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 ABSTRACT 

 

BRAIN DYNAMICS AND MEMORY ENHANCEMENT: 

MEMRISTOR BASED MODELS 

 
In this thesis, the memory systems of the brain are researched and the relationship 

between these memory systems and memristor theory are studied. Firstly, the ideal 

memristor theory is studied. By using the cubic memristor that was based on the ideal 

memristor theory, the basic logical operations are explained. Additionally, the nerve 

cells and synapses, which are thought where the memory and learning take place, are 

inquired. Bearing in mind that the characteristic of the memristor and its similarities 

between the synapses has been researched with the previous studies on this field. 

Finally, memristor data storage system has been designed by using memristors, and a 

binary image of 12x60 pixels has been successfully stored on this design. Also, the edge 

detection for images has been presented by using the memristor cellular automaton and 

some examples have also been given.  
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ÖZET 

 

BEYİN DİNAMİĞİ VE BELLEK GÜÇLENDİRİLMESİ: MEMRİSTÖR 

TABANLI MODELLER 

 

Bu tezde, beynin hafıza olgusu incelenmiş ve memristor teorisi ile olan ilişkileri 

araştırılmışır. İlk olarak, ideal memristor modeli incelenmiştir. Bu modelden yola 

çıkarak oluşturulmuş olan kübik memristor kullanılarak, basit mantık operasyonları 

anlatılmıştır. Daha sonra, hafıza ve öğrenmenin gerçekleştiği sinapslar incelenmiştir. 

İncelenen memristör karakteristiği ile birlikte, memristorün gösterdiği davranışların 

sinapslar ile olan benzerliği ve bu konu üzerine yapılan çalışmalar aktarılmıştır. Son 

olarak, memristör karakteristiğinden faydalanılarak, memristor bilgi depolama sistemi 

tasarlanmış ve bu sisteme 12x60 lık bir resim kaydetme işlemi uygulanmıştır. Ayrıca, 

resimlerdeki kenarları detekte eden bir memristive sistem anlatılmış ve bazı örnekler 

verilmiştir. 
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CHAPTER 1 

 

INTRODUCTION 

 

In 1971, Leon O. Chua presented a new two-terminal circuit element 

characterized by the charge and flux-linkage (Chua, 1971). He named this new element 

‘Memristor-Memory Resistor’ as the fourth new basic circuit element. Chua has been 

influenced by Mendeleev’s periodic table of chemical elements in nature (Mendeleev, 

1897). Once Mendeleev had completed his periodic table, he noticed that there were 

some missing chemical elements on his periodic table. His hypothesis claimed that these 

elements must exist. This hypothesis depended on the relationship between the 

properties of the closest elements with the missing element. With this idea, Chua started 

to think about three fundamental circuit elements and their relationships with each other 

based on the symmetry arguments. He finally noticed a missing element, which 

appeared due to the relationship between magnetic flux-linkage and charge. In Figure 

1.1, the diagram presents the six possible relations. These possible relations are the 

relations between voltage V, current i, charge q and flux  . The four fundamental two-

terminal passive circuit elements give four relations. The relationship between the 

voltage and current gives the resistor R, the relationship between the charge and voltage 

gives the capacitor C, the relationship between the flux and current gives the inductor L 

and finally the relationship between the charge and flux gives the memristor M. 
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Figure 1.1: The symmetry arguments between the resistor, capacitor, inductor and 

          memristor(Iu.H, 2013) 

 

On the contrary of the traditional resistances, the electrical resistance of 

memristor is not constant. Its resistance depends on the current that have flown through 

the device. It means that the memristor remembers its history and does not require any 

power supply to keep its resistance unchanged (Chua, 2011).  

The memristor still has unique properties that cannot be exhibited by a resistor, 

capacitor or inductor. 37 years before 2008, Chua implied that memristor was not 

discovered as a physical device without internal power supply, but he implied its 

importance for its application areas. The HP Group, from the USA, declared that they 

found the memristor as a physical device by using TiO2 thin film (Strukov, et al. 2008). 

It was the first nanoscale solid-state device recognized as a memristor. 

After HP announced that the missing memristor was found, the interest of both 

scientific researches and electronic industry has been reignited. This interest comes 

from the unique properties of the memristor such as nanoscale size, low-power 

consumption, nonvolatile memory, and synapse-like behavior.  

 Memristors are convenient to use in the digital computing areas. These types of 

applications are based on a programmable memristor acting as a switch. This switch is 

configured to the two resistance levels. These levels are accredited one of the two 

logical values (0 and 1) and these devices are used as a binary switch, which can present 

outcomes of Boolean functions. In future computer engineering, memristor will play an 

important role in the Resistive random-access memory (RRAM) applications (Xu, et al. 

2011). Developing the memristor technology helps the RRAM applications with the 

digital memory applications. RRAM creates different layers of electrical resistance to 

store the information by using ions. The traditional methods use bits to store the 
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information, while RRAM uses the high resistance level or low resistance level to make 

up bits of information. Due to the fact that RRAM is non-volatile, the memristor could 

possibly be used in RRAM applications. RRAM applications of the memristor open an 

access to store big data on the dimension of nanometers. Some companies such as 

Panasonic, Rambus and HP have been working on the RRAM technologies and 

patented their works. To achieve the computational ability of brain it is required the 

invention of small and cheap circuit elements that mimic these synapses (Snider, 2008). 

Snider with the HP Group then announced their experimental results of CMOS 

architecture. Their memristive nanodevices give the opportunity to work with densities 

greater than 10
10 

devices per cm
2
. A Wheatstone-bridge like circuit composed of 

memristors has been also described (Hyongsuk, et al. 2012). This circuit proposed a 

relationship between the synaptic weight and synaptic input signal.  

 On the contrary of digital applications of the memristor, analog applications 

have attracted so much attention. One of the most important analog applications is the 

bio-inspired circuits. These circuits perform a particular task of a biological neural 

network. These biological neural networks are inspired from the human or animal’s 

neural systems. In human brain, neurons operate the incoming signals and transmit 

signals to other neurons through synapses. The incoming signals multiplied by the 

synapse weight and the synapse readjusts its weight by a nonlinear function. This 

function depends on the history of the input signal. Memristors are convenient elements 

for this functionality of the synapses. In human brain there are 10
6
 neurons per cm

2
. 

This high ratio of the synapses in the brain precludes the implementation of the synaptic 

functionality by using conventional transistors. Since memristors are the nanoscale 

devices, they can be used instead of the conventional transistors. The first mathematical 

model that describes how the information flows through the neurons are presented by 

Alan Lloyd Hodgkin and Andrew Huxley. Their model describes the action potential of 

giant squid axon (Hodgkin-Huxley, 1952). They composed a set of nonlinear 

differential equations that models the electrical characteristic of neurons. It describes the 

ionic mechanism for propagation and initiation in the squid giant axon. Bailey and 

Kandel pointed out that the biology of memory in brain occurs after some physical 

changes (Kandel-Craig, 1993). They also thought the stability of the memory in long-

term period was because of the stability of synaptic modifications. Caporale and Dan, 

focused on the Spike Timing-Dependent Plasticity, STDP (Natalia-Dan, 2008). They 

considered two points that STDP is based on its dendritic location in brain and complex 



4 

 

input trains that modulate the STDP. Snider with Information and Quantum Systems 

Laboratory implemented timing-based learning rules known as STDP (Greg, 2008). 

They pointed out some reasons why the neuromorphic circuits such as massive 

parallelism, are attractive. Because of the natural nonlinear characteristics of memristor, 

it is used to model some biological organisms or biological facts. DiVentra et.al. models 

amoeba learning in which amoeba exists under some special conditions (Di Ventra, et 

al. 2009). Pershin and diVentra described an artificial synapse that remembers its 

history and it should be plastic according to the pre-synaptic and post-synaptic neuronal 

activities (Di Ventra-Pershin, 2010). These types of activities are related to the 

associative memory. Hyun Jo, et.al. experimentally showed that a silicon-based 

memristor device that presents the characteristics of biological synapses such as STDP 

(Hyun, et al. 2010). Takeo Ohno et.al. formed an Ag2S inorganic synapse that presents 

the characteristics of biological synapses (Takeo, et al. 2011). Their inorganic synapse 

implemented short-term plasticity and long-term potentiating properties in brain. S. G. 

Hu, et.al. experimentally formed a NiO-based memristor that emulates the forgetting 

curve of the human brain (Hu, et al. 2013). In this work, memristor conductance 

corresponds to learning or forgetting events, which occurred in biological synapses, and 

results that showed similar characteristics of Ebbinghaus forgetting curves.  

  

1.1 Outline of the thesis 

 

This thesis is structured as follows: 

 

Chapter 1: Introduction 

 

 This chapter introduces how the memristor was found. It also introduces the 

application areas of the memristors.  

 

Chapter 2: The Memristor 

 

 In this chapter, memristor characteristic equations have been obtained and it has 

been explained why memristors can be used as memory storage elements. Some basic 

logical operations by memristors have been presented.  
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Chapter 3: Synaptic Plasticity 

 

 In this chapter, synaptic modifications for the long term and short term 

potentiation and learning events in the brain have been presented. Then it has been 

explained why memristors are convenient to use in bio-inspired applications.  

 

Chapter 4: Memristive Storage System 

 

 In this chapter, a memristive crossbar array has been presented. These arrays are 

connected by memristors and they are convenient to store logical values such as logic 

‘1’ and logic ‘0’. Also, the edge detection for images has been introduced by using 

memristor cellular automata. 

 

Chapter 5: Conclusion 

 

 This chapter summarizes the memristor theory and applications introduced in 

this thesis. 
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CHAPTER 2 

 

THE MEMRISTOR 

 

A memristor is characterized by the constitutive relation   (   )    relating 

the charge ‘q’ and the flux ‘ ’. The charge and flux are given by  

 

 ( )  ∫  ( )      ∫  ( )  
 

 

 

  

 
      (2.1) 

 

 ( )  ∫  ( )      ∫  ( )  
 

 

 

  

 
     (2.2) 

 

Here    and    are the initial charge and flux at t=0. More simply, the input-output 

response of a memristor is determined by the charge-flux curve. It is classified as ideal 

if the charge-flux curve is unique, continuously differentiable and monotonically 

increasing. If the memristor constitutive relation is described as an explicit function of q 

or   , it is called the charge-controlled memristor or flux-controlled memristor, 

respectively.  

 

   ̂( )                                 (2.3) 

 

   ̂( )                         

 

     (2.4) 

Differentiating Equation 2.3 and 2.4 with respect to time, it is obtained as  

 

  
  

  
 

  ̂( )

  

  

  
  ( )                             

     (2.5) 

 

  

  
 

  ̂( )

  

  

  
                          

     (2.6) 
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where 
  

  
⁄    and 

  
  

⁄   . For the charge-controlled case, the Equation 2.5 is 

given by 

 

   ( ) ( )    (2.7) 

 

where  ( )  
  ̂( )

  
⁄  is the memristance measured in Ohms (Ω). The memristance 

corresponds to the slope of the     curve. Similarly, for the flux-controlled case, the 

Equation 2.6 is given by 

 

   ( ) ( )   (2.8) 

 

where  ( )  
  ̂( )

  ⁄  is the memductance measured in Siemens (S). The 

memductance corresponds to the slope of the     curve.  

 

 Chua suggested a theorem called as the passivity criterion that shows what class 

of memristors might be discovered without internal power supplies (Chua, 1971).  

 

Theorem 2.1: The Passivity Criterion 

 

A memristor characterized by a differentiable (   ) curve is passive if, and only if, 

its memristance  ( )    at any instant of time. 

 

The instantaneous power dissipated by a memristor is  

 

 ( )   ( ) ( )   ( ( ))[ ( )]       (2.9) 

 

If the memristance  ( )   , then  ( )   , and the memristor is passive. This 

theorem determines the properties of the (   ) curve so that the memristor is passive 

(without internal power supplies). If there exists a point q0 such that  (  )     The 

differentiability of the  (   )  curve implies that there exists an     such that 
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 (     )     |  |   . Then memristor is driven by a current i(t), which is zero 

for t<t’ and such that 

 ( )       ( )                     |  ( )|     (2.10) 

 

Then it is obtained that the memristor is active since 

 

∫  ( )     
 

  

  
  (2.11) 

 

It is clear that if the memristor is characterized by a monotonically increasing  (   ) 

curve, the memristor can exist in a device form without internal power supplies. 

 In Equations 2.7 and 2.8, the memristance and memductance depend on the 

history of the input. The memristance or memductance is a function of q and   . 

Replacing q in 2.7 with 2.1 and   in 2.8 with 2.2 gives 

 

 ( )    ∫  ( )  
 

  

  ( ) 
  (2.12) 

and 

 ( )    ∫  ( )  
 

  

  ( ) 
  (2.13) 

 

 The entire past history of the input signal determines the memristance or 

memductance. After the input signal is shut down, the memristor keeps the memristance 

value or memductance value indefinitely.  

 

2.1. Non-Volatile Memory Criteria 

 

A memristor obeys the state-dependent Ohm’s law when the current i(t) is the 

input: 

1- Current controlled state-dependent Ohm’s law: 

 

   ( )  

 

(2.14) 
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  (   ) 

  (2.15) 

where x denotes a vector with n internal state variables. 

2- When the voltage V(t) is the input, the voltage-controlled state-dependent 

Ohm’s law 

 

   ( )  

 

 (2.16) 

 

  

  
  (   ) 

 

 (2.17) 

By following these definitions, a memristor has non-volatile memory if and only if  

 

 (   )                                 (2.18) 

or 

 (   )                                (2.19) 

  

When the power supply is shut down (V = 0),  
  

  
  (   )    for all x    and 

x    is an equilibrium state of a memristor.  

 

    curve of an ideal memristor: 

 

 It has been mentioned that     curve of a memristor should be unique, 

continuously differentiable and monotonically increasing. It should be unique because 

the memristor should respond in the same way when it is driven by any kind of 

waveform. It means that a certain amount of charge or flux changes the memristance or 

memductance in a same way. It should be continuously differentiable because the slope 

of the curve, memristance, is uniquely defined at every point and it is finite. It should 

also be monotonically increasing because the memristance is positive in order to 

guarantee passivity. Additionally,     curve of an ideal memristor should be a one-

to-one function because from Equation 2.7 and 2.8, it is obtained that  ( )   
 ( )⁄ . 
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 For an example, a     curve is defined in Equation 2.20 and shown in Figure 

2.1. It satisfies the criteria of unique, continuously differentiable and monotonically 

increasing (Chua, 2011). 

     
 ⁄    

 

  (2.20) 

 

Figure 2.1: The cubic memristor q-   characteristic 

 

The slope of the     curve gives the memristance  ( )  
  ( )

  ⁄  and it is shown 

in Figure 2.1. For this type of cubic memristor, the relationship between the applied 

current and voltage across the memristor gives a hysteresis. A sinusoidal current 

waveform is applied as 

 

 ( )  {
    (  )    

     
 

 

(2.21) 

The charge on the memristor from Equation 2.1 gives 
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 ( )  ∫     (  )  
 

 

 
 

 
(       )       

 

  (2.21) 

and the flux-linkage of the memristor is 

     
 ⁄      ( )  

 

 
(       )   

 

 
(
  

  
) (       )   

  (2.22) 

 

The voltage across the memristor is obtained as 

 

  

  
  ( )      

  

  
(       )        

 

 

 

  (2.23) 

 

Figure 2.2: Cubic memristor voltage vs. time loci 

 

To sum up, the applied current and the voltage on the cubic memristor are 

 

 ( )      (  )       (2.24) 

and  
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 ( )       
  

  
(       )        

 

 (2.25) 

If these functions i(t) and V(t) are plotted on MATLAB platform, the pinched-

hysteresis loop is obtained. The hysteresis occurs because i(t) and V(t) will be zero at 

the same time and they do not reach their maximum values at the same time.  When a 

memristor is driven by a periodic voltage or current source, it exhibits the pinched 

hysteresis loop of the v-i loci. For each of periods these sources span both positive and 

negative values. It is important that this characterization identifies a device under 

applied periodic input signals shows a pinched hysteresis loop. A passive memristor 

driven by a sinusoidal excitation always shows hysteretic i-v response crossing the 

origin. The area of this loop depends on the frequency or the amplitude of the input 

waveform. When the frequency is increased while the amplitude is constant, the area of 

the hysteresis decreases because w is increased. When the amplitude is increased while 

the frequency is constant, the area of the hysteresis increases. The amplitude and 

frequency dependents are shown in Figure 2.3, 2.4, 2.5, and 2.6. In Figure 2.3, the 

amplitude of the input signal A is 1V when the frequency w is 1s
-1

. In Figure 2.4, the 

amplitude of the input signal A is 2V when the frequency w is 1s
-1

. In Figure 2.5, the 

amplitude of the input signal A is 1V when the frequency w is 2s
-1

. In Figure 2.6, the 

amplitude of the input signal A is 2V when the frequency w is 2s
-1

.  
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Figure 2.3: The amplitude of the input signal A=1V, the frequency w=1s
-1

. 

 

Figure 2.4: The amplitude of the input signal A=2V, the frequency w=1s
-1

. 
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Figure 2.5: The amplitude of the input signal A=1V, the frequency w=2 s
-1

. 

 

 
Figure 2.6: The amplitude of the input signal A=1V, the frequency w=1s

-1
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The memristance ‘R’ of the memristor, the current ‘i’ through the memristor, the 

voltage ‘V’ across the memristor and the charge ‘q’ on the memristor are given in 

Figure 2.7. 

 

 

 

 

 

Figure 2.7: Memristance vs. time, current vs. time, voltage vs. time and charge vs. time 

       for the cubic memristor 

 

It is important to notice that the voltage and current are zero at the same time and the 

charge never has the value of zero.  

 

2.3 HP Memristor  

 

The HP-Group, USA, announced that the memristor was physically found in 

2008 (Strukov, et al. 2008). Their invention of memristor architecture was based on a 

thin film, titanium dioxide (Ti is for titanium and O is for oxygen). The characteristic 

equations of this kind of memristor depend on how the moving process acts upon the 

memristive system. The memristor remembers the last memristance state even if the 



16 

 

power supply is turned off. One of the two TiO2 layers consists of a perfect   ⁄  O2 to Ti 

ratio. This ratio turns the memristor into an insulator and it is called as an undoped 

region. The other one has lost some O2 and it is called the doped region and shown as 

TiO2-x . This region makes the memristor conductive. When an external excitation, 

which is a periodic sinusoidal excitation, in general, is applied, it causes the charge 

dopants to drift. As a result the doped and undoped regions are not constant and they 

change the total memristance of the memristor. In Figure 2.8 the HP memristor doped 

and undoped regions are shown. 

 

 

Figure 2.8: The HP memristor (Iu H. 2013). 

 

‘w’ is the length of the doped region and ‘D’ is the total length. To increase W 

(decreases memristance), the positive bias should be applied. To decrease W (increases 

memristance), the negative bias should be applied to the memristor. In this model, the 

memristance is described by 

 

    ( )            (   ) (2.26) 

 

here    
 ⁄   (   ) and it is described as the internal state variables (Chua, 2011). 

As it has been described above, for W = 0, the final resistance value is described as Roff  

means that the highest memristance value and for W = D, the limit resistance value is 

described as Ron means that the lowest resistance value. 

Ohm’s law for a memristor is described as 
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 ( )      ( ) ( ) (2.27) 

  

 The HP memristor has a boundary between the doped region and undoped 

region and it is necessary to describe the motion of this boundary. The speed of this 

boundary motion depends on the doped region, the thickness of layers and the current 

that flows through the memristor. Mathematically, the state variables can be described 

as  

 

  

  
   ( ) (2.28) 

where 

  
     

 
 

(2.29) 

 

 

and the average ion mobility                  . After integrating the Equation 

2.28 the state variable x(t) can be obtained as  

 

 ( )    

   

 
 ( ) 

 

(2.30) 

The voltage across the memristor  ( )      ( ) ( ) is as follows 

 

 ( )  (   

 ( )

 
     (  

 ( )

 
))  ( )  

 

(2.31) 

As it can be understood from the Equation 2.28, ‘k’ is the ratio of the boundary speed to 

the current. For Ron<<Roff  the memristance is formed as  

 

 ( )      (  
     

  
 ( )) 

 

(2.32) 

For instance, the HP memristor is driven by a voltage source V=sint shown in 

Figure 2.9, the current through the memristor is obtained as Figure 2.10 given below. 

The i-v loci is then given in Figure 2.11. 
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Figure 2.9: The Voltage vs. time loci of the memristor 

 

      

Figure 2.10: The current vs. time loci of the memristor 

 

As it can be seen from the Figure 2.7, when the current reaches its maximum 

value at t=0.15s, the voltage does not reach its maximum value. In the Figure 11, these 

voltage and current changings give hysteresis loops. 
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Figure 2.11: Memristor i-v loci 

 

The memristance M(q) is given in Figure 2.12. The high resistance value is 

obtained as 15900Ω and the low resistance value is obtained as 2000Ω.  
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Figure 2.12: Memristance vs. time loci 

 

In this memristor model all the dopants move linearly in the memristor. Due to 

the fact that a memristor is a nano-scale device, a large electric field can be occurred by 

a very small bias. This makes the dopants movement nonlinear. This nonlinearity can be 

very big at the boundaries of the memristor. For the actual memristor model, the 

nonlinear dopant drift model, it is necessary to add a window function to the linear 

dopant drift model. 

 

  

  
   ( ) ( ) (2.32) 

 

Here the f(x) window function, called Joglekar window function, is described as 

 

 ( )    (    )   (2.33) 

 

This Joglekar window function is plotted in Figure 2.13.  
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Figure 2.13: The window function for different values of ‘p’. 

 

2.4. Memristor Bridge Synapses 

 

 Leon O. Chua described a Wheatstone-bridge like circuit composed of 

memristors (Hyongsuk, et al. 2012). He proposed a relationship between the synaptic 

input and synaptic output signal called as synaptic weight in the circuit given in Figure 

2.14.  
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Figure 2.14: Memristor Wheatstone-bridge circuit(Chua, 2013) 

 

 The memristance of each memristor is charged by applying positive or negative 

pulses, Vin(t). The memristance of M1 and M2 is decreased by positive pulses. The 

memristance of M2 and M3 is is increased by positive pulses. 

 The voltage VA is greater than the voltage VB with respect to the ground. It 

means that the circuit output voltage Vout is positive representing a positive synaptic 

weight. On the other hand, the output represents a negative synaptic weight when 

negative pulses are applied. 

 Memristor voltages are found via voltage-divider rule. The voltage Vm1 is given 

as  

 

    
  

     
    

 

(2.34) 

The voltage VM2 is given as 

 

    
  

     
       

 

  (2.35) 

The voltage VM3 is given as  

 

    
  

     
    

(2.36) 
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The voltage VM4 is given as  

 

    
  

     
       

 

(2.37) 

The output voltage, equal to the voltage difference of nodes A and B, can be written as 

 

           (
  

     
 

  

     
)    

 

        (2.38) 

 

here   is the synaptic weight given as 

 

  (
  

     
 

  

     
)  

 

(2.39) 

Equation 2.39 represents the synaptic weighting operation. The input signal is weighted 

by Equation 2.39. 

 

2.5 Logic Operations by Memristors 

 

To be able to use memristors as a storage element, it is important to check their 

availability for basic logical operations. A cellular automaton model can be a useful 

model for these operations. It is a discrete model studied in computer science, 

mathematics, physics, complexity science, theoretical biology etc. It consists of a 

regular grid of cells. Each of these cells has a finite number of states (such as on and off 

or as in computer language system 0 and 1). An initial state (for t=0) is selected and 

every cell has the same rule for updating. It means that a new generation is formed 

according to the rule of the cellular automata. This rule is generally a mathematical 

function and it determines the new state of each cell. This determination depends on the 

current state of the cell and the states of the cells in the neighborhood.  

A one-dimensional cellular automaton for the memristor logic operations has 

rows of cells and a set of rules (Chua-Itoh, 2009). The aim of the cellular automaton 
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forms the rules. As it has been mentioned, each cell can only be in two different states 

(on or off; 0 or 1; black or white etc.) and they have three neighbors, so there are 2
3
=8 

possible patterns for a neighborhood and there are 2
8
=256 possible rules. Chua gives an 

example for a number 126 by using memristor cells with current pulse generator shown 

in Figure 2.15(Chua, 2013). It is known that the number 126 is written as ‘01111110’ in 

binary representation. The rules are as follows:  

 

1- 3 cells are white   the new state is white. 

2- 3 cells are black   the new state is white. 

3- Otherwise   the new state is black. 

 

 

Figure 2.15: The memristor cell (a) with current pulse generator (b) 

 

Each cell is coupled only to its left and right neighbor cell and ‘1’ and ‘0’ denote 

black and white, respectively. For instance, if three adjacent cells are as ‘101’, it means 

that left cell is black, middle cell is white and right cell is again black. The next cell will 

become black according to the rule. Chua wrote the truth table for the number ‘126’ as 

an example shown in Table 2.1. 

 

Table 2.1:Truth table for the number 126 

Current 

Pattern 

111 110 101 100 011 010 001 000 

New State for 

center cell 

0 1 1 1 1 1 1 0 
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And its decimal representation is given in Table 2.2 

 

Table 2.2: Decimal representation for the number 126 

(xi-1(t), xi(t), xi+1(t)) 111 110 101 100 011 010 001 000 

w=2
2
xi-1(t) + 2

1
xi(t) + 

2
0
xi+1(t) 

7 6 5 4 3 2 1 0 

xi(t+1) 0 1 1 1 1 1 1 0 

 

where xi(t) denotes a state variable of the ‘i’th cell. The left neighbor is (i-1)th neighbor 

of ‘i’th cell and the right neighbor is (i+1)th neighbor of ‘i’th cell. From Table 2.2, the 

relation can be summarized as 

 

  (   )  {
       
               

 

 

   (2.40) 

where          ( )      ( )        ( ). 

 

Chua used MxN rectangular array of memristor cells C(i,j) with Cartesian 

coordinate system. ‘i’ denotes the ith cell of ‘M’ and ‘j’ denotes the jth cell of ‘N’ and a 

current pulse generator produces Ip and it has positive and negative paired current 

pulses. If a positive current pulse is applied, the switch is turned on to be able to charge 

the memristor shown in Figure 2.16(Chua, 2013).  

 

 

Figure 2.16: The positive and negative current pulses (a). The switch runs when 

the current pulse is positive (b). 

 



26 

 

As it has been mentioned, constitutive relation for the memristor is given as 

 

   ( )   (2.41) 

and  

   ( )  

 

 (2.42) 

and the memristor characteristic relationship of flux-linkage and charge is given as 

 

 

Figure 2.17: The memristor     characteristic 

 

The cell output yij(t) is obtained as  

 

   ( )  {
 ( )   ( ( ))   ( )     

      
 

 

(2.43) 

with Ip=1. 

 

The charge on the memristor is given as  
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 ( )  ∫   ( )   ∫   

 

 

  

 

 

 

 

(2.44) 

with Ip=1. 

 

For 0≤t≤1 the current pulse Ip is equal to ‘1’ then the voltage is obtained as  

 

 ( )   ( ( ))  ( )   ( ( ))   (2.45) 

 

It means that by applying a positive pulse, the memristance value of memristor 

is measured. This process is called as ‘read process’. By using memristors, the basic 

logical operations can be emulated.  
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Figure 2.18. The positive and negative current pulses (a), and inputs for the logical 

          operation ‘XOR’ (b). The obtained memristor charge (c) and the output 

          (d) (Chua, 2009). 

  

 In Figure 2.18, a memristor cell with an input is shown for logical operations. 

The input current uij is applied to the cell as ‘11’, ’01’, ’00’, and ‘10’. The negative 

input pulses are applied to discharge the memristor. The read pulses are shown. It is 

important to notice that positive input pulses and negative input pulses are applied 

before and after the read pulse Ip, respectively. The obtained memristance is shown in 

Figure 2.19a(Chua, 2009). 
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Figure 2.19: Memristance vs. charge (a), and the  -q characteristic loci(b) for the       

         logical operation ‘XOR’ 

 

In Figure 2.20, the memristance M(q) is defined by 

 

 ( )  {
       
           

 

 

(2.46) 

and the output yij is defined by 

 

   ( )   ( )   ( ( ))   ( ) 

 

(2.47) 

The cell output gives  

 

   ( )  {
         

           
 

 

(2.48) 

with Ip>0. 

 

 In Figure 2.18, it can be seen when the qij is between 1 and 2, the output yij gives 

‘1’, and otherwise it gives ‘0’. It is basically the logic operation for ‘XOR’. The truth 

table for XOR is given in Table 2.3. 
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Table 2.3: The inputs and outputs for the logical operation ‘XOR’ 

uij yij 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

If the input uij is given as in Table 2.4, the output will be as in Figure 2.21 with the 

memristance as shown in Figure 2.20. 

 

Table 2.4: The inputs and outputs for the logical operation ‘AND’ 

uij yij 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

 

Figure 2.20: Memristance vs. charge loci for the logical operation ‘AND’. 

 

The memristance M(q) shown in Figure 2.21 for the AND gate is given as  

  

 ( )  {
     
      

 

 

(2.49) 

The output yij is shown in Figure 2.21 as  
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Figure 2.21: The output for the logical operation ‘AND’(Chua, 2009). 

 

and it is summarized as  

 

    {
     
      

       {
 ( )   ( ( ))   ( )    

        
 

 

(2.50) 

It gives the logical operation of AND gate. For the other logical operations OR and 

XNOR, the truth tables are given as  

 

Table 2.4: The truth table for the logical operation ‘OR’. 

OR 

uij yij 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
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and 

Table 2.5: The truth table for the logical operation ‘XNOR’. 

XNOR 

uij yij 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

 

They can be obtained by combining the memristance values. If the memristance is 

defined as  

 

  ( )  {
         
           

 

 

   (2.51) 

it can be seen that the logical operation ‘AND’ can be obtained by M2(q); the logical 

operation ‘OR’ can be obtained by M1(q)+M2(q); the logical operation ‘XOR’ can be 

obtained by M1(q); the logical operation ‘XNOR’ can be obtained by M0(q)+M2(q). For 

the logical operation ‘OR’, the memristance value should be given in Figure 2.22(Chua, 

2009). 

 

 

Figure 2.22: The memristance vs. charge loci for the logical operation ‘OR’(Chua, 09) 

 

For the logical operation ‘OR’, M1(q)+M2(q) gives 
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  ( )    ( )  {
    | |   
           

 
   (2.52) 

For the logical operation ‘XNOR’, the memristance value should be given in Figure 

2.23(Chua, 2009) 

 

 

Figure 2.23: The memristance vs. charge loci for the logical operation ‘XNOR’. 

 

For the logical operation XNOR, M0(q)+M2(q) gives 

 

  ( )    ( )  {
  | |          | |   
                        

 

 

(2.53) 
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CHAPTER 3 

 

SYNAPTIC PLASTICITY 

 

Modern neuroscience has deep feelings in biology, medicine, philosophy, 

physics, and mathematics(Mark F, 2001). The curiosity about how we see and hear, 

why we learn and forget, why we are angry or happy sometimes comes from the human 

nature. The study of the neuroscience is not old, but the study of the brain is of long 

standing. Scientists who work on the nervous system are distinctively from various 

scientific disciplines such as physics, medicine, biology, psychology, chemistry, and 

mathematics. Interdisciplinary work between these scientific disciplines is required to 

understand the nervous system. In general, the brain, spinal cord and nerves of the body 

are thought as the nervous system and they are crucial for life. With this system we are 

able to sense, move, and think. 

 Santiago R. Cahal (1852-1934) realized that neurons were discrete biological 

structures (Harth, et al. 1970). They sent and got information through their dendrites. 

His fascinating discovery was that there was a gap between the neurons and at that time 

nobody knew the nature of this gap (Jackson, 1995). Influenced by this invention, 

Charles S. Sherrington (1857- 1952) introduced a new concept, the synapse. A synapse 

can be described as a structure used by the neuron to send electrical and chemical 

signals to another neuron. The information is transferred from one neuron to another 

neuron via synapses. The term synapse, derived from a Greek word that means to 

fasten. The synapse has two sides called presynaptic and postsynaptic (Andy, 2013). 

The direction of information flow, which is from presynaptic to postsynaptic, 

determines the name of the synapse. Some molecular processes occur at the sides of the 

synapses to send information from the pre- to post-. In general, postsynaptic side is 

located on the axon terminal while the post side is on the soma or the dendrite shown in 

Figure 3.1. 

 



35 

 

 

Figure 3.1 The neuron(Mark F, 2001) 

 

The synapses are made up of two types, chemical synapse and electrical synapse 

(Mark, et al. 2001). In the chemical synapse, when the presynaptic neuron is stimulated, 

a chemical called neurotransmitter is released and then it is bound to the receptors on 

the postsynaptic cell. Chemical synapses are crucial for the biological computations that 

underlie thought. The electrical synapse has some special channels called gap junctions. 

These junctions pass the electric current directly. The distance between the electrical 

pre-synapse and post-synapse is about 3.5nm. Compared to chemical synapses, they 

conduct impulses faster. The signal in chemical synapse does not lack gain but in 

electrical synapse it does. The adult human brain contains 100-500 trillion synapses. 

 

 

Figure 3.2 The electrical and chemical synapse(Mark F, 2001) 

 

After a synapse is stimulated by an action potential, which will be given in detail 

later, the electrical stimulation is sent onto dendrites via synapses. These synapses are 

spread through the dendritic tree. Dendrites are important to determine which action 

potential is produced and why dendrites are covered by so many synapses. Some kinds 

of dendrites in cerebellum and cerebral cortex have spines. Spines that receive synaptic 
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inputs increase the receptive ability of the dendrite. This increased ability is thought to 

play a crucial role in learning, forgetting and memory functions of the brain. They are 

believed to have various chemical reactions that are activated by some types of synaptic 

activation.  

 

 

 

Figure 3.3 The dendrite 

 

3.1 Neurons and Glia 

 

Rudolf Carl Virchow, a German anatomist, recognized that the brain is filled up 

with neurons and glia cells. Glia, sometimes called neuroglia, provide support for 

neurons and nervous system (Kandel, 2007). One of the functions of glia is to hold the 

neurons in place. Some researchers nowadays consider glia to be the ‘sleeping giants’ 

(Nicola-Barres, 2009). They believed that one day it would be proven that glia 

contribute much more to information processing in the brain. Without glia, the brain 

cannot support its functions. Researchers currently know some functions of the glia 

cells. As it has been mentioned, they surround the neurons, keep them together and 

insulate the neuron from another. The glia cells are the oxygen suppliers of the neurons. 

They also wipe out the dead neurons. Neuroscientists have recently discovered that the 

glia cells play a crucial role on the physiological processes such as breathing 

(Alexander, 2010). They also help the neurons form new connections with the other 

neurons. They finally participate in the information transferring process and thereby 

play a crucial role in keeping the memory storage again. 

Glia cells are separated into two categories based on their appearance in the 

microscope. The two types of glia cells are astrocytes and oligodendrocytes. Astrocytes 

regulate the chemicals in the glia by regulating the concentration of potassium ions in 
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the extracellular fluid (Mark, 2001). Researchers have recently discovered that these 

cell membranes have neurotransmitter receptors like neurons, and lead some events in 

the brain. The astrocytes activity is contributed to blood flow in the brain. The 

oligodendrocytes cells cover the axons in the central nervous system with their 

membrane. The electrical signals propagate more efficiently if the oligodendrocytes 

cells cover the axon. 

 Synapses, under communication, can strengthen or weaken over time. If they 

play a role for the communication, their abilities increase and if they do not, their 

abilities decrease. In neuroscience, this changeable ability for the activity of a neuron is 

called synaptic plasticity. The synaptic plasticity is one of the most important 

phenomena in brain because it is thought that it is responsible for the process of learning 

and memory (Mark, 2001). It can be formed by two rules for the synaptic plasticity. 

First, both pre-synaptic axon and post-synaptic neuron are active at the same time, and 

then the synapse is strengthened. Here the post-synaptic neuron is activated by other 

inputs. Hebb hypothesized for this situation that neurons that fire together wire together 

(Natalia-Dan, 2008). Second, the presynaptic axon is active, but the post-synaptic 

neuron is not strongly activated by other inputs, the synapse is then weakened. Hebb’s 

hypothesized for this situation that neurons that fire out of sync lose their link (Hyun, et 

al. 2010). It can be seen that a neuron does not have any dominant effects on the firing 

rate of the post-synaptic neuron. It means that the correlation is essential for the 

synaptic plasticity. If a synapse is strengthened, there must be other stronger inputs that 

stimulate the post-synaptic neuron at the same time. Otherwise, the synaptic plasticity 

decreases if there are not any correlations between the inputs that stimulate the post-

synaptic neuron.  

 The neurotransmitter, glutamate is the main transmitter that is responsible for the 

synaptic plasticity (Jackson, 1995). There are some receptors that are specialized for 

these neurotransmitters. They are the AMPA receptors and the NMDA receptors. They 

allow the positively charged ions to pass inside of the cell. AMPA and NMDA receptors 

are different from each other and they have also different tasks. The first difference 

between these receptors is that the conductance of NMDA receptor is based on Mg
+2

 

ions. Mg
+2

 ions are the ions that clog the gate of NMDA receptor at the resting potential 

as shown in Figure 3.4.  
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Figure 3.4 Glutamate binds to receptor (a), Mg
+2

 ion repels (b) 

When an enough action potential arrives to the cell via AMPA receptors, the Na
+
 

ions repel the Mg
+2

 ions from the NMDA receptor to the synaptic gap and this process 

is shown in Figure 3.4(Mark F, 2001). At this stage the NMDA gate is now open and it 

allows Ca
+2

 ions to pass through the gate and sodium ions K
+
 go out from the cell at the 

same time. Ca
+2

 ions can only pass through the NMDA receptor. This is the second 

difference between the NMDA receptor and AMPA receptor. 

Ca
+2

 ions are important for the cell to activate some cellular reactions. If there is 

enough correlation between the inputs, Na
+
 ions that enter the cell via AMPA receptors 

repel Mg
+2

 ions and then Ca
+2

 enters the post-synaptic cell. Ca
+2 

ions trigger some 

mechanisms and make the synapse stronger. This process is called as ‘long term 

potentiation’.  
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Figure 3.5 The process of occurrence of new AMPA receptors(Mark F, 2001) 

If there is not enough correlation between the inputs, a few Ca
+2

 ions leak from 

NMDA receptor to the post-synaptic cell and they then trigger some different 

mechanisms and make the synapse weaker. This process is then called Long Term 

Depression (LTD). 

3.2 The movement of Ions 

Ion channels are made up of the membrane protein molecules (Izhikevich, 

2007). The most important function of these channels is the selectivity properties. Most 

ion channels are specified by the diameter of their pole. The channel name depends on 

what kind of ions is permeable to that channel. If the channel is permeable to sodium 

ions, its name is Na
+
 channel. The calcium channels are permeable to Ca

+2
 ions and the 

potassium channels are permeable to K
+
 ions. These ions are also pumped by some 

enzymes, which are called ion pumps. These enzymes use the ATP energy that comes 

from mitochondria in glia to transport Na
+
 and Ca

+2 
ions from inside of the neuron to 

outside.  

To move the ions through the channels, two processes, which are diffusion and 

electricity, are used in the cell. Diffusion also occurs in nature and it is a transport 
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phenomena. Therefore, there will be a net ion flow from the high concentration region 

to low concentration region. This movement is called ‘diffusion’. Due to the fact that 

ions are electrically charged particles, an electromagnetic field should occur. This 

electromagnetic field can trigger the movement of the ions in the cell. 

In a biological cell, the membrane potential is the difference in potential 

between the interior and exterior in that cell, which is shown in Figure 3.6. The outside 

of the neuron is electrically positive with respect to the inside. This difference is called 

membrane resting potential. Without any excitation, this resting potential is maintained. 

The membrane potential can be measured by the ionic concentrations on either side of 

the membrane.  

 

 

Figure 3.6 Extracellular and intracellular ion concentrations 

 

For the membrane in Figure 3.6, the inside concentration of the membrane has 

more potassium ions, K
+
, the outside concentration of the membrane has more Na

+
 and 

Ca
+2

 ions(Mark F, 2001). As it has been mentioned before two ionic pumps are 

important in the membrane. They are Sodium-Potassium Pump and Calcium Pump. 

After the breaking down of ATP, this released energy is used by the pumping systems. 

The pump exchanges the Na
+
 with K

+
. This pumping process requires energy because 

the pump pushes ions against the concentration gradients. It is thought that the sodium-
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potassium pump requires at least 70% of the energy of ATP in the brain. The calcium 

pump is also an enzyme that pushes Ca
+2

 to outside of the cytosol. There are some 

additional pumping mechanisms to decrease the Ca
+2

 level such as calcium binding 

proteins and some organelles. In 1952 Hodgkin and Huxley derived a model that 

explains how action potentials propagated in the squid giant neurons (Hodgkin-Huxley, 

1952). The model was based on the ionic currents. 

 Information is transferred via ionic currents through neuron membranes. These 

membrane currents are sodium (Na
+
), potassium (K

+
), calcium (Ca

+2
), and chloride (Cl

-

). Concentrations of these ions are different on the inside and the outside of a cell. This 

difference between the inside and the outside is called electrochemical gradients. The 

outside of the neuron has a high concentration of Na
+
 and Cl

-
. The cell membrane 

decides which ions can flow through the channels.  

 

3.2.1 The Nerst Potential 

 

 K
+
 ions are sent out from inside of the cell because inside of the cell K

+
 

concentration is higher than the outside K
+ 

concentration. Since K
+ 

ions carry a positive 

charge and thereby, they produce the outward current. This ion transfer creates an 

electric potential gradient across the membrane called membrane voltage (Strukov, et al. 

2009). Then it ends because K
+ 

ions are attracted to the negatively charged interior. At 

the same time they are also repelled from the positively charged exterior of the 

membrane. When the inside ion concentration of the cell and outside ion concentration 

of the cell are equal, this potential is called equilibrium potential. This potential depends 

on the ion concentrations and the value of this potential is given by the Nerst equation. 

The Nerst equation is given by 

 

     
  

  
   (

[   ]   

[   ]  
) 

 

    (3.1) 

‘[Ion]in’ is the inside concentration of the ions. ‘[Ion]out’ is the outside concentration of 

the ions. ‘R’ is the universal gas constant and ‘T’ is the temperature in Kelvin. ‘F’ is the 

Faraday’s constant. ‘z’ is the valance of the ions (z=1 for Na
+
 and K

+
; z=-1 for Cl

-
 ; z=2 

for Ca
+2

). 

 For the neuron of a mammalian, the Nerst equilibrium potential is calculated as  



42 

 

          
[   ]   

[   ]  
    

   (3.2) 

 

Thus for Na
+
, K

+
, Cl

-
 and Ca

+2 
ions, the Nerst equilibrium potentials are 90mV, -90mV, 

-89mV, and 146mV, respectively. 

 

3.2.2 Ionic Currents and Conductances: 

 

 Hodgkin and Huxley model is a mathematical model that describes how action 

potentials in neurons are initiated. They described the model in 1952 to explain the ionic 

mechanism underlying the initiation of action potentials in the squid giant axon and 

received the Nobel Prize in Physiology or Medicine in 1963. They defined an equivalent 

circuit that defines the gate currents as given in Figure 3.7(Izhikevich, 2007).  

 

 

Figure 3.7 Hodgkin-Huxley Model Circuit(Izhikevich, 2007) 

           

 If the membrane potential V is equal to the equilibrium potential, the net K
+
 

current is zero and the current is defined by 

 

     (    ) 

 

       (3.3) 

where gK (mS/cm
2
) is the K

+ 
conductance and (V - EK) is the force that drives K

+ 
ions. 

For the other ions, the currents can be described by 
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       (     )     (3.4) 

 

       (     )     (3.5) 

 

       (     ) 

 

    (3.6) 

In neurons, conductance is time-dependent. The total current, I, is equal to the 

membrane capacitive current,   ̇, plus all the other ionic currents. From the equivalent 

circuit the total current is given by 

 

    ̇                     (3.7) 

 

with Equations (3.6), (3.7), (3.8), (3.9) it is  

 

  ̇       (     )     (     )    (    )     (     ) 

 

    (3.8) 

 If there is no ion passes from exterior to interior or interior to exterior, this 

condition is called as resting potential of the membrane.  

 

3.2.3 Resting Potential and Input Resistance: 

 

 Ions can flow through the ionic channels. Gates on the membrane control the 

electrical conductance of the channels. Three factors affect these gates: Membrane 

potentials (Na
+
 or K

+ 
channels), intracellular agents and extracellular agents 

(neurotransmitters, AMPA and NMDA receptors). The net current generated by a large 

population is described by  

 

   ̅ (   ) 

 

    (3.9) 

‘ ̅’  is the maximal conductance of the population and ‘E’ is the reverse potential of the 

current and ‘p’ is the proportion of the open channels. 
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3.2.4 Voltage-gated Channels: 

 

 If gates are sensitive to the membrane potential, the channels are said to be 

voltage-gated. Hodgkin and Huxley described the probability of an activation gate by 

the variable ‘m’ (sometimes n is used for K
+ 

and Cl
-
 channels). They also described the 

probability of an inactivation gate by the variable ‘h’. For the large population, the 

proportion of open channels is given by 

 

       

 

  (3.10) 

where ‘a’ is the number of activation gates and ‘b’ is the number of inactivation gates. 

For the activation parameter ‘m’, if its value is between zero and one, the channel is said 

to be partially active. If ‘m’ is equal to one, the channel is completely activated. If ‘m’ is 

equal to zero, the channel is deactivated. The dynamics of the activation variable ‘m’ is 

described by  

 

  

  
 

  ( )   

 ( )
 

 

  (3.11) 

where   ( ) is the steady state activation function and  ( ) is the time constant. They 

were measured experimentally. The dynamics of the inactivation variable ‘h’ is 

described by  

 

  

  
 

  ( )   

 ( )
 

  (3.12) 

 

where   ( ) is the steady-state inactivation function and  ( ) is the time constant. 

They were measured experimentally. 
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Figure 3.8 Activation (m) and inactivation function (h) (Izhikevich, 2007) 

 

3.3 Hodgkin-Huxley Equations: 

 

Hodgkin and Huxley determined that squid giant axon carriers have three major-

currents. Currents are: 

1- Voltage-gated K
+
 currents with four activation gates, n

4
 

2- Voltage-gated Na
+
 currents with three activation and one inactivation gate, m

3
h 

3- Leak currents, IL 

The Equation 3.7 with these gates is given as 

 

  ̇     ̅   (    )   ̅   
  (     )    (    ) 

 

    (3.13) 

where  

 

  

  
   ( )(   )    ( )  

 

  (3.14) 

 

  

  
   ( )(   )    ( )  

 

  (3.15) 

 

  

  
   ( )(   )    ( )  

    (3.16) 
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The standard notations of these functions are given as  

 

  

  
 

  ( )   

  ( )
 

 

(3.17) 

 

  

  
 

  ( )   

  ( )
 

 

(3.18) 

 

  

  
 

  ( )   

  ( )
 

 

(3.19) 

where    
  

     
⁄  ,    

  
     

⁄  and    
  

     
⁄ with    

  (     ) ,      (     )  and       (     ). 

 

 

Figure 3.9 Activation and inactivation functions and time constants(Izhikevich, 07) 

 

The functions  ( ) and  ( ) describe the transition rates between open and close states 

of the channels. Hodgkin and Huxley described them as  

 

  ( )  
    (    )

   (
    

  )   
 

(3.20) 
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3.4 Action Potential: 

 

 The membrane potential quickly rises and falls and this short-lasting event is 

called ‘Action Potential’. In Figure 3.10 an action potential of the Hodgkin-Huxley 

model stages are given.  
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Figure 3.10 A phase to phase incoming action potential(Izhikevich, 2007) 

 

If a small pulse of current is applied, it produces a small perturbation of the 

membrane potential called as depolarization. Then the membrane voltage returns to its 

resting potential. This process is called repolarization and it is shown in Figure 3.10. For 

t=10ms, a big pulse of current is applied to the membrane and it causes a strong 

depolarization. It is called as ‘action potential’ or ‘spike’.  

The variables ‘m’ and ‘n’ are increased by the strong depolarization 

approximately at 12ms. Since gNa is big and the time constant is small, variable ‘m’ is 

fast. While ‘h’ goes to zero, the Na
+
 current is inactivated and while ‘n’ goes to one the 

current K
+
 is slowly activated. At the process of after-hyperpolarization, V is near Vrest.  
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The Hodgkin-Huxley system cannot generate another spike while Na
+
 current 

continues to be inactivated. This period is called absolute refractory period. At the 

period of relative refractory period, the system is available to produce a new spike.  

To describe the propagation of the action potential, a potential V(x,t) should be 

added because V(t) does not depend on the time. The new equation is formed as  

 

    
 

  
                

 

(3.26) 

This equation is called as the Hodgkin-Huxley cable equation. 

 In 2012 Chua, et al. used memristors in the Hodgkin-Huxley model of squid 

giant axon (Chua, et al. 2012). They noticed that time varying resistors obey the 

memristor characteristics and they replaced them with memristors. It is important to 

remember the characteristics of memristor which is the instantaneous terminal current 

i(t) and V(t) obey Ohm’s law. It is given as Equation 3.27 

 

     (3.27) 

 

   (          ) (3.28) 

 

where x = (x1, x2, . . . , xn) is the state variables. The memristor state equation as a 

function of current is given as 

   (   ) 

 

(3.29) 

 The state variables are independent of any electrical variables. They might be 

temperature, pressure etc. The number of ‘n’ is the order of the complexity of the 

memristor dynamics.  

The memristor state equations as a function of voltage can be also described as  

 

   (   ) 

 

(3.30) 

where the Equation 3.30 is considered as  

 

     (3.31) 
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   (          ) (3.32) 

 

The continuous function G=G(x) is called memductance (Siemens).  

 They realized that RK obeys the characteristics of the first order memristor.  

 

 

Figure 3.11 Time varying resistance replaced by a memristor(Chua, 2011) 

 

Then they rewrote the potassium current equation,     ̅   (    ) as 

 

     (  )        (3.33) 

and  

  (  )   ̅   
  

 

     (3.34) 

They changed the symbol as follows  

 

     

 

Then Hodgkin-Huxley equations can be written as  

 

   

  
   (    )       

     (3.35) 
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   (     )    (3.36) 

 

where EK=12mV. If the voltage VK is applied as  

 

           (    )    (3.37) 

 

the loci of iK and VK  gives the pinched-hysteresis loop as shown in Figure 3.12. 

 

Figure 3.12 The pinched hysteresis loop of potassium ion channel memristor(Chua, 13) 

 

 They also realized that RNa obeys the characteristics of the second order 

memristor. Second means that there are two different variables such as ‘n’ and ‘h’.  

 

 

Figure 3.13 Time varying resistance replaced by a memristor(Chua, 2013) 
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Then they rewrote the sodium current equation,   ̅   
  (     )  as 

 

     ̅    
          (3.38) 

 

They changed the symbols as follows 

 

    
     

 

     

 

     

 

With these changes the Hodgkin-Huxley equations can now be written as  
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   (      )    (3.40) 

 

where ENa =115mV. If the voltage VNa is applied as  

 

           (     ) 

 

   (3.41) 

the loci of iNa and VNa  gives the pinched-hysteresis loop as shown in Figure 3.13. 
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Figure 3.14 The pinched hysteresis loop of potassium ion channel memristor(Chua, 13) 

 

 These hysteresis loops indicate that time-variant resistances in the Hodgkin-

Huxley model obey the memristor characteristics, so it was understood that they were 

actually memristors.  

 

3.5 The Process of Long-Term Potentiation 

 When enough glutamates are released and enough Na
+
 ions enter the post-

synaptic neuron through AMPA receptor, Mg
+2

 ions that clog the NMDA receptor are 

repelled by these Na
+
 ions. It is the signal for the Ca

+2
 ions to enter the post-synaptic 

cell through the NMDA receptor. Ca
+2

 ions trigger some reactions and as a result of 

these reactions, new AMPA receptors settle on the synapse of the post-synaptic neuron. 

The new AMPA receptor makes the synapse stronger.  

 An experiment for the effectiveness of the Schaffer collateral synapses on the 

neurons of hippocampus is recorded. This experiment is done by giving electrical 

stimulus to that part (Dale, 2008). This electrical tetanus is the high frequency tetanus 

such as 50 to 100 stimuli at frequency of 100. This kind of tetanus causes long-term 

potentiation (LTP) and the effectiveness of postsynaptic potentiation (EPSP) is 
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strengthened. The important feature of the hippocampal region of the brain is that it is 

input-specific shown in Figure 3.15. Some inputs may not cause LTP. It means that 

every high-frequency input cannot cause LTP. Another important feature of the LTP is 

that the input for LTP lasts approximately a few seconds, but LTP might last weeks, 

months or even a lifetime. As it has been mentioned, not only high frequency is required 

to induce LTP but also the correlation between the inputs are required to induce LTP. It 

means that it is required that enough inputs must activate to the synapse to induce LTP. 

Figure 3.15 EPSP results of different inputs for LTP(Mark F, 2001) 

When glutamates are released, Na
+
 ions enter the cell through the AMPA 

receptors. When they are enough to repel the Mg
+2

 ion-blocking on the NMDA 

receptor, Ca
+2 

ions enter the cell through the NMDA receptor gate. This amount of Ca
+2

 

ions is the signal to activate two protein kinases. The first one is Protein Kinase C, and 

the second one is Calcium-Calmodulin-Dependent Protein Kinase II, CAMKII. These 

protein kinases activate the cellular mechanisms that cause to relocate the new AMPA 

receptors to the synaptic gap of the post-synaptic neuron and cause LTP as shown in 

Figure 3.16.  
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Figure 3.16 The chemical reactions for new AMPA receptors(Mark F, 2001) 

3.6 The Process of Long-Term Depression 

 Neurons that fire out of sync lose their link. If the uncorrelated input arrives to 

dendrites of the post-synaptic cell, the synapse is weakened. Depression can be created 

by influxing less Ca
+2

 ions to the post-synaptic cell (Ruth, et al. 2009). These amounts 

of Ca
+2

 ions trigger some reactions and as a result of these reactions, the AMPA 

receptor is withdrawn. The synaptic plasticity is now weakened and this process is 

called the long-term depression.  
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Figure 3.17 EPSP results of different inputs for LTD(Mark F, 2001) 

 When the post-synaptic cell is weakly activated by its inputs, it means that less 

Ca
+2

 ions enter the post-synaptic cell through the NMDA receptor, then the post-

synaptic cell undergoes to LTD. The other experiment is made by giving low-frequency 

tetanus (1 to 5 Hz.) to the Schaffer collateral synapses on the CA1 neurons of the 

hippocampus. After this tetanus, Mg
+2

 ion-blocking is protected on NMDA receptor, but 

some Ca
+2

 ions escape to the cell through this receptor and make the neuron weakly 

depolarized. On the contrary of LTP, this amount of Ca
+2

 ions trigger the protein 

phosphatases enzymes. As a result of these enzymes, AMPA receptors are withdrawn 

from the synapse.  

 Ca
+2

 ions are the most important signals to the synapses for both the LTP and 

LTD. Different levels of Ca
+2

 ions can cause LTP or LTD as shown in Figure 3.18. For 

the hippocampus, if the calcium ion level is more than 5µM, the protein kinase is 

activated and new AMPA receptors are relocated to the synaptic gap. This process 

causes LTP. If the calcium ions level is less than 1µM, the protein phosphatase enzymes 

are activated and AMPA receptors are withdrawn. This process makes the synapse 

weaker and it causes LTD. All these processes use ATP energy via mitochondria. The 

energy for these mechanisms is supported by glia part of the brain.  

 



57 

 

Figure 3.18 Different influx of Ca
+2

 ions causes LTP or LTD(Barry, 2001) 

 Some NMDA receptor blocking chemicals were put into the brains of rats for an 

experiment, and then their ability to escape from mazes was observed (Mark, 2001). On 

the contrary of normal ones, they are not able to learn the ways to escape from mazes. 

Scientists with these kinds of experiments believed that NMDA receptors play a crucial 

role on learning and memory processes.  

 

3.7 Simple Learning Systems 

The invertebrate creatures have been frequently used for different experiments. 

The squid is one of the best known of them with its contribution of giant axon and giant 

synapse to understanding of cellular neurophysiology. Additionally, flies, cockroaches, 

bees, leeches and worms are used for different purposes in the experiments. The 

advantages of using invertebrate creatures for neuroscience experiments can be listed as 

follows: 

- The total number of the neurons of the nervous system is small: The invertebrate 

creatures have less neurons than a human brain.  
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- The size of the neurons is large: Some of the invertebrate creatures have very 

large neurons, which enables a scientist to study easily on electro-

physiologically.  

- Easy categorization is possible: Invertebrates have neurons that can be classified 

by considering size, location and electrophysiological properties and can be 

categorized separately. 

- Identifiable circuits: Same connections between neurons can be organized 

separately by identifiable neurons. 

- Basic genetics: The structure of the nervous system of the invertebrates includes 

small genomes and rapid cycles that make them an easy sample to study for 

genetic and molecular biological basis of learning.  

 

The invertebrates are extremely important in understanding of the neural 

behavior. It is true that the existing collected data about the behavior is in a limited 

amount. Nevertheless, it is observed that many of the invertebrate species are 

performing the same simple forms of learning such as habituation, sensitization, and 

classical conditioning. The sea slug named Aplysia Californica has been used to 

examine the neurobiology of learning (Chua, 2013).  

 

3.7.1 Nonassociative Learning in Aplysia 

 

You definitely blink when someone blows gently at your eye. In the end, 

assuming that the air puffs are not harmful, you will habituate. Correspondingly a spray 

of water is spurted over a fleshy region of Aplysia called as the siphon, the gill will pull 

back. This is named as gill-withdrawal reflex. It is the same reflex displayed as the eye 

blink, that is habituation after repeated presentation of the water jet. Eric Kandel and his 

colleagues at Colombia University have begun doing experiments in 1960s about 

determining where the procedural memory resides and how it is formed. These 

pioneering experiments were recognized with the Nobel Prize at Medicine in 2004. 
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3.7.2 Habituation of the Gill-Withdrawal Reflex 

 

The sensory data from the siphon is carried along a nerve until it enters a region of 

the Aplysia nervous system called the abdominal ganglion. In that part, the information 

is distributed to motor neurons and to interneurons. One of the motor neurons, which are 

receiving the direct monosynaptic sensory input from the siphon, is named as L7, and it 

is the cell that is innervating the muscles, which are making the gill-withdrawal reflex. 

For that reason, the research focuses on how this monosynaptic cycle changes during 

habituation (Mark, 2011).  

The initial question deals with where the habituation occurs. When the siphon 

skin is repeated, the gill-withdrawal muscles react progressively less than the previous 

ones. This difference that makes the habituation remarkable might be because of several 

reasons. Firstly by squirting the water, the act of it decreases at the sensory nerve 

endings. Second the motor neuron makes it less responsive to the synaptic stimulation at 

muscles and the third place is the synapse between the motor neuron and the sensory 

neuron.  

They made some microelectrode recordings from the sensory neuron when the 

habituation occurred. The fire action potentials are transferred by the sensory neuron as 

a response to skin stimulation. At the same time, motor response decreased. 

Correspondingly, the third possibility is dismissed by electrically stimulating the motor 

neuron as it always brings the same amount of muscle contraction. In the end, the 

second possibility reveals that the habituation occurs at the synapse joining the sensory 

input to the motor neuron. To be sure, it is observed that the simply applying repetitive 

electrical stimulation to the sensory neuron is adequate to cause a continuous decrease 

in the dimensions of the postsynaptic EPSP. 

Even though the basis for habituation could be identified as a synaptic 

modification, the question where the synapse is modified is still unanswered. The 

possibilities need to be checked at that point. Following habituation, the first thing is 

that the presynaptic axon does not allow enough neurotransmitters to transfer or 

secondly the post-synaptic responsiveness decreases to the transmitter (it is possible that 

there are few receptors). The quanta, the discrete packets where the transmitter 

molecules are released, are believed as correlating with the contents of individual 

synaptic vesicles. Promoting analyses showed that after habituation, there are less 
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quanta released per action potential. The sensitivity from neurotransmitter to 

postsynaptic cell remains the same. That is to say, it is the presynaptic modification 

related to the habituation of the gill-withdrawal reflex.  

 Here the question is why the neurotransmitter discharges less than the previous 

one after applying continuous stimulation of the sensory nerve terminal. When we look 

at the circle of events observed as the action potential in the terminal with the flow of 

neurotransmitter, the critical step is the Ca
+2

 entrance into the terminal that is forming 

the link by the voltage-gated calcium channels. It seems that the channels in the nerve 

terminal of the sensory neuron behave increasingly and insistently less effectively 

following habituation.  

 

3.7.3 Sensitization of the Gill-Withdrawal Reflex 

 

Kandel and his colleagues applied an abbreviated electrical shock to the head of 

Aplysia to cause a respond to the gill-withdrawal reflex. The result of this test was an 

enlarged gill with-drawal in response to stimulation of the siphon. With the help of this 

method, they found out a site of plasticity indicating differences that correlate with the 

behavior. One more time, it is the modification of transmitter release in the sensory 

nerve terminal. The sensory axon terminal is sensitized by the neurotransmitter 

serotonin. The serotonin receptor on the sensory axon terminal is named as G-protein-

coupled metabotropic receptor. The impulse of this receptor paves the way for the 

production of intracellular second messengers. For this Aplysia sensory nerve terminal 

case, this second messenger is cyclic AMP (cAMP) that was produced by the enzyme 

adenylyl cyclase from ATP. Additionally, this cAMP changes protein kinase A, and this 

enzyme attaches phosphate groups to different proteins. One of these proteins is the 

potassium channel, which is located in the nerve terminal and phosphorylation of the 

channel ends up it to close. This closing action of potassium channels in the axon 

terminal causes an extension in the duration of the presynaptic action potential. This 

eventuates more Ca
+2

 entrance through voltage-gated calcium channels during the 

action potential, which causes more quanta of neurotransmitter to be released.  

This updated research claims that this simple story is incomplete. Together with 

presynaptic modifications, persistent sensitization is related to increased postsynaptic 

responses to the neurotransmitter released by the sensory nerve. This neurotransmitter is 
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named as glutamate and sensitization is partially explained by the transmission of new 

glutamate receptors to the synapse.  

 

3.7.4 Associative Learning in Aplysia 

 

It is discovered that Aplysia could also be classically conditioned in the 1980s 

(Mark, 2001). It is the same method used as the measured response of the withdrawal of 

the gill. The strong shock to the tail was unconditioned-stimulus (US) and the 

stimulation of the siphon did not cause much response. It showed that if stimulation of 

the tail was shared with stimulation of the siphon, the following response to siphon 

stimulation alone was bigger than what could be calculated for by sensitization. Just like 

experiments of Pavlov, the timing was critical. Conditioning took place only if the 

conditioned-stimulus (CS) is proceeded the tail by ≤0.5 second. 

One more time, a censorious modification is observed at the synapse between 

the sensory and the motor neuron. In order to understand the reason, the relation of CS-

US pairing needs to be understood. The arrival of an action potential in the sensory axon 

terminal is represented as CS at the cellular level and the release of serotonin represents 

the US. And at the molecular level, the influx of Ca
+2

 represents CS and the G-protein 

coupled activation of the enzyme adenylyl cyclase in the terminal represents the US. 

Remember that adenylyl cyclase creates cAMP. It means that if there were more 

cAMP, there would be more activation of protein kinase A, more phosphorylation of 

potassium channels and consequently the release of more transmitter molecules. 

Therefore, for the case of classical conditioning of the gill withdrawal reflex, adenylyl 

cyclase may perform as a detector of CS-US coincidence. By following this idea, 

learning happens when a presynaptic Ca
+2

 pulse coincides with the G-protein coupled 

activation of adenylyl cyclase that stimulates the producing of a lot of cAMP. Thus, 

when potassium channels are phosphorylated and neurotransmitter release is enhanced, 

memory occurs.  

 Yuriv Pershin and Massimilano diVentra described an artificial synapse as a 

synapse that remembers its history and it should be plastic according to the pre-synaptic 

and post-synaptic neuronal activity (Di Ventra-Pershin, 2012). As it has been 

mentioned, associative memory means any learning process in which a new response 

becomes associated with a particular stimulus (Silvia, 2009). They built a neural 



62 

 

network shown in Figure 3.19 for this type of associative memory system as in Kendel’s 

experiments.  

 

 

Figure 3.19 The model of Kendel’s experiment 

  

 In their model, two neurons used for input of the system are connected a neuron 

used for output of the system. Here the input neurons are labeled as ‘1’ and ‘2’. The 

neuron 1 is activated under a specific visual event such as ‘sigh of food’ and the neuron 

2 is activated under an external auditory event such as particular ring sound. For 

instance, when a dog sees the food, salivation is observed. In Pavlov’s experiment, for a 

certain moment of time the dog hears the ring sound with the sight of food at the same 

time. This event is repeated for a moment of time by the experimenter. Then only sound 

without the sight of food is enough to begin the salivation. This experiment proves the 

famous Hebbian rule stating that ‘neurons that fire together wire together’. Their results 

are given in Figure 3.20. 

 

Input 1

S1

S2

“sight of food”

Output 

“salivation”

Input 2

“sound”
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Figure 3.20: Input 1, input 2 and the output(Pershin, 2010) 

 

 The input 1, sight of food, and the input 2, sound, as shown in Figure 3.20 are 

applied to their memristor. The output signal is named as the salivation. Firstly they 

started with a strong first state and weak second state. The strong first state means that 

the first memristor has low resistance state and the weak second state means that the 

second memristor has high resistance state. For t<9s, they applied signals to the neuron 

1 and 2 separately. Salivation is observed when neuron 1 is activated but it is not 

observed when neuron 2 is activated. In their model neuron 1 exceeded the threshold, 

but neuron 2 did not. For 9s<t<11s, they applied stimulus voltages simultaneously to 
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neuron 1 and neuron 2. These pulses were uncorrelated but sometimes they did overlap. 

The neuron 3, the salivation neuron, produce back-propagating pulses and these pulses 

did overlap with forward propagating pulses from the neuron 2. It causes a high voltage 

across the second memristor. With this voltage, the second memristor change its state 

from high-resistance state to low resistance state. It occurs if the inputs are correlated. 

This transition can be seen in Figure 3.21, V3, as a growth of certain pulses(Pershin, 

2010). It occurs in the time interval from 10,25s to 11s and it can be seen in Figure 3.21 

in detail. 

 

 

Figure 3.21 Detailed representation of the output. The learning phase is now noticeable. 

 

  For t>11s, neuron 1 or neuron 2 can trigger the neuron 3 alone. It means that 

salivation can be triggered by neuron 1 or neuron 2. Firing of any input neuron can 

trigger the firing of the output neuron. It also means that the associative memory is 

achieved as it has been mentioned above.  

 

3.7.5 Amoeba Learning 

 

Yuriv Pershin and Massimilano diVentra described an artificial synapse as a 

synapse that remembers its past history and it should be plastic according to the pre-

synaptic and post-synaptic neuronal activity (Di Ventra-Pershin, 2010). Amoebalike cell 

Physarum Polycephalum was exposed to some periodic environmental changes. In the 

real world, it has been observed that these kinds of cells learn and adapt their behavior 

according to these environmental changes. They have adapted to the next coming 

stimulus by protecting themselves. The researchers have modeled this behavior by using 

a LC contour shown in Figure 3.23 and a memristor and they have used a train of 
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voltage pulsed to mimic the environmental changes. They connected the capacitor and 

the memristor in parallel and aimed to use the internal state of the memristor as an 

information-storing element about the past. They use the model of voltage-controlled 

memristor. The resistance of memristor can be M1 , M2 or the value of between these. In 

the model, M increases when the number of periodic stimuli increases. It is thought as a 

result of learning. The memristance M changes with 

 

  

  
  (  )[ (  ) (    )   (   ) (     )] 

 

   (3.42) 

where 

 

 ( )         (   )(|    |   |    |)  

 

(3.43) 

 

Figure 3.22: The characteristic function ‘f’ for the change of memristance vs. 

voltage loci (Pershin, 2010). 

 

The change of memristance is described by a function of f(VC) and the applied 

voltage is VC. Here   is the step function. They assumed that f(VC) has several linear 

segments as shown in Figure 3.22. Here VT is the threshold voltage and the memristor 

learns faster and slower when |VC| > VT  and  |VC| < VT, respectively.  
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Figure 3.23: The circuit for the amoeba learning operation(Pershin, 2009) 

 

The response of this circuit is given as 

 

     ̇      ( )     (3.44) 

 

   ̇  
  
 

   

 

    (3.45) 

VC is the voltage on the capacitor, I is the total current and V(t) is the applied 

voltage. They solved these equations numerically with Equation 3.42 and the results as 

shown in Figure 3.24. 
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Figure 3.24: The applied aperiodic voltage pulses and the change of the memristance. 

          The memristance change is not remarkable (a). The applied periodic      

          voltage pulses and the change of memristance. The changed memristor    

          resistance (b) (Pershin, 2009). 

  

 As it is seen from the model, the learning means the changing of the resistance 

of the memristor and it has been observed under the periodic voltage pulses. In Figure 

3.24a, aperiodic voltage pulses do not change the memristance. When the periodic 

pulses are applied, the memristance is changed and it is seen from the Figure 3.24b. 

Unlike the periodic voltage pulses, the resistance may not reach the state that is 

accepted as a learning state about 20Ω under the periodic voltage pulses.  

 If the applied voltage is chosen as type of sinusoidal , (the duration is 35s) the 

memristance, the voltage on the capacitor and the current are shown as in Figure 3.25.  
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Figure 3.25. The memristance (dy1) after the input voltage is applied, the current(dy2) 

            and the voltage of the capacitor(dy3) 

The applied voltage changes the memristance valu. If the applied voltage is chosen as 

shown in Figure 3.26, the memristance is changed to 20Ω.  
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Figure 3.26. The memristance (dy1) after the input voltage is applied, the current(dy2) 

          and the voltage of the capacitor(dy3) 

If the applied voltage is chosen as shown in Figure 3.27, the memristance is changed to 

20Ω but it is not a stable value. It decreases again to 3Ω. It means that the learning 

phase does not occur.  
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Figure 3.27. The memristance (dy1) after the input voltage is applied, the current(dy2) 

          and the voltage of the capacitor(dy3) 

 

3.8 Memristor as a Biological Synapse 

 Sung Hyun et.al, experimentally exhibited a nanoscale silicon-based memristor 

device  (Sung, et al. 2009). In neuromorphic circuits where high-effective computing is 

required, memristors can be used as synapses because of their abilities of high-

connectivity (Yang, et al. 2013). In a biological system such as a mammalian cortex, 

neurons exhibit highly parallel processing. They showed an experiment, which 

implements synaptic functions in nanoscale silicon-based memristors. Their crossbar 

synapse network offers a computational system that corresponds to biological systems. 
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Figure 3.28: Memristor as a biological synapse (a) and memristor crossbar array (b) 

 They made their memristors cosputtered Ag and Si active layers. Their mixture 

of Ag and Si presents high conductivity if the formation is Ag-rich or if the formation is 

Ag-poor, it presents low conductivity. In Figure 3.29 (Yang, 2013), they showed that 

the measure current i(t) and the applied voltage across the terminals of memristor, v(t). 

They compared the experimental results with the HP model of memristors. The orange 

lines show the simple memristor circuit model. The blue lines are the measured results. 

The current for this model is described as  

 

 ( )  
 

    ( )      (   ( ))
 ( ) 

   (3.46) 

 

where w(t) has the value between 0 and 1. 

 

Figure 3.29  Experimental results compared to theoretical results(Yang, 2013) 
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The applied voltage V(t) is shown in Figure 3.29. When this applied voltage is 

positive, Ag ions are transferred to Ag-poor region. For this stage ‘w’ increases. When 

this applied voltage is negative, Ag ions are transferred to Ag-rich region. For this stage 

w decreases. The lowest and highest resistances are indicated as Roff and Ron, 

respectively. The threshold voltage is the minimum voltage value required to move ions 

to the other resistance area. In this work, the threshold voltage amplitude that is required 

to drive Ag ions to Si ions side is 2,2V. Below this amplitude, the memristor resistance 

remains stable. 

They also applied some positive potentiating and negative depressing pulses. 

This device conductance after these pulses can be increased or decreased. They 

measured the conductance by applying a read voltage that is under the threshold voltage 

value. The read voltage must be smaller than the threshold voltage because the 

memristance should not be changed by this voltage value. This read voltage for this 

model is 1V. They then plotted this current versus pulse number and it is shown in 

Figure 3.30. The blue and red represent the positive pulses and negative pulses, 

respectively. It is clarified that the longer positive potentiating pulse increases the 

memristor conductance and vice versa. The applied positive and negative pulses (in 

figure b) change the conductance (shown green) positively and negatively, respectively.  
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Figure 3.30. The applied positive and negative pulses (a) and the applied pulses(blue) 

          and conductance changes(green) (Yang, 2013) 

 

 Unlike the work Nanoscale Device as Synapse in Neuromorphic System, Short-

Term Plasticity and Long-Term Potentiating in single inorganic synapse presents an 

inorganic synapse that does not require any applied negative voltage to decrease the 

conductance (Takeo, et al. 2011). It is a very important property because biological 

synapses do not require that negative voltage pulse to decrease their weights. Ohno, et 

al. discovered that the Ag2S inorganic synapse implements the biological facts, short-

term plasticity and long-term potentiation. The conductance of this inorganic synapse is 

increased by Ag ions, but their work has a drawback. It is time-dependence. As it has 

been mentioned, the biological synapse may lose its efficiency over time, but this 

phenomenon is not observed for this Ag2S inorganic synapse.  

They applied input pulse with amplitude of 80mV. Its time width is 0,5s. For the 

STP, the time repetition intervals are 20s and for the LTP they are 2s. Also, the higher 

conductance is defined as 77,5µS.  
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Figure 3.31. Physical representation of STP and LTP (a), conductance is changed by the 

         applied voltage pulses (b).(Takeo, 2011) 

 

 The biological synapse formation and Ag2S inorganic synapse formation is 

given in Figure 3.31a. The gates on the biological synapses are modeled with Ag atomic 

bridges. LTP requires new ion-channels formations for the biological synapses and this 

is modeled with the bridges in this inorganic synapse with pulses, intervals of 2s. The 

LTP is shown in Figure 3.31b. LTP is presented as the conductance changing of the 

inorganic synapse (Kuzum, et al. 2013). After pulses of 2s intervals are applied, the 

conductance level reaches 77,5µS and remains constant. This is the same characteristic 

of the biological LTP on the synapses and it is thought as learning. The STP is obtained 

with pulses, intervals of 20s. It is easily noticed that the conductance level does not 

reach the LTP level, 77,5µS and the learning process does not occur.  

 

3.8.1 Forgetting Curves 

 

In 1885, Hermann Ebbinghaus hypothesized that the nature of forgetting, 

generally known as forgetting curves (Hu et al. 2013). It shows the decline of memory 

retention in time and indicates that information is lost when there is no attempt to retain 
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it. If the memory is strong it means that the person is able to recall it for the longer 

period of time. He formulated this curve as 

 

        

 

   (3.47) 

where R is memory retention, S is the relative strength of memory and t is time.  

 

 Hu et al. emulated this curve by using NiO based memristor. After the 

application of electrical pulses, this memristor conductance decreases. In this work, the 

conductance corresponds to the memory stimulation or learning/forgetting events. They 

give the Ebbinghaus formulation in a more quantitative expression as  

 

      ( (  ⁄ ) ) 

 

     (3.48) 

The stimulation parameters that emulate human memory loss behavior 

determine the decrease in conductance, which is similar to the memory. They have 

compared their results with Bi and Poo’s results (Bi-Poo, 1998). Their result is very 

similar to that reference shown below. Figure 3.32 shows the memory loss defined with 

Equation 3.48 with relaxation time   of 37s and   of 0,3. The circles refer to results of 

‘Bi and Poo’. The red line is the experimental result of NiO-based memristor. In Figure 

3.31, they use       and        and with these values, they showed that the decay 

of  
  ( )

   
⁄  is the analogue of the first graph memory loss in human brain where 

  ( )  is the conductance at the time t and     is the conductance of measured 

immediately after stimulation shown in Figure 3.33. The blue line is the experimental 

result of NiO-based memristor. As a conclusion, the forgetting curve is emulated with 

NiO-based memristor successfully. 
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Figure 3.32 The memory recall possibility vs. time.(Hu S. 2013) 

 

 

 

Figure 3.33 The change of conductance ratio vs. time(Hu S. 2013) 
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CHAPTER 4 

 

THE MEMRISTIVE STORAGE SYSTEM 

 

4.1 Memristive Storage for Images  

 

 According to HP, 100TB memristor hard-drives will be available for the 

commercial use of the personal computers in 2018. Memristors will be the main 

components of these types of devices. Bearing in mind that some researchers focus on 

that system. In 2012 XiaoFang et al. presented a memristive storage system for the gray-

scale binary images and colorful images (XiaoFang et. al., 2012). First, they used 

MATLAB Simulink platform for the HP Memristor Model. In this model, their 

memristor is driven by           . Their design is given in Figure 4.1. 

 

 

Figure 4.1 Memristor Simulink Model (XiaoFang et. al., 2012) 

 

 They applied different voltage pulses to their Memristor Simulink Model. In 

Figure 4.2 they applied a voltage pulse with height of 0.5V and weight of 2s. They 

showed that the memristance decreases more when the voltage pulse of 0.6V is applied. 
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They also applied a voltage pulse with height of 0.6V and weight of 2s. These voltage 

pulses are the same heights but different weights.  

 

 

Figure 4.2. Different height voltage pulses, memristance values and currents. 

 

In Figure 4.2(XiaoFang et. al., 2012) they applied a series of positive and negative 

voltage pulses with identical amplitude 0.6V but different durations (0.1s and 0.2s). The 

positive voltage pulses decrease the memristance and the negative pulses increases the 

memristance shown in Figure 4.3. To return the memristance to its original state, a 

voltage pulse must be applied with the same amplitude and duration but opposite 

polarity.  
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Figure 4.3. Different weight voltage pulses, memristance and current. (XiaoFang, 2012) 

 

 Some binary images are stored on the memristor crossbar array in their model. A 

memristor crossbar array composed of nanowires (because memristor is a nanoscale 

device), voltage converters and MUX circuit elements and memristors shown in Figure 

4.4. Memristors are used on the crossbar points to connect the nanowires. They design a 

read/write control circuit to measure the memristance value. Different memristance 

values correspond to the different color tones of the images. They used MUX circuit 

elements to select the memristor in reading or writing operations. The voltage is applied 

by the voltage converter to intended memristors to achieve the storage. Their system 

measures the current flowing through the memristor. The read circuit compares the read 

current with the threshold value to determine the gray-scale tone of the image.  
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Figure 4.4. Memristive crossbar array storage system(XiaoFang, 2012) 

 

They use 10x10 memristive crossbar array to store some binary images. Images are 

stored and then read successfully by the read/write circuits. The stored images and read 

images are shown in Figure 4.5a and Figure 4.5b, respectively. 

 

 

Figure 4.5. Stored images(a) and read images(b) (XiaoFang, 2012) 

 

They then used different threshold values correspond to different gray-scale image 

tones. The stored image and read image are shown in Figure 4.6a and Figure 4.6b, 

respectively.  
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Figure 4.6. Gray-Scale stored image (a) and read image (b) (XiaoFang, 2012) 

 

They finally use RGB monitoring system to store and read colorful images. They also 

used 3D memristor crossbar array. The colorful stored images and read images are 

shown in Figure 4.7.  

 

 

Figure 4.7. The colorful images(XiaoFang, 2012) 

 

4.2 Memristive Crossbar Array Design for Binary Images 

 

 Due to the characteristic of a memristor, a memristor keeps its memory alive 

even if the power supply of the memristor is shut down (Chua, 1971). It shows a 

different resistance according to the current that passes through it or the flux-linkage on 

it. The high resistance value and the low resistance value have been described. At this 

point, it can be thought that the binary system for the computer language can be a basis 

for the memristive memory devices. As it is known, the binary system consists of 0 and 

1. The similarity between the memristor model and the binary language system is that 

the high resistance value of the memristor can be thought as ‘1’ and the low resistance 

value can be thought as ‘0’.  Aim of this chapter is to explain how to combine and 
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design a memristive memory system and then to write the data and read it carefully. As 

it can be understood from the HP memristor model (Strukov, et al. 2008), the current is 

very small and here it is important to design a system that should be very sensitive to 

this small current. Due to the fact that the memristor current is very small, the applied 

voltage to the memristor is very important because the data can be lost permanently. R. 

Stanley Williams describes how to constitute a memristive crossbar array (Williams, 

2008). Hu, Duan et.al. and their groups have made some works, some of which are 

related to the memristive crossbar array applications (XiaoFang et al. 2012). In this 

chapter, the memristive crossbar array storage device has been designed and a binary 

image data has been stored to this device. This process is named as the ‘Write Process’. 

Then the data, which is written to this system, has been read. This process is named as 

Read Process. At this reading process, a current threshold has been used to read the data 

sensitively. This threshold is very important to read the data because if a current which 

is higher or lower than the threshold is applied to the system, all the data might be lost 

or the device might be damaged.  

 

4.2.1. The Device 

  

 The memristive storage system consists of MUX circuit elements, nanowires, 

voltage pulse sources and a voltage converter as shown in Figure 4.8. (XiaoFang, 2012) 
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Figure 4.8: The storage system 

 

4.2.2. The Write Process 

 

In this process, every memristor is driven by a sinusoidal voltage source to write 

data. It is  

 

      (    )      (4.1) 

 

All the memristors obey the     characteristics given as 

 

    
 

 
   

     (4.2) 
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The flux of a memristor can be found as  
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   (4.3) 

 

and the charge on the memristor from Equation 4.2 
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and the current through the memristor is  
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 To drive all the memristors simultaneously, mux circuit elements have been 

used. To write any data to the system, it is also important to know whether these 

memristors have been used before or not. At this point, a small DC voltage named as 

‘Checking Voltage’ is applied to every memristor in the system. The value of this 

checking voltage pulse is 0.2V with width 0.1s for this system and it does not damage 

the data. This value changes the memristance value, but it is negligible. Once this 

voltage is applied to memristors, the fluxes of these memristors are changed, but they 

cannot exceed the threshold value that is responsible for keeping the data safe. Due to 

the fact that this applied voltage pulse does not cause any loss of data, it can be used as 

a checking voltage. After applying this checking voltage pulse, the flux of every 

memristors is read. If the flux exceeds the threshold (0.8Wb), it can be understood 

whether this memristor has a data or not. If this storage system is aimed to use for the 

first time, it also means that every memristor has no data so this checking process can 

be skipped. However if this system is not aimed to use for the first time, a negative 
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voltage pulse that is responsible to reset all data of memristors can be applied to the 

every memristor on the system. After all, it means that this storage system is ready to be 

used. 

As it can be seen from the design Figure 4.8 and it has been mentioned, a 

memristor is a two-terminal circuit element. In the system, one of the terminals of each 

memristor is connected by the same MUX circuit element and the other one is 

connected by another MUX element. That is, if the nanowires come from the MUX1, 

which is connected to the terminal-one, the other terminal is connected to the terminal 

two by the nanowires, which come from the MUX2. Data can be written to the 

memristors by using these MUXs. As it has been mentioned, every memristor is driven 

by a voltage source       (    ) to write the data to the memristor. The amplitude 

of this source is 1V. The applied frequency is 1,2Hz. To write a binary image to the 

memristors, every crossbar mentions a pixel for the binary image.  

To determine which pixel has memory, the flux of the memristor should be 

checked. If the flux of a pixel is bigger than 0.8Wb, this pixel has data and it is called as 

a dark pixel. If the flux of the memristor is less than 0.8Wb, this pixel is an empty pixel 

as shown in Figure 4.9.  

 

Figure 4.9 The flux threshold 
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On the crossbar, if a memristor corresponds to a dark pixel on the binary image, 

1V pulse with width 1.5s will be applied by using MUXs to that memristor (write 

process). It also corresponds to ‘1’ in the binary computer language. If there is an empty 

pixel on the binary image, 0.5V pulse with width 0.1s is applied by using MUXs to that 

corresponding memristor. It also corresponds to the ‘0’ in the binary computer 

language. After the write voltages have been applied, they are all shut down. All the 

process means that the binary image is stored to the memristive storage device, to the 

crossbar.  

 

Table 4.1: The dark and empty pixel voltage pulse values 

The Dark Pixel 1V (1.5s) 

The Empty Pixel 0.5V (0.1s) 

 

4.2.3. The Read Process 

 

All the data has now been stored to the memristive device. If the data is written 

correctly, it should be read. In the reading process a 0.2V is applied to every memristor. 

This applied voltage does not change the states of any memristors. It is named as ‘the 

Read Voltage’. After the read voltage is applied to every memristor, the flux value is 

read. For this memristive storage device, it is specified as 0.8W. It is named as ‘the 

Threshold Flux Value’. If the read circuit measures a flux that is bigger than this 

threshold, it means that this memristor has data on it. If the flux threshold of the 

corresponding memristor is bigger than 0.8Wb, then, this memristor represents a dark 

pixel of the binary image. If the flux threshold of the corresponding memristor is 

smaller than 0.8Wb, this memristor now represents an empty pixel of the binary image. 

With this step, it can be determined which memristor has data on it or not without losing 

any information.  

In this thesis, a 12x60 crossbar array has been used to store a binary image. This 

storage device has 720 memristors. As it can be seen from the Figure 4.9, the threshold 

flux value is 0.8Wb. The read circuit determines the flux values and then decides which 

memristors have data. After this process, memristor that has flux bigger than 0.8Wb on 

the crossbar represents a dark pixel.  
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When the read process ends, the data that comes from the whole memristive 

system can be obtained. In order to obtain a binary image, every pixel represents a 

corresponding memristor. Some examples for this storage element are given below. In 

12x60 crossbar memristive system, some of these letters are used to combine a word 

‘İZMİR’. For the letter case 12x12=144 memristors have been used to form a letter 

from I, Z, M, İ, R. For the word case, 12x60=720 memristors have been used to form 

İZMİR. Tables given below represent a memristor, which has data; here it is 1, on the 

memristor crossbar memory device.  

 

4.3. The Word ‘İZMİR’ 

 

These letters can be used together to form a word by changing the memristor 

number. For example it can be written ‘İzmir’ by combining letters İ,Z,M,İ,R. In order 

to do it the memristor number should be changed as given below. The new array has 

12x60=720 memristors. In table 4.2 shows which memristors on the array will have a 

value of ‘1’ 

 

 

Table 4.2: The crossbar place of which memristor has data for the word ‘İZMİR’ 

 
(3,6)=1;(3,7)=1;(4,6)=1;(4,7)=1;(5,6)=1;(5,7)=1;(6,6)=1;(6,7)=1; 
(7,6)=1;(7,7)=1;(8,6)=1;(8,7)=1;(9,6)=1;(9,7)=1;(10,6)=1;(10,7)=1; 
(3,15)=1;(3,16)=1;(3,17)=1;(3,18)=1;(3,19)=1;(3,20)=1;(3,21)=1; 

(3,22)=1;(4,15)=1;(4,16)=1;(4,17)=1;(4,18)=1;(4,19)=1;(4,20)=1; 

(4,21)=1;(4,22)=1;(5,21)=1;(5,22)=1;(6,19)=1;(6,20)=1; 

(7,17)=1;(7,18)=1;(8,15)=1;(8,16)=1; 
(9,15)=1;(9,16)=1;(9,17)=1;(9,18)=1;(9,19)=1;(9,20)=1;(9,21)=1; 

(9,22)=1;(10,15)=1;(10,16)=1;(10,17)=1;(10,18)=1;(10,19)=1; 

(10,20)=1;(10,21)=1;(10,22)=1;(3,27)=1;(3,28)=1;(3,33)=1; 

(3,34)=1;(4,27)=1;(4,28)=1;(4,33)=1;(4,34)=1;(5,27)=1;(5,28)=1; 

(5,29)=1;(5,32)=1;(5,33)=1;(5,34)=1;(6,27)=1;(6,28)=1;(6,29)=1; 
(6,32)=1;(6,33)=1;(6,34)=1;(7,27)=1;(7,28)=1;(7,29)=1;(7,30)=1; 

(7,31)=1;(7,32)=1;(7,33)=1;(7,34)=1;(8,27)=1;(8,28)=1;(8,30)=1; 

(8,31)=1;(8,33)=1;(8,34)=1;(9,27)=1;(9,28)=1;(9,33)=1;(9,34)=1; 
(10,27)=1;(10,28)=1; (10,33)=1;(10,34)=1; 
(2,42)=1;(2,43)=1;(4,42)=1;(4,43)=1;(5,42)=1;(5,43)=1;(6,42)=1 

(6,43)=1;(7,42)=1;(7,43)=1;(8,42)=1;(8,43)=1;(9,42)=1;(9,43)=1; 

(10,42)=1;(10,43)=1;(3,51)=1;(3,52)=1;(3,53)=1;(3,54)=1;(3,55)=1; 

(3,56)=1;(3,57)=1; 
(4,51)=1;(4,52)=1;(4,53)=1;(4,54)=1;(4,55)=1;(4,56)=1;(4,57)=1; 

(4,58)=1;(5,51)=1;(5,52)=1;(5,58)=1;(6,51)=1;(6,52)=1;(6,58)=1; 
(7,51)=1;(7,52)=1;(7,53)=1;(7,54)=1;(7,55)=1;(7,56)=1;(7,57)=1; 

(7,58)=1;(8,51)=1;(8,52)=1;(8,53)=1;(8,54)=1;(9,51)=1;(9,52)=1; 

(9,55)=1;(9,56)=1;(10,51)=1;(10,52)=1;(10,57)=1;(10,58)=1; 
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The obtained image from this 12x60 crossbar array is given by 

 

 

 
Figure 4.10: The read word ‘İZMİR’ 

 

4.4 Edge Detection for Images  

  

 For the dynamics of a cellular neural network are governed by the differential 

equations given as 

    

  
       ∑ (               )     

       

 
    (4.6) 

where (i,j) {1,...,M}x{1,...,N}. Nij is the r-neighborhood of cell Cij, akl, bkl and zij are 

the feedback, control and threshold template parameters, respectively. A=[akl] and 

B=[bkl] are the feedback template and feed-forward template matrices, respectively 

(Chua et al., 2009). yij is the output. Chua describe the relationship between the output 

and the states xij of each cell via a piecewise-linear function. It is given as 

     (   )  
 

 
 |     |  |     |  

     (4.7) 

The neighborhood radius of each cell is restricted to 1, assume that zij is the same for the 

whole network.  

As we know, the time derivative of Equation 4.6,  
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    (4.8) 

it is obtained as  
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    (4.9) 

For     , it is obtained as 

   (   )     ( )       ( )  ∑ (       ( )         )     

       

 
   (4.10) 

with      , the Equation 4.10 is formed as 

   (   )      ( )  ∑ (       ( )         )     

       

 
  (4.11) 

By setting c=0 the discrete-time recursive equation is obtained as 

   (   )  ∑ (       ( )         )     

       

 
  (4.12) 

where t=0,1,2,.. 

With the Equation 4.12, Equation 4.7 is formed as  

   (   )   (   (   ))   ( ∑ (       ( )         )     

       

) 
  (4.13) 

For the memristive cellular automaton, the signal zij(t) satisfies the equation 

   ( )     (   )     (      )   (4.14) 

where    (   ) corresponds to a positive pulse and    (      ) corresponds to a 

negative pulse. The negative pulse is required to discharge to the memristor as it has 

been mentioned in Chapter 2 for the logical operations by memristors. The charge qij(t) 

stored in the memristor during the period (nT, nT+ t) is given by 

   (     )  ∑             (  )    

    (      )

 ∑             ((   ) )    

    (      )

 

  (4.15) 
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for 0<  <1. Here the charge stored by a positive current pulse is indicated by     From 

the equations    ( )   ( )   ( ( ))  ( ) and  ( )   ( ( ))  ( ), the output is 

obtained as 

   (     )  

 {
 (   (     ))   ( ∑             ((   ) )    

    (      )

)      

      

 

(4.16) 

 It is time to describe the rules for the edge detection operations. An edge is the 

intensity changings between the pixels of an image. The rule is as follows: 

i- The new state of the cell will be ‘black’ if the total number of the black cells 

is equal to 6, 7 or 8. 

ii- If the total number of black cells is equal to 0, 1, 2, 3, 4, 5, 9, the new state 

of the cell will be ‘white’. 

The rule of the edge detection is summarized in Table 4.3. 

Table 4.3: The Edge Detection Rule 

∑ ∑         ((   ) )

 

    

 

    

 

9 8 7 6 5 4 3 2 1 0 

New state of the center cell    (  ) 0 1 1 1 0 0 0 0 0 0 

 

where the yij has two states ‘0’ and ‘1’ ,which denotes white and black representation of 

the binary image. The rule implies that if the number of black pixels in the 3x3 blocks is 

6, 7 or 8, that cell produces a black cell. This rule is shown in Figure 4.11 and Table 4.3.  
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Figure 4.11: Example of neighborhood patterns for the edge detection rule 

 

The memristance for the rule of the edge detection is given as follows: 

 ( )    ( )    ( )    ( )  {
                        
                             

 
(4.17) 

or by using the floor function  

 ( )   (     (| |)   )   (     (| |)   )    (4.18) 

 

The difference equation is given by 

 

   (     )   (     | ∑             ((   ) )    

    (      )

|   )

  (     | ∑             ((   ) )    

    (      )

|   )  

  (4.19) 

 

where the weighting matrix A is given as 

  [
   
   ]
   

 
  (4.20) 

Firstly, the image is transformed to the black-white image. Then the edge detection rule 

is applied to that black-white image. Two edge-detection operations are presented as 

examples. The first presented image is the original image. The second one is the 



92 

 

transformed black-white image. The last one is the edge-detected image.  

Example 1: 

 

Figure 4.12: The original image (a), the black-white image (b) and the edge-detected 

           image (c). 

In Figure 4.12, the first example is presented. Figure 4.12a, 4.12b, and 4.12c represent 

the original image, black-white image and edge-detected image, respectively. 

Example 2:  

 

Figure 4.13. The original image (a), the black-white image (b) and the edge-detected 

           image (c). 

In Figure 4.13, the first example is presented. Figure 4.13a, 4.13b, and 4.13c represent 

the original image, black-white image and edge-detected image, respectively. The edges 

are detected by the memristor cellular automaton according to the rule of the edge-

detection given in Table 4.3.  
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CHAPTER 5 

 

CONCLUSION 

 

In this thesis, the memristor theory is explained. The applications of memristors 

in different areas have been increasing since the physical implication of memristor by 

HP. All these researches carried out using these different applications show that the 

characteristics of the memristor are behaving closely the same as brain functions such as 

learning, memory storage and forgetting.  

The learning activity in brain is the last product of increasing number of the 

receptor. Also, these numbers depend on the amount of the concentrations of Ca
+2

 ions 

in the neurons. If the pulse is adequate, the memristor changes its resistance from the 

certain rate to a different rate. This situation, which is observed for memristor, is closely 

the same as the Ca
+2

 ions in the neuron. Thus, there are some cases of memristors that 

are practiced physically have managed to implicate learning and forgetting functions of 

brain.  

In addition to the physically practiced cases of memristors, Chua suggests that 

memristors are the elements that can be used as storage devices since they have a 

specific characteristic of resistance switching.    

There are also other cases on primitives as they have a capacity of learning and 

acting strategies according to the situations they are in or the other creatures 

surrounding them as an action. These cases for primitives show that the actions of these 

primitives can be modelled by using memristor.  

However, the rate of the resistance of the memristor is not stable. It depends on 

the applied voltage or applied current. The resistance value remains stable when the last 

applied voltage or current is shut down. By using this technique and also the MUX 

circuit elements, the “Memristor Crossbar Array” is designed to save and read data. A 

12x60 memristor crossbar array has been used to design a crossbar system. Then a flux 

threshold level is determined. After all, a binary image ‘İZMİR’ has been saved and 

read successfully. Also, the edge detection system has been introduced by using 

memristor cellular automata and the edges of two images have been found according to 

the edge detection rule of this cellular automata. 
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