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ABSTRACT: The Miura Ori is a mechanism composed by a polyhedral
deployable surface. It has favorable qualities from engineering prospective that
lead the growing interest on it. The present work focuses on its transmission of
motion. The mechanism can be represented by spherical 4 bar linkages, and on
this account a simple and effective mobility formula is presented. The
mechanism having a number of excessive rigid members, it is also possible to
remove all or some of them, variously arranged. The changes are included in
the calculation of allowable mobility of the system. The resulting tool can be
directly used for the design of deployable Miura Ori surfaces with customized
shape.
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1. INTRODUCTION

1.1 The Miura Ori map

Miura Ori is a noteworthy foldable surface that has
been known in origami and rediscovered separately by
Miura [1] and [2] Brunner.

It has been used in a fixed roof (Meguro
Persimmon Hall, Tokyo) for the acoustic quality of the
corrugated surface and it was proposed for a solar
antenna [3], where also its kinematic characteristics
can be fully exploited.

Geometrically, it constitutes a tessellation of the
plane formed by trapeziums all equal to each other,
translated along one inclined side and mirrored around
one parallel side Figure 1. Kinematically, it achieves
a mechanism composed of rigid bodies (the faces) and
connected by simple hinges. The mesh is also flat
foldable, developable, and can achieve a great
efficiency of packaging.

Flat foldability means that in the folded
configuration all faces lie in parallel planes, what
allows a very compact transversal section. The two
conditions ruling locally (for each inner vertex) have
been known far back in origami world. With labels
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referring to Figure 1 these are: (Maekawa and
Kawasaki’s Theorem) For any inner vertex of the
diagram, the sum of alternate position angles o. must
be: Zaygq = Z0even = 180°, and (Maekawa’s Theorem)
the difference between the number of positive and
negative dihedral angles p around each inner vertex
must be | p,—p_| = 2. [4] Actually, is usually harder to
test global flat foldability, but here it is not necessary
due to the strong symmetry of the proposed mesh [5].

Moving from origami to engineering, the
developability is an important quality: a developable
surface can be flattened onto a plane without distortion
(compression or stretching) [6]. Developability is
achieved when the Gaussian curvature of each inner
vertex zero. It is also related to the mesh ability to
move rigidly. It is trivial to point out that every strict
origami is developable.

A movement is rigid if it occurs just on joints while
faces act as rigid members and do not have to absorb
the motion strain. Rigidity can be achieved if opposite
dihedral angles p around each vertex are equal and the
same-parity pair are greater than the other pair. To
control rigidity, the preliminary relationship between
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Figure 1. The Miura Ori polyhedral surface at different stages of its movement. The tiling is made by translating the faces in one
direction and mirroring them in the other. The opposite dihedral angles (shaded) are equal.

dihedral and position angles has been firstly pointed
out in [7] by spherical trigonometry and after it has
been proposed in matrix- models in [7-8] and[8-9] in
order to generalize the shape of the faces. Tachi has
also been combining panels with different orientation
and from that he has developed software for the
modelling of the surface in real time. In this case,
however, the system loses its efficiency of packaging
and needs two independent input motions [9].
Working on the classification of flexible assemblies
made of four bar linkages, Satchel recognizes the mesh
as a special case of the flexible meshes Kokotsakis
discovered in 1932 [10], and gives the geometric
description of the conditions that ensure the movement.

12. Statement of the problem
The present work investigates the mobility of the
mechanism, that is the number of independent motion
parameters which are needed to uniquely describe the
position and orientation of its members, i.e., to
describe its kinematical configuration. The mobility of
the mechanisms is one, which means that just one
input variable (here the rotation around one joint) have
to be independently controlled to bring the system into
a particular position.

The extended Grubler’s formula, the basic criterion
for counting mobility, states:

M = )L(F—J—l)+éﬁ+h
i=1

where:

M: mobility of the mechanism,

A: the number of degrees of freedom of the space in
which the mechanism is intended to function;

F-1: number of rigid faces minus the fixed one.

J: the number of joints each with fi = 1 degrees of
freedom;
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h: number of over constraints.
If the Grubler’s equation is used for the minimum
configuration of Figure 2, it is:

J
M=AMF-J-1)+ Eﬁ+h
i=1
M=34-14)+24+0=1
If we apply it to the example of Figure 3a, we get:
J

M= MF-J-1)+ Eﬁ+h
i=1

1=306-1-7)+7+ h.

h=0

And for the example of Figure 3b it is:

1=309-1-12)+ 12+ h

h=1

Finally, the example of Figure 3c gives:

1=3(12-1-17)+ 17 + h

h=2

We could go over and we would find that, increasing
the size of the rectangular mesh, we need to increase the
value of 4, so to maintain the mobility one.

Where the mobility formula has a positive value of
h, the corresponding mechanism is said to be
overconstrained: its topological structure (the types of

o

Figure 2. On the left, a polyhedral surface with a Miura Ori
pattern; on the right, its spherical linkage mechanism
representation.

(1.1)
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Figure 3. A Miura-Ori pattern and its spherical linkage
mechanism representation. (a) 6 faces generate a mechanism
made of two 4-bar linkages constrained by each other. (b) 9
faces generate an over constrained mechanism made of four
4-bar linkages arranged in a loop. (c) 12 faces generate more
4-bar linkages and increases the number of loops and so the

degree of over constraint.

joints and relationships among them) indicates that it
is a structure, while its geometry (the shape of the rigid
bodies and the relationship between joints’ axes)
allows it to behave as a mechanism.

Overconstrained mechanisms, once they are fixed,
become hyper static structures and so are especially
suitable in those applications where stiffness and
stability to loads are important. On the other hand,
since these mechanisms have more constraint
parameters than what the joints types and number
would need, it is also possible to remove excessive
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members and still to obtain the same movement, so
constructing a lighter, customized and cheaper system.
The latter propriety will be exploited in the present
paper, in order to develop kinetic polyhedral surfaces,
which overall shape can be customized for practical or
aesthetical reasons.

Firstly, we need to formulate a simple and effective
description of the mobility of the mechanism that does
not rely on the overall shape of the surface.

Mobility had been previously outlined in [11]. Here,
the mechanism is analysed under a static point of view,
recognized as, externally, determinate and internally
overconstrained. Mobility is then outlined referring to
the number of static unknowns. The more members
compose the surface, the more becomes difficult
counting the degree of overconstraint, due to the
presence of parallel and intersecting axes, nested
loops, and in general geometrical conditions. The
reference in particular takes care of the presence of
loops by modelling some revolute pairs as spherical
joints and contact points case by case, in a recursive
way, which does not end to a straightforward
approach.

A general approach is presented in [12]. The
mechanism is modelled as a pin-jointed bar
framework, where each face is substituted by five bars
(one diagonal bar for planarity and four at the
boundary), while each original vertex is replaced by a
revolute joint with three independent parameters.

It results: M = b-3V —h
where M is the mobility; b the number of bars; V the
number of vertexes and 4 the number of over
constraints.

Despite the above equation gives the right results, it
needs the transformation of the panel system into a bar
mechanism, adding virtual elements and calculations.

In order to gather the geometrical features, here the
mechanism of the polyhedral surface is directly
investigated.

13. Spherical linkage analogy

In Figure 2, four faces reciprocally connected are
represented in a generic folded state. The axes of
rotation of the revolute pairs, of the hinges, are aligned
with the boundary of faces and intersect in a common
point V;. Moreover, since the faces are considered
rigid bodies (1, 2, 3, 4 in figure), then the motion is
rigid. As showed in [14], the movement of such a
polyhedral surface can be directly described through a
spherical linkage. The analogy holds of course until
the extreme positions of the mechanism are discarded.
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When the mesh is completely unfolded or completely
folded, in fact, all the joints would be on the same
plane or coplanar.

Under the above restriction, vertex V; will be the
centre of the sphere, while the joints are the vectors
connecting it to the spherical members 1, 2, 3, 4. The
result is a four bar linkage with revolute pairs only, and,
as every linkage of this type, it has mobility one [14].

2. MOBILITY

2.1 Iwo-strips condition

The spherical linkage analogy allows us to express the
following:

THEOREM

If the arrangement of faces generates a double-line
path, then the Miura Ori surface is a mechanism with
mobility one. 2.2)

PROOF

We consider bigger and different surfaces. If there
are five faces, clearly mobility of the mesh increases to
two. Instead, a sixth face causes some ambiguities: if
the face is connected to the previous through just one
joints, then mobility increase. Instead, if the face
shares two joints with the priors, so that all together
they create a double-strip (Figure 3a,) another
spherical linkage is created. For construction, all the
members have equal length. Focus now on the added
spherical linkage: it shares two members (3, 4 in
figure) with the priors. Every four bar linkages,
spherical or planar, made of revolute joints with two
rigid members in common are constrained to move
together. Thus, here also the movement of one linkage
uniquely determines the movement of the other.

In Figure 3b we have a square surface. Again
rotating one joint all the faces move accordingly. In the
spherical representation, each four—bar linkage shares
two members with both the linkages adjacent to it.

If we would write the compatibility equations, i.e.,
the equations geometrically relating the input and
output variables of a mechanism, we will end having
two linearly dependent equations describing one of the
members 1, 3, 7 or 9. In fact, once decided the input
angle, for example the angle between members 1 and
2, we would be able to describe the position of
members 4 and 5 also, closing the linkage centred in
V.. Then, we could move counterclockwise and use
the position of members 2, 5 to describe the linkage
centred in V3. Then we could use members 5, 6 to
describe the linkage centred in V,. At this point, we
would know the position of all the members except n.
7. This variable could be described both through the
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linkage centred in V, and the one centred in V;.
Member 7 is excessive: we do not need it to find out
all the rotation angles and it could be removed without
consequences for the overall movement of the
mechanism. If we proceeded starting from another
linkage, and/or moving clockwise, we would have find
one different excessive member, nevertheless, it would
had been just one, that is member 3,7 or 9. The same
holds in the polyhedral surface (Figure 3b, on the
left): we can remove face 1, 3, 7 or 9 and still the
surface will fold the same way. Especially, we point
out that the polyhedral surface after removing
whatever one excessive member would be made of
faces each doubly connected with the others, forming
a double line strip.

In Figure 3¢ we have 12 faces corresponding to 6
spherical linkages. We could start the kinematic
analysis from the linkage centred in Vj, and then
proceed counter clockwise to the linkages centred in
V,. Vs, V. At this point, we know the position of all the
members except n. 9 and n. 10. We could calculate
them using the information from the linkage centred in
V, or the one centred in V5. And we could remove
members 9 and 10 without affecting the movement of
the mechanism. Again, we could start the analysis from
another 4-bars linkage, move in a different way, and
always we would have needed to know the position of
two members from one linkage to describe the
following. As before, in the corresponding polyhedral
surface we could remove the found excessive faces and
we would still have a double-strip of faces.

The result is useful under the design point of view.
We can variously remove faces from a compact shape,
and obtain a great range of shapes: we still preserve
the required mobility, until the double-line condition
hold, as in the samples of Figure 4.

2.2. Mobility formula

Recalling the result in (1.1), we can identify the
number of overconstraints 4 with the number of
excessive members in the spherical linkage analogy
and with the corresponding faces in the polyhedral
surface. We call thus Excessive Faces, F,,, the
maximum number of faces that can be removed
without affecting the mobility of the mechanism.
Then the Grubler’s formula can be rewritten as:

j
M=A(F—J—1)+Eﬁ+Fex

i=1

2.3)

Actually, the Grubler’s equation is usually adopted
for counting the mobility of one spherical linkage,

International Journal of Space Structures Vol. 28 No. 2 2013
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(c) M=1
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Figure 4. Until there is a continuous double line path involving all the remaining faces of the mesh, faces can be removed
without affecting mobility. The samples have all mobility one.

centred on one sphere. Here we have more linkages
but we can still apply the formula because the two
spheres can be made coincident due to their
construction. Consider the example in Figure 3b. The
loop of faces 1, 2, 3, 4 shares two faces with loop
3.4.5.6 and, from the description of the surface in §1.1,
faces 5, 6 and 1, 2 are the mirrors of faces 3, 4 along
the common sides. Similarly, the two linkages 1, 2, 3,
4 and 3, 4, 5, 6 have members 3, 4 in common and the
others 1, 2 and 5, 6 are both mirrors of 3, 4. We can
imagine therefore to mirror back one linkage above the
other, and we get now two coincident spherical
linkages, centred on the same sphere and connected to
each other.

2.3. Number and position of the excessive
faces

Let’s apply the mobility formula to the example in
Figure Sa.

J
M=AF-J-D+ ) fi+F,
121

1=3(170-313-1) + 313 + F,,
F,. =120

International Journal of Space Structures Vol. 28 No. 2 2013

Looking to Figure Sb, we can remove the excessive
faces, proceeding freely in various ways and, since we
respect the double-strip condition, the mobility will
stay unchanged. Nevertheless, the maximum number
of removable faces, Fex, can be obtained only if the
removed faces are grouped together in no more than
two assemblies (Figure 5c¢).

Finally, looking to Figure 5d, we also note that the
number of Fex can be directly inferred by the overall
rectangular dimension of the surface. In fact, whatever
the final shape of the system, for the case in which
M =1 the removable faces are equal to (L,-2) (L,—2),
where L;, L, are the number of faces in the overall
boundary length dimension of the discrete conjugate
net.

In the represented case, it is:

Ly=10,L,=17

Foy = (L1=2) (Lx-2) = 120

Of course, if we wish to design a mechanism with
mobility 2, the maximum number of faces will be one

more of the previous. We can thus write:
For = (L1-2) (Ly-2) + (M-1) 2.4

2.4. Two-strips condition

105



106

(a) Starting mesh

Shapes of Miura Mesh Mechanism with Mobility One

(b) Removed faces

(c) Double line strip

Maximum number

(d) of excessive faces

Figure 5. Starting from a rectangular surface (a), it is possible to remove faces until a two-parallel lines path is preserved (b, c).
Desired the wished mobility, the number of excessive faces can be easily calculated from the overall dimension of the initial
surface (d).

A1

+ 1DOF Common joint + 1IDOF

A2 + 1DOF

(€) M=1

Common face

A2 + 1DOF

(b) M=2

Common face

An: Area made of double line strips
B : Faces common to two areas
/ :Joints common to two areas

Figure 6. (a) If double-line areas share one joint thus 2 independent variables are added; (b) if they share one face, still the two
areas can fold independently; (c) if they share at least two joints, whatever is their distance, they generate a mesh with mobility
one; (d) if they share two faces, mobility is one.

It should be observed that, to maintain mobility
unchanged, the double line condition presented in
§ 2.2 does not impose that the strips of faces are
adjacent to each other. In Figure 6, in case a) two
double-strips meshes share just one joint. Each of
them folds independently and another variable is due

106

to the rotation of the common joint: the total mobility
is three. In case b) they share one face, they have two
joints in common, and the folding of one area sets just
the inclination of the second area with respect to the
common face. The overall mobility is two. In case c)
they share two joints. The position taken by the

International Journal of Space Structures Vol. 28 No. 2 2013
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(d) M=1

An: Area made of double line strips
l : Joints common to two areas

/ : Faces common to two areas

Figure 7. Survey of loops made of double-strips areas. (a) Loop of three areas connected by joints. (b) Loops of more than three
areas with three consecutive one-joint connections. (c) Loop made of areas connected by faces. (d) Loop of more than three
areas without two consecutive one-joint connections.

common joints during the movement of one area
constrains the other area to fold accordingly. The
overall mobility is one. In d) they share four joints and
from above mobility is one. Hence, the double line
condition does not mean strictly that faces have to be
arranged in a large strip: they have just to create two
parallel strips, whatever is their distance.

Let’s now extend the procedure to the cases where
more double-strips areas are involved. If they generate
an open tree, then

Consider now a closed loop made of three double-
strips areas. If the three areas are connected to each
other each by one joint, the movement of one area
imposes the distance between the other two, in fact
they forms a triangle of areas. Hence the mobility does
not increase (Figure 7a). Even more so, if each of the
three shares with the adjacent one face, then mobility
does not increase.

If the involved areas are more than three, connected
each other by one joint, when one moves it cannot
univocally set the position of the others, and mobility
increases (Figure 7b).

International Journal of Space Structures Vol. 28 No. 2 2013

The use of common faces avoids the problem, since
when one moves, it constraint the rotation of the
adjacent areas (Figure 7c¢).

We can still use one joint connections in a closed loop
made of more than three areas, but connections made of
just one joint have not to be adjacent. Figure 7d
illustrates this case: there are two connections made of
one joint, but these are separated by other connections
made of one face.

We can summarize the previous survey in the
following note.

REMARK

Two or more double-strips areas A can be connected to
each other with mobility one in one or more closed
loops if each two adjacent areas are connected by at
least one joint or one face, so that there is not a loop of
more than three areas respectively connected to each
other by just one joint. (2.5)

3. CUSTOMIZATION

3.1 General rule

The high redundancy of the mechanism allows a high
freedom in design. We already discussed the possibility
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One double line area.
(a) M=1

one intersection face. Fi.

(c) M=1

Single line strips.
(b) M=1

and intersection faces, Fi,...,m.

(d) M=1

Figure 8. The arrangements of the double —line area and of single-line strips as well allow customizing the shape of the
polyhedral surface.

to remove all the excessive faces by using the double-
strips condition. We can thus customize the shape of the
double-strips area A (Figure 8a). Then, if our intent is
not to remove all the excessive faces, but to obtain a
special arrangement, under some geometrical conditions
we can except the double-strip rule. These can help to
customize the system for special needs. For example, it
is needed to construct a foldable roof, and it should be
partially panelized; or there is a mechanism that has to
cover a specific path, discarding the panels whose
motion is not of interest or unwanted.

To investigate these possibilities, we define single-
line strip, Sn, a straight strip of n faces where each face
is connected to no more than other two faces, in
opposite sides (Figure 8b); we call strip’s faces, Fss,
those that belong to such single-line strips. A single-

108

line strip can be connected at its extremities to a
double-strips area A, left free, or connected to an
Intersection Face, Fi. We define an Intersection Face,
Fi, the one face that separate two or more single-line
strips (Figure 8c).

In particular, given a double-line area and single-
line strips in between, the single-line strips do not
increase the mobility of the mechanism if they abide
by the following necessary and sufficient condition:
REMARK
Every single-line strip, S, has to be composed of no
more than two faces, F's, and be connected at its ends
to a double line area, or be inserted in a loop of such
single-line strips together connected at least twice to
the double-line area A.

International Journal of Space Structures Vol. 28 No. 2 2013
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If Intersection Faces, Fi, are present: each connects
at least two strips so that all together (F's + Fi) they are
strictly fewer than five faces; there are not four strips
each made of two faces that are pairwise collinear. (3.1)

The demonstration of the above statements is
developed in the following paragraphs.

3.2. Single-line strips

If a single-line strip is connected at both its extremities
to a double-strips area, and is composed just by one or
two faces, then it cannot rotate independently from the
rest of the mesh. Looking to Figure 9, the side / of the
single-strip faces and their reciprocal distance 2d,
generate a triangle. The dimension of / is due by
construction; d; is given by the adjacent faces. Then,
in every phase of movement, discarded passing though
singularity position, the rotation angles o, is the same
for all the faces and is the only variable to be
determined (the mobility of the mesh).

In Figure 10 the single-line strip is again connected
at its extremities to a double-line area, but it is
composed of four faces. The dimension of / is due by
construction; ds is given by the faces behind. For each
value a; of the rest of the mesh, it is necessary to fix one
more angle a (o, ..., as in figure) to calculate all the
variables. The more faces compose the single-line strip,
the more variables stay independent from the main
mesh. The mobility of a mesh where there are one or
more single-line strips can then be calculated as follow:

M=1

2d, : Distance due to plates on the back
I: Lenght of plates

Figure 9. If a single-line strip is connected at both its
extremities to two -lines areas and is composed by just one or
two faces, then it is constrained to move accordingly to the
rest of the mesh.

International Journal of Space Structures Vol. 28 No. 2 2013
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M=2

2d,: Distance due to plates on the back
I Lenght of plates

Figure 10. If a single-line strip longer than two faces is
connected twice to a double-line area, it can rotate
independently from the main mesh, so mobility increases.

M =M, + Fs—S'- 2582 (3.2)
where M is mobility, M, stays for the mobility of the
double-strip area, Fs is the number of faces that
compose all the single-line strips together; S! is the
number of single-line strips made of just one face, 2
is the number of single-line strips made of just two
faces.

The deployable mesh in Figure 8b has mobility one
and exhibits a grid of horizontal and vertical voids,
separated by single-line strips.

3.3. Angle made by single-line strips

If two single-line strips are connected to the same
intersection face Fi, so that all together (Fs + Fi) they
are strictly fewer than five faces, they constrain the each
other movement and therefore mobility does not
increase. Looking to Figure 11, two strips intersect on
the middle of the mesh. The angle ¢ and distance d; are
given by the overall movement of the mesh. The
position of the intersection face Fi is constrained in the
x-direction by the single-line strips in behind and in the
y-direction by the adjacent strip. Then, the longitudinal
overall dimension of each single-line strip is
constrained and the faces completely follow the
movement of the overall mesh. The same holds if both
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M=1

d;: Distance due to plates on the back
I Lenght of plates

Figure 11. If single-line strips generate an angle, and the
intersecting face plus the number of their faces is less or exact
four, then their rotation is constrained.

d, . Distance due to plate on the back
3d, . Distance due to plates on the back

M=2

Figure 12. If single-line strips generate an angle and the
number of their faces, excepting the intersection face, is
equal or more than four, mobility changes accordingly.

strips are composed of just one face. Instead, mobility
increases if the strips, including the intersection face Fi
, are globally made of five or more faces, as illustrated

in Figure 12. Thus:
M=1+Fi+Fs—-4,with Fs=4
M =1, with Fs <4 (3.3)

where Fi is the intersection face.
A system with mobility one that takes advantage of
this possibility is shown in Figure 8c.
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3.4. Intersection of single-line strips

The observations done regarding single-line strips and
their matching can be further developed in case where
single- line strips are connected to the same
intersection face, creating T-like or X like
intersections.

If three single- line strips intersect, and their length
is short enough, that is, they are made of just one or
two faces, then their combination does not affect
mobility.

Looking to Figure 13, each strip is composed just
of one or two faces. Calling S, S», ..., S,, each single-
line strip, then S; and S, constraint each other, and the
same is for Sgand S7. So, at each step of movement, the
positions of the intersecting faces F;;, F3 are given. In
the middle of the mesh, S3is connected on the left to
the constrained F;; and creates an angle of less than
5 faces with S; and Fj,. The rotation angles of S3, Sy
and F, therefore are also constrained. Finally, Ss is
connected on the right to F;3, which rotation is given,
and on the left is connected to Fj, which rotation is
also given. Thus, S5 have to move accordingly to the
rest of the mesh. Hence:

REMARK

The strips made of one or two faces, combined in
one or more T-like intersections, do not affect the
mobility of the system until they are globally
connected twice to a double —line area. (3.4)

A special condition occurs if four strips each made of
two faces are pairwise collinear. Looking to Figure 14,
S, §> meet in F;; and are connected to the same double

Si=1,...,n= Single-line strips
Fi = Intersecting faces

o
[24] | (24]

2d4: Distance due to plates on the back
I: Lenght of plates

M=2

Figure 13. Single-line strips each made of one or two faces
can create loops connected to the double-line area, without
affecting mobility.

International Journal of Space Structures Vol. 28 No. 2 2013
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Fi = Intersecting faces
Si=1,...,n = Single-line strips

2d1 2d1

2d4: Distance due to plates on the back
I: Lenght of plates

M=2

Figure 14. If in a loops of single —line strips there are four
strips pairwise collinear, they add an independent rotation
parameter.

—line area and so constraint each other. The same holds
for S; and S;.

Below, S¢ and §; meet at an angle in F}, and are
totally composed of four faces. For what demonstrated
in §3.3, they add one independent variable to the
overall mechanism: we need to decide the rotation
angle between F; and Sg or between F;, and §; so to
arrest the free rotation of F;. On the right, the same
relationship holds between S;, S5 and Fj,. Since we just
defined the orientation of Fj,, this occurrence here
does not increase mobility. Finally, S, is a single-line
strip composed of two faces. For what demonstrated in
§ 3.2, it does not increase mobility. Together, the
mechanism has mobility two, one due to the overall
movement, one due to the orientation of Fj. This
special circumstance happens wherever four single-
strips, each made of two faces, are in pairs collinear. It
is possible to state that:

REMARK

Single- line strips can be connected together
without affecting mobility if each strip is composed by
one or two faces, and there are not four strips each
made of two faces that are pairwise collinear.  (3.5)

3.5. Grids of reconnecting strips
In §3.4 it has been shown that single —line strips can be
connected to other single-line strips without changing
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(c) Design process of the mesh in figure a

Figure 15. In case (a) starting from the double line area (light
grey), a first group of single -line strips and intersection faces
are constrained by the double line area. A second group is
connected to it and to the double line area. So on, each
following group is constrained twice by the previous groups
and / or by the double line area. The overall mobility is one.
(b) There is one face missing respect to the previous group,
which affects mobility of more strips constructed upon it.
The total mobility is 4. (¢) Connecting process of the single-
line strips.

mobility. The necessary condition, in fact, is that the
strips composed by no more than two faces belong to a
loop connected to a double line area. Going further,
strips can also generate multi-loops of this kind. The
sample of Figure 15a shows a sequence of horizontal
and vertical strips connected each other, and its
mobility is one. Figure 15b, instead, shows a mesh
with just one more face removed. Its mobility is four,
since the removed face breaks more loops of single
—line strips. The design process of this kind of surfaces
is showed in Figure 15c¢: once decided the shape of the
double line area, a first sequence of single-line strips
and intersection faces is added, constrained by the main
mesh. This way, it actually acts like the double-strip
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area, and can be used to constrain other single-line
strips constructed upon it. It is possible to state that:
REMARK

Starting from a constrained area, valid (short
enough) single-line strips and their intersections can
be connected each other in sequences and constraint
each other. (3.6)

3.6. Connection of double-line areas

If single —line strips connect separated double-line
areas, generally the only constraint to the rotation of
the strips is due to the distance between the two
double-line areas. The shorter single-line strip with its
rotation sets this distance; all the other single-line
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Shapes of Miura Mesh Mechanism with Mobility One

strips involved, to stay connected to the double-strips
areas, have to fold accordingly (Figure 16a).

In case where the joints connecting the strips to a
double-line area are collinear and strips are
composed of just one or two faces, like in Figure
16b, then rotation angles o, are constrained to be all
the same. In fact, since the strips are made of the
same number of equal faces, they can cover the
distance d, between double-line areas all by rotating
the same amount. Moving further, if two of such
strips are connected to the same double —line area
with non-parallel joints, then the rotation angle of the
connecting joint is constrained to rotate accordingly
also to the rest of the mesh, otherwise faces would
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(d) M=1

Figure 16. (a) If single —line strips connect separated double-line areas, the distance between the two double-line areas change
linear along adjacent strips, but this requirement can be differently satisfied, depending on the number of connecting strips and
their faces. (b) If the strips are made of a single face, and their joint are collinear, then their rotation angles have to be equal to
each other. (c) If the faces’ joints are not collinear, they rotate accordingly to the double-lines areas and mobility is one.
(d) Mobility is one until there is at least one strip made of one face, and the others no more than two and at least two joints
connecting strips and double-line areas are not collinear.
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intersect each other (Figure 16c). The same holds
until at least one strip is made of just one face or one
joint (strip of zero length), the others of no more than
two faces (Figure 16d). Thus:
REMARK

Two double line areas are constrained to fold
together if they are connected through one strip made
of one face or one joint and at least another strip,
composed of no more than two faces, so that the gap
between at least two strips is an even number of faces.

We can write:

M=+Fg-2S+S'-Fi+q
where:

M is mobility,

Fs: the number of faces that compose all the single-
line strips together;

S: the overall number of single-line strips,

S': is the number of single-line strips made of just
one face,

g: 0 if the gap between at least two strips is an even
number of faces.

q: 1 if the gap between every two strips is an odd
number of faces. (3.7

4. GRIDS OF RECONNECTING
DOUBLE-LINE AREAS

The information gave so far should allow the design of
custom Miura Ori meshes with mobility one. To
design them, there is no need of software since the
constraints are based on simple rules and basic
calculation. Moreover, the overall sketch could be
made also without rules, because dimensions are
expressed as number of equal faces.

One could design a simple double strip path, as in
Figure 15, or could design a more complex shape,
with empty areas. We would like to describe the design
process for such a surface, exemplified in Figure 18.

Firstly, we made a sketch of the final model
(Figure 17a). Then we began to remove the first
faces, which separated areas A; and Ag from the rest
of the mesh. From Remark 3.7 all the areas fold
accordingly. In fact, between A; and the central mesh
there are two single-line strips with an even number
of faces in between. Both strips have 0 length (one
joint per strip). The same holds between Ag and the
central mesh. (Figure 17b)

Then, we needed to divide the main area into two
parts (AA¢ and A3A;) to host the central void. Let’s
focus on one of these parts and on its connections. From
§ 2.4, A)Ag and A are two double-strips areas connected
by a joint: each of them moves with its own mobility,
and another degree of freedom is due to the joint
connecting them. The same holds between A,Aq and Ag.
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(e) M=1

f) M=1

Figure 17. Design process of the Miura Ori mechanism
illustrated in Figure 18.

In Figure 17¢ we see the whole mesh at this stage.
There is a closed loop of double-strips areas so that
each is connected to the adjacent by one joint or by one
face. The loop is comprised of more than three double-
strips areas and there are two consecutive connections
made of just one joint. Hence from Remark 2.5
mobility increases.

At this point, Figure 17e, we added the lateral areas
Asand As A, is connected to its adjacent areas through
one joint and through one face. As is connected
through one joint and through one single line strip of
one face Globally, they break the series of consecutive
single joint connections previously generated and
bring the mobility back to one.

Finally (Figure 17e), we added minor connections
made of single line strips. These strips obey remarks
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Figure 18. A polyhedral surface with a customized Miura Ori
pattern with mobility one. The surface can be designed
without the help of any software.

3.4 and 3.6. In fact, they are globally connected twice
to a double —line area.

5. CONCLUSION

The present work focused on mobility of the Miura
Ori mesh, a polyhedral surface that acts as an
overconstrained mechanism.

It has shown an easy and effective rule to point out
the number of excessive faces that can be removed
without affecting the mobility of the system.

Exploiting the presence of excessive faces, the
possibility to further customize the mesh has been
presented and the rules governing the reciprocal
constraint of faces has been shown. In particular, we
point out that the design process could be performed
without any software. The overall shape could in fact
be sketched by hand and then one could develop the
connections between faces.

The present paper focuses on the kinematic and
design of the mesh, and allows the design of even
complex profiles that transmit motion univocally (i.e.
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with mobility one). Although not of interest here,
moving from design to construction it should be noted
that such a possibility should be exploited taking care
of the structural aspects: a surface with high
dissymmetry between branches could be not
convenient for the transmission of forces, like in fixed
structures.

A further line of investigation would be the
opportune use of added degree of freedom. For
example, due to the pattern of its faces, the Miura Ori
is a developable surface: in the unfolded state it is
planar. Other shapes can be achieved changing the
geometry of faces, but the efficiency in packaging is
heavy reduced. By removing faces opportunely, the
mesh could reach instead other surfaces in the
unfolded configuration.
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