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ABSTRACT: The Onsager reciprocity relations are applied to several recently proposed
multicomponent diffusion models in an attempt to gauge their validity and ascertain
their applicability. Each of these friction-based diffusion models stems from the more
general Bearman formalism through various assumptions regarding the individual
friction coefficients. By assessing the compliance of the Bearman model with respect to
the Onsager relations, we ascertain the validity of the simplifications introduced to
each diffusion model and suggest which postulates lead to results consistent with the
Onsager relations. Although some models are not consistent with the Onsager rela-
tions, each model predicts the multicomponent drying of polymer films reasonably well.
The necessity for consistency with the Onsager development is, therefore, revisited.
© 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1496-1504, 2001
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INTRODUCTION

The drying of solvent-coated polymer films and
the formation of asymmetric polymer membranes
through controlled coagulation are key steps in
the economic production of many products formed
from multicomponent transport and phase equi-
libria considerations.’™® Typical products include
photographic film, synthetic fibers, adhesives,
and hollow-fiber membranes. Multicomponent
diffusion models are consequently sought to accu-
rately describe the temperature and concentra-
tion dependence of diffusional fluxes during the
processing of these products.?>™
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An analysis of a multicomponent diffusion pro-
cess involves quantification of an array of diffu-
sion coefficients that describes how the flux of one
component is influenced by its own concentration
gradient and the concentration gradient of every
other component in the system.®~® The number of
diffusion coefficients (D;;) employed to describe
transport within a system of n components is
equal to (n — 1)%. The diagonal terms of the array
(D;;) are called the main or principal diffusion
coefficients, whereas the off-diagonal terms (D,
where i # j) are termed the cross coefficients.

On the basis of the Onsager reciprocal rela-
tions,'? the diffusion coefficient matrix is subject
to certain constraints that serve to reduce the
number of independent diffusion coefficients in an
n-component system to n(n — 1)/2. Few experi-
mental studies, however, have attempted to inde-
pendently measure the principal and cross diffu-
sion coefficients and assess their compliance with
the Onsager relations.''? In general, the princi-



pal and cross diffusion coefficients are determined
independently without the application of the con-
straints ascribed by Onsager. Alternatively, the
cross diffusion coefficients may be simply pre-
sumed to be negligible, in which case only effec-
tive principal diffusion coefficients are measured.

Although multicomponent thermodynamic
data and models can be stringently assessed for
consistency by means of the Gibbs—Duhem rela-
tion, the only criteria that currently exist to as-
certain consistency in multicomponent diffusion
analyses are the Onsager relations, the absolute
rigor of which has yet to be indisputably estab-
lished. Although strict adherence of equilibrium
and transport models to the Gibbs—Duhem and
Onsager relations is deemed essential for funda-
mental consistency, practical engineering tools of-
ten do not conform to these relations. Insight into
the development of new models may be gleaned
by an examination of how other models fail their
respective consistency tests while retaining accu-
rate predictive capability.

Several friction-based multicomponent diffu-
sion models have been recently suggested without
an accompanying analysis for Onsager consis-
tency. Each of these models stems from the more
general Bearman'® formalism through assump-
tions regarding the individual friction coeffi-
cients. In this work, we examine the simplifica-
tions introduced in the development of these dif-
fusion models and examine the implications of
these assumptions and their consistency with the
Onsager relations.

THEORY

Derivation of the Onsager consistency relations
(OCRs) for multicomponent diffusion requires the
application of three basic postulates: (1) thermo-
dynamic variables such as entropy, chemical po-
tential, and temperature can be correctly defined
in a differential volume of a system that is not at
equilibrium; (2) a linear relationship exists be-
tween forces and fluxes; and (3) the linear cross
coefficients are symmetric.51%1%1% Little guid-
ance, however, is offered regarding the appropri-
ate selection of forces and fluxes. Because most
theoretical transport models and experimental
diffusion measurements are based on a volume
frame of reference, the following expression is
often considered to be the most appropriate start-
ing point for establishing the OCRs:
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where o, the rate of entropy production in units of
energy/volume—time—-temperature, is expressed
in terms of the mass flux relative to the volume-
average velocity (j;”) and the specific chemical
potential gradient (V{i,) given in energy/mass—
distance. T represents the absolute temperature.

Consideration of the Gibbs—Duhem relation
and the definition of the mass flux with respect to
the volume-average velocity renders constraints
to eq 1. These constraints can be written as

> PV =0 (2)

i=1
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Here, p; and V, are the mass concentration and
partial specific volume, respectively, of compo-
nent i.

The substitution of eqs 2 and 3 into eq 1 and
the realization that the product of p; and V; equals
the volume fraction of component i (¢,) yield the
expressions often cited as the initial point for the
development of the OCRs:

1" .
= — — 7 X
o= T izzl Ji Xz (4)
where
n—1
j=1
v
oy =0, + p:i)n (6)

and §;; is the Kronecker & function.

The concept of entropy production (eq 4) is
typically not again discussed in the subsequent
development of the OCRs. In fact, the principal
reason to rearrange eqs 1-3 to obtain eqs 4-6 is
to provide a definition of force (X)) to which one
can apply postulate 2. This result and the fact
that the thermodynamic flux is not written as the
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time rate of change of the state of the system are
the two primary reasons the Onsager relations
have been severely criticized in the literature.'6:17

The linear relationship between forces and
fluxes in the OCR is, therefore, given as

n—1
—ji = E LiJXi (7)
j=1

where L;; denotes the linear coefficients identified
in postulate 2 that relate forces to fluxes. Further-
more, if postulate 3 regarding symmetry is ac-
cepted, then the off-diagonal coefficients must be
equal; that is, L;; = L;; when i # j. For the sake of
brevity and applicability to the analysis specifi-
cally provided here, we now develop the OCR for
a ternary system. The application of eqs 1-6 to
higher order multicomponent systems is straight-
forward and is left to the interested reader.

By expanding eq 7 and implementing the terms
defined in eqs 5—6, one obtains the following ex-
pressions for the mass flux of components 1 and 2
in a ternary mixture:
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A comparison of eqs 8 and 9 to the Fickian trans-
port equations for components 1 and 2

—D1,Vpy — D15V, (10

3 = —Dy;Vpy — Dy Vp, (11)

immediately yields expressions for the diffusion
coefficient matrix in terms of the Onsager mobil-
ity coefficients:
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Existing multicomponent diffusion models ex-
hibit the common feature that, for ternary sys-
tems, the principal and cross diffusion coefficients

can be cast into the generic forms shown in eqgs
16-19:

5 9 Ly
Du:Aqul—'—BHTpl (16)
f 9l
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o dfLy
91 = Ay pr + By pr (18)
afu dfLy
D22:A22Tp;+32287p2 (19)

where the prefactors A;; and B,; represent a vari-
ety of expressions for the assorted multicompo-
nent diffusion models available in the literature.



The combination of eqs 12-15 and 16-19 re-
veals that constraints are imposed on the expres-
sions for each A;; and B,;. These constraints pro-
vide a first-pass screening with regard to the con-
sistency of multicomponent diffusion models
relative to Onsager reciprocal relations:

) o
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The algebraic manipulation of eqs 20-23 yields
the cross (phenomenological) coefficients, L, and
L,,, which may be written explicitly as

v
L= Bnd)s[ 1+ ij - A11¢3[p2)31] (24)

V.
L21 = A22(rl)3|: 1+ iz] - BZZ¢3|:p(1¢)32:| (25)

Because L, = Ly, by symmetry, eqs 24 and 25
together establish an essential condition for the
consistency of multicomponent diffusion models
with respect to the Onsager relations. In the next
section, we apply this consistency check to several
recently proposed diffusion models'®'® and the
Bearman formalism,'® from which all known fric-
tion-based diffusion models are derived.

RESULTS AND DISCUSSION

The Bearman statistical mechanical theory'® con-
tends that, when a binary diffusion process is
unaffected by pressure (P) gradients and temper-
ature (7' is constant, the mutual diffusion and
self-diffusion coefficients within the system can
be related to the friction coefficients describing
the interactions between each of the components.
Several practical diffusion models'®'® have been
recently proposed to predict both the main- and
cross diffusion coefficients in multicomponent
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systems. Each of these formalisms, however, can
be shown to originate from the more general
Bearman statistical mechanical theory through
assumptions regarding the frictional coefficients.
We examine the consistency of each of these mod-
els with respect to the Onsager relations by in-
serting the corresponding A;; and B;;, which are
defined in Table I, into eqs 24 and 25 and ascer-
taining if resulting expressions are equal.

Bearman (1961)

The model proposed by Bearman is grounded in
statistical mechanical theory and relates mutual
diffusion coefficients to self-diffusivities through
friction coefficients. The well-known Hartley—
Crank?® and Darken?! equations, which are gen-
erally the starting point to relate self-diffusion
and mutual diffusion coefficients in binary (e.g.,
gas/solid) systems, constitute a subset of the more
general Bearman model. These models assume
regular solution behavior (in the Bearman sense)
and a geometric mean relationship between the
friction coefficients. The geometric mean approx-
imation has been shown to qualitatively repre-
sent transport in binary systems but not to be
always quantitatively accurate.??~2* The random
phase approximation, sometimes used to model
polymer—polymer interdiffusion, also stems from
the Bearman model by employing an algebraic
mean approximation between friction coeffi-
cients.?®

The Bearman model satisfies the OCRs® and
provides a standard to which other models can be
compared. Practical usage of this model, however,
is limited because the dependence of the friction
coefficients on temperature and concentration is
presently unknown. Extensions to the Bearman
formalism have also been proposed.?®

Zielinski-Hanley (1999)

This model is one of the few predictive multicom-
ponent models in the literature that relates all
the coefficients in a diffusion matrix to measur-
able self-diffusion and thermodynamic data. Al-
though the Bearman model'® was not considered
in its development, the Zielinski—-Hanley model*®
can be shown to be a subset of the more general
Bearman formalism if we assume that the friction
coefficients are related to each other through ra-
tios of the species molecular weights. In a ternary
system, this amounts to
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Table I. Multicomponent Diffusion Models
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When Onsager consistency is applied to the ter-
nary form of this model, a relationship between
the self-diffusion coefficients emerges:

DM (21
D, M,

Although this relationship may approximately be
true for mixtures consisting exclusively of low
molecular weight species, it is not expected to be
generally valid. Consequently, the Zielinski—-Han-
ley model fails the Onsager consistency test.

For the sake of comparison, an analogous ex-
pression for {;5/{;5 in the Bearman framework is

M.,RT D N? M
(12_ oR [ _ 1181 A:| 2P3 (28)

g_ Pszxgls M,RT _M3P2

Alsoy-Duda (1999)

In their effort to model the drying of polymer
films, Alsoy and Duda'® proposed four models
(cases 1-4) that can represent multicomponent
transport processes reasonably well. Each case is
derived from the Bearman statistical mechanical
theory. Cases 1 and 4 provide functional forms for
each component in the diffusion coefficient matrix
(D;;), whereas cases 2 and 3 assert that the cross
coefficients are negligible. Under some conditions,
neglecting the cross coefficients is not expected to
introduce significant error in the resulting flux
predictions. From a theoretical standpoint, how-
ever, these models clearly cannot satisfy the On-
sager relations. In the following discussion, there-
fore, we consider only cases 1 and 4.

Case 1

In this first case, the ratio of friction factors be-
tween components i and & ({;;,) and j and k& ({,) is
assumed to be constant and equal to the ratio of
the partial molar volumes of components i and j;
therefore,

i Vi
%z = 2 (29)
¢ .

J



Implementing this criterion into the OCRs yields
a result similar to that derived for the Zielinski—
Hanley model:

D, V, 30)
D 2 B Vl
where the molecular weight is replaced by the
partial molar volume. As with the Zielinski—-Han-
ley model, this relationship is not expected to be
universally true, in which case this formalism
fails the Onsager consistency check.

Case 4

This model is very similar in functional form to
the Zielinski-Hanley model (see Table I). Its pre-
dictive capability, however, can be appreciably
different. The case 4 model assumes that the fric-
tion coefficients among all of the solute molecules
are identically equal to zero (i.e., {1; = {oo = {19
= 0). This assumption imposes a relationship be-
tween friction factors {;5 and {y5. From the Bear-
man model, the ratio of {;5 to {3 may be written
as

RT B D1Pz§11Ni _ p2li2

L N3D, MRT |~ M,
Los ~ RT B szzgzzNi . P11z
NiDZ M,RT M,

It is clear from eq 31 that the substitution of {;;

= (o9 = {15 = 0 yields the following simplistic
relation:
élS D2
= 32
523 Dl ( )

Although the assumption of negligible friction
among the solute molecules is questionable, the
trend established in eq 32 is intuitively reason-
able because the friction coefficient between sol-
ute and solvent molecules should be inversely
related to the mobility (self-diffusion coefficient)
of the solute, at least at high solvent concentra-
tions. Substitution of this model into eqs 24 and
25 reveals that the cross phenomenological coef-
ficients are indeed equal for case 4. Thus, this
model is consistent with the Onsager relations.

Modeling of Drying

Although the assertions of Onsager may provide
valuable guidance, the fundamental basis on

ONSAGER CONSISTENCY CHECKS 1501

10

O  Experiment

— = Zjelinski/Hanley

---- = Alsoy/Duda Case 1

C

=

o

© 6r

2 | - = Alsoy/Duda Case 4
E

T 47

ks

eo2f

0 . \ : L .
0 2000 4000 6000

t (sec)

Figure 1. Predictions and experimental drying be-
havior of a multicomponent polymer solution composed
of PS, TL, and EB. Predictions were performed via the
insertion of various diffusion models into the multicom-
ponent drying analysis developed by Alsoy and Duda.*®

which the Onsager relations'® were originally de-
veloped has been severely criticized,'®'” in which
case these relations may be more accurately con-
sidered postulates, open to experimental confir-
mation or disproof, rather than proven theorems.
In Rational Thermodynamics,'® Truesdell re-
marks, “Onsager’s and Casimir’s claims that their
assertions follow from the principle of microscopic
reversibility have been accepted with little ques-
tion ... the reversibility theorem and Poincarés
recurrence theorem make irreversible behavior
impossible for dynamical systems in a classical
sense. Something must be added to the dynamics
of conservative systems, something not consistent
with it, in order to get irreversibility at all.” With
this thought in mind, we applied each of the mod-
els discussed to a polymer drying simulation pro-
gram to examine their utility in predicting the
rate of multicomponent solvent removal as a func-
tion of time.

In Figures 1 and 2, we compare experimental
drying data for the systems polystyrene (PS)-
toluene (TL)—ethylbenzene (EB)'® and PS-TL-
tetrahydrofuran (THF),?” respectively, to predic-
tions from the drying model developed by Alsoy
and Duda.'® The predictions are obtained from
the various multicomponent diffusion models dis-
cussed previously with the appropriate model
constants. The ternary self-diffusion coefficients
required for use in the multicomponent diffusion
models have been predicted from free-volume cor-
relations of binary diffusion data, whereas the
thermodynamic terms have been evaluated from
the ternary extension of Flory—Huggins theory
with interaction parameters evaluated from bi-
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Figure 2. Predictions and experimental drying be-
havior of a multicomponent polymer solution composed
of PS, TL, and THF. Predictions were performed via the
insertion of various diffusion models into the multicom-
ponent drying analysis developed by Alsoy and Duda.*®

nary data. It is important to recognize that the
curves displayed in these figures represent a pri-
ori predictions and are not merely data correla-
tions. These figures reveal that, in both ternary
systems, each of the models performs adequately
well and the predictions from the Zielinski—-Han-
ley model and the Alsoy-Duda case 1 model are
indistinguishable. Predictions from the case 4
model are noticeably better than those from the
case 1 and Zielinski-Hanley models for the PS—
TL-EB system and slightly poorer for the PS—
TL-THF system.

Experimental drying data for the system poly-
(vinyl acetate)-TL—chloroform, accompanied by
complementary predictions,?® are presented in
Figures 3-5. For this system, the predictions from
the Zielinski-Hanley and case 1 models are in
excellent agreement with the experimental data,
whereas the case 4 model clearly underpredicts
the drying rate. Included in Figures 3-5 are pre-
dictions from the respective diffusion models us-
ing only the principal diffusion coefficients (i.e.,
the cross diffusion coefficients were set equal to
zero, as is common practice). On the basis of the
results evident in these figures, the cross diffu-
sion coefficients are clearly not negligible and
strongly impact drying rate predictions.

The three examples previously illustrated indi-
cate that inconsistency with the Onsager rela-
tions neither nullifies the practical utility of a
multicomponent diffusion model nor implies su-
perior performance of those models that are con-
sistent with the OCRs. Our intent here is to iden-
tify several multicomponent diffusion models so
that their practical utility might be evaluated.
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Figure 3. Experimental data and model predictions
of the drying behavior of a multicomponent polymer
solution composed of poly(vinyl acetate), TL, and chlo-
roform based on the Zielinski—Hanley multicomponent
diffusion model. Predictions were performed by the in-
corporation of the Zielinski—-Hanley model into a mul-
ticomponent drying analysis developed at 3M.?® The
solid line corresponds to the full model, whereas the
dashed line corresponds to the solution when the cross
coefficients are assumed to be negligible.

Because theoretical development has exceeded
the volume of pertinent experimental data cur-
rently available, rigorous comparative analysis of
existing models in light of the Onsager relations
cannot be deemed conclusive. More high-quality
data are clearly required before any substantive
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Figure 4. Experimental data and model predictions
of the drying behavior of a multicomponent polymer
solution composed of poly(vinyl acetate), TL, and chlo-
roform based on the Alsoy—Duda case 1 multicompo-
nent diffusion model. Predictions were performed by
the incorporation of the case 1 model into a multicom-
ponent drying analysis developed at 3M.?® The solid
line corresponds to the full model, whereas the dashed
line corresponds to the solution when the cross coeffi-
cients are assumed to be negligible.
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Figure 5. Experimental data and model predictions
of the drying behavior of a multicomponent polymer
solution composed of poly(vinyl acetate), TL, and chlo-
roform based on the Alsoy—Duda case 4 multicompo-
nent diffusion model. Predictions were performed by
the incorporation of the case 4 model into a multicom-
ponent drying analysis developed at 3M.?® The solid
line corresponds to the full model, whereas the dashed
line corresponds to the solution when the cross coeffi-
cients are assumed to be negligible.

progress can be made in terms of discriminating
the effectiveness of such models and the correct-
ness of the Onsager relations. In addition, we
point out a need for further work in the field of
irreversible thermodynamics to elucidate whether
systems invariably attempt to minimize entropy
production, as initially suggested by Onsager. It
is conceivable that systems may behave in a dif-
ferent fashion by, for example, attempting to
maximize entropy.'” In this scenario, the force
driving a system back to equilibrium would be
defined as the entropy gradient.

CONCLUSIONS

We have shown that multicomponent diffusion
models can be cast into a generic linear form in
terms of chemical potential gradients. The differ-
ence between these models is encompassed in the
expressions employed in the gradient prefactors.
A simple Onsager consistency check derived for
the generic form of transport coefficients has been
developed and applied to these diffusion models
in an attempt to gauge their validity and differ-
entiate between the expressions.

Although these models stem from the Bearman
formalism, which is consistent within the context
of the Onsager framework, we have determined
that certain models obey the Onsager relations,
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whereas others clearly do not. In three test cases,
however, each model is found to represent the
multicomponent drying of polymer films reason-
ably well. These examples illustrate that incon-
sistency with the Onsager relations neither nul-
lifies the practical utility of a multicomponent
diffusion model nor implies superior performance
of those models exhibiting consistency. Our intent
is to discuss several multicomponent diffusion
models so that their practical utility and theoret-
ical validity might be assessed by the research
community.

On a larger scale, we note that the Onsager
development is considered by many an unproven
postulate that is still open to experimental confir-
mation or disproof. Alternative developments
based on irreversible thermodynamics suggest
that it may be more appropriate to consider the
entropy gradient to be the force driving a system
back to a maximum entropy equilibrium state
rather than the principal of minimum entropy
production championed by Onsager. This work
clearly confirms that reliable experimental data
are prerequisite in evaluating the rigor of theo-
retical developments that have never been ade-
quately evaluated but have, over the course of
time, been generally accepted without question.

The authors thank Peter Price of 3M Co. for kindly
providing them with his experimental data and simu-
lation results for the TL—chloroform—poly(vinyl ace-
tate) system and Dr. Brian Hanley of Jaeger Products
for encouraging them to examine the models in terms of
the Onsager analysis and for his helpful discussions.
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