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İZMİR
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tion. I’m thankful for all helps and guideness of my supervisor.

Also, I would like to thank the authorities of TÜBİTAK for having accepted me
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ABSTRACT

QUANTUM CONTROL AND GENERATION OF QUANTUM ENTANGLEMENT

In this thesis, the generation of entanglement is studied in a controlled environ-

ment. The model system of interest includes a cavity field interacting with a pair of atoms.

The cavity field is heavily damped and it is pumped in order to maintain a steady state

field population. Thus, we can eliminate the cavity field adiabatically and obtain the mas-

ter equation describing only the qubits evolution in time. At first, this system is analyzed

in the steady state, without making any measurement on the photons leaking through the

cavity walls. In this way, the ideal physical parameter set for maximum entanglement in

this model is investigated. In the second step, we assume a direct measurement on the

leaking cavity photons, and observe the evolution of entanglement in a quantum trajec-

tories approach. We simulate quantum trajectories approach by applying Monte Carlo

method. The amount of entanglement is obtained as a function of time and number of

photon detections.
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ÖZET

KUANTUM KONTROL VE KUANTUM DOLANIKLIĞIN OLUŞTURULMASI

Bu tezde, dolanıklığın oluşturulması kontrollü bir çevrede çalışılmıştır. İlgilenilen

model system kavite alanı ile etkileşen bir çift atomdan olşmaktadır. Kavite alanı, kararlı

durum alan populasyonunun elde edilmesi için şiddetli bir şekilde sönümlenmekte ve

pompalanmaktadır. Bu nedenle, kavite alanını adyabatik olarak eleyebiliriz ve sadece

kübitlerin zamanda gelişimini ifade eden yoğunluk operatörünü elde edebiliriz. Öncelikle

ilgilenilen system, kavite duvarlarından sızan fotonlar üzerinde hiçbir ölçüm yapılmaksızın,

kararlı durumda analiz edilmiştir. Bu şekilde, bu sistemdeki maksimum dolanıklık için

gerekli ideal fiziksel parametreler belirlenmiştir. İkinci aşamada, kaviteden sızan fotonlar

üzerinde doğrudan ölçümler yapıldığını varsayıyoruz ve dolanıklığın gelişimini kuantum

yörünge yaklaşımı üzerinden gözlemliyoruz. Kuantum yörünge yaklaşımını Monte Carlo

yöntemi ile simüle etmekteyiz. Dolanıklık miktarı, zamanın ve gözlenen foton sayısının

bir fonksiyonu olarak elde edilmiştir.
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CHAPTER 1

INTRODUCTION

In classical information theory, the basic unit is bit which takes just two possible

value as 0 and 1. In quantum mechanics, the corresponding basic unit is called quantum

bit or qubit [16],[14]. It describes the state of a simple quantum system as |ψ〉 = a |1〉 +

b |0〉, for a2 + b2 = 1. It can be shown on a Bloch sphere,

Figure 1.1. Bloch sphere

When we measure |ψ〉, we can find the probabilities of finding |ψ〉 in state |1〉 or

|0〉 separately. But, if there are two or more systems, there can be states which cannot

observe separately. For example, for a state as follows,∣∣φ±〉 =
1√
2

(|1〉 ⊗ |0〉 ± |1〉 ⊗ |0〉) (1.1)

These are one kind of the Bell states (also known as EPR states or EPR pairs).

When we apply measurement The details about entangled states are studied in the first

chapter.
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In 1935, A. Einstein, B. Podolski and N.Rosen proposed an experiment with en-

tangled particles [9]. They argued this experiment would demonstrate that quantum me-

chanics was an incomplete theory, because the ’hidden variables’, the values you need to

specify the state of a physical system, didn’t be considered in quantum mechanics [4].

In 1964 J.S. Bell showed [2] with a similar experiment that quantum mechanics make

predictions that are incompatible with the existence of hidden variables[4]. The measure-

ment correlations in the Bell states are stronger than could ever exist between classical

systems [14]. It is about the nature of the quantum measurement.

Quantum measurements disturbs the state of a quantum system. If we want to

observe a system, the disturbing is a disadvantage. But to generate quantum entanglement,

we can turn this into an advantage. We can effect the initial system to obtain a system

with a ratio of entanglement we want to obtain by affecting on the system with quantum

measurement. We can observe the change in the amount of entanglement according to the

time which measurement applied on the system and how many times the measurement

applied.

In this work, the application quantum control and the generation of an entangle-

ment is studied on an open quantum system.

An open quantum system consists of a reservoir, it is also called environment

or bath, and a system inside of it. The reservoir contains many degrees of freedom, so

it is a difficulty to work on the system interacting with it. The difficulty comes from

separating the degree of freedoms of reservoir and system[8]. The total Hamiltonian of

open quantum systems can be define as,

Ĥtotal = Ĥsystem + Ĥreservoir + Ĥinteraction (1.2)

When we used the density operator, the degrees of reservoir can be trace out the

density operator of reservoir and we only work on the system and interaction part.

ρ̂total(t) = ρ̂system(t)⊗ ρ̂reservoir(t) (1.3)

In this way, the time-evolutions of the system can be examined by writing master equation.

In this thesis, we study the dynamics of a system in cavity environment and to observe

this dynamics, we study the derivation of master equation to be able to observe the time

evolution of our system in the second part of the second chapter.

In the second chapter, we studied basic facts and structure of the system in which

we interest.
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In the third chapter, we described the details of the model system we use. We

examined how the entanglement of the system evolve in time and according to the detec-

tion number. To examine these relations, we simulate the system by using Monte Carlo

method on quantum trajectories approach as explained in the the third chapter.

There are different measures can be used to define the amount of entanglement like

the concurrence, entanglement of formation, entanglement of distillation, relative entropy

of entanglement and negativity. They have been proposed for the purpose of the amount

of entanglement. We use concurrence method as the measure of entanglement.

Finally, by taking concurrence as the measure of entanglement, the relation of

entanglement and measurement is studied. Also there is a part about what we have been

studying and what we will study following the subject of this thesis.
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CHAPTER 2

BASIC INFORMATIONS

In this chapter, we will explain the basic concepts we have used in our work.

2.1. Quantum Entanglement

Quantum entanglement is the quantum mechanical property that Schrödinger singed

out many decades ago as the ”characteristic trait of quantum mechanics”[19] and that has

been studied extensively in connection with Bell’s inequality[2],[26].

2.1.1. Quantum States

To define entanglement in a detailed way, we have to define the variation of quan-

tum states. For example, entanglement can be defined for both pure states and mixed

states. Also, we interest in a quantum system with two objects and this kind of systems

are called bipartite systems (The state written about the interaction of two objects is called

bipartite state.).

2.1.1.1. Pure and Mixed States

A pure quantum state is a state which can be described by a single ket vector, or as

a sum of basis states. The expectation value 〈a〉 of a measurement Â on a pure quantum

state is given by

〈a〉 = 〈ψ| Â |ψ〉 =
∑
i

ai〈ψ|αi〉〈αi|ψ〉 =
∑
i

ai
∣∣〈αi|ψ〉∣∣2 =

∑
i

aip(αi) (2.1)

For this example, we can write the density operator of the pure state |ψ〉;

ρ̂pure = |ψ〉 〈ψ| (2.2)

4



A mixed quantum state is a statistical distribution of pure states. For example; the

ensemble average of Â for a mixed state can be written as,

〈A〉 =
∑
s

ps 〈ψs| Â |ψs〉 =
∑
s

∑
i

psai
∣∣〈αi|ψs〉∣∣2. (2.3)

where |ψs〉 is a pure state. The density operator for this mixed state is;

ρ̂mixed =
∑
s

ps |ψs〉 〈ψs| . (2.4)

2.1.1.2. Bipartite Systems

In most general definition, bipartite systems are the systems with two objects. We

work on a system with two qubits, so the basic structure of the bipartite systems are very

important. The decomposition of a bipartite state can be shown as following[7];

• Pure state decomposition: For H = HA ⊗HB,

|ψ〉 =
∑
n,m=0

cn,m |n〉A × |m〉B (2.5)

• Mixed state decomposition:

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (2.6)

2.1.1.3. Separable and Entangled States

We will study the subject of entanglement by using the basic properties of bipartite

systems. The states of bipartite systems can be study under two title[7];

• Pure and bipartite states:

For ψ ∈ HA ⊗ HB, if there exist two vectors ϕ1 ∈ HA and ϕ2 ∈ HB such that

|ψ〉 = |ϕ1〉 ⊗ |ϕ2〉, ψ is a separable state. Otherwise it is an entangled state. As

5



an example of the pure and bipartite entangled state, Bell states can be given in Eq.

(2.7) and Eq. (2.8), ∣∣Φ±〉 =
1√
2

(|0, 0〉 ± |1, 1〉) (2.7)

∣∣Ψ±〉 =
1√
2

(|0, 1〉 ± |1, 0〉) (2.8)

• Mixed and bipartite states:

For ρ̂ = ρ̂A ⊗ ρ̂B, ρ̂ can be written as a mixture of states. A state is separable if∑
i

pi |ai, bi〉 〈ai, bi|

where pi > 0. Otherwise it is an entangled state. As an example of the mixed and

bipartite entangled state is,

σ̂ =
1

2
(
∣∣Φ+

〉 〈
Φ+
∣∣+
∣∣Φ−〉 〈Φ−∣∣)

2.1.2. Entropy of Entanglement

To analyze the entanglement in bipartite states, we will use the Schmidt decom-

position(SD). For |uk〉 is orthonormal basis in HA and |vk〉 is orthonormal basis in HB,

we can write a state as,

|ψ〉 =
∑

k,dk6dA,dB

dk |uk, vk〉 . (2.9)

The reason is that the matrix C can be written as C = UDV , where U and V are isome-

tries and D is a diagonal positive element[7]. This way of writing C is called singular

decomposition with positive elements. This way of writing C is called ’singular decom-

position’, and it is valid for any matrix [10]. The U and V can be found by diagonalizing

CC† and C†C respectively. The matrix D can be found by taking the square root of the

resulting diagonal matrix, which coincides in both cases. The diagonal elements ofD, dk,

are called Schmidt coefficients[7].

• In case one of the Schmidt coefficients about the state in which we interest is one

and the rest are zero, we have a product state. Otherwise, the state is entangled.

• The SD is also very useful to determine the reduced density operators for subspaces

A and B alone.

6



The reduced density operators of the subspaces A and B can be written by using

Schmidt decomposition as follows,

ρ̂A = TrB(|ψ〉 〈ψ|) =
∑
k

d2
k |uk〉 〈uk| , (2.10)

ρ̂B = TrA(|ψ〉 〈ψ|) =
∑
k

d2
k |vk〉 〈vk| . (2.11)

Entanglement is related to the mixedness of the reduced density operators. So, we

can introduce a measure of entanglement by using any measure of mixedness of a state.

As a measure of mixedness the von Neumann entropy can be used,

S(ρ̂) = −Tr[ρ̂ log2(ρ̂)] (2.12)

Thus, we can define the entropy of entanglement of a state for

|ψ〉 =
∑

k,dk6dA,dB

dk |uk, vk〉

as follows,

E(ψ) = −Tr[ρ̂A log2(ρ̂A)] = −Tr[ρ̂B log2(ρ̂B)] = −
∑
k

d2
klog2(d2

k). (2.13)

Another way detecting entanglement is using partial transposition. Given ρ, we

can always write it in terms of an orthonormal basis {|]n,m〉}, as

ρ̂ =
∑
i,j;k,l

|i, k〉 〈j, l| . (2.14)

We define its partial transpose with respect to A in the basis {|n〉},

ρ̂TA =
∑
i,j;k,l

|j, k〉 〈i, l| . (2.15)

For example, for a density matrix as follows[21],

ρ̂ =


ρ11 ρ12 0 0

ρ21 ρ22 0 0

0 0 ρ33 ρ34

0 0 ρ43 ρ44

 (2.16)

7



The partial transpose matrix can be written as

ρ̂TA =


ρ11 ρ43 0 0

ρ34 ρ22 0 0

0 0 ρ33 ρ21

0 0 ρ12 ρ44

 (2.17)

whose eigenvalues are,

{vi} ={1

2

(
ρ11 + ρ22 ±

√
(ρ11 + ρ22)2 + 4(|ρ34|2 − ρ11ρ22)

)
,

1

2

(
ρ11 + ρ22 ±

√
(ρ33 + ρ44)2 + 4(|ρ12|2 − ρ33ρ44)

)
} (2.18)

There are two roots which can be negative. However,they cannot be negative simultane-

ously. Because, there must be the inequality,

|ρ34| −
√
ρ11ρ22 > 0, (2.19)

implies that

|ρ12| −
√
ρ33ρ44 < 0, (2.20)

and vice versa. So, eigenvalues take negative values for entangled states.
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2.1.3. Measures of Entanglement

Most common measures of entanglement are as follows;

• Entanglement of formation: The most basic of these measures is the entanglement

of formation, which is intended to quantify the resources needed to create a given

entangled state[3]. The entanglement of formation for a state ρ̂ is defined as the

average entanglement of the pure states of the decomposition, minimized all over

decompositions of ρ,

E(ρ̂) = min
∑
i

piE(ψi). (2.21)

• Fidelity: The fidelity with a maximally entangled state,

F (ρ̂) = max
∣∣〈Φ+|ÛA ⊗ V̂B|ψ〉

∣∣2 (2.22)

where the maximization is with respect to the unitary operators U and V . It mea-

sures in a sense how close we are to a maximally entangled state: U and V just

correspond to a basis change. [7]

• Negativity: Another measure of entanglement is negativity, which is based on the

Peres-Horodecki [15, 11] criterion and it is defined by the formula

N(ρ̂) = max(||hatrhoTA|| − 1) (2.23)

where ρTA is partial transpose operator. Here, the partial transpose means trans-

portation with respect to the system in subspace A[21].

• Concurrence: Concurrence is associated with the entanglement of formation, but

it is a good measure of entanglement for the bipartite systems. The concurrence

introduced by Wooters[26] is defined as[21],

C(ρ̂) = max(0, λ1 − λ2 − λ3 − λ4) (2.24)

where λi are the eigenvalues of matrix R = ρ̃ρ. Here ρ̃ is,

ρ̃ = σ̂y ⊗ σ̂yρ̂∗σ̂y ⊗ σ̂y (2.25)

9



2.1.3.1. Concurrence

Concurrence is the form of entanglement of formation, which can only apply on

bipartite systems. It makes use of what called the ”spin flip” transformation. Spin flip

transformation is a function applicable to states of an arbitrary number of qubits. For a

pure state of a single qubit, the spin flip is defined by∣∣∣ψ̃〉 = σ̂y |ψ∗〉 (2.26)

where |ψ∗〉 is the complex conjugate of |ψ〉 when it is expressed in a fixed basis such as

|↑〉 , |↓〉, and σ̂y expressed in the same basis is the Pauli matrix[26]. For spin-1/2 parti-

cle, this is the standard time reversal operation and reverses the direction of spins [17, 26].

To perform a spin flip on n qubits, the transformation given in Eq. (2.26) must be

applied. For example, for a general state of ρ of two qubits, the spin flip state is

ρ̃ = σ̂y ⊗ σ̂yρ̂∗σ̂y ⊗ σ̂y (2.27)

As the measure of entanglement, we use concurrence method. So, the calculation

of concurrence is basically[26] as follows,

• First, we calculate ρ̃ = σy ⊗ σyρ∗σy ⊗ σy,

• Then we calculate R = ρ̃ρ

• As the eigenvalues of R are λi for i=1,2,3,4 while λi’s line in decreasing order. The

concurrence becomes,

C(ρ̂) = max{0, λ1 − λ2 − λ3 − λ4} (2.28)

10



2.2. Open Quantum Systems

For a closed quantum system, the time derivation of the density operator can be

define in Heisenberg picture as[17],

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] (2.29)

where ρ̂ is the density operator about the system and Ĥ is the Hamiltonian of the system.

But for an open quantum system, terms about the interaction have to be added into this

relation. So, the time derivation of the density operator can be written as[25],

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] +

∑
j

[
2L̂j ρ̂L̂

†
j − {L̂

†
jL̂j, ρ}

]
. (2.30)

where ρ̂ is the density operator about the system and Ĥ is the Hamiltonian of the system.

The relation in Eq. (2.30) is called as the ’master equation’.

2.2.1. Master Equation

The main objective is to describe the time evolution of an open system with a

differential equation which properly describes non-unitary behaviour. This description is

provided by master equation , which can be written most generally in the Lindblad[12]

form as,

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] +

∑
j

[
2L̂jρL̂

†
j − {L̂

†
jL̂j, ρ̂}

]
≡ Lρ̂, (2.31)

where {x̂, ŷ} = x̂ŷ + ŷx̂ denotes an anticommutator, Ĥ is the system’s Hamiltonian

which is a Hermitian operator representing the coherent part of the dynamics, and L̂j are

the operators representing the coupling of the system to the environment.

For D[L̂j]ρ =
[
2L̂j ρ̂L̂

†
j − {L̂

†
jL̂j, ρ̂}

]
, it can be written as

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] +

∑
j

D[L̂j]ρ̂ (2.32)
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2.2.2. Derivation of Master Equation on an Example

In order to derive a master equation for a system, one begins with a system-

environment model Hamiltonian , and then makes the Born and Markov approximations

in order to determine L̂j . We will show this process on an example which consists a two

level atom interacting with thermal radiation as the environment.

2.2.2.1. Two Level Atom Interacting with an Electric Field

The Hamiltonian for the system of interest;

ĤA = ~weg |e〉 〈e| = ~wegŜ+Ŝ− (2.33)

The Hamiltonian for the electric field which effect the system of interest is;

ĤF =
∑
k,λ

~wk(â†k,λâk,λ +
1

2
) (2.34)

And the definition of the interaction between the system and the electric field is

Hint = −d · E ≈ −〈e|d · E(+) |g〉S+ − 〈e|d · E(−) |g〉S− (2.35)

where S+ = |g〉 〈e| and S− = |e〉 〈g|
For the usual expansion of electromagnetic field,

E(+)(x) = −i
∑
k,λ

√
2π~wk

V
~εk,λak,λe

ik·x (2.36)

when we put the electromagnetic field definition in the interaction Hamiltonian

equation, we find;

Hint = ~(FS+ + F †S−) (2.37)

where

F = −i
∑
k,λ

√
2π~wk

V

〈e|~εk,λ · d |g〉
~

ak,λ =
∑
k,λ

Vk,λ
~
ak,λ (2.38)

Vk,λ is the dipole interaction energy of the atom with a single photon.
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In order to remove the trivial free evolution of the atom and the field from our

problem we will transform into the ”interaction picture” via the unitary operator,

U (I)(t1, t2) = exp{− i
~

(HA +HF )(t2 − t1)} (2.39)

For t1 = 0 and t2 = t, the transformation operator is

U (I)(t, 0) = U (I)(t) = exp{− i
~

(HA +HF )(t)} (2.40)

According to this transformation, the density operator in interaction picture be-

comes

ρ
(I)
total(t) = (U (I))†(t, 0)ρtotalU

(I)(t, 0) (2.41)

In the same way,

H
(I)
int(t) = (U (I))†HintU

(I) = ~(F (I)(t)S
(I)
+ (t) + F (I)†(t)S

(I)
− (t)) (2.42)

while

F (I)(t) =
∑
k,λ

Vk,λ
~
a(I)(t)k,λ (2.43)

a
(I)
k,λ(t) = ak,λe

−iwkt (2.44)

S
(I)
+ (t) = S+e

−iwegt (2.45)

Using these definitions and the Liouville equation in the Schrödinger picture, we

arrive at the Liouville equation in the interaction picture.

ρ̇
(I)
total(t) = − i

~
[H

(I)
int(t), ρ

(I)
total(t)] (2.46)

If we integrate this equation from t to (t+ δt),

ρ
(I)
total(t+ ∆t) = ρ(t)

(I)
total(t)−

i

~

∫ t+∆t

t

dt′[H
(I)
int(t

′), ρ
(I)
total(t)] (2.47)

This can be expand to a series solution. If this series is terminated at some point,

a perturbation solution will be obtained. Since the coupling between the system and

reservoir is assumed to be weak, we will expand it only up to second order

13



ρ
(I)
total(t+ ∆t) =ρ

(I)
total(t)

− i

~

∫ t+∆t

t

dt′[H
(I)
int(t

′), ρ
(I)
total(t

′)]

− 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′[H
(I)
int(t

′), [H
(I)
int(t

′′), ρ
(I)
total(t)] (2.48)

We will drop superscript (I), because all of the calculations will be in interaction

picture.

We want to work on the dynamics of the reduced density matrix of atom alone, so

we can trace over the modes of the electromagnetic field

ρA(t+ ∆t) =TrR(ρ(t)total(t+ ∆t))

=ρA(t)

− i

~

∫ t+∆t

t

dt′[Hint(t
′), ρA(t)⊗ ρR(t)]

− 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′[Hint(t
′), [Hint(t

′′), ρA(t)⊗ ρR(t)] (2.49)

Here we have used the fact that at the initial time the atom and field are uncorre-

lated so that the total density matrix is a product of the two subsystems. Substituting the

relation for Hint(t) in (2.42), we arrive at the following expression by using the cyclic

property of the trace [Tr(ABC) = Tr(CAB) = Tr(BCA)],

TrR(F (t′)ρR(t)F †(t′)) = TrR(F †(t′)F (t′)ρR(t)) = 〈F (t)†F (t)〉 (2.50)
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ρA(t+ ∆t)− ρA(t) =− i
∫ t+∆t

t

dt′([S+(t′), ρA(t)]〈F (t′)〉R + [S−(t′), ρA(t)]〈F †(t′)〉R)

−
∫ t+∆t

t

dt′
∫ t′

t

dt′′

× {(S−(t′)S+(t′′)ρA(t)− S+(t′′)ρA(t)S−(t′))〈F †(t′)F (t′′)〉R

+ (S+(t′)S−(t′′)ρA(t)− S−(t′′)ρA(t)S+(t′))〈F (t′)F †(t′′)〉R

+H.c.}

+

∫ t+∆t

t

dt′
∫ t′

t

dt′′

× {(S+(t′)S+(t′′)ρA(t)− S+(t′′)ρA(t)S+(t′))〈F (t′)F (t′′)〉R

(S−(t′)S−(t′′)ρA(t)− S−(t′′)ρA(t)S−(t′))〈F (t′)F (t′′)〉R

+H.c.} (2.51)

If we use the definition of F (t), we can see some terms will vanish

〈F (t′)〉R ≡
∑
k,λ

Vk,λ
~
e−iwkt

′〈ak,λ〉R = 0 (2.52)

Similarly

〈F (t′)F (t′′)〉R ≡
∑
k,λ

V 2
k,λ

~2
e−iwk(t′+t′′)〈a2

k,λ〉R = 0 (2.53)

Also

〈F †(t′)F †(t′′)〉R ≡
∑
k,λ

V 2
k,λ

~2
eiwk(t′+t′′)〈(a†k,λ)

2〉R = 0 (2.54)

2.2.2.2. Correlation Function and Markov Approximation

The terms 〈F †(t′)F (t′′)〉R and 〈F (t′)F †(t′′)〉R are known as reservoir correlation

function. For example,

K(t′, t′′) ≡ 〈F †(t′)F (t′′)〉R (2.55)

Physically this measures how an excitation of the reservoir at time t′ is correlated

with the excitation at t′′.

15



Here some properties of K[8];

• Stationery correlations

For a reservoir describing thermal equilibrium the correlations should not depend

on any origin of time. This is if we ask how an excitation at t′ is correlated with an

excitation at t′′ = t′ + τ , the result only depend on the time difference τ ,

K(t′, t′′) = K(t′ − t′′) = 〈F †(t′ − t′′)F (0)〉R (2.56)

• Time reversal

From the properties of stationary and the Hermitian conjugate we have

K(t′′ − t′) = 〈F †(t′′)F (t′)〉R = K∗(t′ − t′′) (2.57)

Thus, the real part of K is symmetric in its argument: Re(K(−τ)) = Re(K(τ))

For sufficiently large values of |τ |, the correlation function should approach zero.

The characteristic temporal width τc is known as correlation time. Physically, it sets

the scale of time over which the reservoir relaxes back to thermal equilibrium given

some excitation. It can be said that the correlation time is as a time scale over which

the reservoir has ”memory”. After this time the reservoir is back to equilibrium and

effectively has no memory that there was any excitation.

One can also define a spectral density of the correlation function by as the Fourier

transform

S(w) ≡
∫
dτK(τ)eiwτ (2.58)

The bandwidth of the reservoir, ∆wR, given by the characteristic width of S(w), is

related to the correlation time by the usual Fourier duality

τc ∼
1

∆wR
(2.59)

As ∆wR → ∞, (i.e. the reservoir is ”white noise”), the correlation time τc → 0.

The real part of the correlation function

Re(K(τ)) ∼ δ(τ) (2.60)
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Thus a ”white noise” reservoir has no memory; it instantaneously relaxes to its

equilibrium value. In general, the correlation time will be very small, but not exactly

zero.

The other important time scale in the problem is the time for the system to relax

to the equilibrium as it dissipates energy to the reservoir. If we call this rate of

relaxation Γ, then it will generally be the case that Γ � ∆wR, or equivalently

τc � 1/Γ. Furthermore, this inequality is generally be the case that the reservoir

correlation time is effectively zero when compared with the system decay time .

We want to study the evolution of the reduced density matrix for the system alone,

which changes on a time scale 1/Γ. Thus we want to look on time scales ∆t� 1/Γ.

On the other hand, this time scale may still be very large compared to the reservoir

correlation. Therefore, we have

τc � ∆t� 1/Γ (2.61)

Stated alternatively, we want to study the dynamics of the reduced density matrix

for the system ”coarse-grained” over the reservoir correlation time. In this way we

approximate the reservoir as it has no memory. So it is ”delta-correlated”. Such an

approximation is known Markov approximation. This approximation will allow

us to take the time-reversible equations of motion into irreversible equation which

give rise to dissipation.

2.2.2.3. Master Equation in the Markov Approximation

With our characterization of the correlation function for the reservoir forcing func-

tion, we make the following change of variables so that, only time differences ap-

pear

For τ ≡ t′′ − t′ and ξ ≡ t′′ − t, the Jacobian for the change of area element for out

two dimensional integral is

∂(ξ, τ)

∂(t′, t′′)
= det

[
∂ξ
∂t′

∂τ
∂t′′

∂τ
∂t′

∂ξ
∂t′′

]
= det

[
0 1

−1 1

]
= 1 (2.62)
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To get the limits of integration, we must change the two dimension integration

region from the (t′, t′′) plane to the (τ, ξ) plane. Thus,

∫ t+∆t

t

dt′
∫ t′

t

dt′′ →
∫ ∆t

0

dξ

∫ ∆t

0

dτ (2.63)

The equation for the reduced density operator for the atom in these new variables

becomes

ρA(t+ ∆t)− ρA(t) =−
∫ ∆t

0

dξ

∫ ∆t

0

dτ

× {(S−S+ρA(t)− S+ρA(t)S−)〈F †(0)F (τ)〉R

+ (S+S−ρA(t)− S−ρA(t)S+)〈F (0)F †(τ)〉R

+H.c.} (2.64)

Now we can apply the Markov approximation. According to the discussion above,

the integrand will be non-negligible only for times τ smaller than correlation time.

As we are course graining the dynamics on time scales ∆t� tc, the upper limit of

integration over τ is effectively infinity, (∆t → ∞, τ integral). On the other hand,

the coarse grained time step is chosen to be much more smaller than the rate at ρA
changes, as it is effectively a differential. By using the Markov approximation we

have

dρA
dt

=(−S−S+ρA(t) + S+ρA(t)S−)

∫ ∞
0

dτ eiwegτ 〈F †(0)F (τ)〉R

+ (−S+S−ρA(t) + S−ρA(t)S+)

∫ ∞
0

dτ e−iwegτ 〈F (0)F †(τ)〉R

+H.c. (2.65)

2.2.2.4. Fluctuation-Dissipation Theorem

It is left to evaluate the Fourier transforms of the correlation functions. [1] Substi-

tuting for the reservoir forcing F (t), in Eq. (2.10), gives
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∫ ∞
0

dτeiwegτ 〈F †(0)F (τ)〉R =
∑

k,λ,k′,λ′

V ∗k,λVk′,λ′

~2
〈a†k,λak′,λ′〉R

∫ ∞
0

dτ e−i(wk−weg)τ

(2.66)

For 〈a†k,λak′,λ′〉R = n(wk) δk,k′ δλ,λ′ ,

∫ ∞
0

dτ eiwegτ 〈F †(0)F (τ)〉R =
∑
k,λ

|Vk,λ|2

~2
n(wk)

∫ ∞
0

dτ e−i(wk−weg)τ (2.67)

The next step is obtaining equations of motions to let the reservoir consist of an

uncountable finite numbers (i.e. continuous) number of degrees of freedom.

Under this approximation the sum over reservoir modes goes to an integral over the

density modes D(wk),

∫ ∞
0

dτ eiwegτ 〈F †(0)F (τ)〉R =
∑
λ

∫
dwk
|Vk,λ|2

~2
D(wk)n(wk)

∫ ∞
0

dτ e−i(wk−weg)τ

(2.68)

It can integrate over τ . In order to do this, we add convergence factor eετ , and then

take the limit as ε→ 0,

limε→0

∫ ∞
0

dτ e−i(wk−weg−iε)τ = limε→0
1

i(wk − weg) + ε

= limε→0
ε

(wk − weg)2 + ε2

− i limε→0
wk − weg

(wk − weg)2 + ε2
(2.69)

For the real part,

limε→0
ε

(wk − weg)2 + ε2
= πδ(wk − weg) (2.70)

And for the imaginary part,

limε→0
wk − weg

(wk − weg)2 + ε2
= P

( 1

wk − weg

)
(2.71)
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The principle part, the part define with P, allows one to exclude the singularity at

x=0, thus,

∫ ∞
0

dτ e−i(wk−weg)τ = πδ(wk − weg)− iP
( 1

wk − weg

)
. (2.72)

Eq. (2.68) becomes,∫ ∞
0

dτ eiwegτ 〈F †(0)F (τ)〉 =
1

2

∑
λ

2π

~2
|Vλ(weg)|2D(weg)n(weg)

− i

~
P
∫
dwk

|Vλ(wk)|2

~wk − ~weg
D(wk)n(wk) (2.73)

. For ∑
λ

2π

~2
|Vλ(weg)|2D(weg) = Γ (2.74)

and

P
∫
dwk

|Vλ(wk)|2

~wk − ~weg
D(wk)n(wk) = δEg

light (2.75)

It can be written in a simpler form as

∫ ∞
0

dτ eiwegτ 〈F †(0)F (τ)〉 =
1

2
nΓ− i

~
δEg

light (2.76)

In the same way, for 〈F (0)F †(τ)〉, by using the relation of annihilation-creation

operators of thermal reservoir, 〈ak,λa†k′,λ′〉R = (n(wk) + 1)δk,k′δλ,λ′ ,

∫ ∞
0

dτ e−iwegτ 〈F (0)F †(τ)〉 =
1

2
nΓ +

i

~
δEe

light (2.77)

Here, δEe
light = δEg

light + δEvacuum. Also, it can be taken as δEg
light → δElight.

As a result,

dρA
dt

=− i

~
[H ′A, ρA]− Γ

2
n{S − S+, ρA}+ S+ + ΓnρAS−

− Γ

2
(n+ 1){−S+S−, ρA}+−Γ (n+ 1)S−ρAS+, (2.78)

while,

H ′A = (~weg − δElight)S+S− + (δElight + δEvacuum)S−S+ (2.79)

.

In this way, we obtained master equation for a two state atom in an electric field.
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2.3. Quantum Jumps and Evolution of a Quantum System

Figure 2.1. Quantum Jump. Here, measurement means quantum jump. This measure-
ment includes information about the system.

The quantum jump is basically the effectively instantaneous transition of an atom

from one state to another[23]. It was shown by Carmichael that quantum jumps are an

implicit part of standard photodetection theory[6]. During transitions from a state to an-

other, photons are emmited and absorbed. These photons contain the knowledge about the

system. When we make measurement on an emmited photon, we can obtain information

about the state of the system. So we have to interested in a quantum measurement on the

system to obtain the definition of quantum jump.

The evolution of an isolated quantum system in the absence of measurement is

Markovian[25],

|ψ(t+ dt)〉 = Û(dt) |ψ(t)〉 = e−iĤ dt ψ(t) (2.80)

where Ĥ is the Hamiltonian. The evolution of the system for an infinitesimal dt

can be describe with a finite differential,

limdt→0
|ψ(t+ dt)〉 − |ψ(t)〉

dt
=
∣∣∣ψ̇(t)

〉
= −iĤ(t) |ψ(t)〉 = finite (2.81)

So, the evolution of ρ̂ becomes

limdt→0
ρ̂(t+ dt)− ρ̂(t)

dt
= ˙̂ρ(t) = finite (2.82)

In this limit, we can measure the system. The state matrix can be written in the

average of the possible results

ρ̂(t+ dt) =
∑
i

M̂ †
i (dt)ρ̂(t)M̂i(dt) (2.83)
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If we can define a M̂i time evolution operator as,

M̂0(dt) = 1̂− (R̂/2 + iĤ)dt (2.84)

The system in which we interest has interaction with the environment. So, there is an

additional term with R̂ operator in the time evolution operator.

For,

M̂ †
0(dt)M̂0(dt) = 1̂− R̂dt 6= 1̂ (2.85)

Even M̂0 have to be a Hermitian operator, it does not satisfy the completeness

condition in this structure. So, there is two option:(i)R̂ operator must be a zero operator,or

(ii) if R̂ is not a zero operator, it can be define in terms of another operator

If we consider the relation
∑

i M̂
†
i (dt)M̂i(dt) = 1̂, we can define a operator as

M̂1(dt),

M̂1(dt) =
√
dtĉ (2.86)

R̂ becomes

R̂ = dt ĉ†ĉ (2.87)

Here, M̂1(dt) is about detections of photon. It defines a quantum jump.
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2.4. Quantum Trajectory Approach

For ĉ =
√
γâ, we can write that[25],

Ĵ ρ̂ ≡ĉρ̂ĉ†

〈ĉ†ĉ〉 =Tr[Ĵ ρ̂(t)] (2.88)

where ĉ is the quantum jump operator and Ĵ is the quantum jump superoperator. If we

denote the number of photodetections up to time t by Nt(t), there is two meaning of

dN(t). dN is either zero or one, because it is in an infinitesimal time. The other means

of dN is that it is identical with the probability of detecting a photon. These definitions

of dN are about the properties of the stochastic process.

If dN(t) = 1, the state vector changes under the effect of jump operator. Under

the normalization,

|ψ1(t+ dt)〉 =
M̂1(dt) |ψ(t)〉√
〈M̂ †

1(dt)M̂1(dt)(t)〉
=

ĉ |ψ(t)〉√
〈ĉ†ĉ〉(t)

(2.89)

If dN(t) = 0, the state vector changes with the time-evolution operator. It can be

normalized as,

|ψ0(t+ dt)〉 =
M̂0(dt) |ψ(t)〉√
〈M̂ †

0(dt)M̂0(dt)〉(t)
|ψ(t)〉

=
(1− ĉ†ĉ

2
− iĤ)dt |ψ(t)〉√

〈(1− ĉ†ĉ
2

+ iĤ)((1− ĉ†ĉ
2
− iĤ))dt〉(t)

|ψ(t)〉

≈ 1− dt[iĤ +
1

2
ĉ†ĉ− 〈1

2
ĉ†ĉ〉](t) |ψ(t)〉 (2.90)

So, the time derivation of the state becomes,

d |ψ〉 =

[
dN(t)

( ĉ√
〈ĉ†ĉ(t)〉

)
+ [1− dN(t)]dt

(〈ĉ†ĉ(t)〉
2

− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉 (2.91)

This equation is a non-linear stochastic Schrödinger equation and a solution of this equa-

tion is a quantum trajectory for the system.

If dt is so small as there can be only one photodetection happen in each time step,

dN has only two possible value as 1 or 0. So,there are possibilities for d |ψ〉
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• If dN(t) = 0,

d |ψ〉 =

[
dt
(〈ĉ†ĉ(t)〉

2
− ĉ†ĉ

2
− iĤ

)]
|ψ(t)〉 (2.92)

The term about quantum jump will be vanish and just the term about time-evolution

operator will affect the state of the system.

• If dN(t) = 1,

d |ψ〉 =
( ĉ√
〈ĉ†ĉ(t)〉

)
|ψ(t)〉 (2.93)

The term about time-evolution will be vanish and the system collapse into a state

by the effect of the measurement operator (quantum jump operator).

If this process continues for an exact time as t, where t ≫ dt, we obtain the

Dyson expantion for the superoperators[5],

ˆρ(t) =
∞∑
m=0

∫ t

0

dtm

∫ tm

0

dtm−1...

∫ t2

0

dt1Ŝ(t− tm)Ĵ Ŝ(tm− tm−1)...Ĵ Ŝ(t1)ρ̂(0) (2.94)

where Ŝ(t) = e(L̂−Ĵ )t can be defined according to the notation of Srinivas and Davies[20].

This process called ’quantum trajectories approach’.
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CHAPTER 3

CAVITY QED ON A MODAL SYSTEM

We are taking two atoms with two states, it means two qubits, as our model sys-

tem. These two qubits are interacting with each other by the cavity field. The steps of

application are as follows,

(a) Defining master equation of the system in Lindblad form

(b) Eliminating cavity field adiabatically

(c) Using the master equation to define the time evolution of the system and the jump

operators to be able to use Quantum Trajectory Approach

(d) Defining the initial state (as the steady state of the system)

(e) Applying Monte Carlo Method on the Quantum Trajectories Approach

Figure 3.1. A cavity system with two qubits which are pumped with a cavity field.

3.1. Quadrature Measurement-Atomic Mode and Cavity Mode

We can take one of the quadrature modes as atomic mode which just responsible

from transferring between exited and ground states for two qubits because of it cannot

escape from the cavity[22]. The other quadrature mode will be responsible from the

photon modes (it is called ”cavity mode”) distributed through cavity.
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According to the following relations between the qubits

Ĵ± = σ̂±1 + σ̂±2

Ĵ± = Ĵx ± iĴy

for

σ̂± = σ̂x + iσ̂y

By using the dipole approximation, the definition of the interaction Hamiltonian becomes

similar to the quadrature modes’ and it can be written as

Ĥint = ~gĴxŶ

where

Ŷ = [(b̂e−iωkt + b̂†eiωkt)/2]

When we put Y in the equation,

Ĥint =
g

2
(Ĵ−e−iωat + Ĵ+eiωat)(b̂e−iωkt + b̂+eiωkt)

If we apply the the rotating-wave approximation in the Jaynes-Cummings model,

|ωk − ωa| << ωk + ωa

Ĥint =
g

2
[Ĵ−b̂† + Ĵ+b̂] (3.1)

where b describes the cavity mode and g is the coupling constant between the

qubits and cavity.

The possible states for the two qubit system are,

|1〉 = |e〉1 |e〉2 , |2〉 =
1√
2

(|g〉1 |e〉2 + |e〉1 |g〉2), |3〉 = |g〉1 |g〉2

as the triplet states (j=1) and

|4〉 =
1√
2

(|g〉1 |e〉2 − |e〉1 |g〉2)

as the singlet state(j=0). This latter subspace will not change under any of trans-

formations we perform.
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3.2. Adiabatic Elimination of the Cavity Mode

In our model, we assume the system is pumped with a laser whose mode is set to

be same with the cavity mode. We can add a term to Hamiltonian to show the effect of

pumping on the system;

Ĥ ′ =
g

2
[Ĵ−b̂† + Ĵ+b̂]− iα

2
((̂b)− b̂†) (3.2)

For two-qubit system, if cavity mode is heavily damped, it can be eliminated adi-

abatically from the master equation. [22] For a system like this, a density operator w is

given as follows:

˙̂w = −1

2
α[b̂− b̂†, ŵ]− ig

2
[Ĵ−b̂+ + Ĵ+b̂, ŵ] + γ1D[σ̂1]ŵ + γ2D[σ̂2]ŵ + γpD[b]ŵ (3.3)

where D[X̂]ŵ = X̂†ŵ X̂ − 1
2
ŵX̂†X̂ − 1

2
X̂†X̂ŵ.

A displacement operator for the cavity field can be written as;

D̂b = eµ(b̂†−b̂). (3.4)

where µ = α/γp.

By applying the displacement operator, the effect of the cavity field can be par-

tially derive out from the master equation. After similarity transformation the density

becomes;

v̂ = D̂†bŵD̂b (3.5)

˙̂v = −i gα
2γp

[(Ĵ+ + Ĵ−), v̂]− ig
2

[Ĵ+b̂+ Ĵ−b̂†] + γ1D[σ1]v̂ + γ2D[σ2]v̂ + γD[J−]v̂ (3.6)

˙̂v = Lv̂ − ig
2

[Ĵ+b̂+ Ĵ−b̂†] + γD[Ĵ−]v̂ (3.7)

where Lv̂ includes only the terms about atomic modes.

Since the amplitude of b̂ is small, v̂ needs to be carried out to small photon num-

bers. Therefore;

v̂ = ρ0 |0〉 〈0|+ ρ1 |1〉 〈0|+H.c.) + ρ2 |1〉 〈1|+ (ρ2′ |2〉 〈0|+H.c.) +O(λ3) (3.8)

where λ is a very small number.

We can obtain the values of ρk by using the steady state parameters.
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Steady state is the situation of the system when the system is stable (stationery) in

time. In this situation, there is any transition between states.

From the master equation , we can write down the equation of motion for the

components of the three by three density matrix of the state of the system, taking into

account that Tr(ρ̂) = 1 and that ρ̂ is Hermitian[18].

For Eq.(3.7) and Eq.(3.8), if the terms greater than second order are neglected, the

equations of motions for the components of the density matrix can be written as,

ρ̇0 = Lρ0 − i
g

2
[J+ρ1 + ρ†1J

−] + γp/ρ2, (3.9)

ρ̇1 = Lρ1 − i
g

2
[J+ρ0 +

√
2(J+)2 − (J−)2ρ′2]− γp

2
ρ1, (3.10)

ρ̇2 = Lρ2 − i
g

2
[J+ρ†1 + ρ1(J+)2]− γpρ2, (3.11)

ρ̇′2 = Lρ′2 − i
g

2
[
√

2J−ρ1]− γpρ′2. (3.12)

The density terms ρ1 and ρ′2 are about transitions. As before, steady state is a

stable state, so the time derivatives of transition terms must be zero,

ρ̇1 = 0 ⇒ ρ1 = −i g
γp

[J−ρ0 − J−ρ2], (3.13)

ρ̇′2 = 0 ⇒ ρ1 = −i g√
2γp

J−ρ1. (3.14)

By using these relations, the Eq. (3.9) and Eq. (3.11) can be written as

ρ̇0 = Lρ0 −
g2

2
[J+J−ρ0 + ρ0J

+J− − J+J−ρ2 − ρ2J
+J−] + γp/ρ2, (3.15)

ρ̇2 = Lρ2 +
g2

γp
[J−ρ0J

+ − J−ρ2J
+] + γp/ρ2. (3.16)

By considering Tr(ρ) = 1 ∼= ρ0 + ρ2, if we add Eq.(3.15) and Eq.(3.16),

˙̂ρ = L̂ρ̂+
g2

γp
D[Ĵ−]ρ̂ (3.17)

The coefficient g2/γp describes the strength of collective damping of the two-qubit

and the cavity mode, b, and will be called γ.
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We can obtain the following master equation

˙̂ρ = −i gα
2γp

[(Ĵ+ + Ĵ−), ρ̂] + γ1D[σ̂1]ρ̂+ γ2D[σ̂2]ρ̂+ γD[Ĵ−]ρ̂ (3.18)

This is the super-fluorescence master equation. For γ � γ1, γ2, the equation

becomes

˙̂ρ = −i gα
2γp

[(Ĵ+ + Ĵ−), ρ̂] + γD[Ĵ−]ρ̂. (3.19)

If we take a = gα
2γp

and g′ = γ,

˙̂ρ = −ia[(Ĵ+ + Ĵ−), ρ̂] + g′D[Ĵ−]ρ̂. (3.20)

This is the master equation we used to simulate our modal system.

3.3. Defining Quantum Trajectory of the System

Figure 3.2. δt time steps from t=0 to t.

Figure 3.3. A quantum trajectory from t=0 to t. S(ti − tj) is the superoperator about
time-evolution of the system and J is the superoperator about the quantum
jumps

For the general definition of the master equation, the relation about the quantum

trajectories approach is given as,

ρ̂(t) =
∞∑
m=0

∫ t

0

dtm

∫ tm

0

dtm−1...

∫ t2

0

dt1 Ŝ(t− tm)Ĵ Ŝ(tm − tm−1)...Ĵ Ŝ(t1)ρ̂(0).

(3.21)
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Here, the final form of the master equation about our system is given as Eq. (3.20),

˙̂ρ = −ia[(Ĵ+ + Ĵ−), ρ̂] + g′D[Ĵ−]ρ̂. (3.22)

According the master equation, the operators about the system can be written to define

the quantum trajectory about our system.

• The quantum jump superoperator about the system is,

Ĵ ρ̂ = g′Ĵ+ρ̂Ĵ− (3.23)

So the quantum jump operator about the system can be written as,

ĉ |ψ〉 =
√
g′Ĵ− |ψ〉 (3.24)

• In the same way, the superoperator defining time-evolution without quantum jump

is;

Ŝ(t)ρ̂ = N̂(t)ρ̂N̂ †(t). (3.25)

So, time-evolution operator about the system can be written as;

N̂(t) |ψ〉 = exp

[(
1

i~
a(Ĵ+ + Ĵ−)− 1

2
g′Ĵ+Ĵ−

)
t

]
|ψ〉 (3.26)
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3.4. The Steady State as the Initial State of the System

We defined the initial state as the steady state of our system and applied the quan-

tum trajectories approach after that point.

Figure 3.4. concurrence versus a/g’ for steady state of the system of interest.

Initially we make calculations for the steady state of the system. For

˙̂ρ = −ia[(Ĵ+ + Ĵ−), ρ̂] + g′D[Ĵ−]ρ̂.

A relation between concurrence and the ratio of the pumping rate to the damping rate

as in the Figure 3.4. As it can be seen from the graph, while the rate of pumping on

the system increasing, the entanglement of the system goes to zero at a ratio a/g′ ' 1.

It can be explain with the Hermitian and anti-Hermitian’s terms of the density of the

system’s states. While the ratio of the pumping increase, the probability of anti-Hermitian

terms decrease. The probability of the states of the system stock into the states about the

Hermitian terms. So, amount of the entanglement of the system goes to zero.

31



3.5. Application of the Monte Carlo Method

One can simulate the ”trajectory” of the atom initially in the excited state by a

deterministic decay by the non-Hermitian Hamiltonian, followed by a quantum jump.

Averaging over many realization of this random event gives the solution. This method

is known as the ”quantum Monte Carlo wave function simulation” and very useful for

extremely large problems when there are too many matrix elements to solve for using

more traditional techniques [8],[13].

We can use an operator as ĉ =
√
aĴ−. Then, the probability to detect a photon in

the time interval [t, t+ δt], given the previous detection history can be written as follows,

ρ̂cdt = Tr[Ĵ ρ̂c(t)]dt (3.27)

as expected. Using a numerical solution with a finite time step δt, one generates a

random number r on the unit interval ,evolves the state forward according to

Figure 3.5. The case a photodetection is recorded.

ρ̃c(t+ δt) = Ĵ ρ̃c(t)δt if r ≤ pcδt

in which case a photodetection is recorded to have occurred in the interval [t+ δt], or

Figure 3.6. The case no photodetection is recorded.

ρ̃c(t+ δt) = Ŝ(δt)ρ̃c(t) if r>pcδt

when no photon is detected. (ρ̃c : the unnormalized density operator)
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For

Ŝ(δt)ρ̂ = N̂(δt)ρ̂N̂ †( deltat) (3.28)

N̂(δt) = exp

[(
1

i~
a(Ĵ+ + Ĵ−)− 1

2
g′Ĵ†Ĵ

)
δt

]
(3.29)

By using this method and taking small steps of time, we can simulate the trajectory

of the system as a random walk. So we obtain a statistical change and take the average

behaviour of the system under direct detections.

The results of the simulation are as follows,
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3.6. Results

In this section,we will study the details of the graphs of the data which obtained

the simulation of our system.

Figure 3.7. The change at the probability of jump defined by using random numbers
basically and the number of jumps accounted and the measurement time.
In our notation, we take a measurement time t which is much more longer
than the time step δt. Here, the definite variables in the master equation
are taken as g′ = 0.1 a and δt = 0.0025t

The detected photons are increasing in time. In beginning, there are a few photons

escaping from the cavity, but the probability of photodetection is quite high. When we

continue to measure, we can see more photons with detection probabilities getting lower.

According to this graph, the photodetection number has a Gaussian-like distiribu-

tion. By using general equations, we can calculate the mean value and the variance of

photodetection about the system.
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Figure 3.8. The mean value of photodetection number and the standard variation of
photodetection number

To calculate the mean value of photodetection at each time step, we use the fol-

lowing equation,

n(t) =
∑
i

nipi(t), (3.30)

where i is the number of detection, ni is the number of detected photons in that time

step and pi is the probability to detect these photons. In the same way, the variance of

photodetection can be calculated as,

σ2 =
(
n2 − n2

)
, (3.31)

and the standard variation of the photodetection,

σ =
√
n2 − n2. (3.32)

The results of the calculations of mean value and standard variation are shown in the

graph. The mean value and the variation of the photodetection is increase linearly with

time. But, the standard variation of the detections change proportional to
√
t.
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Figure 3.9. The change at the amount of the entanglement in terms of concurrence
with the number of jumps accounted and the measurement time. In our
notation, we take a measurement time t which is much more longer than
the time step δt. Here, the definite variables in the master equation are
taken as g′ = 0.1 a and δt = 0.0025t

The counts about the time-evolution without making jump is increasing with time.

When more photons counted, we can obtain more entangled states of the system. It is an

expected result, because the system is getting more entangled in time under the effect of

the pumping field.

For some values of the time of measurement and photodetections, the value of the

concurrence of the system is even become 1. We couldn’t find a regular distribution about

concurrence. This must be examined in a more detailed way.

Using the data about the graph, we can obtain the system with the amount of

entanglement that we want by setting the variables gives that amount of entanglement.
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Figure 3.10. The change at the probability of jump defined by using random numbers
basically and the number of jumps accounted and the measurement time.
In our notation, we take a measurement time t which is much more longer
than the time step δt. Here, the definite variables in the master equation
are taken as g′ = 0.5 a and δt = 0.0025t

Figure 3.11. The change at the amount of the entanglement in terms of concurrence
with the number of jumps accounted and the measurement time. In our
notation, we take a measurement time t which is much more longer than
the time step δt. Here, the definite variables in the master equation are
taken as g′ = 0.5 a and δt = 0.0025t.
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CHAPTER 4

CONCLUSION

In this thesis, we studied the generation of quantum entanglement and the effect

of quantum measurements on an open quantum system. We used a cavity with two qubits

as our system. These qubits interacts with each other by means of the cavity field. The

system is also pumped with a field which has the same strength with the cavity field. We

simulate direct measurements on the system.

We made observations on the leaking photons which contains the information of

the state. The repeated measurements on the system and the Hamiltonian of the system

gives us the master equation of it. By applying adiabatic elimination on the master equa-

tion, we derived out the terms about the cavity field. In this way, we obtained a relation

which indicates only the the atomic terms(the terms about the atomic states). This relation

is in the same form with the basic construction of the master equation, so we could easily

write the time-evolution operator and quantum jump operator about the system.

By using the master equation with only atomic terms, we simulated quantum tra-

jectories approach with Monte Carlo method. We appointed random numbers for each

infinitesimal time steps of the quantum trajectory about the final form of the master equa-

tion. As using the steady state as initial state, we took the evolution of the state for each

time intervals and normalized it in each running of the simulation. We repeated these

runnings and took the average of the result of the runnings. In this way, we obtained a

general picture about the state of our system.

We used ”concurrence” method to measure the amount of entanglement. After

calculating concurrence, we obtained the data to plot the relation of the amount of entan-

glement with time and detection numbers. Also we have plotted the relation between the

quantum jump probability of our system changing with time and detection number.

According the graphs, we can see that the evolution of entanglement and the re-

lations with the other parameters are as expected. The system becomes more entangled

as long as we pump the cavity field and it has a direct relation between the jump number.

Because, the jumps contains the information of interaction between two qubits.
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Initially we have taken a steady state, but it changed under the effect of direct

measurement. According to the relation between detected photons and entanglement, we

can say that the amount of entanglement can be controlled by making measurements on

the relevant system. By using the relations between time and measurement number, we

see that we can obtain an entangled state with the entanglement ration as we want.
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APPENDIX A

THE PROPERTIES OF THE DISPLACEMENT OPERATOR

The displacement operator for the cavity field is,

D̂b = eµ(b̂†−b̂) (A.1)

where µ = α/γp.

Here, some properties of the displacement operator Db:

• For the Hermitian of D̂b, these relations can be written,

D̂†b(µ) = eµ(b̂−b̂†) = e−µ(b̂†−b̂) = D̂b(−µ), (A.2)

D̂†bD̂b(µ) = eµ(b̂†−b̂)e−µ(b̂†−b̂) = 1̂. (A.3)

• The similarity transformation for b̂ is,

D̂†b b̂D̂b = eµ(b̂†−b̂)b̂e−µ(b̂†−b̂)

= b̂+ µ[b̂†, b̂]

= b̂+ µ. (A.4)

• The similarity transformation for b̂ is,

D̂†b b̂
†D̂b = eµ(b̂†−b̂)b̂†e−µ(b̂†−b̂)

= b̂† + µ. (A.5)

• The interaction with the vacuum state gives,

b̂D̂b |0〉 = D̂bD̂
†
b b̂D̂b |0〉

= D̂b(b̂+ µ) |0〉

= D̂bµ |0〉 . (A.6)

So,

b̂ |0〉 = µ |0〉 . (A.7)
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APPENDIX B

QUADRATURE MEASUREMENT

We take a cavity with two modes; one of them is inside of the cavity and cannot

escape from the walls of the cavity, and the other mode is escaping from cavity but it is

heavily damped. These two modes can define with an interaction Hamiltonian as follows

Hint = ~χX1Y1 (B.1)

where X1 = (ae−iwat + a†eiwat)/2 and Y1 = (be−iwkt + b†eiwkt)/2,

Hint = ~
χ

4
(ae−iwat + a†eiwat)(be−iwkt + b†eiwkt) (B.2)

According to the rotating wave approximation of Jaynes-Cummings model[14];

|wk − wa| << wk + wa (B.3)

The interaction Hamiltonian becomes

Hint = ~
χ

4
[ab† + a†b] (B.4)

The density operator for both modes obeys the following master equation[24]:

Ẇ = Lo − iχ[X1Y1,W ] +
γ

2
(2bWb† − b†bW −Wb†W ) ≡ LW (B.5)

We assume that mode b is heavily damped, so it has a few photons are slaved to

mode a. This allow the dynamics of mode b to be eliminated adiabatically.

| 〈Lo〉
γ
|∼ |χ〈X1〉

γ
|= ε� 1 (B.6)

Now, we can expand W in powers of ε:

W = ρ0⊗|0〉b 〈0|+ (ρ1⊗|1〉b 〈0|+H.c.) +ρ2⊗|1〉b 〈1|+ (ρ2′⊗|2〉b 〈0|+H.c.) +O(ε3)

(B.7)

Substituting W into the master equation gives
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ρ̇0 = Loρ0 − i
χ

2
[X1ρ1 − ρ†1X1] + γρ2 (B.8)

ρ̇1 = Loρ1 − i
χ

2
[X1ρ0 +

√
2X1ρ2′ − ρ2X1]− γ

2
ρ1 + γO(ε4) (B.9)

ρ̇2 = Loρ2 − i
χ

2
[X1ρ

†
1 +−ρ1X1]− γρ2 + γO(ε4) (B.10)

ρ̇2′ = Loρ0 − i
χ

2
[
√

2X1ρ1] + γρ2′γO(ε4) (B.11)

The off-diagonal elements ρ1 and ρ2′ can be adiabatically eliminated by slaving

them to the on-diagonal elements ρ0 and ρ2′ . Putting ρ̇2′ = 0 gives

ρ2′ − i
χ√
2γ
X1ρ1 +O(ε3) = O(ε2) (B.12)

Substituting this into the equation of ρ̇1 and putting ρ̇1 = 0

ρ1 − i
χ

γ
[X1ρ0 − ρ2X1] +O(ε4) = O(ε) (B.13)

Substituting this into the equation of ρ̇0 and ρ̇2 gives

ρ̇0 = Loρ0 −
χ2

2γ
[X2

1ρ0 −X1ρ2X1 + ρ0X
2
1 −X1ρ2X1] + γρ2 (B.14)

ρ̇2 = Loρ2 +
χ2

2γ
[X1ρ0X1 −X2

1ρ2 +X1ρ0X1 − ρ2X
2
1 ]− γρ2 (B.15)

The reduced density operator for mode a consist only diagonal terms ρ = Trb(W ) =

ρ0 + ρ2 +O(ε4). So, the master equation of the system becomes

ρ̇ = Loρ−
χ2

2γ
[X1, [X1, ρ]] ≡ Laρ (B.16)

Under the adiabatic assumption, ρ2 can also be slaved to ρ0, giving

ρ2 =
χ2

γ2
X1ρ0X1 +O(ε3) = O(ε2) (B.17)

Thus, to leading order the density operator for mode a is

ρ = ρ0 +
χ2

γ2
X1ρ0X1 (B.18)
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So,

ρ0 = ρ− χ2

γ2
X1ρX1

Substituting this expression into ρ1, ρ2′ and ρ2 yields the following expression for

the density operator W for modes a and b

W =(ρ− χ2

γ2
X1ρX1)⊗ |0〉b 〈0|+ (−χ

γ
X1ρ⊗ |1〉b 〈0|+H.c.)

+
χ2

γ2
X1ρX1 ⊗ |1〉b 〈1|+ (− χ2

√
2γ2

X2
1ρ⊗ |2〉b 〈0|+H.c.) +O(ε3) (B.19)

A photodetection in the output field of mode b is determined by the superoperator

J , defined by

JW = γbWb†

To determine the effect of this on mode a, we trace over mode b using W we have

derived. In this way, it can be found that

Trb(JW ) =
χ2

γ
X1ρX1 = Jaρ (B.20)

In the same way,

Trb[((L − J )W )] = Trb[LoW − i
χ

2
[X1Y1,W ]− γ

2
(b†bW +Wb†b)] (B.21)

According to these, we can write a definition of quantum trajectories just by using

mode a as X1 = (a+ a†)/2.

46


