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ABSTRACT

ON 0-PERFECT ANDJ-SEMIPERFECT RINGS

In this thesis, we give a survey of generalizations of rigétfect, semiperfect and
semiregular rings by considering the class of all singidlanodules in place of the class of
all R-modules. For a ring? and a rightkR-module M, a submoduleV of M is said to be
o-small in M if, wheneverN + X = M with M/X singular, we have&X = M. If there exists
an epimorphismp : P — M such thatP is projective ander(p) is §-small in P, then we say
that P is a projectivey-cover of M. A ring R is calledd-perfect (respectively-semiperfect)
if every R-module (respectively, simpl&-module) has a projectivé&cover. In this thesis,
various properties and characterizationg-glerfect andi-semiperfect rings are stated.



OZET
S-MUKEMMEL VE §-YARIM UKEMMEL HALKALAR UZERINE

Bu tezde, tunR-modul sinifi yerine tum tekikR-modul sinifini alarak, sag-miukemmel
halka, yarimukemmel halka ve yaridiizenli halkalarinedi@mesi Gizerine bir inceleme yaptik.
R bir halka veM bir sagR-modul icin, egetN + X = M ve M/X tekil oldugundaX = M
oluyorsa,N’e M modultinund-kiiciik altmodultl denir. EgeP projektif ve Ker(p) P'de
0-kiicuk olacak sekilde : P — M bir epimorfizma var iseP moduluneM’nin projektif
0-0rtlistl denir. Eger heR-modulin (sirasiyla, basiR-modultin) projektif§-ortusi varsak
halkasina-mukemmel (sirasiylay-yarimiukemmel) halka denir. Bu tezdemikemmel ve
d-yarimukemmel halkalarin gesitli 6zellikleri ve k&tarizasyonlari verilmistir.
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CHAPTER 1

INTRODUCTION

Covers and envelopes of modules play an important role inlNéoand Ring Theory.
In 1953, Eckmann and Schopf proved the existence of injective epes of modules over any
associative ring. The existence of projective covers wagistl by Bass in960. After that,
different kinds of covers and envelopes have been descrifmedxample, Enochs introduced
the torsion free coverings of modules, and Warfield inveséid the pure injective envelopes
of modules. Then in981, Enochs gave a categorical definition of covers and envslfipea
class of modules.

Throughout this thesisk denotes an associative ring with identity and modules are
unitary right R-modules unless otherwise indicated.

A ring R is called perfect if everyR-module has a projective cover. If every finitely
generated?-module has this property, the®is called semiperfect. In this thesis, we study
the generalizations of perfect and semiperfect rings bysidening the class of all singular
R-modules in place of the class of d&tmodules.

In chapter we give some results related with our work and used in folhgahapters.
For the results in this chapter we refer to (Bland, Paul ELO20 (Anderson, F.W., Fuller, K.
R. 1992), (Wisbauer, R., 1991), (Nicholson, W. K., 1976) g@bodearl, K. R., 1976).

In chapter3 we give a survey of generalizations of right perfect, semigo¢ and
semiregular rings from (Zhou, Y., 2000). It is of interestkiwow how far the old theories
extend to the new situation. The concept of small submodubesh leads to the definition
of projective covers, is certainly the key in introducingfpet, semiperfect and semiregular
rings. As a generalization of small submodules, (Zhou, ¥0® introduces-small sub-
modules and obtains various characterizations and prepddr a ringR, for which every
R-module (respectively simplg8-module, cyclically presente-module) has a projective
cover. From these properties, it is clear that if a ribgs semiperfect, the® is §-semiperfect.
For the converse, we need some extra condition.

In chapter4 we study whenj-semiperfect rings are semiperfect. (Buyukasik, E.,
Lomp, C., 2009) introduce that an arbitrary associativealiming R is semiperfect if and
only if it is semilocal and-semiperfect. They characterize finitely generatedipplemented
modulesM as those which are sums of simple anrtbcal modules or equivalently which
satisfy the property that every maximal submodulédbhas aj-supplement.



CHAPTER 2

PRELIMINARIES

In this chapter we give some fundamental properties of ramgsmodules that will be
used later.

2.1. Radical of a Module

Definition 2.1 For a right R-module)M, a submodulé' of M is said to be small or super-
fluous in)/ if for any submoduld. of M, S + L = M impliesL = M. This is denoted by
S <« M. Arightideal of R is small if it is small when viewed as a submoduldaf

Definition 2.2 The Jacobson radical d?, denoted by/(R), is the intersection of the maximal
right ideals ofR.

If J(R) =0, thenR is said to be alacobson semisimpténg. It is also referred to as
J-semisimpler semiprimitivering. The concept of the Jacobson radicalbtarries over to
modules. IfM is anR-module, then the radical @/, denoted byrad (M), is the intersection
of the maximal submodules dif. If A/ has no maximal submodules thBad (M) = M.
For example, th&-moduleQ/Z has no maximal submodules, Bad(Q/Z) = Q/Z.

Proposition 2.1 (Bland, Paul E., 2010)[Proposition 6.1.2] I/ is a nonzero finitely gener-
ated R-module, thenV/ has at least one maximal submodule.

Since M has a maximal submodul®ad(M) # M. Thus, we have the following
corollary.

Corollary 2.1 (Bland, Paul E., 2010)[Corollary 6.1.3] I}/ is a nonzero finitely generated
R-module, theRad(M) # M.

Example 2.1 SinceR is generated by g, J(R) # R.

Proposition 2.2 (Bland, Paul E., 2010)[Proposition 6.1.4]{fM, } A is a family ofR-modules,
then

Rad(EP M.) = P Rad(M.,).



Proposition 2.3 (Bland, Paul E., 2010)[Proposition 6.1.5] If' is a free R-module, then
Rad(F') = FJ(R).

Proposition 2.4 (Bland, Paul E., 2010)[Proposition 6.1.8] The followingltdor any ring
R.

(i) J(R) is the intersection of the maximal right ideals®f

(i) J(R)is an ideal ofR that coincides with the intersection of the right annihilaideals

of the simple rightz-modules.

(i) J(R)isthe setof alk € R such thatl — ar has a right inverse for alt € R.

Lemma 2.1 (Bland, Paul E., 2010)[Lemma 6.1.9] Ifis a right ideal of R such that/ C
J(R), thenM I C Rad(M) for everyR-module)M.

Lemma 2.2 (Nakayama’s Lemma) If is a right ideal of R such that/ C J(R), then the
following two equivalent conditions hold for every finitggnerated?-module)!.

(i) If N is asubmodule a¥/ suchthatv + M1 = M, thenN = M.
(i) If MI = M,thenM = 0.
Now we will give some properties of the radical of projectmedules.

Proposition 2.5 (Bland, Paul E., 2010) [Proposition 7.2.4, Proposition B2 Corollary
7.2.9] The following statements hold for a projectiRenodule):

() Rad(M) = MJ(R),
(i) M contains a maximal submodule,

(i) Rad(M) C M.

2.2. Local Rings

Aring R is alocal ring in case the set of non-invertible element® a$ closed under

addition.

Proposition 2.6 (Anderson, FW., Fuller, K. R. 1992)[Theorem 15.15] For agiR, the

following statements are equivalent:

(i) Risalocalring,



(i) R has a unique maximal right ideal,

(iii) J(R)is a maximal right ideal,

(iv) The set of elements af without right inverses is closed under addition,
(v) J(R)={x € R| xR # R},

(vi) R/J(R) is adivision ring,

(vii) J(R) ={z € R| zis notinvertiblg,

(vii) If =z € R, then eitherz or 1 — z is invertible.

2.3. Covers of Modules

Let X be a class of righiz-modules. We assume thatis closed under isomorphisms,
e, if M € X andN = M, thenN € X. We also assume that is closed under taking
finite direct sums, and direct summands, i.eMif, ..., M; € X, thenM, & --- & M, € X;
ifM=N&LeX, thenN,L € X.

Definition 2.3 On the classY, for an R-moduleM, X € X is called anX-cover of M if
there is a homomorphisgm : X — M such that the following hold.

(i) For any homomorphisnp' : X' — M with X' € X, there exists a homomorphism
f: X — X withy = ¢f, or equivalently

Homp(X', X) —— Hompg(X ,M) — 0

is exact for anyX € X.
(i) If fis an endomorphism of with o = ¢ f, thenf must be an automorphism.

If (1) holds (and perhaps not (2)),: X — M is called anY-precover. Note that an
X-cover (precover) is not necessarily surjective.

Theorem 2.1 (Xu, J. 1996)[Theorem 1.2.6] L&t/ be anR-module. Ify; : X; — M, i=1,2,
are two differentY’-covers, then\; = X,.



Theorem 2.2 (Xu, J. 1996)[Theorem 1.2.9] Suppadeis closed under an arbitrary direct
product, and for each, ¢; : X; — M, is an X-precover. Then the natural produff ¢; :
[1X: — [[ M, is an X-precover.

Theorem 2.3 (Xu, J. 1996)[Theorem 1.2.10] Ipp; : X; — M, is an X-cover for
1=1,...,n, thenEB Y EBXi — @Mi is anX'-cover.
=1 i=1 i=1

Let €2 be the class of all projectivB-modules. A homomorphisrfi: FF — M is an
Q2-cover of M if and only if F' is projective andf is a superfluous epimorphism.

Definition 2.4 A projective cover of ai-module)/ is a projectiveR-moduleP (M) together
with an epimorphisnp : P(M) — M such thatier(y) is small inP(M).

By Theorem 2.1, we know that aki-cover of anR-module is unique up to isomor-

phism, so is a projective cover.

Example 2.2 (Bland, Paul E., 2010)
(i) Projective Modules. Every projective module has a projective cover, namelglfits

(i) Local Rings and Projective Covers. Let R be a commutative ring that has a unique
maximal idealn. ThenR together with the natural mapping — R/m IS a projective
cover ofR/m. If M is a finitely generated?-module, then\/ has a projective cover.

Proposition 2.7 (Bland, Paul E., 2010)[Proposition 7.2.3] L¢t\/;.}7_, be a finite family of
R-modules.

n

(i) If S;is asmall submodule off;, for k = 1,2, ..., n, thend] S, is a small submodule
k=1
k=1

(i) If each M, has a projective covepy : P, — M,, then@ M, has a projective cover
k=1

B : PP — P M.andite : P — M, is a projective cover ofp) M;,
k=1 k=1 k=1 k=1 k=1

then there is a famil;{_?k}g:1 of submodules oP such thatP, = P, for eachk.

Now, we will see that a projective cover of a module may fagxast.

Example 2.3 Suppose thakR is a Jacobson semisimple ring. 4f: P — M is a projective
cover of M, thenKer(y) is a small submodule @? and

Ker(¢) C Rad(P) = PJ(R) = 0.



Sop is an isomorphism. Thus over a Jacobson semisimple Kngn R-moduleM has a
projective cover if and only if it is projective. For exampllee ringZ is Jacobson semisimple,
so the onlyZ-modules with projective covers are the fiéenodules. ThusZ, does not have
a projective cover, sincg,, is not a freeZ-module for any integen > 2.

2.4. Semiperfect Rings, Perfect Rings and Supplemented Matks

Since there are modules that do not have a projective ctwebitings up the question
are there rings over which every module has a projectiver@o8ach rings exist, and we will
characterize these rings. First, we define semiperfecsring

Definition 2.5 An R-module)M is called finitely generated if there are finitely many eletaen
x1,...,o, € MsuchthatM = x1R+ 2R+ ---+ z,R.

Definition 2.6 A ring R is said to be a semiperfect ring if every finitely generalethodule
has a projective cover.

Proposition 2.8 (Wisbauer, R., 1991) The following are equivalent for a rifig
(i) R is semiperfect,
(i) Thering R/ J(R)is semisimple and idempotentsif.J(R) can be lifted moduld (R),
(i) The right R-moduleRy, is a sum of local modules,

(iv) The ring R has a complete sefey, s, ..., ¢,} of orthogonal idempotents such that
e;Re; 1Isalocalring fori = 1,2,...,n,

(v) Every simple rightz-module has a projective cover,

(vi) Every finitely generated righ®-module has a projective cover.

Lemma 2.3 (Bland, Paul E., 2010) Lef be a right ideal in a ringR. Then the following

statements are equivalent:
(i) M1 # M for every nonzerdz-moduleM,,
(i) MI < M for every nonzerdz-module)M,
(i) FI < F for the countably generated fréemoduleF = R,

(iv) I is right T-nilpotent.



We will now characterize the right perfect rings.

Definition 2.7 A ring R is called right perfect if every?-module has a projective cover. Left
perfect rings are defined similarly. A ring that is left andhi perfect is called a perfect ring.

Bass has given the following characterizations of perfects.

Proposition 2.9 (Bland, Paul E., 2010)[Proposition 7.2.28] The followingeaequivalent for
aring R:

(i) Risaright perfectring,
(i) R/J(R)is semisimple and every nonzetemodule contains a maximal submodule,
(i) R/J(R) is semisimple and(R) is right T-nilpotent.

Proposition 2.10 (Bland, Paul E., 2010)[Proposition 7.2.29] The followingeaequivalent

foraring R:
(i) Risaright perfectring,
(i) R satisfies the descending chain condition on principal kétis,
(i) Every flat R-module is projective,

(iv) R contains no infinite set of orthogonal idempotents and emenzero rightk-module

contains a simple submodule.

Definition 2.8 Let U be a submodule of th8-moduleM. A submoduld” C M is called
a supplement or addition complementfin M if V' is a minimal element in the set of
submoduled. ¢ M withU 4+ L = M.

Lemma 2.4 (Wisbauer, R., 1991V is a supplement of if and only ifU + V' = M and
Unv V.
Proof If V isasupplementadf/ andX C V with (UNV)+ X =V, then we have

M=U+V=U+UnNV)+X=U+X,

henceX = V by the minimality ofVV. ThusU NV <« V.
On the other hand, léf + V = M andUNV <« V. ForY Cc VwithU +Y = M,

we have
V=MnV=UnV)+Y,

thatis,V =Y. Hence,VV is minimal in the desired sense. O



Theorem 2.4 (Wisbauer, R., 1991)[41.1 Properties of supplementsfLét be submodules
of the R-moduleM. Assumé’ to be a supplement éf. Then:

() If K < M, thenV is a supplementd? + K.
(i) For K < M we haveK NV <« V and soRad(V') = V N Rad(M).
(iii) For L c U, (V + L)/Lis asupplementdf /Lin M /L.

Definition 2.9 An R-module) is called supplemented if every submodulédbhas a sup-

plement in)/.
If every finitely generated submodule /af has a supplement i/, then we callM

finitely supplemented gf-supplemented.

Theorem 2.5 (Wisbauer, R., 1991)[41.2 Properties of supplemented hestiuet M/ be an

R-module.

(i) Let M;, U be submodules ot/ with M; supplemented. If there is a supplement for
M, + U in M, thenU also has a supplement iiv.

(i) If M = My + M,, with My, M, supplemented modules, théhis also supplemented.
(i) If M is supplemented, then
(a) Every finitelyM -generated module is supplemented.
(b) M /Rad(M) is semisimple.
Theorem 2.6 (Wisbauer, R., 1991)[41.6 Supplemented modules, chaizatens]
() For afinitely generated modul&/, the following are equivalent:

(a) M is supplemented,
(b) Every maximal submodule &f has a supplement i/,
(c) M is a (finite) sum of local submodules.

(i) If M is supplemented an®ad(M) < M, then M is an irredundant sum of local

modules.

Definition 2.10 M is called an amply supplemented module if for any two subhesduand
B of M with A + B = M, B contains a supplement df.
If every finitely generated submoduleMfhas ample supplements i, then we call

M amply finitely supplemented.



Theorem 2.7 (Wisbauer, R., 1991) [42.6 Semiperfect Rings, charaagdns] For aring R
the following statements are equivalent:

(i) Rgis semiperfect,
(i) Rpis supplemented,
(iii) every finitely generated-module is semiperfect iMod-R,
(iv) every finitely generatet-module has a projective cover imod-R,
(v) every finitely generateB-module is (amply) supplemented,
(vi) R/J(R) is right semisimple and idempotentsiy J(R) can be lifted tar,
(vii) every simplekR-module has a projective cover imod-R,
(viil) every maximal right ideal has a supplement/in
(iX) Rpis a (direct) sum of local (projective covers of simple) medu
X) R=e1R® --- @ e R for local orthogonal idempotents,
(xi) rR is semiperfect.

If R satisfies one of these conditions, theims called a semiperfect ring. The asser-
tions (b) - (j) hold similarly for leftR-modules.

2.5. Semiregular Modules and Rings

In this section a class of semiregular modules is introduwdeidh contains all regular
and all semiperfect modules. In addition, several theorabmut regular and semiperfect
modules are extended. Also, these results are applied tstuldg of ringsRk (semiregular
rings) such thak is semiregular.

If M is an R-module, the dual of/ will be denoted byl\/* = Homg (M, R). A dual
basis forM is a pair of subset$z; | i € I} C M and{y; | i € I} C M* (indexed by
the same sef) such that, for each € M, ¢;(x) = 0 for all but finitely manyi € I and
xr =Y, x;p;(x). Itis well known that) is (finitely generated) projective if and only if it has
a (finite) dual basis. An elementin a module)/ is called regular ifca(z) = 2 for some
a € M*. Amodule)M is called regular if each of its elements is regular.

Definition 2.11 A submoduleV of a module)M is said to lie over a summand of if there
exists a direct decompositiof = P & @ with P C N and@ N N is small in1.



Lemma 2.5 (Nicholson, W. K., 1976)[Lemma 1.2] M/ is projective, a submodul®’ lies
over a summand a¥/ if and only if M/ /N has a projective cover.

Proposition 2.11 (Nicholson, W. K., 1976)[Proposition 1.3] If/ is any module, the follow-
ing conditions are equivalent far € M:

() xR lies over a projective summand bf,
(i) There existsy € M* such that a(z))? = a(r) andz — za(z) € Rad(M),

(iii) There exists a regular elemeny € xR such thatx — y € Rad(M) and
tR=yR® (r —y)R,

(iv) There exists a regular element M such thatr — y € Rad(M),

(v) There existy : M — zR such thaty? = v, v(M) is projective and
x —7(z) € Rad(M).

Definition 2.12 An element in a module) is said to be semiregular (in/) if the conditions
in Proposition 2.11 are satisfied. A modulé is called a semiregular module if each of its

elements is semiregular.

The regular modules are precisely the semiregular moduteszero radical.

Theorem 2.8 (Nicholson, W. K., 1976)[Theorem 1.6] The following coiudis are equiva-
lent for a modulel/:

(i) M is semiregular,

(i) If N C M is a finitely generated submodule there exists\/ — N such thaty? = ~,
v(M) is projective and1 — v)(N) € Rad(M),

(iii) Every finitely generated submodule &f lies over a projective summand bf.

Corollary 2.2 (Nicholson, W. K., 1976)[Corollary 1.7] A projective modul/ is semiregu-
lar if and only if M/N has a projective cover for every finitely generated (cyditfhymodule
N.

Corollary 2.3 (Nicholson, W. K., 1976)[Corollary 1.8] A moduld is regular if and only if
every finitely generated (cyclic) submodule is a projecsimemand.

Theorem 2.9 (Nicholson, W. K., 1976)[Theorem 1.10]M = &@,_, M; is a direct sum of
modules therd/ is semiregular if and only if each/; is semiregular.

10



Corollary 2.4 (Nicholson, W. K., 1976)[Corollary 1.11] A direct sumM = &P
regular if and only if eachV/; is regular.

M; is

el

An element: of aring R is said to be regular (in the sense of von Neumanm)df= a
for someb € R. If each element of a ring is regular,R is said to be a regular ring. Itis clear
that an element in aring R is regular if and only if it is regular iR z.

Lemma 2.6 (Nicholson, W. K., 1976)[Lemma 2.1] Letbe an element of a ring. Thena
is semiregular inRy if and only if there exists? = ¢ € Ra such thata(1 — ¢) € J(R). An
analogues result holds fofR.

Proposition 2.12 (Nicholson, W. K., 1976)[Proposition 2.2] The followingeagquivalent
for an element of a ring R:

() There existg? = ¢ € aR suchthatl —e)a € J(R),
(i) There exist$? = ¢ € Ra such thatu(1 —¢) € J(R),
(ii) There exists a regular elemehtc R witha — b € J(R),

(iv) There exists a regular element R with bab = b anda — aba € J(R).

Definition 2.13 An element of a ring R is called semiregular (irR) if it satisfies the condi-
tions in Proposition 2.12. A ring is a semiregular ring if éwaf its elements is semiregular.

Theorem 2.10 (Nicholson, W. K., 1976)[Theorem 2.9] The following stagets (and their
left-right analogues) are equivalent for a ring;

(i) R is semiregular,
(i) R/J(R) is regular and idempotents can be lifted moduiar),
(i) Every finitely generated (cyclic) right ideal lies ava direct summand,
(iv) Every finitely related (finitely related and cyclic) higk-module has a projective cover,

(v) Every finitely generated (cyclic) right ideal has a coempént inR.

2.6. The Singular Submodule

Definition 2.14 We shall usé@’(R) to stand for the set of all essential right ideals of the ring
R.

11



Also if I is a right ideal of R, andr € R, we user~'I to denote the right ideal
{reR|rxel}.

Note that ifr is invertible in R, then this definition coincides with the product-of
and/.

Proposition 2.13 (Goodearl, K. R., 1976) For a ring, the following conditions hold.
(i) ReT(R).
(i) If I <J < Rpandl € I'(R), thenJ € I'(R).
(i) If I e T(R)andr € R, thenr—'I € T'(R).
Definition 2.15 Given any rightR-moduleA, we set
Z(A)={x € A|xl =0forsomel <e R}

Equivalently,Z(A) is the set of those € A for which the right idear € R | zr = 0}
belongs td'(R). It can be easily checked that A) is a submodule ofl, and it is called the
singular submodule ofi.

In a similar fashion, we define the singular submodule of afty?-moduleB:
Z(B) ={x € B| Jr =0forsomeJ <e R}.

Actually, Z(—) defines a functor frordMod-R — Mod-R. Given any mapf : A — B in
Mod-R, it follows directly from our definitions thaf(Z(A)) < Z(B) and hence we define
Z(f): Z(A) — Z(B) to be the restriction of to Z(A). In particular, for any modulel, we
havef(Z(A)) < Z(A) forall f € Endg(A), so thatZ(A) is a fully invariant submodule of
A.

ConsideringR as a module, we see thdt Rr) is thus &2-sided ideal ofR. The ideal
Z(Rpg) is known as the right singular ideal &f, and is denoted by, (R). Likewise we have
the left singular ideak,;(R) which is the singular submodule gf?.

Definition 2.16 A moduleA is called a singular module provided(A) = A, and is called a
nonsingular module i (A) = 0.

Remark 2.1 The ring R is a nonsingular right module if and only #,(R) = 0 and in this
eventR is called aright nonsingular ring, an& is called a left nonsingular ring i¥;(R) = 0.
Z(R) # R (i.e., R is not singular) unles# = 0.

Z.(R)={reR|rI=01<eR} <R
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Example 2.4 Let R = Z. (The details are similar for any commutative integral damja\We
know that all nonzero ideals & are essential irZ; hencel'(Z) is just the set of all nonzero
ideals ofZ. Given aZ-moduleA and an element € A, we thus have € Z(A) if and only if
x(nZ) = 0 for some positive integet, i.e., if and only ifz has finite order. Therefore/(A)
is just the torsion subgroup of. It follows thatA is singular if and only if it is a torsion
group, and that4 is nonsingular if and only if it is a torsion-free group. Ingigular, Z; is

nonsingular; hencé&, is a nonsingular ring.
Proposition 2.14 (Goodearl, K. R., 1976)
(i) A moduleC is nonsingular if and only iHompz(A, C') = 0 for all singular modulesA.

(i) A moduleC is singular if and only if there exists a short exact sequence

such thatf is an essential monomorphism.

Proof
(i) If Ais singularC'is nonsingular ang : A — C'is an R-homomorphism, then

f(A) = f(Z(A)) < Z(C) = 0.

So, f = 0. ThereforeHompg(A, C') = 0 whenever A is singular, C is nonsingular.
Conversely, iHomg(A, C) = 0 for all singular modulesl, then in particulaHomz (Z(C), C) =
0. Now, the inclusion ma (C') — C'is zero and hencg(C) = 0.
(if) First assume that we have such an exact sequence. Gimneh a B, we have a map
¢ : R — B given byr — br. Sincef(A) <e B, we havep~!(f(A)) <e R, thatis, the
right ideal

I={reR|bre f(A)}<eR.

Now bl < f(A) = Ker(g), henceg(bl) = ¢g(b)I = 0. Sog(b) € Z(C). Sinceg is epic, we
haveZ(C) = C.
Conversely assume théatis singular, and choose a short exact sequence

such thatB is free. If{b,} is a basis forB, then for eachy, we havey(b,)I, = 0 for some
I, <e Rp. Hencep,I, < A. Sincel, <. Ry for all a, we getb,I, <e b, Ry for all a.
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Therefore P b1, <e @b, R = B. In as much agp b, I, < A, we obtainA <e B and
thus, the inclusion magd — B is an essential monomorphism. O

Example 2.5 Proposition 3.1 shows thalB/A is singular wheneved <e B. Thus, for
exampIeE(A)/A is always singular.

The converse of this can easily fail; for example, et= Z/QZ and A = 0. Then
B/Ais asingularZ-module, and yetl Ze B.

There are, however, two special cases in which this convdyss work: One is given
by the next Proposition, and the other is the case- Rz. Namely, if/ is a right ideal of R
such thatR /I is singular, then we must hate = 0 for someJ € T'(R). ThenJ < I and so
I e I'(R), thatis] <e Rg. Since we already know thﬂ/[ is singular whenevef <e Ry,
we conclude that

I'(R) ={I < Rg | R/I s singulas.

Proposition 2.15 (Goodearl, K. R., 1976) LeB be nonsingular and letl < B. ThenB/A
is singular if and only ifA <e B.

Proof If B/A is singular andr is a nonzero element @, thenz/ = 0 for somel <e R.
That is,zI < A. In as much a$3 is nonsingular, we havel # 0. Thus,zRN A # 0.
Therefore, A <e B. O

Proposition 2.16 (Goodearl, K. R., 1976)

(i) The class of all nonsingular righR-modules is closed under submodules, direct prod-
ucts, essential extensions and module extensions.

(i) The class of all singular right?-modules is closed under submodules, factor modules
and direct sums.

Proposition 2.17 (Goodearl, K. R., 1976) Assume that(R) = 0.
(i) Z(A/Z(A)) = 0 for all right R-modulesA.

(i) Aright R-moduleA is singular if and only iHomg( A, C') = 0 for all nonsingular right
R-modulegC.

(i) The class of all singular right?-modules is closed under module extensions and essen-
tial extensions.

(iv) T'(R) is closed under finite products.

Proposition 2.18 (Goodearl, K. R., 1976) Il is any simple righfz-module, them! is either
singular or projective, but not both.
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Proof In as much asA = R/M for some maximal right ideal/ of R, we see that is
singular if and only ifM <e R. Thus, if A is not singular, we must hav& N M = 0 for
some nonzero right ide& of R. Since)M is a maximal right idealk ©® M = R, whenceA
IS projective.

Now, if A is projective, we havé © M = R for some right ideal, whenceM is
not essential il and soA is not singular. O

Corollary 2.5 (Goodearl, K. R., 1976) Every nonsingular semisimple righmodule is
projective.

Proof  Any semisimple right?-module has the forngp S.,, where eacls,, is simple. If
P S. is nonsingular, then every, is nonsingular and thus projective, by Proposition 2.18.
Therefore P S, is projective. OJ

Corollary 2.6 (Goodearl, K. R., 1976) Ifi is any nonsingular righf2-module, theftoc(A) =
ASoc(R).

2.7. The Reject

Let p be a class of modules. The rejectwin M is defined by

Rejy(p) = ({Kerh | h: M — U for someU in p}.

Example 2.6 If M is an abelian group, thenRej,;(Q) is the intersection of all
K < M with M /K torsion free. SdRej,,(Q) is just the torsion subgroufi(M) of M,
the unique smallest subgroup witth / T(M) torsion free. And of course

T(M/T(M)) = 0.
Clearly, Rej,,(Q) is a left R-submodule of\/.

Proposition 2.19 (Anderson, FW., Fuller, K. R. 1992)[Proposition 8.16] kebe a class of
modules, let\/ and N be modules and let : M — N be a homomorphism. Then

f(Rejp(p) < Rejy(p).

Corollary 2.7 (Anderson, FW., Fuller, K. R. 1992)[Corollary 8.17] ff: M — N is epic
andKer(f) C Rej,,(p), then

f(Rejr(p)) = Rejn(p).
Definition 2.17 If kM is a module, then its (left) annihilator is
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(rR(M)={reR|rz=0 (xe M)},
and that)/ is faithful in case/g (M) = 0.

Proposition 2.20 (Anderson, FW., Fuller, K. R. 1992)[Proposition 8.22] Feach leftR-
module)M,

Rejp(M) = Lr(M).
In particular, M is faithful if and only ifA/ cogeneratesz.

Motivated by this fact, we define, for a clagf left R-modules, its annihilator:

(r(p) = Rejp(p).

Thus,lr(p) is simply the intersection of all left ideafsof R such that? /I embeds in some

element ofp.

Corollary 2.8 (Anderson, FW., Fuller, K. R. 1992)[Corollary 8.23] For@aclassp of left

R-modules, the reject
Rejr(p) = (r(p) is a two-sided ideal.

Let p be the class of simpl®-modules. TheRad (M) is just the reject of> in M.
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CHAPTER 3

0-SEMIPERFECT AND §-PERFECT RINGS

As a generalization of small submodules, (Zhou, Y., 200@ihdd j-small submod-
ules.

3.1. §-small Submodules

Definition 3.1 (Zhou, Y., 2000) A submodulé of M is said to bej-small inM if N + K #
M for any proper submodul&” of M with M/ /K singular. We uséV <5 M to indicate that
N is ag-small submodule af/.

Examples 3.1
(i) Every small submodule @ff is j-small in M.

(i) Every nonsingular semisimple submodule\éfis 6-small in M:
Let N be a nonsingular semisimple submodule\éf Let N + X = M with M/X
singular. Then

M/X=(N+X)/X=N/(NnX)
Is singular. SinceN is nonsingularN N X <e N. But N is semisimple, so
NNX =N,ie,N C X. This gives that{ = M. Thus,N is j-small in M.

(iii) The §-small submodules of a singular module are small submodules
Since factor module of a singular module is singular, we wbthat for a singular
module-small submodules and small submodules coincide.

The second singular submodule, in other words, the Goldséoto submoduleZ, (1)
of M is defined byZ (M / Z(M)) = Z,(M)/Z(M). The modulel is calledZ,-torsion (or
Goldie torsion) ifM = Zy(M).

Lemma 3.1 (Zhou, Y., 2000) Lev be a submodule a¥/. The following are equivalent:
(i) N <5 M,

() If X+ N = M, thenM = X @ Y for a projective semisimple submodutewith
Y C N,
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(iii) If X + N = M with M /X Goldie torsion, then\ = M.
Proof
()= (ii) Let X + N = M. By Zorn’s Lemma, there exists a submodul®f N with respect
to the propertyX NY = 0. First we need to show thalv N X)) + Y <e N. Let0 #a € N.
Assumexz is not an element of . By the maximality ofY’, we haveX N (Y +aR) # 0. Take
0#x=y+ar € X,wherey € Y,r € R. Thenar =z — y,soar € (NN X) +Y. Since
X NY =0, we haveur # 0. Thereforl NN X) +Y <e N. Thus,

M/(X+Y)=(X+N)/(X+Y)=X+Y+N)/(X+Y)=2N/(Y +(NNnX))

is singular. Sincé X ®Y) + N = M andN < M, we haveM = X @Y.

To see that” is semisimple, led < Y. ThenX + A+ N = M. Arguing as above
with X + A replacingX, we haveX & A = X + A is a direct summand ao¥/. That is,
M = (X & A) @ K for some submodul&” of M. Then

Y=YNM=YN[(X0A)K|=YN[AdX)dK]|=A4Ad[Y N (X ®K)]

So A is a direct summand of . Therefore,Y is semisimple. Now, we will show that is
projective. WriteY = Z(Y') @ Y,, whereY,, is nonsingular. Then

M/(XaY,)=(XaY)/(XaY,)=XaY,aZ(Y))/(XaY, =Z(Y)

which is singular. Sincéd/ = (X +Y,) + N andN <; M, we haveX &Y, = M. This
shows thatZ (Y') = 0. SinceY is semisimple and nonsingulaf, is projective by Corollary
2.5.

(il)= (i) Let M = X + N with M/X Goldie torsion. By (ii),M = X ® Y whereY is pro-
jective and semisimple. It follows thar[/X 2 Y is Goldie torsion. Sinc&” is semisimple,
we can writeY” = & S,,, wheres,, is simple for alla. Now S,, is simple and projective. Thus
by Proposition 2.187(S,,) # Sa, i.€.,Z(S,) is a proper submodule &f,. SinceS,, is simple
Z(Sa) = 0. ThereforeZ(Y') = @ Z(S,) = 0. SinceY is Goldie torsiony = Z(Y /Z(Y)).
From these we hav&(Y) = 0andZ(Y) =Y, soY = 0. Therefore M = X.

(iiiy = (i) By (iii), we have X + N = M with M /X Goldie torsion, thenX = M. Since
every singular module is Goldie torsion, (i) is true. O

Lemma 3.2 (Zhou, Y., 2000) Let/ be a module.
() For submodulesV, K, L of M with K C N, we have

(@) N < Mifandonly ifK <; M andN /K <5 M /K,

(b) N+ L <s Mifandonlyif N <s M andL <5 M.
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(i) If K <s Mandf: M — N is a homomorphism, thef{ K) <5 N. In particular, if
K <5 M C N thenK <5 N.

(lll) Let K, C M, C M andK2 CMCM andM = M, & Mo, thenK1 OKy<s M if
and only if K; <5 M7 and Ky <5 Ms.

Proof LetN, K, L are submodules o¥/ with K C N.

(i)(a) Suppose thalV <5 M. ThenK C N < M. LetK + X = M with M /X singular.
SinceK +X = M, we haveN + X = M. SinceN + X = M, M/X singular andV <5 M,
we haveX = M. Therefore, K < M. Let

N/K+X/K=M/K

with (M /K) /(X /K) = M /X singular. ThenV/K+X /K = M /K implies thatV + X =
M. SinceM /X is singular andV <; M, we haveX = M, i.e., X /K = M /K. Therefore
N/K <5 M/K.

Conversely, suppose that <; M andN /K <; M /K. LetN+X = M with M /X
singular. ThefN+X)/K = M /K,soN/K+(X+K)/K = M /K. SinceM /X singular,
we haveM /(X + K) is singular by Proposition 2.16. Therefote&l + K)/K = M /K, that
is, X + K = M. SinceK <s M, X + K = M, andM/X singular we haveX = M.
ThereforeN <5 M.

(i)(b) Suppose thatv + L <5 M. Let N + X = M with M/X singular. Then we have
N+ L+ X = M with M/X singular. By assumptionY = M. Therefore,N <5 M.
Similarly, L <5 M.

Conversely, suppose that <; M andL <5 M. Let(N + L) + X = M with M/X
singular. ThenV + (L 4+ X) = M with M /X singular. Since/ /X is singular, we have
M /(L + X) is singular, by Proposition 2.16. Now < M givesL + X = M. Since
L <5 M, we haveX = M. ThereforeN + L <5 M.

(i) Suppose thatKk <5 M and f : M — N is a homomorphism. Suppose that
f(K)+ X = N with N /X singular. Then for alln € M, we can writef (m) = f(k) + z,
for somek € K,z € X. Thenm — k € f~Y(X). Thusm € K + f~}(X). Hence
M = K + f}X). SinceK <5 M, we haveM = K’ ® f~}(X), whereK’ is a projective
and semisimple submodule &f, by Lemma 3.1. ThusM/f—l(X) =~ K’is nonsingular. So,
Hom(N /X, M/ f~'(X)) = 0, by Proposition 3.1.

0 — X s N » N/X  —— 0
| | | o| |
0 —— fHX) M = M/f(X) — 0
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Therefore M = f~!(X). Thus,f(K) C f(M) C X. Hence,X = N.

For the last part, lef be the inclusion map from/ to N. ThenK <5 M implies
K = f(K) <s N.
(i) Let K1 C M; C M, Ky C My C M andM = M; & M,. Suppose thak', & Ky <5 M.
We know thatj-small submodules are preserved under homomorphisms. ¢¢msjder the
canonical projectonm : M — M. Since K, ¢ K, <5 M,
m(K; @ Ky) <s M, e, K1 <s; M;. Also we have the canonical projection
o M — M. SinceK; @ Ky <5 M, mo(Ky @ Ks) <5 My, i.e., Ky <5 M.

Conversely, suppose that, <; M; andKy <5 M,. ThenK; <5 M andKy, <5 M
by (ii). Therefore,K; & Ky = K1 + Ky <5 M, by (i)(b). O

Definition 3.2 (Zhou, Y., 2000) Lep be the class of all singular simple modules. For a
moduleM, let

5(M) = Rejy(p) = NN C M | M/N € p}
be the reject inV/ of p.
Lemma 3.3 (Zhou, Y., 2000) Let/ and N be modules.
(i) o(M)=>{L C M| Lisad-small submodule af/}.

(i) If f: M — N is an R-homomorphism, thei(6(M)) C 6(N). Therefores(M) is a
fully invariant submodule af/ and Mo(R) C §(M).
(iii) 1f M =D M;, thens(M) = 5 6(M;).
el i€l
(iv) If every proper submodule @f is contained in a maximal submodule/df, thend (M)

Is the unique largest-small submodule af/.

Proof
(i) We know that

(M) =Rejy(p) ={Ker f C M| f: M — U,Uis asingular simple moduje

Let A <5 M. Thenf(A) <5 U, i.e., f(A) # U. SinceU is simple andf(A4) C U,
f(A) =0,i.e.,A C Ker f. Therefore A C §(M).
Conversely, let

Uy = Y {LC M| Lisaé-small submodule of/}
U, = (INSM|M/N e}
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Leta € U,. Suppose R is not ad-small submodule. Then there exists a maximal idéalf
M such that: is not an element oK', aR + K = M with M/K singular. Sincd< <max M,
M /K is simple. But then we havk/ / K is singular and simple and a is not an elemenkof
this contradicts witlw € U,. ThereforeaR is ad-small submodule.

(i) Suppose thaf : M — N is an R-homomorphism. Then

f(5(M)) - ZL<<5M f(L)
SinceL <5 M, f(L) <s N. Thus, f(6(M)) C §(N). Letm be a fixed element of/.
Thenf,, : Rg — Mg given by f(r) = mr,r € R is a homomorphism. Thep, (6(Rg)) =
md(Rg). Sincef,,(6(Rg)) C 6(Mg), we havend(Rr) C §(Mg). Hence
> mé(Rgp) = M&(Rg) C 6(Mp).

meM

(iii) Let M = @Mi. Thend(M;) C M by (ii). Sinced(M;) C (M;), we have

> 6(M;) = @ s(Mi) € 5(M).

Thus,@ 6(M;) C 6(M).

Conversely, letm € 6(M). Thenm = > .-;m; I'is finite, and let
m; « M — M; be thei'" projection. Thenr;(m) = m; € §(M;). Thus,m € @ J(M;). So
(M) C @ d(M;). Therefore, we obtain that

s(M) = 5 s(M).

(iv) Suppose that every proper submodulelofis contained in a maximal submodule &f.
LetL < M andM/L singular. Then there exist& <max M such that, C K. Since
M /L is singular, we havel/ /(L + K) = M /K is singular. Thusg(M) C K. Then
L+0(M)C K # M. Therefore,L 4+ §(M) # M, i.e.,6(M) is s-small in M. Sinced(M)
is the sum of albb-small submodules o}/ anddé(M) is 6-small in M, §(M) is the largest
0-small submodule of/. OJ

Next we give some descriptions &fRr) and some properties @t related to)(Rg).
From now on, letv(R) = 6(Rg),Soc(R) = Soc(Rg). For a moduleM, with I C R and
X CM,let

rr(X) = {a€ R|Xa=0}

Theorem 3.1 (Zhou, Y., 2000) Given a ring, each of the following sets is equal{oR):
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() R, = the intersection of all essential maximal right idealsiyf
(i) Ry = the unique largesi- small right ideal ofR,
(i) Rs={xr € R|2R+ K =R= K <g R},
(iv) Ry = ﬂ{ idealsP of R | R/P has a faithful singular simple module

(V) Rs ={x € R|Vy € R,dasemisimple rightideal” of R such thatl —xzy)R®Y =
R}.

Proof
(i) For a right ideal! of R, R/I is a singular simple module if and only ifis an essen-
tial maximal right ideal ofR. Thusé(R) = R;.
(i) By Lemma 3.3,0(R) = Rs.
(iif) Because of Lemma 3.1, it is easy to check thatfar R, 2R <5 Rifandonlyifz € R3.
Thusié(R) = Rs.
(iv) An ideal P of R is such thatR /P has a faithful singular simple module if and only if
P = rgr(M) = Rejr(M) for a singular simple modulé/. Let F' be a complete set of
representatives of the singular simple modules. Then

5(R) = Rejn(p) = Reja([]x M) = [ Reir(M)

Thusié(R) = Ry.
(v) Let z € 0(R). Fory € R, we havexy € §(R). So (xy)R <s R. Since
R=(1—-2y)R+ (zy)R and(zy)R <5 R, we have by Lemma 3.1] —zy)R& Y = R for
a semisimple right ideal” of R. Thus,x € Rs.

Conversely, suppose< R — §(R). Thenz is not an element oV for some essential
maximal right idealV of R. So,xR+ N = R. Write1 = xy + n wherey € R,n € N. If
x € Rs, then

R=(1-2y)R®Y =nRaY

for some semisimple right ideal of R. Sincen € N, we havenR C N, and sinceY is
a semisimple right ideal, we hawé C Soc(R) C N. Therefore, R = nR+Y C N, a
contradiction. Sog is not an element aR;. This shows thaé(R) = Rs. O

Corollary 3.1 (Zhou, Y., 2000) For aring, §(R)/ Soc(R) = J(R/ Soc(R)). In particular,

R = 6(R) if and only if R is a semisimple ring.

Proof Letz+Soc(R) € 6(R)/Soc(R), z € §(R). By Theorem 3.1 (v), for alj € R there
exists a semisimple right ide& of R such thatR = (1 — zy)R ® Y. Then we can write
1+ Soc(R) = [(1 — zy)r + y] + Soc(R). Sincey € Y andY is semisimpley € Soc(R), SO
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1+ Soc(R) = (1 — zy)r 4+ Soc(R) = [(1 — xy) + Soc(R)][r + Soc(R)].

Thus,1—zy+Soc(R) isright invertible inR / Soc(R) forally € R. Hencex € J(R/ Soc(R)).
Therefore,J (R/ Soc(R)) 2 6(R)/ Soc(R).

Conversely, sincd (R/ Soc(R)) is the intersection of all maximal submoduleszof
which containsSoc(R), it is contained in the intersection of all maximal essdritieals of R
which containsSoc(R). Therefore J(R/ Soc(R)) C 6(R)/ Soc(R). O

Theorem 3.2 (Zhou, Y., 2000) The following are equivalent for a riRg
(i) R/6(R)is a semisimple ring,
(i) Every direct product of singular semisimple modulesesisimple,
(iii) Soc(M) N Z(M) =l (5(R)) for any R-module)M.

In this case Mo(R) = (M) for any modulel/.

Proof
()= (iii) Suppose thaR/é(R) is a semisimple ring. We know that

(Soc(M) N Z(M))S(R) C &(Soc(M) N Z(M)).
Let L C Soc(M) N Z(M). Thatis,L is semisimple and singular. $¢L) = 0. Therefore,
§(Soc(M)Nn Z(M)) =0, i.e.,

Soc(M) N Z(M) € I (6(R)).
Sincely(5(R)) is anR /6(R)-module,l,;(5(R)) is semisimple. Thus,
I (6(R)) C Soc(M).

By (i) and Definition 3.2,5(R) is a finite intersection of essential maximal right ideals. S
d(R) <e R and thus

I(6(R)) C Z(M).

Therefore,
Soc(M)YNZ(M) =1y (6(R)).

(iii) = (ii) Let M be a product of singular semisimple modules. Sif(@@) annihilates every
singular semisimple module, we have = [,,(6(R)). By (iii), M = Soc(M).
(ii)= (i) R/4(R) is embeddable in a product of singular simple modules, an8&®) is
semisimple by (ii).

For the last statement, note thaf/A/6(R) is a semisimpleR /é(R)-module and
hence a semisimpl&-module. WriteM /M§(R) = S @ N, whereS is singular andV
is non-singular. Sinc&/'§(R) = 0, we haveN = 0, by (iii). Thus,

23



5(M/M(5(R)) =4(5)=0.
But by Lemma 3.3,
(M) + MG(R)]/ M3(R) C 5(M /M6(R)).

It follows thatd (M) C MS(R), and s&d(M) = M46(R), by Lemma 3.3. O

Lemma 3.4 (Zhou, Y., 2000) I is a projective module, thef( P) = PJ(R) and§(P) is
the intersection of all essential maximal submoduleB of

Proof SinceP is a projective moduleP is a direct summand of a free module. Assume
thatP @ P’ = R®). Then by Lemma 3.3,

5(P) @ 8(P") = §(RW) = (5(R))'™ = R®G(R) = P5(R) & P'§(R).

Since Po(R) C o(P) and P'§(R) C §(P’'), we must havePd(R) = 6(P). We know that
d(R) is the intersection of all essential maximal right idealgbfso§(P) = PJ(R) is the
intersection of all essential maximal submodule$’of O

3.2. Projectived-covers

In this section, the notion of projectivecovers is defined. Unlike projective covers,
the projective’-covers of a module are not unique up to isomorphism, but difésr by only

a projective semisimple direct summand.

Definition 3.3 (Zhou, Y., 2000) A paifP; p) is called a projectivé-cover of the modulé/
if P is projective andg is an epimorphism oP onto M with Ker(p) < P.

Every projective cover ol is a projectivej-cover of M. As we will see later, some
modules may not have projectivecovers and some modules have projecthevers but no

projective covers.

Lemma 3.5 (Zhou, Y., 2000) Let/ = M; & My & --- & M,, be such that alp; : P, — M;
are projectived-covers. LetP = P& P, @ ---® P,. Thenp = € p; : P — M is a projective
d-cover.

Proof By Lemma 3.3Ker(p) = @ Ker(p;) isd-small inM. SinceP;,i =1,2,...,n are
projective R-modules, we hav® = P, & P, @ - - - & P, is a projectivek-module. Therefore,
p=&p;: P— M is a projective)-cover of M. O
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Lemma 3.6 (Zhou, Y., 2000) Let : P — M be a projective)-cover. IfQ is projective and
q : Q — M is an epimorphism, then there exist decompositiBns A ® BandQ = X &Y
such that

(i) A~ X,
(i) p|a: A — M is a projectivej-cover,
(iii) ¢|x : X — M is a projectivey-cover,

(iv) B is a projective semisimple module withC Ker(p) andY C Ker(q).

Proof

Since() is projective, there exists : () — P such thayy = ph. Thus, we have
P = h(Q) + Ker(p).

By Lemma 3.3, sinc&er(p) <5 P, we haveP = h(Q) @ B, whereB is a projective
semisimple submodule witB C Ker(p).

pla(A) = p(A) =p(A+ B) =p(P) = M,

that is,p

4 is an epimorphism. Sinck(Q)) = A is a direct summand aP, A is projective.
SinceKer(p|a) C Ker(p) <5 P, Ker(p|a) <5 P. S0,p|a : A — M is a projectivei-cover.

SinceA is projective s : (Q — A splits. So, there exists: A — @ suchthatg = 14.
Thus

Q=XdY =Img® Ker(h).
This givesA = g(A) = X. SinceKer(p|4) <s A, we have that
Ker(q|x) = Ker(pla) <5 g(A) = X,
by Lemma 3.3. Note that
a(X) = (ph)(X) = (P) (X +Y) = (ph)(Q) = a(Q) = M.

Thus,qg

x : X — M is a projectivej-cover. 0J
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Lemma 3.7 (Zhou, Y., 2000) LeP be a projective module andl be a submodule @?. Then
the following are equivalent:

(i) P/N has a projectivé-cover,

(i) P= P, & P, forsomeP, andP, with P, C NandP, NN <5 P.
Proof (i)=-(ii) Consider a projectivé-coverq : () — P/N. Letp: P — P/N be the
canonical epimorphism.

Then we have = ph. So,
p=Ker(p) + Imh = N + Im h.

By Lemma 3.3, there exists a decompositin= X @ Y such thap|y : X — P/N is a
projectivej-cover andy” C Ker(p) = N. ThusX NN = Ker(p|x) <s X.SinceX is a direct
summand of?, X N N <5 P by Lemma 3.3. Now leP’, =Y andP, = X.

(i)=-(i) Suppose (ii) holds. Let : P, — P/N be the canonical epimorphism. ThElr p =
NNP, <5 P. HenceKer pisd-smallin P, by Lemma 3.3. S0P, p) is a projectivej-cover
of P/N. O

3.3. Rings Over Which Certain Modules Have Projective)-covers

In this section various characterizations and propertiehtained for a ringz, for
which everyR-module (respectively simplB-module, cyclically presenteR-module) has a
projectived-cover.

Definition 3.4 (Zhou, Y., 2000) A ringR is called §-perfect (respectively-semiperfect,
0-semiregular) if everyR-module (respectively simplg-module, cyclically presente&-
module) has a projectivécover.

Examples 3.2
(i) Every right perfect ring i9-perfect.
(i) Semiperfect rings and-perfect rings are)-semiperfect.
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We will show later that a ring? is calledé-semiperfect if and only if every finitely
generated?-module has a projectivecover. First we characterize thhesemiregular rings.

Lemma 3.8 (Zhou, Y., 2000) Let € M. The following are equivalent:

(i) There exists a decompositiol = A © B such thatA is projective,A C =R and
rtRNB ks M,

(i) There existsy € M* such thata(z))? = a(x) andz — za(z) € §(M).
Lemma 3.9 (Zhou, Y., 2000) The following are equivalent for a module

(i) For any finitely generated submoduleof M, there is a decompositiol = M; & M,
suchthatd/; C Aand AN M, <5 M,

(i) For any cyclic submodulel of M, there is a decompositiolW = M; & M, such that
M, CAandAN M, <5 M,

(iii) Every finitely generated (or cyclic) submoduleof M can be writtenasA = N @ S,
whereNN is a direct summand of/ and S <5 M.

Proof (i)=-(iii) Suppose that for any finitely generated submoddlef M, there is a de-
compositionM = M; & M, such thatV; € AandM, N A <5 M. Then

(iii) = (ii) Let A be a cyclic submodule af/. Then by assumptio® = N & S, whereN is a
direct summand of/ andS is §-small inM. Write M = N @& N’ andletr : N N — N’
be the projection. Thed = N @ (AN N’) and

ANN' = 1(ANN) = 7(N + (ANN)) = 7(A) = 7(N + S) = 7(S).

SinceS <5 M, m(S) <5 N'. ThereforeA N N’ <5 N'.
(i)=(ii) Clear.
(i)=-(i) The proof is obtained by induction on the number of getiegaelements of the
submodules of\/. The assertion in (ii) provides the basis.
Assume the assertion to be proved for submodulesm#thi generating elements and

consider
We choose an idempotent End(M) with e(M) C u, R. We can write

M=¢eM)®(1—e)M.
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First we need to show that, R N (1 — e)(M) = (1 —e)(up,R). If x € u, RN (1 — e)(M),

then we have
r=u,r =(1—em=m—em.

Sincee(M) C u,R, em € u,R, thusm € u,R and soz € (1 — e)u,R. Conversely, if
z € (1 —e)u,R, thenz € u,R. Also we have(l — e)u,R C (1 — e)(M). Therefore,
z € (1—e)M Nu,R. Hence,

u, RN (1—e)(M)=(1-¢e)(u,R) <s M.
Now we formK =", (1 — e)u;R. Frome(U) C u,,R C U, we obtain the relation
U=(1-¢eU+elU) =K+ u,R.
By induction hypothesis, we find an idempotg¢nt End (M) with
f(M)C KandK N (1— f)(M)

(1= /)(K) <5 M.
Thenwe havell = f(M) & (1 — f)(M). Fromf(M) C K C (1 —e)(M), we can write
f(m) € K =¥,,(1—eJuR,
so
fm) =00 —-euri+ -+ (1 —e)up_17rp—1

and(1 —e)f(m) = f(m). Thus,f(m) € (1 —e)f(M). Similarly, we can show thatl —
e)f(m) € f(M). Hence(1l —e)f = f,thatis,ef = 0. Letg =e+ f — fe. Then

g =(etf-fe)let+f—fe)=e+[—fe=y,
thatis,g = e + f — feis an idempotent. So we can writé = g(M) ® (1 — g)(M). Then,
gM)C f(M)+eM)CK+u,R=U

Wehavel —g=1—e—f+ef=(1—f)+e(f—1)=(1—-f)(1—e). So,

1=HA=e)U) = (1= =e)(K)+ 1= f)1—e)(unR)
(1= K)+ (1= )1 —e)(uR)

N

Since(l — f)(K) <5 M and(1 — e)(u,R) <s M, we have
(1= HE) + 1 = N = e)(unRR) <5 M
and hencél — f)(1 —e)(U) <s M. Therefore,
1=g)(M)NU =1 =)L =e)U) C (1= [)(K)+ (1= f)1-eJuR <5 M.
U
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Lemma 3.10 (Zhou, Y., 2000) The following are equivalent for a module

() Forany submodulel of M, there is a decompositiall = M; & M, such thath; C A
andAN M, <5 M,

(i) Every submodulel of M can be written asi = N @ S with N is a direct summand of
M and S is -small in M.

Proof  (i)=-(ii) Suppose that there is a decompositish= M; & M, such that\/; C A
andM, N A <5 M. Then

A=AN (M & My) = M; @& (AN M,).

SayN = M; andS = AN M,.

(il=()Let A < M, A= N & S with N is a direct summand af/ andS is §-small in M.
Write M = N & N’ and letr : N & N' — N’ be the projection. Thed = N & (AN N’)
and

ANN =x(ANN)=n(N+ (ANN')) =n(A) =7(N+S5) =n(9).
SinceS <5 M, we haver(S) <s N’, that is,
m(S)=ANN <5 N' C M.

Therefore, AN N’ <5 M. O

Theorem 3.3 (Zhou, Y., 2000) The following are equivalent for a riRg
(i) Risad-semiregular ring,
(i) Every finitely presented-module has a projectivé&cover,

(i) Every finitely generated (or cyclic) right idedl of R can be written ad = eR @ S5,
wheree = ¢? € RandS C §(R),

(iv) R/5(R) is a Von-Neumann regular ring and idempotents lift modi{lg),
(v) Foranya € R, there exist$ € R such that(ba)? = ba anda — aba € §(R),

(vi) Foranya € R, there exist$ € R such that(ab)? = ab anda — aba € 6(R).

Proof LetR = R/§(R) be the factor ring and for any € R letz = z + 6(R).

()=-(iv) Let a« € R. SinceR is §-semiregular, every cyclically presentédmodule has a
projectivej-cover. So,R / aR has a projectivé-cover. Thus, by Lemma 3.%,R lies over a
projective direct summand d?. Hence, there exists a decompositiBn= I ® J such that
I CaRandaRNJ <5 R. ThenaR = I & (aRN J). By Theorem 3.1¢R N J C §(R).
Write I = eR for an idempotent € R. Then
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(aR+8(R)) J6(R) = (eR+ (aRN J) +6(R)) /8(R) = (eR + 6(R)) /3(R).

So,aR = eR is a direct summand aR. Since every finitely generated (cyclic) submodule is
a projective direct summand, is a regular ring.

To see the second part, iebe an idempotent ii®. Thena? + 6(R) = a + 6(R). As
aboveaR = eR. We can write

R=aR®(1-aRandR=¢R® (1-¢)R.

SinceaR = eR we have(l — g)a = 0, thatis,ea = @ and(T — a)e = 0, that is,ae = e. Let
f=e+ea(l —e). Then

fP=(e+ea(l—e))(et+ea(l—e))=e+ea(l —¢)=f.
So, f is an idempotent irR.
f=e¢+ea(l-e)=e+a(l—¢)=¢+a—ae=a.

Therefore,f = @, that is, idempotents lift modul& R).
(iv)=(i) Let « € R. SinceR is regularaR is a direct summand aR. By (iv), there exists an
idempotent € R such tha@R = eR. Thus,

R=aR® (1-#)R.

It follows thatR = aR+ (1 —e)R+0(R) andaRN (1 —e)R C §(R). Note that (R) < R.
By Lemma3.1R = [aR + (1 — e)R] @ X whereX is a projective semisimple right ideal of
R. Thus,

R/aR = (aR+ (1—¢€)R)® X)/aR= (aR+ (1—¢€)R)/aR® X
(1—e)R/(aRN(1—¢€)R) & X.

I

SinceaRN (1 —e)R C§(R),aRN (1 —e)R <5 (1 —e)R, by Lemma 3.2. So,
¢:(1—e)R— (1—¢e)R/(aRN (1 —¢)R)
is a projectivey-cover of (1 — e)R/(aR N (1 — e)R). Therefore,
p:(1—-e)R®@X = (1—e)R/(aRN(1—€)R) ® X = R/aR

is a projective)-cover of R / aR.

(i)=-(ii) It suffices to show that for any finitely generated freedute /', and any finitely
generated submodul¥ of F, F/X has a projectivé-cover. Because of Lemma 3.9, we
can assum& = z R is a cyclic submodule. By (i), we can writé = F; ® F, and assume
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any factor module”; (i = 1,2) modulo a cyclic submodule has a projectiveover. Write
xr = 1 + x9, Wherez; € F; andz, € F,. By Lemmas 3.7 and 3.8, there exists F} such
that

(a(xy))? = a(zy) andx, — z1a(zy) € §(F).
Extenda to F' by defininga(F,) = 0. Let
y =z — za(x) andy; = x; — z;a(xy) fori =1, 2.

Sincey, € F,, and Fg/ng has a projectivé-cover, by Lemmas 3.7 and 3.8, there exists
B € Fy such that3(y,) is an idempotent oR andy, — y25(y2) € 6(F,). Extends to F' by
letting 5(F;) = 0. Let

e =a(z) = a(z) andf = B(y) = B(y2)-

Sincefe = 0,e+ f — ef is an idempotent. Define

vy=a+(1—-e)f—p(z)a) e F*.

Then

is an idempotent and

r—av(x) = w—gze—af+aef = (x—¢) - (x—ze)f =y —yBly)
— (1= Bly)) + (92 — 92B()) € O(FY) + 0(Fy)  3(F).

By Lemmas 3.7 and 3.8?/:cR has a projectivé-cover.

(if) = (iii) Suppose that every finitely presented module has aeptivjes-cover. Then? /aR
has a projectivé-cover. By Lemma 3.7R = A @ B for someA and B with A C «R and
BNaR <s R. ThenA = eR for an idempotent € R. Thus,

aR=A® (aRNB)=eR® S whereS C (R).

(iif) = (i) Suppose that every cyclic right ideal= aR of R can be writtenasR = eR @ S,
wheree? = ¢ € RandS C §(R). Then by Lemma 3.9k = A & B such thatd C aR
andB NaR C 6(R). Therefore, by Lemma 3.7 /aR has a projectivé-cover. ThusR is
d-semiregular.

(iii) = (vi) For anya € R, there existg®> = ¢ € R suchthatR = eR & S, whereS C §(R).
SinceeR < aR, writee = ab anda = er + s whereb,r € R ands € S. Then we have,

e? = (ab)* = e = abandea = er + es.
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a—aba=a—ea=er+s—er—es=s—es=s€SCiR),

that is,a — aba € §(R).

(vi)=>(iii) For I = aR, we have) € R such thaiab)? = ab anda — aba € §(R). Lete = ab.
Foranyr € R, ar = ear + (a — ea)r. Thereforel = eR @ S, whereS = (a —ea)R C §(R).
()=-(v) Suppose thar is aj-semiregular ring. Let. € R. ThenR/aR has a projective
d-cover. By Lemma 3.7k = A @ B such thatd C aRandB NaR C §(R). So by Lemma
3.8, there exists € R such tha{ba)? = ba anda — aba € §(R).

(v)=-(i) Suppose that for any € R, there exist$ € R such thatba)* = ba anda — aba €
d(R). Then by Lemma 3.8, there exists a decomposifiove= A © B such thatd C aR
and B NaR <s R. Then by Lemma 3.7R/aR has a projectivé-cover, that is,R is a
d-semiregular ring. O

Next we characterize thesemiperfect rings.
Theorem 3.4 (Zhou, Y., 2000) The following statements are equivalerd fong R:
(i) Risad-semiperfect ring,
(i) Every finitely generatedk-module has a projectivé&cover,
(iii) Everyrightideall of R can be written ag = eR® S, wheree = ¢? € RandS C §(R),
(iv) R/é(R) is a semisimple ring and idempotents lift modd(),

(v) There exists a complete orthogonal set of idempotgnts, . . ., e, such that, for each
i, eithere; R is a simpleR-module ore; R has a unique essential maximal submodule,

(vi) For any countably generated right ided) R / I has a projectivé-cover.

Proof (i)=-(ii) Suppose thaf? is ad-semiperfect ring, that is, every simplemodule has
a projective)-cover. So we can form a s€tof R-modules such that every modulelins a

projectivej-cover of some simple module and every simple module hasjaqree §-cover

in I'. Thus,I" generates everiz-module. LetM be a finitely generate@&-module. We may
assumeM is not semisimple. Therd/ has a proper essential submodiNe SinceM is

finitely generated, there exists a maximal submodut€ M such thatvV C L. By Lemma
3.3 (ii),

M§(R) C (M) C L C M.

Thus,M /M§(R) # 0. There exist®;, € I' (1 = 1,2,...,n) such that

P=P P& &P —s M 0
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Sinceu(Po(R)) = u(P)o(R) = M§(R), i induces an epimorphism
Pi/Pi§(R) ® Py/Pyd(R) ® -+ ® P, /P,6(R) = P/P§(R) — M /M5(R) — 0.

SinceP; is a projective)-cover of a simple module?; contains a-small maximal submodule
X;. Thus,

X, C (P,) = PO(R) C P.

This shows that?,/P,6(R) is simple or0. Hence,M /M4(R) is a finite direct sum of
simple modules. By Lemma 3.5\//M4(R) has a projectivel-cover. Note that/y :
P — M/MG4(R) is onto, wherev : M — M /MJ(R) is the natural homomorphism
of M onto M /M4(R). By Lemma 3.6,P has a decompositio” = X @ Y such that
(vi)|x : X = M /MGJ(R) is a projectives-cover.

'
w_ - lu
e
e

M= M/M§(R) —=0

M = p(X) + M/M6(R).

By (ii) and (iv) in Lemma 3.3, we havé/§(R) <s; M and so by Lemma 3.1, we have
M = u(X) @ Z for a projective submodul& < M4(R). Note that

Ker(u|x) = Ker((vp)|x) <5 X.
Soulx : X — p(X) is a projectived-cover ofu(X). Thus
px®f:X®Z > uX)®Z=M

IS a projectivey-cover of M.
(it)=(iii) Let I be aright ideal of. ThenR/I =< 1+ I > iscyclic. So it has a projective
d-cover. By Lemma 3.7R = eR @ (1 — e) R such that

eRCTland(l—e)RNI<s R.
Then
I=IN[eR®(1—e)R]=eRB[IN(1—e)R].

SayS=1Nn(1-¢e)R.
(i) =(i) Let S be a simplek-module. By (iii),

S =eRwhereR=eR& (1 —e)R.
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Thus, S is projective. So, every simpl&-module has a projectivé-cover, i.e.,R is a /-
semiperfect ring.

(iii) = (iv) Suppose that every finitely generated module has a gre@g)-cover and every
right ideal I of R can be written ag = eR & S, wheree = ¢* € RandS C 6(R). By
(iii), and Theorem 3.3 (iii), every idempotent Bf/é(R) can be lifted to an idempotent &i.
Let I + 6(R)/5(R) be a submodule ok /§(R). Then by assumption], = eR @ S, where
e=e? € RandS C 6(R). Then

R/6(R) = (e+d(R))® ((1—e)+d(R)) /(R ®(1—e+d(R) /(R
ThereforeR is semisimple.
(iv)=-(i) Suppose thafz/§(R) is a semisimple ring and idempotents lift modd(d?). Let X
be a singular simpléz-module. ThenX§(R) = 0, soX is a simpleR/§(R)-module. Since
R/6(R) is semisimpleX = I /6(R) asR/§(R)-module, wherd /§(R) is a direct summand
of R/5(R). Then there exists = ¢* € R such that
> J/6(R) = (eR+4(R))/6(R
Thus we have
X ~2eR+6(R)/6(R) =eR/eRNS(R) = eR/ed(R)

asR-modules. By Lemma 3.3 (iv}i(eR) = eR)(R) = ed(R) <5 eR. S0eR is a projective
d-cover of X.

To prove (iv)=-(v), we need the following proposition:

Proposition 3.1 (Bland, Paul E., 2010) Lef;, I5, ..., I, be left ideals of the ring?. Then
the following are equivalent about the Iétemoduler:

() R=LoLd- - -®I,,
(i) Eachelement € R, has a unique expression=ry+---+r,,r; € L;(i=1,2,...,n),
(iif) There exists a (necessarily unique) completesset. ., e,, of pairwise orthogonal idem-
potents inkR with I; = Re;(i = 1,2...,n).

Note in particular that ifeq, . . ., e,, are idempotents i that satisfy (iii), then for each € R,

r=re;+reg+---+re,.

Now we can give the proof.
(iv)=(v) Let R = R/6(R) be the factor ring and = a + §(R) for anya € R. SinceR is
semisimple R is a direct sum of: minimal right ideals for somé. Let [, /§(R) be a minimal
right ideal of R and hence a direct summand®f By assumption, there exists an idempotent
f1of Rsuchthatly = fi{R + 0(R). Thus, we have
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Li/6(R) = iR/ RN O(R) = fiR/fi0(R) = fiR/d(fiR)

SinceSoc(R) C §(R) and R is semisimple§(R) <e R. Thus, fiR/5(f1R) is singular. It
follows thatd( f; R) is an essential maximal submodulefek. By Lemma 3.4¢(f1 R) is the
unique essential maximal submodulefef. If (1 — f)R # 0, then it has a direct summand
I, /6(R) which is a minimal right ideal of. It follows that

L=[LN({1-fi)R]+0(R).

Let/ = I, N (1 — f1)R. By Lemma 3.7, there exists a decomposition- f;)R = X & Y
suchthatX C Tand/NY < (1 — f1)R. Thus,/NY C §(R). Write X = fRwith f% = f.
SincefR C (1 — f1)R, we havef; fR C 0. Thus,f,f = 0. Let fo = f(1 — f1). Then

f=fA=-fA=hH) = (fF=fRU=fR)=Ff-Ffh—fhf—fhHIh
= [-fh=F0-f)=f-

Thus,f? = fyandfafi = f1f> = 0. Also we have

Lf =A== —-rfr=5r—rhfr=1r.
If fo € 6(R),thenf = fof € 6(R). Thus,/ = X & (INY) C §(R) and sol, = §(R) which

gives a contradiction. Hence; is not an element of(R). Sincel, /6(R) is simple,

L =6(R)= (f2R+6(R))/S(R) = oR/(f>RN(R)) = [2R/ f26(R) = foR/5(f2R)

As aboved( foR) is the unique essential maximal submoduleggR. By a simple induction,
we can choose idempotents f, ..., fr in R such that

finlfi+-+f) =i+ + [)fir1 =0

for i = 1,...,k — 1, each f;R has a unique essential maximal submodule, each
[fiR + 6(R)]/5(R) is a minimal right ideal ofR, andR = @ |[f;R + 6(R)/6(R)]. It
follows that f;f;, = 0if ¢ # jandl < 4,j < k. Thus, ZH fiR = @izl flR and
R=Y" fiR+4(R). By Lemma3.1,

R = (@?:1 [iR)® Y1 @ - BY,,

where eacht; is a simpleR-module. Now by Proposition 3.1, there exists a complete or-
thogonal sefe; | : = 1,...,n} of idempotents such thatk = f;R fori = 1,... k and

e, R=Y;forj=k+1,...,n

(i)=-(vi) Suppose that every finitely generatBdmodule has a projectivécover. Let/ be

a countably generated right ideal &f SinceR/I =< 1+ I > is finitely generated, by
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assumptiork / I has a projectivé-cover.

(V)=() LetR = e;RPes RD- - -Pe, R. Let M be a simpleR-module. Then either; R — M

is a projectives-cover of M or ;R — eiR/(S(eiR) — M is a projectivej-cover of M. So,
every simpleR-module has a projectivecover. ThereforeR is j-semiperfect.

(vi)=(iv) By Theorem 3.3,R is J-semiregular. SoR/cS(R) is regular and idempotents of
R/6(R) liftto R. We need to show that/4(R) is semisimple. It is enough to show that
is right Noetherian. If not, there exists a family; | i = 1,2,...,n} of nonzero idempotents
of R such that

U1§CUQFC“‘

is a strictly ascending chain. For eaghvrite u; ., R = u; R ® A, for a right idealA; of R and
Uiy, = v; + 1 with v; € w;R andl; € A;. Then0 # [; = I? andu,R = v;R. Fork > i, we
havel; € u,R = vy R C u1 R and so

li = upl; = (Uk + lk)lz = vl; + lgl;.

showsl,l; = 0. For eachi, there exists an idempotent of R such thate; = [;. Thus
e;e; € 6(R)fori > j. LetL = ey R+ eaR+---. ByLemma3.7.R = eR & (1 — e)R,
wheree = ¢? such thakR C Land(1 —e)RNL <5 R. SOL =eR @ [(1 — e)RN L] with
(1—e)RNL C §(R). Writee = eyry + - - - + e,r, for somen, wherer; € R. Fori > n,
write e; = es; + t;, wheres; € R andt; € §(R). Then

e; = eie;=ei(es;+t;) =ef(ers + -+ exrn)si + i)

= eeirs; + -+ ee,rns; +eit; € (S(R),

showsl; = & = 0 for all i > n, a contradiction. This contradiction shows tiais right
Noetherian. Therefor& is semisimple. 0J

Theorem 3.5 (Zhou, Y., 2000) The following statements are equivalerd fong R:
(i) R/Soc(R) is aright perfect ring,
(i) R/6(R)is semisimple and(M) # M for every non-semisimple modulé,
(i) R/é(R) is semisimple and(M) <5 M for every non-semisimple modulé,

(iv) R/6(R) is semisimple and(M) <5 M for every modulé\/.
Proof  (i)=(ii) Since R/ Soc(R) is a right perfect ring(R/ Soc(R))/J(R/ Soc(R)) is
semisimple. We know that(R/ Soc(R)) = §(R)/ Soc(R). Therefore,R/§(R) is semisim-
ple. Supposéf(M) = M for a non-semisimple modul&/. Note that, sincek?/§(R) is
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semisimpled(M) = MJ(R). Thus,M = 6(M) = MJ(R) is non-semisimple. So there
exists a non-semisimple submodule. Theim, R is not semisimple for some, € J(R).
But Ma;R = MJ(R)ay R, so there exista, € d(R) such thatMasa, R is not semisim-
ple. A simple induction shows that there exists a sequence,,... € J(R) such that
Maya,_1 - -asa R is not semisimple for alh. Thus Ma,a,_;---asaiR ¢ Soc(R) for
all n, i.e., aya,-1---asa;R ¢ Soc(R) for all n. Therefore,J(R/Soc(R)) is not rightT™-
nilpotent and this gives us a contradiction.

(if)=(iii) Let M be a non-semisimple module add = (M) + K with M /K singular.
Supposd\/[/K is not semisimple. By (ii),

(6(M)+K)/K = (M§(R)+ K)/K = (M/K)§(R) =6(M/K) # M /K,

which implies thatV/ # §(M) + K and this gives a contradiction. Sd /K is singular
semisimple. Thus(M /K)§(R) = 0, which shows thafi(M/) C K and soM = K. There-
fore,6(M) <5 M.

(iii) =(iv) It suffices to show that(M) <s; M for any semisimple moduléd/. Write

M = S&N with S singular andV nonsingular. Thea(M) = 6(S®N) = §(S)®do(N). Non-
singular submodule of a semisimple moduléismall in M/, soN < M, i.e.,6(N) = N.

We know that semisimple modules has no nonzero small sublemaahd if X is a singular
module and¥ is ad-small submodule oKX thenK is a small submodule of'. Thus, sinces

is singular and semisimple submoduleMt 6(S) = 0. Hence (M) =0+ N = N <5 M.

Therefore (M) <5 M.

To prove (iv)=-(i) we need the following Lemmas:

Lemma 3.11 (Anderson, FW., Fuller, K. R. 1992)[Lemma 28.1] keta,, . . . be a sequence
in R. Let F' be the free leffR-module with basis, zs, ..., lety, = z, — a,x,11, (n € N)
and finally, letG' be the submodule df spanned by, y»,.... Then

(i) Gis free with basig, 3o, . . .

(i) G = Fifand only if for eachk € N, there isn > k such thatay, - - - a,, = 0.

Lemma 3.12 (Anderson, FEW., Fuller, K. R. 1992)[Lemma 28.2] With thedthesis of
Lemma 3.11, i€7 is a direct summand df, then the chain

alR Z alagR Z s
of principal right ideals terminates.

Now we can give the proof.
(iv)=(i) Let ' = R®™) have a free basis,, z,,.... Letay,as,... be a sequence if R)
andG = > 7 (z; — zi110;). ThenF = G + 6(F). By assumptiong(F) < F. Thus,
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F = G @Y for a semisimple submodulé. Thus, by Lemma 3.12, there exists a number
such thatRa,,1a, - --a; = Ra, ---a;. Thena, ---a; = ra,,1---a; for somer € R and so

(1 =rapy1)ay, -+ -a; = 0. Sincera, 1 € §(R), we have
rans1 + Soc(R) € 6(R)/ Soc(R) = J(R/ Soc(R)).

Therefore,(1 — ra,+1) + Soc(R) is right invertible. Thusa, ---a; € Soc(R). Hence,
§(R)/ Soc(R) = J(R/ Soc(R)) is right T-nilpotent. ThereforeR / Soc(R) is a right perfect
ring. O

Theorem 3.6 (Zhou, Y., 2000) The following are equivalent for a riRg
() Risad-perfectring,
(i) Every semisimplé?-module has a projectivécover,
(iii) Ris ad-semiperfect ring and(M) < M for any module/,

(iv) R/ Soc(R) is right perfect ring and idempotents lift modul@R).

Proof (ii)=-(iii) Suppose that every semisimplemodule has a projectivécover. Then
every simpleR-module has a projectivecover, i.e.,R is ad-semiperfect ring and SB/5(R)

is semisimple. By Theorem 3.5, it suffices to show #@t/) # M for any non-semisimple
moduleM. Suppose for the contrary th&t)/) = M for some non-semisimple modulé.
Since every module is an epimorphic image of a free modulretlexists an epimorphism
f : P — M with P projective. SinceV/ is non-semisimple, we have is non-semisimple.
Then we obtain that

f(0(P)) = f(PO(R)) = f(P)d(R) = M6(R) = M.

We have the following diagram:

It follows that P = §(P) + Ker(f). We now show that(P) < P. SinceP/d(P) =
P/P5(R) is anR/§(R)-module and hence a semisimpgiemodule, it has a projectivé-
cover. By Lemma 3.7, there exists a decompositide= A & B such thatdA C §(P) and
d(P)NB <5 P. S0§(P) = A (6(P)N B). But by Lemma 3.3 (jii),

5(P) = §(A) @ 8(B).
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Thisimpliesthatd = 6(A) andd(P)NB = §(B) < B. SinceA is projective, and(A) = A,
A must be semisimple. Thusg, <5 A. By Lemma 3.2)(P) = A®0(B) <s A® B = P.
FromP = 6(P)+Ker(f), by Lemma 3.1, we have th& = Q ©Ker(f) for some semisimple
Q. Then

M = P/Ker(f)=Q

is semisimple, a contradiction.
(i)=-(ii) Obvious.
(iii) =(iv) Suppose thaf? is a -semiperfect ring and(M) <s M for any R-module M.
ThenR/§(R) is semisimple. Since? is a §-semiperfect ring,R/5(R) is semisimple and
idempotents lift moduld(R), by Theorem 3.4. SincR& is aj-semiperfect ring and(M) <
M for any R-module)M, we haveR / Soc(R) is right perfect by Theorem 3.5.
(iv)=(iii) Suppose thaiR/ Soc(R) is right perfect and idempotents lift modwéR). Then
we have
R/Soc(R)  R/Soc(R)
J(R/Soc(R))  6(R)/Soc(R)

Is semisimple. S(R/cS(R) is semisimple. Therefore, by Theorem 3Rjs ad-semiperfect
ring and by Theorem 3.5(M) <5 M for any R-moduleM. O

3.4. Examples

In this section, some examples are given to illustrate timeepts introduced earlier.

Example 3.1 (Zhou, Y., 2000) A-semiperfect and semiregular ring is not necessarily semip
fect.

Let@ = [[;°, Fi, where eachF; = Z,. Let R be the subring of) generated by
D2, F; and1g. ThenR is 6-semiregular but not semiperfect.

The simpleR-modules aref, = R/(@;°, F;), Fi, F»,.... To check thatR is é-
semiperfect, we only need to verify that each singular smpdule has a projectiviecover.
F, is the only singular simple module. Sinéeis not semisimplej(R) # R. Note that
@D,._, Fi = Soc(R) C 6(R). Thus,Soc(R) = 6(R) is é-small in R. SoF; has a projective
0-cover. ThusR is 6-semiperfect.

Example 3.2 (Zhou, Y., 2000) A semiregular ring is not necessatigemiperfect.
Let R be as in Example 3.1. Let

T:{(Z Z) |a€R,b€Soc(R)=@Z-Fi}
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ThenT is a ring under the matrix addition and multiplication. Weviesthat

5(T):{<8 Z) |besoc(R)}

T/6(T) = R is regular but not semisimple. S@ is not -semiperfect. Clearly
J(T) = &(T) and idempotents & /§(T) lift to idempotents of . SinceT’/.J(T) = T /§(T)
is regular and idempotents df/cS(T) lift to idempotents off’, we haveTl is a semiregular

ring.

Example 3.3 (Zhou, Y., 2000) A-perfect ring is not necessarily semiregular.

Let F' be a field,
F F
I pr—

and, R = {(z1,22,..,xpn,z,x,...) | n € Nyz; € My(F),xz € [}. With componentwise
operations,R is a ring. R is not a semiregular ring. We see that

Soc(R) = {(x1,z2,...,2,,0,0,...) | n € Nyx; € My(F)},
0(R) ={(z1,22,...,Tp,x,x,...) | n ENjz; € My(F),x € J}

0 F
whereJ = . Thus,
0 0

R/SOC(R)§<F F):[

0 F

is a right perfect ring. It is easy to check that idempoterft& 5(R) lift to idempotents ofz.
SoR is §-perfect.

Example 3.4 (Zhou, Y., 2000) A local ring is not necessaiihperfect.
Let R be the ring of polynomials over a field in countably many commuting inde-
terminatesr;, z,, . .. modulo the ideal generated By?, 23 — x1, 22 — zy,.. .},

J(R) = (w1, 22,...)/(a%,23 — 21,2} — 32,...)

is the unique maximal ideal @t and R has no minimal ideal. Thus} is a local ring and
Soc(R) = 0. Itis easy to see that(R) is notT-nilpotent. SaR/ Soc(R) is not perfect, and
henceR is noté-perfect.
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CHAPTER 4

WHEN ¢-SEMIPERFECT RINGS ARE SEMIPERFECT

Zhou definedi-semiperfect rings as a proper generalization of semiperifegs. The
purpose of this chapter is to discuss relative notions opkupented modules and to show
that the semiperfect rings are precisely the semilocabnmigich are)-supplemented.

4.1. Introduction

H. Bass characterized those ringsvhose right?R-modules have projective covers and
termed them right perfect rings. He characterized them @setsemilocal rings which have
a right T-nilpotent Jacobson radicdl( R). Bass’s semiperfect rings are those whose finitely
generated?-modules have projective covers. Kasch and Mares traesfaire notions of
perfect and semiperfect rings to modules and charactesestdperfect modules by a lattice
theoretical condition as follows.

Definition 4.1 A moduleM is called supplemented if for any submodilef M, there exists
a submoduleX of M minimal with respecttd/ = N + X.

Definition 4.2 For N, X < M, X isasupplementaV in M if N+ X = M andNNX < X.

The right perfect rings are then shown to be exactly thoggsnvhose righz-modules
are supplemented while the semiperfect rings are those evfwoisely generated rightz-
modules are supplemented. Equivalently, it is enough fon@ R to be semiperfect if the
right (or left) R-module R is supplemented. Recall that a submoddle< M is said to be
small, denoted byV <« M, if N + X # M for all proper submoduleX of A, and that
N < M is said to be essential i/, denoted byV <. M, if N N X # 0 for each nonzero
submoduleX of M. Recall that a moduld/ is said to be singular if/ = N/X for some
moduleN and a submodulX < N.

Definition 4.3 A moduleM is called §-supplemented if every submodweof M has ad-
supplemenX in M,i.e.,M =N+ X andN N X <5 X.

It is known that a ringR is §-semiperfect if and only if it is @-supplemented module.
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4.2. §-supplements

In this section we have seen that some of the technicalitiesipplement submodules
have their relative equivalent. Létbe a nonsingular simple module. Then it is easy to see
thatd(S) = S. Also note that ifK" is a maximal submodule which is essentiallify then
M /K is singular simple s6(M) < K.

Definition 4.4 A submoduleV of M is said to be coclosed i¥ / K < M /K impliesK = N
foreachK < N.

Example 4.1 Every supplement submodule of a module is coclosed:
Let V be a supplement submodule of a modkile< M. ThenX + N = M. So

M/K=(X+N)/K=(X+K)/K+N/K.

If N/K < M/K,then(X + K)/K = M/K,i.e,M = X + K. SinceN is minimal with
respect taX + N = M, we havek’ = N. Therefore,V is coclosed.

Definition 4.5 Let M be anR-module andV < M. We callN a §-coclosed submodule of
M if, wheneverV /X is singular andV /X <; M /X for someX < N, we haveX = N.

Supplements are coclosed and so are theiuivalents:

Lemma 4.1 (Buyukasik, E., Lomp, C., 2009)[Lemma 2.3] L)étbe any module and/ < M
be aj-supplement in/. ThenN is §-coclosed.

Proof LetN be aj-supplementofa modul < M. ThenN+K = M andNNK <5 N.
SupposeV /X is singular andV /X <; M /X for someX < N. Then we have

N/X+(K+X)/X=M/X,
and
M/(K+X)2N/(NN(K+X))

is singular as a factor module of the singular modlZN’dX. Therefore, we have
(K+X)/X =M/XasNNX <; M/X. Then we get< + X = M, and so by modular
law N = (NN K) + X. SinceN N K <; N andN /X is singular we havé{ = N. SoN
is ad-coclosed submodule a@if. O
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In the following proposition some properties®toclosed submodules are given.

Proposition 4.1 (Buyukasik, E., Lomp, C., 2009)[Proposition 2.4] L&t be ad-coclosed
submodule of/. Then the following hold.

() If K< N<MandK <5 M, thenK <5 N. Henced(N)=NN4§(M).

(i) If X is a proper submodule aV such thatN/X <5 M/X, thenN = X @ X' for
someX’ < N.

(i) If N is singular, thenV is coclosed.

Proof (i) Let K <5 M and suppose thdt + X = N for someX < N with N /X
singular. Then

N/X=(K+X)/X <s M/X.

SinceNN is ad-coclosed submodule dff, we haveX = N. Therefore, KX <5 N. Now we

have,
SN SN, IJ(N)=Y{K<N|K<NCHY{K<M|K<s M} =§M)

So0d(N) € N nd(M). Therefore, we need to prove thatN §(M) C 6(N). Letz €
NN§(M). ThenRx <5 M and so by the first part of the pro&fr <5 N, thatis,z € §(N).
Henced(N) = N NJ(M).

(i) Let X < N with N/X <; M/X. Let X’ < N be a maximal submodule iV such
thatX N X’ = 0. ThenX ® X’ <, N and soN /(X @ X') is singular. On the other hand
N/(X ® X') <; M. SinceN is é-coclosed, we havd/ = X @ X'

(i) Let N be ad-coclosed submodule dff. SupposéV is singular. Since singular modules
are closed under factor modulég/ X is singular. IfN /X < M /X, thenN /X <; M /X.
SinceN/X is singular,N/X <5 M/X andN is §-coclosed, we hav& = N. Therefore,
N is coclosed. 0

Corollary 4.1 (Buyukasik, E., Lomp, C., 2009)[Corollary 2.5] L& be ad-supplement
submodule of\/. Then§(N) = N N §(M).

Proof SupposeV is ad-supplement submodule dff. By Lemma 4.1,N is é-coclosed.
Thus, by Proposition 4.5(N) = N N §(M). O
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Corollary 4.2 (Buyukaslik, E., Lomp, C., 2009)[Corollary 2.6] For a modulé and a sub-
moduleN < M, consider the following statements.

(i) N isad-supplement submodule bf,
(i) N isd-coclosed inM,
(i) Forall X < N, X <5 M impliesX <5 N.

If N has awealé-supplementin/,i.e.,N+ K = M andNNK <5 M for some submodule
K < M, then(iii) = (4) holds.

Proof (i)=-(iii) By Lemma 4.1.

(i) =(iii) By Proposition 4.1.

(i) = (i) SupposeV has a weak-supplementin/. ThenN + L = M andNNL <5 M for
some submodulé < M. ThenNNL C N, NNL <s M impliesNNL <5 N. Therefore,
N is ad-supplement of. in M. O

4.3. On the Structure ofd-supplemented Modules

Definition 4.6 A module)/ is said to be local if\/ has a largest proper submodule.

Lemma 4.2 M is local if and only if Rad(M) is a maximal submodule o/ and
Rad(M) < M.
Proof Suppose that\/ is local. ThenAM has a largest proper submodule, s&y so
Rad M = N < M. SinceRad M is the largest proper submodule &f, Rad M contains
every proper submodule @f/, i.e.,Rad M + N # M forany N < M.

Conversely suppose thBhd M <max M andRad(M) < M. If a is not an element
of Rad M, thenRad M + aR = M implies thata R = M. Therefore Rad M is the largest
proper submodule af7. O

Definition 4.7 Let M be anR-module.}M is said to bej-local if §(M) <5 M andj(M) is
a maximal submodule G/ .

Examples 4.1 (i) Every simple module is local:

Let S be a simple module. Thdtad S = 0 <max S and0 < S. ThusS is local.
(ii) A simple module ig-local if and only if it is singular:

Let S be a simple module and singular module. Théf) = 0, sod(S) <5 S and
0(S) <max5S.
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Conversely letS be a simple module. Suppose thétis é-local. Then
0(S) <max.S andi(S) <5 S. S0d(S) =0, i.e., S is singular.
(iii) Let S be a nonsingular simple module at be a singular simple module. Then by
above argument$ is local. ButS is notd-local. Becausé(S) = S. On the other hand, let
M=S5@S'. Then

Rad M =Rad S @ Rad S’ = 0 < M.

But0 is not a maximal submodule 8f soM is not local. Sincé(S) = S andd(S’) = 0, we
have

S(M) = 6(S) @ 6(S") = S.

SinceM /S = S simple,6(M) = S <max M. Suppos&f(M) + K = M with M /K
singular. Since(M) = S is nonsingular and

MK = §(M)/(5(M) N K)

is singular, we havé(M) N K <, 6(M). Buté(M) is simple, so(M) N K = 6(M), i.e.,
0(M)C K,K =M. Hencej(M) <s M,ie., M isd-local.

Lemma 4.3 (Buyukasik, E., Lomp, C., 2009)[Lemma 3.2] L&t be a module and{ a
local submodule of\/. ThenH is a supplement of each proper submodile< M with
H+K =M.

Proof Since K is a proper submodule o/ and H + K = M, we haveK N H is a
proper submodule off. SinceH is local,Rad H is the unique maximal submodule Bfand
Rad H < H. Thus, we havd N H C RadH < H. SOK N H <« H. Thatis,H is a
supplement of{ in M. O

Lemma 4.4 (Buyukasik, E., Lomp, C., 2009)[Lemma 3.3] Anlpcal module i9-supplemented.
Proof Let M be ad-local module andN be a proper submodule ao¥/. Since
d(M) <max M, we have eithetNV- < §(M) or (M) + N = M. If N < §(M), then
N <5 M. SoM is aé-supplement ofV in M. Now suppos&(M) + N = M. Since
(M) <5 M, we haveN &Y = M for some semisimple submoduie< §(M). Hence)Y
Is ad-supplement ofV in M. Therefore M is /-supplemented. O

Lemma 4.5 (Buyukasik, E., Lomp, C., 2009)[Lemma 3.4] Liétbe anR-module and lef<
be a maximal submodule wioc(M) < K. If L is ad-supplement ofC in M, thenL is
o-local.

Proof K+ L = MandK N L < L, by assumption. We clam thdt N L <, L. If
(KN L)NT = 0 for some nonzero submodulée< L, thenL = (KN L) & T. We get
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M=K+L=K+(KnL)+T=K+T,

and sol’ ﬁ K giving a contradiction sincé& C Soc M C K. Therefore, K N L <. L so
0(L)C KNL.Hencej(L)=KNL <5 Landd(L) = KNL <maxL, i.e.,Lisé-local.C]

Definition 4.8 A submoduleV < M is called cofinite ifM/N is finitely generated.

Definition 4.9 M is called cofinitelys-supplemented if every cofinite submodulédbhas a
o-supplement in\/.

In caseM is finitely generated, clearly every submoduleMfis cofinite; soM is
d-supplemented if and only i#/ is cofinitely 5-supplemented. If a finitely generated module
M is a sum ob-supplemented modules, thén is j-supplemented.

Proposition 4.2 (Buyukasik, E., Lomp, C., 2009)[Proposition 3.5] For a finitglgnerated
module)M, the following are equivalent:

(i) M isd-supplemented,
(i) Every maximal submodule éff has ad-supplement,

(i) M =H,+ H,+ ---+ H, whereH, is either simple op-local.
Proof (i)=(ii) Clear.
(i) =(iii) Let A(M) < M be the sum of alb-supplement submodules of maximal submodules
N < M with Soc(M) < N. Then by Lemma 4.5\(M) is a sum ofé-local submodules of
M. We claim thatV = Soc(M)+ \(M). Suppose to the contrary thiat # Soc(M)+ A(M)
. SinceM is finitely generatedsoc(M) + A(M) < K for some maximal submodul€ < M.
By assumptionK has aj-supplement. in M. SinceSoc(M) C K, L is §-local by Lemma
4.5. Hence. < A\(M) < K. SinceL+ K = M andL C K, we haveK = M. But K <max
M, a contradiction. Thereford/ = Soc(M) + A(M). SinceM is finitely generated)/ is a
finite sum of simple submodules andocal submodules, as desired.
(iii) = (i) By Lemma 4.4 ,§-local modules aré-supplemented, and clearly simple modules
are alsaj-supplemented. Thereforé/ is 6-supplemented as a finite sumd®dsupplemented
modules. OJ

4.4. Whend-supplemented Modules are Supplemented

We will turn to the problem of characterizing wheh-aemiperfect ring is semiperfect.
Recall that a modulé/ is called semilocal iﬂ\/[/ Rad M is semisimple.
For any modulé/, let X (M) = Soc M /(Soc M NRad M).
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Lemma 4.6 (Buyukasik, E., Lomp, C., 2009)[Lemma 4.1] Liete a ring andM a finitely
generatedgd-supplemented righR-module. Then/ is semilocal if and only if

Soc(M)/(Soc(M) N Rad(M))

is finitely generated.

Proof If M is semilocal and finitely generated, thaf/ Rad(}M) is semisimple Artinian.
Moreover,

Soc(M)/(Soc(M) NRad(M)) = (Soc(M) + Rad(M)) / Rad(M) € M/ Rad(M)

implies thatX (M) is semisimple Artinian; s& (M) is finitely generated.

To show the converse we use induction on the lengthXgf\/). Suppose
X(M) = 0, i.e., Soc(M) C Rad(M). ThenRad(M) = §(M) and henceM /§(M) is
semisimple. Assume that any finitely generatesupplemented modul®” with X (V) of
lengthn > 0 is semilocal and lef\/ be a finitely generated-supplemented module with
X (M) having lengthn + 1. SinceSoc(M) ¢ Rad(M), there exists a simple direct sum-
mandE C M with M = E & N for someN C M. MoreoverRad(M) = Rad(N) and
Soc(M) = E @ Soc(N). Hence

X (M) =SocM/(SocMNRad M) =~ E& (SocN/(Soc NNRadN)) = E@® X(N).

Since direct summands éfsupplemented modules afesupplementedy is a finitely gener-
ateds-supplemented moduleX (V) has lengt, so by induction hypothesi¥ is semilocal
and hencé/ = E'@ N is semilocal. O

d-semiperfect rings are exactly those ringsthat ares-supplemented as a right (or
left) R-module. Similarly a ringR is semiperfect if and only if? is supplemented as a right
(or left) R-module. Recall that projectivésupplemented module¥ ared-lifting, i.e., for
every submoduléV of M there exists a decompositidd = D; & D, such thatD; C N and
NN Dy <5 Ds.

Proposition 4.3 (Buyukasik, E., Lomp, C., 2009)[Proposition 4.2] A projectasamilocal,
o-supplemented module with small radical is supplemented.

Proof SinceS N Rad(M) C Soc(M), we haveS NRad(M) <g S. Let
S =Soc(M) =D ® (SNRad(M)).

SinceM is semilocal, there exist¥ C M such thatV/ = D + N andN N D C Rad(M).
But sinceD N Rad(M) = 0, M = D & N with D semisimple an®ad(M) = Rad(N).
Note that,
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Soc(N) =Soc(M)NN = (D@ (SNRad(M)) NN =(DNN)a® (SNRad(M)) =
S NRad(N) C Rad(N).

Hence, ifK C N is a maximal submodule, thé\ﬁ/K must be singular, since otherwiBb/K
would be isomorphic to a simple direct summand\afwhich is impossible, aSoc(N) C
Rad(N). Thus,Rad(N) = §(N). N is d-lifting since it is projective and-supplemented.
Hence, for any submodule C N, there existsA, B C N suchthatv = A¢ BandA C L
andL N B <5 N. In particular,

LN B C§(B)C§(N)C Rad(N).

As M has a small radical, so h@Sand hencd. N B <« N. But sinceB is a direct summand

of N, L N B <« B. This shows thaB is a supplement of. in IV, i.e., N is a supplemented
module. We showed that/ = D@ N is the direct sum of two supplemented modules. Hence,
M is d-supplemented. O

Corollary 4.3 (Buyukasik, E., Lomp, C., 2009)[Corollary 4.3] Lét be a ring withJ =
J(R) andS = Soc(R). Then the following are equivalent:

() R is semiperfect,
(i) R iso-semiperfect and semilocal,

(ii) R is d-semiperfect andY/S N J is finitely generated.
Proof  (i)=(ii) Clear.
(i) = (iii) Suppose thafR is §-semiperfect and semilocal. Then (SN.J) is finitely generated
by Lemma 4.6.
(iif) =(ii) Suppose thaf? is 6-semiperfect anS/S N J is finitely generated. Then by Lemma
4.6, R is semilocal.
(il)=-(i) Suppose thakR is §-semiperfect and semilocal. Siné&is projective and/ < R, R
is supplemented, by Proposition 4.3. Therefdtes semiperfect. O

Remark 4.1 If Soc(R) is finitely generated, thefi /(SN J) is finitely generated. So we have,
any ring R with finitely generated left socle (e.@ is left Noetherian) is semiperfect if and
only if it is 0-semiperfect. There ar®semiperfect rings which are not semilocal and hence
not semiperfect.

We finish this section by showing that the last remark alsa$ébr modules, i.e.,
finitely generated modules with finitely generated soclesagglemented if and only if they
arej-supplemented.
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Lemma 4.7 (Buyukasik, E., Lomp, C., 2009)[Lemma 4.5] Lt be a module and{ be a
maximal submodule af/. Suppos&oc(M) is finitely generated an&” has aj-supplement
H in M. ThenK has a supplement if/ contained inH.

Proof By hypothesisH is ad-supplement of< in M, thatisK + H = M andK N H <
H. In particular,K N H C §(H). Since

M/K=(H+K)/K=~H/(HNK)

is simple, K’ N H is a maximal submodule off. Therefore, we have eithé{H) = H or
0(H) = KN H. First suppose tha( H) = H. ThenK N H is not essential irf. So there
exists a submodul& of H suchthatd = (KNH)®T. InthiscaseM = K+H =K &T,
soT is a supplement oK in M andT is contained inA.

Now, letd(H) = KNH. If KNH <« H,thenH is a supplement ok in M. Suppose
KNH = 6(H)isnotsmallinH, thatis,H = §(H)+ L, for some proper submodulg < H.
ThenH = L, @Y for some semisimple submodute< §(H). SinceL, is a direct summand

H, we have
ML) =Lind(H)=LinHNK=LNK
ando(L;) <5 L. We also have
K+H=K+Li+Y =K+ L.

Therefore,L, is ad-supplement ofx.

Sincel, is a proper submodule éf andY is a nonzero semisimple module contained
in H, we haveSoc(L;) < Soc(H). Now, if 6(L,) < Ly, thenL, is a supplement ok in
M and we are done. Suppo8gl,) is not small inL,. ThenZ, = §(L;) + L, for some
L, < Ly. Arguing as above, we gdt, is a d-supplement ofK" in M with Soc(L;) >
Soc(Ly). Continuing in this way, if none of thé,’s is a supplement of we shall get a
strictly descending chain of submodules

Soc(Ly) > Soc(Lg) > - --

of Soc(M). This will contradict the fact thaboc(2/) is finitely generated. Soc(M) is
semisimple and finitely generated. Th&$sc(M) is Artinian and Noetherian.) Therefore,
K has a supplement ii/. O

Corollary 4.4 (Buyukasik, E., Lomp, C., 2009)[Corollary 4.6] L&1 be a finitely generated
module. Supposeéoc(M) is finitely generated. Thef/ is supplemented if and only if is
d-supplemented.
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Proof Suppose that/ is supplemented. Thell is /-supplemented.

Conversely, suppose thaf is j-supplemented. So every submoduleléfhas ad-
supplement inM/. In particular, every maximal submodule df has aj-supplement in\/.
Every maximal submodule aff has a supplement if/, by Lemma 4.7. Sincé/ is finitely
generated and every maximal submodulébhas a supplement it/, M is supplemented.]

Corollary 4.5 (Buyukasik, E., Lomp, C., 2009)[Corollary 4.7] Lét/ be a module with
finitely generated socle. TheW is cofinitely supplemented if and only M is cofinitely
d-supplemented.

Proof Necessity is clear.

To prove sufficiency, suppos¥ is cofinitely J-supplemented. Lek be a maximal
submodule ofM. If Soc(M) is not contained ink, then we havell = K + Soc(M) by
maximality of K in M. ThenK + S = M for some simple submodule df/. SinceS is
simple andS £ K, we haveK & S = M, and hences is a supplement of in M. Now,
if Soc(M) C K andH is ad-supplement of" in M, then K has a supplement in/, by
Lemma 4.7. Hencey! is cofinitely supplemented. OJ
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CHAPTER 5

CONCLUSION

Right perfect, semiperfect and semiregular rings coristithe classes of rings that
possess beautiful homological and nonhomological pragserSince Bass’ pioneering work
on right perfect and semiperfect rings, there has been & deah of work on them by many
other authors. In this thesis a generalization of rightgerfsemiperfect and semiregular rings
is studied.

Firstly, we have given the basic definitions and characions of right perfect,
semiperfect and semiregular rings. We have studied sugplead modules and we have seen
that, for aringR, Ry is semiperfect if and only iRy is supplemented.

Secondly, we have studied the paper (Zhou, Y., 2000). Thergénations of right
perfect, semiperfect and semiregular rings are introdbge(Zhou, Y., 2000) by considering
the class of all singulaR-modules in place of the class of @lmodules. The concept of
small submodules which leads to the definition of projectogers is certainly the key in
introducing right perfect, semiperfect and semiregulagsi As a generalization of small
submodules, (Zhou, Y., 2000) definéesmall submodules. The definition of projective
cover is given and we have seen various characterizatiothgpeoperties fors-perfect, o-
semiperfect and-semiregular rings. From these definitions, it is clear thatring R is
semiperfect, then it is-semiperfect.

Finally, we were interested in whensemiperfect rings are semiperfect. For this
purpose, we have studiédsupplemented modules, which are the generalizationspyfisu
mented modules, to see the relation betwéaemiperfect rings and-supplemented mod-
ules. We have seen thatsemiperfect rings are exactly those ringshat are)-supplemented
as a right (or left)R-module. We have studied the paper (Buyukasik, E., LoGp2009)
and we observed that an arbitrary associative unital fing semiperfect if and only if it is
semilocal and-semiperfect.
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