ N with N
/

X

singular. Then

N
/

X = (K +X)
/

X ≪δ M
/

X.

SinceN is aδ-coclosed submodule ofM , we haveX = N . Therefore,K ≪δ N . Now we

have,

δ(N) ≤ N , δ(N) =
∑

{K ≤ N | K ≪δ N} ⊆
∑

{K ≤ M | K ≪δ M} = δ(M)

So δ(N) ⊆ N ∩ δ(M). Therefore, we need to prove thatN ∩ δ(M) ⊆ δ(N). Let x ∈

N ∩ δ(M). ThenRx ≪δ M and so by the first part of the proofRx ≪δ N , that is,x ∈ δ(N).

Hence,δ(N) = N ∩ δ(M).

(ii) Let X ≤ N with N
/

X ≪δ M
/

X. Let X ′ ≤ N be a maximal submodule inN such

thatX ∩ X ′ = 0. ThenX ⊕ X ′ ≤e N and soN
/

(X ⊕ X ′) is singular. On the other hand

N
/

(X ⊕X ′) ≪δ M . SinceN is δ-coclosed, we haveN = X ⊕X ′.

(iii) Let N be aδ-coclosed submodule ofM . SupposeN is singular. Since singular modules

are closed under factor modules,N
/

X is singular. IfN
/

X ≪ M
/

X, thenN
/

X ≪δ M
/

X.

SinceN
/

X is singular,N
/

X ≪δ M
/

X andN is δ-coclosed, we haveX = N . Therefore,

N is coclosed. �

Corollary 4.1 (Büyükaşık, E., Lomp, C., 2009)[Corollary 2.5] LetN be a δ-supplement

submodule ofM . Thenδ(N) = N ∩ δ(M).

Proof SupposeN is a δ-supplement submodule ofM . By Lemma 4.1,N is δ-coclosed.

Thus, by Proposition 4.1,δ(N) = N ∩ δ(M). �
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Corollary 4.2 (Büyükaşık, E., Lomp, C., 2009)[Corollary 2.6] For a moduleM and a sub-

moduleN ≤ M , consider the following statements.

(i) N is a δ-supplement submodule ofM ,

(ii) N is δ-coclosed inM ,

(iii) For all X ≤ N , X ≪δ M impliesX ≪δ N .

If N has a weakδ-supplement inM , i.e.,N+K = M andN ∩K ≪δ M for some submodule

K ≤ M , then(iii) ⇒ (i) holds.

Proof (i)⇒(iii) By Lemma 4.1.

(ii)⇒(iii) By Proposition 4.1.

(iii)⇒(i) SupposeN has a weakδ-supplement inM . ThenN +L = M andN ∩L ≪δ M for

some submoduleL ≤ M . ThenN ∩L ⊆ N , N ∩L ≪δ M impliesN ∩L ≪δ N . Therefore,

N is aδ-supplement ofL in M . �

4.3. On the Structure ofδ-supplemented Modules

Definition 4.6 A moduleM is said to be local ifM has a largest proper submodule.

Lemma 4.2 M is local if and only if Rad(M) is a maximal submodule ofM and

Rad(M) ≪ M .

Proof Suppose thatM is local. ThenM has a largest proper submodule, sayN , so

RadM = N ≤ M . SinceRadM is the largest proper submodule ofM , RadM contains

every proper submodule ofM , i.e.,RadM +N 6= M for anyN ≤ M .

Conversely suppose thatRadM ≤maxM andRad(M) ≪ M . If a is not an element

of RadM , thenRadM + aR = M implies thataR = M . Therefore,RadM is the largest

proper submodule ofM . �

Definition 4.7 LetM be anR-module.M is said to beδ-local if δ(M) ≪δ M andδ(M) is

a maximal submodule ofM .

Examples 4.1 (i) Every simple module is local:

LetS be a simple module. ThenRadS = 0 ≤maxS and0 ≪ S. ThusS is local.

(ii) A simple module isδ-local if and only if it is singular:

Let S be a simple module and singular module. Thenδ(S) = 0, soδ(S) ≪δ S and

δ(S) ≤maxS.
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Conversely letS be a simple module. Suppose thatS is δ-local. Then

δ(S) ≤maxS andδ(S) ≪δ S. Soδ(S) = 0, i.e.,S is singular.

(iii) Let S be a nonsingular simple module andS ′ be a singular simple module. Then by

above argument,S is local. ButS is notδ-local. Becauseδ(S) = S. On the other hand, let

M = S ⊕ S ′. Then

RadM = RadS ⊕ RadS ′ = 0 ≪ M .

But0 is not a maximal submodule ofM soM is not local. Sinceδ(S) = S andδ(S ′) = 0, we

have

δ(M) = δ(S)⊕ δ(S ′) = S.

SinceM
/

S ∼= S ′ simple,δ(M) = S ≤max M . Supposeδ(M) + K = M with M
/

K

singular. Sinceδ(M) = S is nonsingular and

M
/

K ∼= δ(M)
/

(δ(M) ∩K)

is singular, we haveδ(M) ∩ K ≤e δ(M). But δ(M) is simple, soδ(M) ∩K = δ(M), i.e.,

δ(M) ⊆ K, K = M . Hence,δ(M) ≪δ M , i.e.,M is δ-local.

Lemma 4.3 (Büyükaşık, E., Lomp, C., 2009)[Lemma 3.2] LetM be a module andH a

local submodule ofM . ThenH is a supplement of each proper submoduleK ≤ M with

H +K = M .

Proof SinceK is a proper submodule ofM andH + K = M , we haveK ∩ H is a

proper submodule ofH. SinceH is local,RadH is the unique maximal submodule ofH and

RadH ≪ H. Thus, we haveK ∩ H ⊆ RadH ≪ H. SoK ∩ H ≪ H. That is,H is a

supplement ofK in M . �

Lemma 4.4 (Büyükaşık, E., Lomp, C., 2009)[Lemma 3.3] Anyδ-local module isδ-supplemented.

Proof Let M be a δ-local module andN be a proper submodule ofM . Since

δ(M) ≤max M , we have eitherN ≤ δ(M) or δ(M) + N = M . If N ≤ δ(M), then

N ≪δ M . SoM is a δ-supplement ofN in M . Now supposeδ(M) + N = M . Since

δ(M) ≪δ M , we haveN ⊕ Y = M for some semisimple submoduleY ≤ δ(M). Hence,Y

is aδ-supplement ofN in M . Therefore,M is δ-supplemented. �

Lemma 4.5 (Büyükaşık, E., Lomp, C., 2009)[Lemma 3.4] LetM be anR-module and letK

be a maximal submodule withSoc(M) ≤ K. If L is a δ-supplement ofK in M , thenL is

δ-local.

Proof K + L = M andK ∩ L ≪δ L, by assumption. We claim thatK ∩ L ≤e L. If

(K ∩ L) ∩ T = 0 for some nonzero submoduleT ≤ L, thenL = (K ∩ L)⊕ T . We get

45



M = K + L = K + (K ∩ L) + T = K + T ,

and soT � K giving a contradiction sinceT ⊆ SocM ⊆ K. Therefore,K ∩ L ≤e L so

δ(L) ⊆ K ∩L. Hence,δ(L) = K ∩L ≪δ L andδ(L) = K ∩L ≤maxL, i.e.,L is δ-local.�

Definition 4.8 A submoduleN ≤ M is called cofinite ifM
/

N is finitely generated.

Definition 4.9 M is called cofinitelyδ-supplemented if every cofinite submodule ofM has a

δ-supplement inM .

In caseM is finitely generated, clearly every submodule ofM is cofinite; soM is

δ-supplemented if and only ifM is cofinitelyδ-supplemented. If a finitely generated module

M is a sum ofδ-supplemented modules, thenM is δ-supplemented.

Proposition 4.2 (Büyükaşık, E., Lomp, C., 2009)[Proposition 3.5] For a finitelygenerated

moduleM , the following are equivalent:

(i) M is δ-supplemented,

(ii) Every maximal submodule ofM has aδ-supplement,

(iii) M = H1 +H2 + · · ·+Hn whereHi is either simple orδ-local.

Proof (i)⇒(ii) Clear.

(ii)⇒(iii) Let λ(M) ≤ M be the sum of allδ-supplement submodules of maximal submodules

N ≤ M with Soc(M) ≤ N . Then by Lemma 4.5,λ(M) is a sum ofδ-local submodules of

M . We claim thatM = Soc(M)+λ(M). Suppose to the contrary thatM 6= Soc(M)+λ(M)

. SinceM is finitely generated,Soc(M)+λ(M) ≤ K for some maximal submoduleK ≤ M .

By assumption,K has aδ-supplementL in M . SinceSoc(M) ⊆ K, L is δ-local by Lemma

4.5. HenceL ≤ λ(M) ≤ K. SinceL+K = M andL ⊆ K, we haveK = M . ButK ≤max

M , a contradiction. Therefore,M = Soc(M) + λ(M). SinceM is finitely generated,M is a

finite sum of simple submodules andδ-local submodules, as desired.

(iii)⇒(i) By Lemma 4.4 ,δ-local modules areδ-supplemented, and clearly simple modules

are alsoδ-supplemented. Therefore,M is δ-supplemented as a finite sum ofδ-supplemented

modules. �

4.4. Whenδ-supplemented Modules are Supplemented

We will turn to the problem of characterizing when aδ-semiperfect ring is semiperfect.

Recall that a moduleM is called semilocal ifM
/

RadM is semisimple.

For any moduleM , letX(M) = SocM
/(

SocM ∩ RadM
)

.
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Lemma 4.6 (Büyükaşık, E., Lomp, C., 2009)[Lemma 4.1] LetR be a ring andM a finitely

generated,δ-supplemented rightR-module. ThenM is semilocal if and only if

Soc(M)
/(

Soc(M) ∩ Rad(M)
)

is finitely generated.

Proof If M is semilocal and finitely generated, thenM
/

Rad(M) is semisimple Artinian.

Moreover,

Soc(M)
/(

Soc(M) ∩ Rad(M)
)

∼=
(

Soc(M) + Rad(M)
)/

Rad(M) ⊆ M
/

Rad(M)

implies thatX(M) is semisimple Artinian; soX(M) is finitely generated.

To show the converse we use induction on the length ofX(M). Suppose

X(M) = 0, i.e., Soc(M) ⊆ Rad(M). ThenRad(M) = δ(M) and henceM
/

δ(M) is

semisimple. Assume that any finitely generatedδ-supplemented moduleN with X(N) of

lengthn ≥ 0 is semilocal and letM be a finitely generatedδ-supplemented module with

X(M) having lengthn + 1. SinceSoc(M) * Rad(M), there exists a simple direct sum-

mandE ⊆ M with M = E ⊕ N for someN ⊆ M . MoreoverRad(M) = Rad(N) and

Soc(M) = E ⊕ Soc(N). Hence

X(M) = SocM
/(

SocM ∩ RadM
)

∼= E ⊕
(

SocN
/(

SocN ∩ RadN)
)

= E ⊕X(N).

Since direct summands ofδ-supplemented modules areδ-supplemented,N is a finitely gener-

atedδ-supplemented module.X(N) has lengthn, so by induction hypothesisN is semilocal

and henceM = E ⊕N is semilocal. �

δ-semiperfect rings are exactly those ringsR, that areδ-supplemented as a right (or

left) R-module. Similarly a ringR is semiperfect if and only ifR is supplemented as a right

(or left) R-module. Recall that projectiveδ-supplemented modulesM areδ-lifting, i.e., for

every submoduleN of M there exists a decompositionM = D1 ⊕D2 such thatD1 ⊆ N and

N ∩D2 ≪δ D2.

Proposition 4.3 (Büyükaşık, E., Lomp, C., 2009)[Proposition 4.2] A projectivesemilocal,

δ-supplemented module with small radical is supplemented.

Proof SinceS ∩ Rad(M) ⊆ Soc(M), we haveS ∩ Rad(M) ≤⊕ S. Let

S = Soc(M) = D ⊕
(

S ∩ Rad(M)
)

.

SinceM is semilocal, there existsN ⊆ M such thatM = D + N andN ∩ D ⊆ Rad(M).

But sinceD ∩ Rad(M) = 0, M = D ⊕N with D semisimple andRad(M) = Rad(N).

Note that,
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Soc(N) = Soc(M) ∩N =
(

D ⊕ (S ∩ Rad(M)
)

∩N = (D ∩N)⊕ (S ∩ Rad(M)) =

S ∩ Rad(N) ⊆ Rad(N).

Hence, ifK ⊆ N is a maximal submodule, thenN
/

K must be singular, since otherwiseN
/

K

would be isomorphic to a simple direct summand ofN , which is impossible, asSoc(N) ⊆

Rad(N). Thus,Rad(N) = δ(N). N is δ-lifting since it is projective andδ-supplemented.

Hence, for any submoduleL ⊆ N , there existsA,B ⊆ N such thatN = A ⊕ B andA ⊆ L

andL ∩ B ≪δ N . In particular,

L ∩ B ⊆ δ(B) ⊆ δ(N) ⊆ Rad(N).

AsM has a small radical, so hasN and henceL∩B ≪ N . But sinceB is a direct summand

of N , L ∩ B ≪ B. This shows thatB is a supplement ofL in N , i.e.,N is a supplemented

module. We showed thatM = D⊕N is the direct sum of two supplemented modules. Hence,

M is δ-supplemented. �

Corollary 4.3 (Büyükaşık, E., Lomp, C., 2009)[Corollary 4.3] LetR be a ring withJ =

J(R) andS = Soc(R). Then the following are equivalent:

(i) R is semiperfect,

(ii) R is δ-semiperfect and semilocal,

(iii) R is δ-semiperfect andS
/

S ∩ J is finitely generated.

Proof (i)⇒(ii) Clear.

(ii)⇒(iii) Suppose thatR is δ-semiperfect and semilocal. ThenS
/

(S∩J) is finitely generated

by Lemma 4.6.

(iii)⇒(ii) Suppose thatR is δ-semiperfect andS
/

S ∩J is finitely generated. Then by Lemma

4.6,R is semilocal.

(ii)⇒(i) Suppose thatR is δ-semiperfect and semilocal. SinceR is projective andJ ≪ R, R

is supplemented, by Proposition 4.3. Therefore,R is semiperfect. �

Remark 4.1 If Soc(R) is finitely generated, thenS
/

(S∩J) is finitely generated. So we have,

any ringR with finitely generated left socle (e.g.R is left Noetherian) is semiperfect if and

only if it is δ-semiperfect. There areδ-semiperfect rings which are not semilocal and hence

not semiperfect.

We finish this section by showing that the last remark also holds for modules, i.e.,

finitely generated modules with finitely generated socle aresupplemented if and only if they

areδ-supplemented.
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Lemma 4.7 (Büyükaşık, E., Lomp, C., 2009)[Lemma 4.5] LetM be a module andK be a

maximal submodule ofM . SupposeSoc(M) is finitely generated andK has aδ-supplement

H in M . ThenK has a supplement inM contained inH.

Proof By hypothesis,H is aδ-supplement ofK in M , that isK +H = M andK ∩H ≪δ

H. In particular,K ∩H ⊆ δ(H). Since

M
/

K = (H +K)
/

K ∼= H
/

(H ∩K)

is simple,K ∩ H is a maximal submodule ofH. Therefore, we have eitherδ(H) = H or

δ(H) = K ∩ H. First suppose thatδ(H) = H. ThenK ∩ H is not essential inH. So there

exists a submoduleT of H such thatH = (K ∩H)⊕T . In this case,M = K+H = K⊕T ,

soT is a supplement ofK in M andT is contained inH.

Now, letδ(H) = K∩H. If K∩H ≪ H, thenH is a supplement ofK in M . Suppose

K∩H = δ(H) is not small inH, that is,H = δ(H)+L1 for some proper submoduleL1 � H.

ThenH = L1⊕Y for some semisimple submoduleY ≤ δ(H). SinceL1 is a direct summand

H, we have

δ(L1) = L1 ∩ δ(H) = L1 ∩H ∩K = L1 ∩K

andδ(L1) ≪δ L1. We also have

K +H = K + L1 + Y = K + L1.

Therefore,L1 is aδ-supplement ofK.

SinceL1 is a proper submodule ofH andY is a nonzero semisimple module contained

in H, we haveSoc(L1) � Soc(H). Now, if δ(L1) ≪ L1, thenL1 is a supplement ofK in

M and we are done. Supposeδ(L1) is not small inL1. ThenL1 = δ(L1) + L2 for some

L2 � L1. Arguing as above, we getL2 is a δ-supplement ofK in M with Soc(L1) 


Soc(L2). Continuing in this way, if none of theLi’s is a supplement ofK we shall get a

strictly descending chain of submodules

Soc(L1) > Soc(L2) > · · ·

of Soc(M). This will contradict the fact thatSoc(M) is finitely generated. (Soc(M) is

semisimple and finitely generated. Thus,Soc(M) is Artinian and Noetherian.) Therefore,

K has a supplement inM . �

Corollary 4.4 (Büyükaşık, E., Lomp, C., 2009)[Corollary 4.6] LetM be a finitely generated

module. SupposeSoc(M) is finitely generated. ThenM is supplemented if and only ifM is

δ-supplemented.
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Proof Suppose thatM is supplemented. ThenM is δ-supplemented.

Conversely, suppose thatM is δ-supplemented. So every submodule ofM has aδ-

supplement inM . In particular, every maximal submodule ofM has aδ-supplement inM .

Every maximal submodule ofM has a supplement inM , by Lemma 4.7. SinceM is finitely

generated and every maximal submodule ofM has a supplement inM , M is supplemented.�

Corollary 4.5 (Büyükaşık, E., Lomp, C., 2009)[Corollary 4.7] LetM be a module with

finitely generated socle. ThenM is cofinitely supplemented if and only ifM is cofinitely

δ-supplemented.

Proof Necessity is clear.

To prove sufficiency, supposeM is cofinitely δ-supplemented. LetK be a maximal

submodule ofM . If Soc(M) is not contained inK, then we haveM = K + Soc(M) by

maximality ofK in M . ThenK + S = M for some simple submodule ofM . SinceS is

simple andS � K, we haveK ⊕ S = M , and henceS is a supplement ofK in M . Now,

if Soc(M) ⊆ K andH is a δ-supplement ofK in M , thenK has a supplement inM , by

Lemma 4.7. Hence,M is cofinitely supplemented. �
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CHAPTER 5

CONCLUSION

Right perfect, semiperfect and semiregular rings constitute the classes of rings that

possess beautiful homological and nonhomological properties. Since Bass’ pioneering work

on right perfect and semiperfect rings, there has been a great deal of work on them by many

other authors. In this thesis a generalization of right perfect, semiperfect and semiregular rings

is studied.

Firstly, we have given the basic definitions and characterizations of right perfect,

semiperfect and semiregular rings. We have studied supplemented modules and we have seen

that, for a ringR, RR is semiperfect if and only ifRR is supplemented.

Secondly, we have studied the paper (Zhou, Y., 2000). The generalizations of right

perfect, semiperfect and semiregular rings are introducedby (Zhou, Y., 2000) by considering

the class of all singularR-modules in place of the class of allR-modules. The concept of

small submodules which leads to the definition of projectivecovers is certainly the key in

introducing right perfect, semiperfect and semiregular rings. As a generalization of small

submodules, (Zhou, Y., 2000) definedδ-small submodules. The definition of projectiveδ-

cover is given and we have seen various characterizations and properties forδ-perfect,δ-

semiperfect andδ-semiregular rings. From these definitions, it is clear thatif a ring R is

semiperfect, then it isδ-semiperfect.

Finally, we were interested in whenδ-semiperfect rings are semiperfect. For this

purpose, we have studiedδ-supplemented modules, which are the generalizations of supple-

mented modules, to see the relation betweenδ-semiperfect rings andδ-supplemented mod-

ules. We have seen thatδ-semiperfect rings are exactly those ringsR that areδ-supplemented

as a right (or left)R-module. We have studied the paper (Büyükaşık, E., Lomp,C., 2009)

and we observed that an arbitrary associative unital ringR is semiperfect if and only if it is

semilocal andδ-semiperfect.
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