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Abstract Recently, many important nonlinear partial differential equations arising in the applied physical and

mathematical sciences have been tackled by a popular approach, the so-called Exp-function method. In this paper, we

present some shortcomings of this method by analyzing the results of recently published papers. We also discuss the

possible improvement of the effectiveness of the method.
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1 Introduction

Exact and explicit solutions of nonlinear evolution
equations (NEEs) may well describe distinct phenomena
in the applied physical and mathematical sciences, as
well as other fields. By means of these solutions, scien-
tists may give better insight into the physical aspects of
the nonlinear problems considered. During the past four
decades or so, searching for analytic solutions of NEEs
has been the main goal of many researchers. On this
direction, a lot of powerful tools have been established
and developed. To make mention of some, the homoge-
neous balance method,[1] the inverse scattering,[2] the Hi-
rota’s bilinear method,[3] the Backlund transformation,[4]

the Painleve analysis,[5] the symmetry approach,[6] the
F-expansion method,[7−8] the sine-cosine method,[9] the
tanh-coth method,[10] the homotopy perturbation,[11] the
Jacobi elliptic-function method,[12−13] the extended tanh-
function method,[14] and the similarity transformation
method.[15−16]

Many of these methods take advantage of the avail-
ability of computer algebra systems (such as MATHE-

MATICA, MAPLE, and MATLAB), which avoid the need
for doing the complex and tedious calculations “by hand”
and eliminate error. In 2006, He and Wu[17] introduced
such a method, the so-called Exp-function method, which
relies on an ansatz (a rational combination of exponen-
tial functions), involving many unknown parameters to
be specified at the stage of solving the problem. The
method soon drew the attention of many researchers, who
described it as “straightforward”, “reliable”, and “effec-
tive”. Nowadays, being very popular, some authors put
forth new modifications of the Exp-function method to
tackle various kinds of nonlinear problems; just to men-
tion a few, multi-dimensional equations,[18−19] coupled
NEEs,[20] differential-difference equations,[21] stochastic
equations,[22] NEEs with variable coefficients,[23] n-soliton

solutions,[24−27] a multiple-exp function method,[28] ratio-
nal solutions,[29] and a general Expa-function method.[30]

On the other hand, Kudryashov[31−36] and Par-
kes[37−39] have been constantly alerting the scientific
community for equivalent, disguised, and incorrect re-
sults. A number of cases have been demonstrated
in the literature[40−44] where solutions derived by the
Exp-function method are misleading. Consequently, the
method has received a lot of criticisms from different
points of views.[36,45−47]

In this paper we outline some further observations on
the Exp-function method and its applications. Our goal is
neither to defend nor to criticize the method, but rather to
show why one should be extra careful when applying this
method, as well as to discuss the improvement of the ef-
fectiveness (if any) of the method. In Sec. 2 we review the
procedure of the Exp-function method, while in Secs. 3–8
we analyze the results of some published papers. We end
our discussion with some concluding remarks in Sec. 9.

2 Exp-Function Method

Suppose we are given a partial differential equation
(PDE) for a function u(x, t) in the form

P (u, ut, ux, utt, utx, uxx, . . .) = 0 , (1)

where P is a polynomial in its arguments. The main idea
of the Exp-function method for solving Eq. (1) proceeds
in the following steps:
Step 1 Look for traveling wave solutions of Eq. (1) by
taking the wave transformation

u(x, t) = U(η) , η = kx+ wt , (2)

into account, where k and w are real nonzero constants.
Step 2 Substitution of Eq. (2) into the PDE (1) yields an
ordinary differentail equation (ODE) for U(η). If possi-
ble, integrate the resulting ODE term by term one or more
times. This introduces one or more integration constants.
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Step 3 Introduce the ansatz

U(η) =
ac exp(cη) + · · · + a−d exp(−dη)

bp exp(pη) + · · · + b−q exp(−qη) . (3)

Here c, d, p, and q are positive integers (to be determined).
The coefficients ai and bj are arbitrary real constants (to
be specified).
Step 4 Determine the highest order nonlinear term and
the linear term of highest order in the ODE from Step 2,
and express them in terms of Eq. (3). Then, in the re-
sulting terms, balance the highest order Exp-function to
determine c and p, and the lowest order Exp-function to
determine d and q.
Step 5 With c, d, p, and q as determined in Step 4, sub-
stitution of Eq. (3) into the ODE from Step 2 yields an
algebraic equation involving the integer powers of exp(η).
Equating the coefficients of each power of exp(η) to zero
results in a (highly nonlinear) system of algebraic equa-
tions for ai, bj , k, and w. If the original PDE contains
some arbitrary parameters, these will, of course, also ap-
pear in the system.
Step 6 The original PDE has a solution in the form (3) if
and only if there is a real nontrivial solution to the result-
ing system of algebraic equations, and using a computer

can be very helpful.

Remark When using the Exp-function method, some au-
thors prefer to set the integration constants (obtained in
Step 2) equal to zero. A solution obtained in this way usu-
ally becomes less general than it could be. The reason is
that omitting these integration constants may lead to the
loss of some arbitrary constants in the solution function.
This fact has been formulated as the third common error
in Ref. [35].

3 A Careless Application of Exp-Function

Method Leads to Incorrect Solutions

The authors of Ref. [48] investigated three nonlinear
equations based on the ansatz

u(η) =
a1 exp(η) + a0 + a−1 exp(−η)

exp(η) + b0 + b−1 exp(−η) , η = kx+ wt .

Unfortunately, the authors of Ref. [48] left the reader with
the impression that their solutions were new, while they
are not even correct. First, it is claimed in Ref. [48] that
the Klein-Gordon equation

utt − uxx − u+ u3 = 0 (4)

admits the solution

u(x, t) =
exp(kx+

√
k2 + 2t) − (1/4)b20 exp(−(kx+

√
k2 + 2t))

exp(kx+
√
k2 + 2t) + b0 + (1/4)b20 exp(−(kx+

√
k2 + 2t))

, (5)

where k and b0 remain arbitrary (formula (3.15) in

Ref. [48]). By a careful inspection, we observe that the

function (5) can be further simplified as

u(x, t) =
−b0/2 + exp(kx+

√
k2 + 2t)

b0/2 + exp(kx+
√
k2 + 2t)

.

However, the direct substitution of the expression (5) (or

its simplifed form above) into Eq. (4) yields

16b0 exp(kx+
√

2 + k2t)(b0 − 2 exp(kx+
√

2 + k2t))

(b0 + 2 exp(kx+
√

2 + k2t))3
, (6)

which is not zero in the general case. Thus, the function

(5) does not satisfy Eq. (4). Moreover, the expression

(3.16) in Ref. [48] (which is a special case of Eq. (3.15)

with b0 = 2) cannot be a solution of Eq. (4) as well, since

the term (6) does not vanish either.

On the other hand, the wave transformation (2) re-

duces Eq. (4) to the ODE

(w2 − k2)U ′′ − U + U3 = 0 . (7)

We observe that Eq. (7) is embedded in the more general

equation

U ′′ = F (U) . (8)

In fact, Eq. (8) can be solved by a quadrature. Multiplying

both sides of Eq. (8) by U ′ and integrating the resulting

equation once, we obtain

1

2
(U ′)2 =

∫

F (U)dU + C = G(U) , C = const. ,

and thus,

∓ dU
√

2G(U)
= dη , (9)

which is a first-order equation with separable variables.
In fact, if G(U) is a polynomial of third or fourth degree,
then the relation (9) constitutes the definition of elliptic
integrals. Thus, the general solution of Eq. (7) is written
in terms of elliptic functions.

Second, the authors of Ref. [48] considered the Burger–
Fisher equation

ut + uux + uxx + u(1 − u) = 0 , (10)

and found the exact solution (formula (4.13) in Ref. [48])

u(x, t) = 1 − k

k + 1
exp(−(kx+ (k2 − k − 1)t)) , (11)

where k remains arbitrary. However, the direct substitu-
tion of the expression (11) into Eq. (10) yields

−k
2 exp(−2kx+ 2(1 + k − k2)t)

1 + k
,

which is not zero in the general case as well. Hence, the
function (11) cannot be a solution of Eq. (10).

Indeed, using the extended tanh-function method[49]

for instance, we observe that Eq. (10) admits the solution

u(x, t) =
1

2
+

1

2
tanh

(1

4

(

x− 5

2
t
))

.

Third, the authors of Ref. [48] studied the Sharma–
Tasso–Olver equation

ut + α(u3)x +
3

2
α(u2)xx + αuxxx = 0 , (12)
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where α is a nonzero constant and found two exact solu-
tions, which are numbered as (5.15) and (5.18) in there.
For example, the solution (5.15) is given by

u(x, t) =
−2kb−1 exp(−(kx− 4αk2t))

exp(kx− 4αk2t) + b−1 exp(−(kx− 4αk2t))
, (13)

where k and b−1 remain arbitrary. However, the direct
substitution of the expression (13) into Eq. (12) yields

16(k − 1)k3αb−1 exp(2k(x+ 4kαt))

(exp(2kx) + b−1 exp(8k2αt))2
,

which is not zero in the general case. Hence, the func-
tion (13) does not satisfy Eq. (12). Similarly, it can be
shown that the solution (5.18) in Ref. [48] does not satisfy
Eq. (12). Moreover, the expressions (5.16) and (5.19) in
Ref. [48] cannot be solutions as well, since they also do
not satisfy Eq. (12).

In fact, using the transformation u(x, t) = Gx/G,
G = G(x, t), Eq. (12) can be transformed to the third
order linear partial differential equation

Gt + αGxxx = 0 . (14)

Then, by means of the wave transformation (2), Eq. (14)
can be transformed further to the constant coefficient

third order linear ODE

αk3G′′′ + wG′ = 0 , (15)

where the prime denotes the derivative with respect to η.
From the linear theory, the general solution of Eq. (15) is
well known to us.

Regrettably, the same authors have presented more in-
correct results in Ref. [50]. More specifically, they have
obtained six incorrect solutions (relations (3.14)–(3.16)
and (3.18)–(3.20) in Ref. [50]) for the (2 + 1)-dimensional
breaking soliton equation, and three incorrect solutions
(relations (4.11), (4.15), and (4.19) in Ref. [50]) for the
modified Zakharov–Kuznetsov equation. Moreover, they

have studied an incorrect form of the Konopelchenko–
Dubrovsky equation with incorrect solutions (relations
(5.14)–(5.16) in Ref. [50]).

4 A Single Case of Exp-Function Method

may Lead to Equivalent Solutions

The author of Ref. [51] studied the Korteweg–de Vries
equation which reads as ut + 6uux + uxxx = 0 by means
of the ansatz (due to the Exp-function method)

u(x, t) =
Rk2 [A3 exp(3η) +A2 exp(2η) +A1 exp(η) +A0 +A−1 exp(−η)]

(exp(η) + b0 + b−1 exp(−η))(a1 exp(η) + a0 + a−1 exp(−η))2 , η = kx+ ωt . (16)

Using the single ansatz (16) the author derived three solutions which are formulated as (24), (25), and (26) in there.
For example, the solutions (24) and (25) in Ref. [51] are given respectively as

u(x, t) =
4k2a0a−1

4a2
−1 exp(−η) + 4a0a−1 + a2

0 exp(η)
, η = kx− k3t , (17)

u(x, t) =
8k2a−1a1

(a1 exp(η) + a−1 exp(−η))2 , η = kx− 4k3t . (18)

Unfortunately, the author of Ref. [51] left the reader with the impression that these solutions are distinct. However,
by minimizing the number of the parameters involved, we can rewrite Eqs. (17) and (18) as

u(x, t) =
4k2a0a−1

4a2
−1 exp(−η) + 4a0a−1 + a2

0 exp(η)
=

2C1k
2 exp(η)

(1 + C1 exp(η))2
, η = kx− k3t , C1 =

a0

2a−1
, (19)

u(x, t) =
8k2a−1a1

(a1 exp(η) + a−1 exp(−η))2 =
8C2k

2 exp(2η)

(1 + C2 exp(2η))2
, η = kx− 4k3t , C2 =

a1

a−1
. (20)

Now, letting k → 2k in Eq. (19) leads to Eq. (20). Following the same approach one can show that the remaining
solution (26) in Ref. [51] is equivalent to both solutions (24) and (25) presented in there.

5 Different Cases of Exp-Function Method may Lead to Equivalent Solutions

The authors of Ref. [52] applied the Exp-function method to the Radhakrishnan, Kundu and Laskshmanan equation
which reads as

iuz + utt +
γ2

3γ1
|u|2u+ iγ1uttt + iγ2(|u|2u)t = 0 .

Using the ansatz (3) for the case (p = c = 1, d = q = 1), they obtained the solution

u(x, t) =
a1 exp(αz − ωt) + a0 − [(a1b0 + a0)(−a0 + a1b0)/4a1] exp(−(αz − ωt))

exp(αz − ωt) + b0 + [(a1b0 + a0)(−a0 + a1b0)/4a2
1] exp(−(αz − ωt))

× exp(i(kz − ct)) , (21)

which is formulated as Eq. (40) in Ref. [52]. Then, using the ansatz (3) for the case (p = c = 2, d = q = 2), they
obtained the solution

u(x, t) =
a2 exp(2(αz − ωt)) + a0 − [(a2b0 + a0)(−a0 + a2b0)/4a2] exp(−(2(αz − ωt)))

exp(2(αz − ωt)) + b0 + [(a2b0 + a0)(−a0 + a2b0)/4a2
2] exp(−(2(αz − ωt)))

× exp(i(kz − ct)) , (22)

which is formulated as Eq. (45) in Ref. [52]. Finally, using the ansatz (3) for the case (p = c = 3, d = q = 3), they
obtained the solution

u(x, t) =
a3 exp(3(αz − ωt)) + a0 − [(a3b0 + a0)(−a0 + a3b0)/4a3] exp(−(3(αz − ωt)))

exp(3(αz − ωt)) + b0 + [(a3b0 + a0)(−a0 + a3b0)/4a2
3] exp(−(3(αz − ωt)))

× exp(i(kz − ct)) , (23)
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which is formulated as Eq. (50) in Ref. [52]. However, by a close inspection, we observe that these solutions are
equivalent. For example, since α and ω are arbitrary constants, letting α → α/2 and ω → ω/2 in Eq. (22) leads to
Eq. (21). By the same manner, one can obtain Eq. (21) from Eq. (23). Unfortunately, the authors of Ref. [52] left
the reader with the impression that the solutions presented above are different. It is also worth to mention here that
a similar incident has occured in Ref. [53] as well, where the authors have obtained equivalent solutions for the cases
(p = c = 1, d = q = 1), and (p = c = 2, d = q = 2).

6 Some Cases of Exp-Function Method are Equivalent

The authors of Ref. [54] considered the cases (p = c = 2, d = q = 2) (the formula (5.56) in there) and (p = c = 3,
d = q = 1) (the formula (5.75) in there), respectively,

ψ(ξ) =
a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ) + a−2 exp(−2ξ)

b2 exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) + b−2 exp(−2ξ)
, (24)

ψ(ξ) =
a3 exp(3ξ) + a2 exp(2ξ) + a1 exp(ξ) + a0 + a−1 exp(−ξ)
b3 exp(3ξ) + b2 exp(2ξ) + b1 exp(ξ) + b0 + b−1 exp(−ξ) , (25)

for solving a generalized nonlinear Schrödinger equation
which is stated as (1.1) in Ref. [54]. However, if we multi-
ply both the numerator and the denominator of Eq. (24)
by exp(ξ) we obtain an expression identical to Eq. (25).
Unfortunately, the authors of Ref. [54] left the reader with
the impression that their solutions based on the ansatze
(24) and (25) are different. We can find the same mislead-
ing in Refd. [53] and [55] as well. The authors of Ref. [53]
considered the equivalent cases (p = c = 2, d = q = 2) and
(p = c = 3, d = q = 1) while the author of Ref. [55] also
studied the equivalent cases (p = c = 2, d = q = 1)and
(p = c = 1, d = q = 2) in a redundant manner.

In summary we note that the following cases are equiv-
alent according to the ansatz (3):

(p = c = 2, d = q = 1) ≡ (p = c = 1, d = q = 2) ,

(p = c = 3, d = q = 1) ≡ (p = c = 2, d = q = 2)

≡ (p = c = 1, d = q = 3) ,

(p = c = 4, d = q = 1) ≡ (p = c = 3, d = q = 2)

≡ (p = c = 2, d = q = 3) ≡ (p = c = 1, d = q = 4) ,

and so forth. This fact has also been emphasized in
Refs. [42] and [56].

7 Balancing Procedure of Exp-Function
Method Seems Redundant

As far as we could verify through the open literature,
performing Step 4 in Sec. 2 takes a lot of effort. We have
witnessed that all applications of the Exp-function method
always lead to the single case p = c and d = q. This fact
has been proved in Ref. [56] by taking the linear and non-
linear terms of highest order as u(n) and uru(s)(s < n), re-
spectively, in the ODE obtained in Step 2. Thus, Steps 2
and 4 seem to be redundant and time consuming. We
believe that taking Step 3 (with Step 1) into account
only and assigning arbitrary values to the positive integers
p(= c) and d(= q) will greatly reduce the procedure of the
Exp-function method and make laborious calculations un-
necessary. Recently, the author of Ref. [57] brought three
additional nonlinear terms of the form uα, (u(s))Ω, and
(u(s))Ωuλ into discussion and made exactly the same ar-
gument as was done by the author of Ref. [56]. It is clear

that one can choose a highest order linear term in the form
u(n). However, one cannot construct a general form for
the highest order nonlinear term because there are many
possibilities other than the ones considered in Refs. [56–
57]. Namely, the authors of Refs. [56–57] took some spe-
cial cases of the nonlinear term into account. Hence, the
problem still remains open.

Alternatively, since there are actually infinitely many
cases that have to be considered separately, one can use
the following procedure: Assume that there are solutions
of the form

u(x, t) =

∑n
k=0 ak exp(kξ)

∑n
k=0 bk exp(kξ)

, ξ = b(x− ct) ,

and start with the case n = 1. Of course, a0, b0 or a1,
b1 must not vanish at the same time, since this leads to
a constant solution. Then proceed with the case n = 2.
Now, a0, b0 or a1, b1 or a2, b2 should not vanish at the
same time, since this leads to the same solutions with case
n = 1. Then proceed with the case n = 3 with similar re-
strictions, and so on.

8 Not Every Generalization of Exp-Function
Method is Convenient

The authors of Ref. [58] proposed the so-called double-
Exp function method for obtaining two-soliton solutions.
The method was also used in Ref. [59]. Unfortunately, the
double-Exp function method does not seem to work, since
all results of Refs. [58] and [59] are incorrect. For example,
the authors of Ref. [59] considered the generalized Burgers
equations

ut + a(un)x + buxx = 0 , (26)

ut + a(u−n)x + buxx = 0 , (27)

where a, b(6= 0), and n(> 1) are arbitrary constants.
Using the transformation u = v1/(n−1), they reduced
Eq. (26) into the equation

vvt + anv2vx + b
(( 1

n− 1
− 1

)

v2
x + vvxx

)

= 0 . (28)

Then, by means of the ansatz (due to the double-Exp
function method)
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v(x, t) =
a1 exp(ξ) + a2 exp(−ξ) + a5 + a3 exp(η) + a4 exp(−η)
k1 exp(ξ) + k2 exp(−ξ) + k5 + k3 exp(η) + k4 exp(−η) , ξ = c1x+ c2t , η = c3x+ c4t , (29)

they solved Eq. (28). As a result, the authors of Ref. [59] claimed that Eq. (28) admits one-soliton solutions (relations
(3.9) and (3.10) in Ref. [59]), as well as a two-soliton solution (relation (3.11) in Ref. [59]). For example, the solution
(3.9) in there is given by

u(x, t) =

( −2bc3(a1 + a4)

a(n− 1)(a1 + a4) − 2bc3k3 exp(c3(x+ (2bc3/(n− 1))t))

)1/(n−1)

. (30)

This means that, via the transformation u = v1/(n−1), Eq. (28) admits the solution

v(x, t) =
−2bc3(a1 + a4)

a(n− 1)(a1 + a4) − 2bc3k3 exp(c3(x + (2bc3/(n− 1))t))
. (31)

However, the direct substitution of Eq. (31) into Eq. (28) results in the expression

−8b4(a1 + a4)
2c53k3(a(n− 1)2(a1 + a4) + 2bc3k3 exp(c3(x+ (2bc3t/(n− 1)))) exp(c3(x+ (2bc3t/(n− 1))))

(n− 1)(a(n− 1)(a1 + a4) − 2bc3k3 exp(c3(x + (2bc3t/(n− 1))))4
,

which is not zero in the general case. Thus, the function

(30) cannot be a solution of Eq. (26). By the same token,

we have verified that the other solutions (3.10) and (3.11)

presented in Ref. [59] do not satisfy Eq. (26) as well. The

same comments can be made for the incorrect solutions of

Eq. (27) which are numbered as (3.16), (3.17), and (3.19)

in Ref. [59], since they can be obtained by simply replacing

n with −n in relations (3.9)–(3.11) of Ref. [59].

It is worth to mention here that we can solve Eq. (28)

via the Exp-function method as follows: First of all, we

can take a = b = 1 in Eq. (28) without loss of generality.

Thus, instead of Eq. (28), we can study the equation

vvt + nv2vx +
( 1

n− 1
− 1

)

v2
x + vvxx = 0 . (32)

Moreover, observe that if v(x, t) is a solution of Eq. (32),

then −v(−x, t) is also a solution of Eq. (32). Taking the

last remark and the issues outlined in the previous section

into account, we first assume a function of the form

v(x, t) =
a0 + a1 exp(ξ)

b0 + b1 exp(ξ)
, ξ = b(x− ct) , (33)

and substituting in Eq. (32) we find that the equation

admits the solution

v(x, t) =
bb0

(1 − n)(b0 + b1 exp(ξ))
, ξ = b

(

x+
bt

n− 1

)

,

where b0, b1, and b remain arbitrary. Thus, by setting
b0 = b1b2, we conclude with the one-wave solution

v(x, t) =
bb2

(1 − n)(b2 + exp(ξ))
, ξ = b

(

x+
bt

n− 1

)

, (34)

where b and b2 remain arbitrary. Then, by assuming a
function of the form

v(x, t) =
a0 + a1 exp(ξ) + a2 exp(2ξ)

b0 + b1 exp(ξ) + b2 exp(2ξ)
, ξ = b(x− ct) ,

and substituting in Eq. (32) it is quite easy to verify that
all solutions obtained are equivalent to Eq. (334). Of
course, during the above process, we assume that n 6= 2,
otherwise we have the classical Burgers equation which is
known to be integrable.[60]

Regarding two-wave solutions, we attempted to solve
Eq. (32) via the ansatz (29) but failed. We believe that
the ansatz (29) is not convenient, since some intermediate
constants are actually set equal to zero and some solutions
may be missed. Alternatively, we followed Ref. [24] and
searched for a two-wave solution of Eq. (32) in the form

v(x, t) =
a10 exp(ξ1) + a01 exp(ξ2) + a20 exp(2ξ1) + a11 exp(ξ1 + ξ2) + a02 exp(2ξ2)

1 + b10 exp(ξ1) + b01 exp(ξ2) + b20 exp(2ξ1) + b11 exp(ξ1 + ξ2) + b02 exp(2ξ2)
, (35)

where ξi = bi(x− cit) i = 1, 2. However, a first study of

the resulting algebraic system led only to two cases:

(i) n = 2, which corresponds to the classical Burgers
equation.

(ii) b1 = b2 and c1 = c2, which turns Eq. (35) into a
one-wave.

Thus, the problem of finding multi-wave solutions for

Eqs. (26) and (27) remains open.

9 Concluding Remarks

The Exp-function method has initiated an explosive re-

action in the scientific community to find supposedly new
exact solutions of nonlinear evolution equations. It is very
likely that the flow of papers describing the application of

this method will continue in the future.
In this paper, unlike Ref. [35], we focus on some short-

comings of the Exp-function method only. First, we refer
to two of the many papers in which the careless applica-
tion leads to incorrect results. As mentioned in Step 5 of
Sec. 2, substitution of Eq. (3) into Eq. (1) usually results in
a highly nonlinear algebraic system. Thus, one encounters
tedious calculations (even when using a computer algebra
system) and must be extra careful not to make any mis-
takes, as well as not to miss any solution of the system,
thus not to miss any solution of the equation. It would be
wise always to check our results by direct substitution.

Secondly, we refer to some redundant calculations that
should be omitted. Thus, the balancing procedure cannot
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add much and should be left aside, while some cases of
the Exp-function method are identical, and should not be
considered as well, since they lead to the same solutions.
Moreover, we refer to some examples where a single case or
different cases of the Exp-function method lead to equiv-
alent solutions. Thus, after finding some solutions, one
should not leave them as they are, but rather compare
them with each other and/or try to simplify them, by
omitting some redundant constants or else.

To summarize, we believe that there should never be a
blind trust in using the Exp-function method, one should
always be able to justify why the output is a believable
answer.

Last, we concentrate on a particular work, where the
so-called double-Exp function method is used in order to
produce both one-soliton and two-soliton solutions. We
first show that all the results are wrong and present the
correct one-wave solution. Then we argue on the ansatz
(29) and propose the use of a form (35), as being more
convenient. In fact, it is easy to verify that the single
form

u(x, t) =
f1(ξ1, ξ2)

f2(ξ1, ξ2)
, ξi = bi(x− cit) , i = 1, 2 , (36)

where

f1(ξ1, ξ2) = a10 exp(ξ1) + a01 exp(ξ2) + a20 exp(2ξ1)

+ a11 exp(ξ1 + ξ2) + a02 exp(2ξ2)

+ a30 exp(3ξ1) + a21 exp(2ξ1 + ξ2)

+ a12 exp(ξ1 + 2ξ2) + a03 exp(3ξ2) ,

f2(ξ1, ξ2) = 1 + b10 exp(ξ1) + b01 exp(ξ2)

+ b20 exp(2ξ1) + b11 exp(ξ1 + ξ2)

+ b02 exp(2ξ2) + b30 exp(3ξ1)

+ b21 exp(2ξ1 + ξ2) + b12 exp(ξ1 + 2ξ2)

+ b03 exp(3ξ2) + b40 exp(4ξ1)

+ b31 exp(3ξ1 + ξ2) + b22 exp(2ξ1 + 2ξ2)

+ b13 exp(ξ1 + 3ξ2) + b04 exp(4ξ2) ,

can reveal in a very simple way the known two-wave so-

lutions of many significant PDEs, such as the Burgers,

the KdV, the modified KdV, the sine-Gordon, and the

Fitzhugh–Nagumo equations.

There are of course many significant PDEs that ad-

mit rational-wave solutions, i.e., rational combinations

of exponentials and polynomial functions. One such ex-

ample is the Fitzhugh–Nagumo equation which reads as

ut = uxx + u(1 − u)(u − a), and, for a = 1, admits the

solution

u(x, t) =

√
2(c1

√
2 + 2c2 + c2

√
2x+ 2c2t) exp(x

√
2/2 − t/2)

2[c0 + (c1 + c2x+
√

2c2t) exp(
√

2x/2 − t/2)]
, (37)

where c0, c1, and c2 are arbitrary constants.[36] Of course, the generalization (36) of the Exp-function method cannot
reveal such solutions, due to the initially assumed form of the solution. However, we can alternatively generalize
relation (33) by considering polynomials in x and t, instead of constants. Thus, we can assume that

u(x, t) =
(a00 + a10x+ a01t) + (a11 + a20x+ a02t) exp(ξ)

(b00 + b10x+ b01t) + (b11 + b20x+ b02t) exp(ξ)
, ξ = b(x− ct) . (38)

Clearly, using the ansatz (38), we can now reveal solutions such as Eq. (37).
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[27] İ. Aslan, Int. J. Nonlinear Sci. Numer. Simul. 11 (2010)
619.

[28] W.X. Ma, T. Huang, and Y. Zhang, Phys. Scr. 82 (2010)
065003 (8pp).

[29] S. Zhang, Nonl. Sci. Lett. A 1 (2010) 143.

[30] A.T. Ali and E.R. Hassan, Appl. Math. Comput. 217

(2010) 451.

[31] N.A. Kudryashov and M.B. Soukharev, Regul. Chaotic
Dyn. 14 (2009) 407.

[32] N.A. Kudryashov, Commun. Nonlinear Sci. Numer.
Simul. 15 (2010) 2778.

[33] N.A. Kudryashov and M.B. Soukharev, Commun. Non-
linear Sci. Numer. Simul. 15 (2010) 1765.

[34] N.A. Kudryashov, Commun. Nonlinear Sci. Numer.
Simul. 14 (2009) 1891.

[35] N.A. Kudryashov, Commun. Nonlinear Sci. Numer.
Simul. 14 (2009) 3507.

[36] N.A. Kudryashov and N.B. Loguinova, Commun. Nonlin-
ear Sci. Numer. Simul. 14 (2009) 1881.

[37] E.J. Parkes, Commun. Nonlinear Sci. Numer. Simul. 15

(2010) 2769.

[38] E.J. Parkes, Appl. Math. Comput. 215 (2009) 864.

[39] E.J. Parkes, Appl. Math. Comput. 217 (2010) 3575.

[40] N.A. Kudryashov, Phys. Lett. A 373 (2009) 1196.

[41] N.A. Kudryashov, J. Comput. Appl. Math. 234 (2010)
3511.

[42] I. Aslan, J. Comput. Appl. Math. 234 (2010) 3213.

[43] I. Aslan, Comput. Math. Appl. 61 (2011) 1700.

[44] I. Aslan, Appl. Math. Comput. 217 (2010) 2912.

[45] Z. Navickas and M. Ragulskis, Appl. Math. Comput. 211

(2009) 522.

[46] Z. Navickas, L. Bikulciene, and M. Ragulskis, Appl. Math.
Comput. 216 (2010) 2380.

[47] Z. Navickas, M. Ragulskis, and L. Bikulciene, Commun.
Nonlinear Sci. Numer. Simul. 15 (2010) 3874.

[48] A. Bekir and A. Boz, Phys. Lett. A 372 (2008) 1619.

[49] E. Fan, Phys. Lett. A 277 (2000) 212.

[50] A. Bekir and A. Boz, Chaos, Solitons & Fractals 40 (2009)
458.

[51] C. Chun, Comput. Math. Appl. 61 (2011) 2107.

[52] D.D. Ganji, A. Asgari, and Z.Z. Ganji, Acta Appl. Math.
104 (2008) 201.

[53] B.C. Shin, M.T. Darvishi, and A. Barati, Comput. Math.
Appl. 58 (2009) 2147.

[54] M.Y. Moghaddam, A. Asgari, and H. Yazdani, Appl.
Math. Comput. 210 (2009) 422.
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