
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015
1297

PAPER

Model-Based Contract Testing of Graphical User Interfaces

Tugkan TUGLULAR†a), Member, Arda MUFTUOGLU††, Fevzi BELLI†,†††,
and Michael LINSCHULTE††††, Nonmembers

SUMMARY Graphical User Interfaces (GUIs) are critical for the se-
curity, safety and reliability of software systems. Injection attacks, for in-
stance via SQL, succeed due to insufficient input validation and can be
avoided if contract-based approaches, such as Design by Contract, are fol-
lowed in the software development lifecycle of GUIs. This paper proposes
a model-based testing approach for detecting GUI data contract violations,
which may result in serious failures such as system crash. A contract-based
model of GUI data specifications is used to develop test scenarios and to
serve as test oracle. The technique introduced uses multi terminal binary
decision diagrams, which are designed as an integral part of decision table-
augmented event sequence graphs, to implement a GUI testing process. A
case study, which validates the presented approach on a port scanner writ-
ten in Java programming language, is presented.
key words: model-based testing, GUI testing, event sequence graphs, multi
terminal binary decision diagrams

1. Introduction

Input validation testing aims to show the existence or non-
existence of certain defects by referring to the robustness of
the software under consideration [1]. The goal of the present
approach is to build test scenarios from a model, which is
developed from the specifications of the graphical user in-
terface requirements [2]. The graph model chosen for user-
software communication is event-based, where vertices of
the graph, that is, event transition diagram, are designated
to inputs and system responses. The arcs and paths resem-
ble event sequences, to build up the event sequence graph
(ESG), that enable testers to formally seize the nature of in-
teractive systems. This paper suggests the nodes of ESG be
advanced by decision tables (DTs) to represent Boolean al-
gebraic constraints on input data of a system under consider-
ation (SUC) [3]. More important, the approach improves the
existing approach by integrating design by contract (DbC)
patterns to form contracts and by utilizing multi-terminal
binary decision diagrams (MTBDDs) to generate test cases
from decision table rules for input validation.

Preventing the input from ever getting to the applica-

Manuscript received October 31, 2014.
Manuscript revised February 16, 2015.
Manuscript publicized March 19, 2015.
†The authors are with Izmir Institute of Technology, Izmir,

35430 Turkey.
††The author is with M.O.S.S. Computer Grafik Systeme

GmbH, 82024 Munich, Germany.
†††The author is with University of Paderborn, Germany.
††††The author is with Andagon GmbH, 50933 Köln, Germany.
a) E-mail: tugkantuglular@iyte.edu.tr

DOI: 10.1587/transinf.2014EDP7364

tion in the first place is possible only at the interfaces, such
as GUIs. GUIs should be specifically designed to filter un-
wanted input, which can be achieved through GUI data con-
tracts that are defined and used in this work. A model-based
specification of GUI data contracts is achieved through DT-
augmented ESGs.

The functional testing approach proposed performs at
the GUI level, where tests are derived from contracts by cre-
ation of test (case) input values and test oracles. Although
there are some contract-based testing techniques, the ap-
proach presented in this work for GUI testing is novel for
several reasons. First, the proposed methodology is based
on contracts, which provide information related to the inter-
face semantics of GUIs. As noted by Ciupa and Leitner [4],
the validity of a software component can be ascertained by
checking the software with respect to its contracts that have
not yet been applied to GUI testing.

The second novelty of the paper stems from enabling
the tester to provide formal specifications in the form of DT
rules. Contract-based specifications in this format are more
compact than the corresponding test code, and easy to un-
derstand and maintain. Generally, specification errors can
be revealed by testing approaches that utilize direct specifi-
cations [5]. For instance, specifications were utilized to find
boundary overflow vulnerabilities in the previous work of
the authors [6]. In addition to using contracts to automat-
ically generate test input values, contracts can be used as
test oracles as they define valid and invalid conditions for
the software. Thus, utilization of contracts eliminates the
necessity of developing a test oracle for each test case [7].
The novelty of the presented approach can be summarized
as follows:

• The term “GUI data contract” is introduced and ex-
plored using the application analyzed in the case study.
GUI data contracts are based on application domain
knowledge instead of software implementation of GUI.
The use of MTBDD for modeling data contract is the
main contribution.
• A new GUI data contract testing approach is intro-

duced along with its novel test case generation algo-
rithm. The algorithm generates test cases from a con-
tract MTBDD using equivalence class partitioning and
boundary value approaches. Solutions to problems of
test coverage criteria and test oracle within the context
of GUI data contract testing are also presented.

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers



1298
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

• The approach has been validated by means of a case
study on a port scanner, written in Java, and the results
obtained are summarized.

Section 2 summarizes related work. Section 3 outlines
the theoretical background on ESGs and MTBDDs. The
core of the article, Sect. 4, represents the introduced GUI
data contracts concept with ESGs and MTBDDs. Section 5
provides the GUI data contract testing approach, which
builds it on DT-augmented ESG approach for a more com-
prehensive GUI testing process. A case study is performed
in Sect. 6 and its results are analyzed to validate the pro-
posed approach and discuss its characteristics feature. Sec-
tion 7 concludes the paper and outlines the planned work.

2. Related Work

The approach is related to GUI testing, input validation,
contracts, and contract-based testing.

Memon et al. [8] define GUI as a hierarchical and
graphical artefact of a software for accepting user-generated
events as inputs and deterministically producing corre-
sponding outputs. Input validation examines the syntax
and partly semantics of input entered through graphical
user interface [9]. Errors due to input validation may cause
malfunctions of software and create vulnerabilities for at-
tacks [10]. For this reason, there are various specification-
based test approaches for validation of user interfaces [1].
ESGs [2], event flow graphs [11], and their extension, that
are, event dependency graphs [12], can be used for valida-
tion of user interface specifications even before starting their
implementation and testing [13].

Interface signatures are not sufficient to validate the
functional and non-functional, quality aspects of a soft-
ware [14] that necessitates involving more sophisticated
specification techniques [15]. Contracts, a technique de-
scribing behaviors and obligations of the participating ob-
jects [16], are candidates for this purpose. Le Traon et
al. [17] defines contract as a set of assertions, which are
checked before and after the execution of a method. There
is one contract for each method in the program that is com-
posed of a pre- and a postcondition and of the invariant of
the class. Meyer [18] used contracts in Eiffel language at a
low level of abstraction.

Wampler [19] explains DbC as a method of presenting
the contract of an interface in an automatically testable way.

Vinoski [20] proposes that data contracts should be part
of any service contract of interfaces used in service-oriented
architectures. Truong et al. [21] suggest an abstract model
for data contracts, and based on this abstract model, they
propose techniques for evaluating data contracts that can
be integrated into data service selection and composition
frameworks.

The literature on testing based on formal specifica-
tions [22]–[24] is rich. Specifications can be used for testing
in several ways: as filter for invalid inputs, as guidance for
test generation, as coverage criterion, and as an automated

test oracle [25]. Binder [26], for example, discusses the idea
of using assertions based on contracts as test oracles. Zheng
et al. [27] introduced contract idea for testing called Test by
Contract. Similarly, a contract-based testing approach for
testing of web service was presented in [28].

To sum up, a general methodology for the generation
of test oracles does not exist, therefore they are frequently
complex and error prone [26], [29].

The approach presented in this work differs from the
ones mentioned above in that it presents a novel GUI data
contract testing approach including a sound solution to or-
acle problem. It also differs from previous work of au-
thors [6], which proposes a method combining model-based
GUI testing with static analysis for fault localization. It
aims to minimize number of test cases for acceptance testing
whereas the method proposed in [6] aims to maximize num-
ber of test cases for fault localization. It follows path cov-
erage based on MTBDD whereas the method proposed [6]
follows rule coverage based on decision table.

3. Theoretical Background

While testing a system, a model of the system helps to pre-
dict and control its behavior. Modeling a system acquires
the understanding of its abstraction, and in the case of test-
ing GUIs, there is the need of a formal specification tech-
nique for distinguishing between legal and illegal situations.
These requirements are fulfilled by ESGs.

Apart from the notion of finite state automata (FSA),
in ESG, the simplification by merging the inputs and states
helps the test engineer to easily understand and check the
external behavior of the system, hence the “inputs” and
“states” are turned into “events”.
Definition 1: An event sequence graph ESG = (V, E,Ξ,Γ)
is a directed graph where V � ∅ is a finite set of ver-
tices (nodes), E ⊆ V × V is a finite set of arcs (edges),
Ξ,Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ,
and γ ∈ Γ, called entry nodes and exit nodes, respectively,
wherein ∀v ∈ V there is at least one sequence of vertices
〈ξ, v0, . . . , vk〉 from each ξ ∈ Ξ to vk = v, k ∈ N0, whereby N0

represents the set of the natural numbers including 0 (zero),
and one sequence of vertices 〈v0, . . . , vk, γ〉 from v0 = v to
each γ ∈ Γ with (vi, vi+1) ∈ E, for i = 0, . . . , k − 1 and
v � ξ, γ.
Ξ (ESG), Γ (ESG) represent the entry nodes and exit

nodes of a given ESG, respectively. To mark the entry and
exit of an ESG, all ξ ∈ Ξ are preceded by a pseudo vertex
‘[’ � V and all γ ∈ Γ are followed by another pseudo ver-
tex ‘]’ � V . The semantics of an ESG is as follows: Any
v ∈ V represents an event. For two events v, v′ ∈ V , the
event v′ must be enabled after the execution of v if and only
if (v, v′) ∈ E. The operations on identifiable components of
the GUI are controlled and/or perceived by input/output de-
vices, i.e., elements of windows, buttons, lists, checkboxes,
etc. Thus, an event can be a user input or a system response;
both of them are elements of V and lead interactively to a
succession of user inputs and expected desirable system out-



TUGLULAR et al.: MODEL-BASED CONTRACT TESTING OF GRAPHICAL USER INTERFACES
1299

puts.
Definition 2: Let V , E be defined as in Definition 1. Then
any sequence of vertices 〈v0, . . . , vk〉, k ∈ N0, whereby N0

represents the set of the natural numbers including 0 (zero),
is called an event sequence (ES) if and only if (vi, vi+1) ∈ E,
for i = 0, . . . , k − 1. Moreover, an ES is complete (or, it is
called a complete event sequence, CES), if and only if v0 ∈ Ξ
and vk ∈ Γ. �

Note that the pseudo vertices ‘[’, ‘]’ are not included
in ESs. An ES = 〈vi, vk〉 of length 2 is called an event pair
(EP). A CES may invoke no interim system responses dur-
ing user-system interaction, i.e., it may consist of consecu-
tive user inputs and a final system response.

Modeling input data, especially concerning causal de-
pendencies between each other as additional nodes, inflates
the ESG model. To avoid this, decision tables are introduced
to refine a node of the ESG. Such refined nodes are double-
circled (see Fig. 2).

Decision tables [30] are popular in information pro-
cessing and are also used for testing, e.g., in cause and effect
graphs. A decision table logically links conditions (“if”)
with actions (“then”) that are to be triggered, depending on
combinations of conditions (“rules”) [3].
Definition 3: A Decision Table DT = {C, A,R} represents
actions that depend on certain conditions where:
C � ∅ is the set of conditions,
A � ∅ is the set of actions,
R � ∅ is the set of rules that describe executable actions
depending on a certain combination of constraints.

A rule Ri ∈ R is defined as Ri = (CTrue,CFalse, Ax)
where:

• CTrue ⊆ C is the set of constraints that have to be re-
solved to true,
• CFalse ⊆ C is the set of constraints that have to be re-

solved to false,
• Ax ⊆ A is the set of actions that should be executable

if all constraints t ∈ CTrue are resolved to true and all
constraints f ∈ CFalse are resolved to false. �

Note that CTrue ∪ CFalse = C and CTrue ∩ CFalse = ∅
under regular circumstances. In certain cases it is inevitable
to remark conditions with a don’t care (symbolized with a
‘-’ in DT), i.e., such a condition is not considered in a rule
and CTrue ∪ CFalse ⊂ C. A DT is used to refine data input of
GUIs.

MTBDDs, also called algebraic decision diagrams, are
generalizations of binary decision diagrams (BDDs) from
Boolean values to values of any finite domain [31].
Definition 4: Let D be a finite set and Var be a finite set of
Boolean variables equipped with a total ordering < ⊂ Var ×
Var. A multi terminal binary decision diagram (MTBDD)
over (Var, <) is a rooted acyclic directed graph with vertex
set V and the following labelling: Each terminal vertex v
is labelled by an element of D, denoted by value(v). Each
non-terminal vertex v is labelled by a variable var(v) ∈ Var
and has two children then(v), else(v) ∈ V . In addition the la-
belling of the non-terminal vertices by variables respect the

given ordering <, i.e. var(then(v)) > var(v) < var(else(v))
for all non-terminal vertices v. �

The edge from v to then(v) represents the case where
var(v) is true; conversely the edge from v to else(v) the case
where var(v) is false.
Definition 5: A MTBDD M is called reduced iff

• for each non-terminal vertex v the two children are dis-
tinct, i.e. then(v) � else(v). Each terminal vertex v has
a distinct value(v).
• for all vertices v, v′ with the same labeling, if the sub-

graphs with root v and v′ respectively are isomorphic
(i.e. coincide up to the names of the services) then v =
v′. Formally, if var(v) = var(v′) and else(v) = else(v′)
and then(v) = then(v′), then v = v′. �

Reduced MTBDDs effectively represent DTs as a
graph, which is used to generate test cases in the presented
approach.

4. Data Contracts for Graphical User Interfaces

A contract defines contractual obligations between two of
communicating parties. Contractual obligations consist of
data and operation obligations, where each participant must
provide necessary data and related sequence of actions. In
this case, participants are users and GUI, and they conform
to the contract to be able to interact with each other.

As an introductionary example, Table 1 shows the
informal contract specification for JAPS Java Port Scan-
ner [32] GUI shown in Fig. 1, which is the application an-
alyzed in the case study.

The data contract of JAPS’ GUI should contain the fol-
lowing constraints:

• The user of JAPS application promises that the value to
be entered for any port is in [0..65535] and begin port
is lower than or equal to end port.
• Private ports [33] from 49152 through 65535 are com-

monly used by the operating system kernels. Finding
any port in that range open may mean nothing for a
single scan and therefore not necessary to scan.
• The GUI promises on response that open ports are dis-

played.
• If the user enters an invalid value for ports, the best

explanatory error or warning message is displayed.

GUI data contracts are defined as contracts established
on the GUI component of SUC between GUI and user. The

Table 1 Informal contract specification for GUI of JAPS port scanner.



1300
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

Fig. 1 GUI of JAPS port scanner [32].

condition types used in defining GUI data contracts given
below are modified from [34]:
Definition 6: A GUI data contract has Type-1 and Type-2
conditions:

• Type-1 conditions define expected values with their al-
lowed domain with respect to syntactic definitions and
business rules.
• Type-2 conditions define expected relationships among

values to be held not necessarily among input values
but also among input values and state values of SUC. �

If any of the above stated condition checks fail, an error
or a warning message specified in the data contract should
be presented to the user. The approach presented here sug-
gests that the GUI should warn the user and show the right
operation for an acceptable situation when there is a faulty
input. Therefore, a complementary view is followed to also
cover possible input errors in the model of the GUI un-
der consideration. Error and warning messages is part of
the GUI data contract. Therefore, conditions are also clas-
sified as error-related conditions and warning-related con-
ditions. In the proposed approach, GUI is tested first for
error-related conditions and then for warning-related condi-
tions separately. The reason behind is that there might be
a subsumes relation between an error-related condition and
warning-related condition as seen between c0 and c3 as well
as c1 and c4 given in Fig. 2.

In this work, data input and output operations of a GUI
are refined by a DT that attributes the corresponding arcs of
ESG that models the SUC. The constraints contained in the
decision table are classified into error and warning condi-
tions and then Type-1, and Type-2 conditions as explained
above.

GUI data contracts are represented using DT-aug-
mented ESGs. As an example, the DT-augmented ESG for
GUI of JAPS application is shown in Fig. 2.

Conditions from c0 through c4 for JAPS port scanner
GUI of port inputs are shown in Fig. 2. Actions for JAPS
port scanner GUI with respect to data contract for port range

Fig. 2 ESG for GUI of JAPS with data contract conditions.

are specified as follows:

• a0: deny input with error message “any port value
should be in [0..65535]”.
• a1: deny input with error message “begin port value

should be lower than or equal to end port value”.
• a2: deny input with error message of A0 concatenated

with error message of A1.
• a3: accept input with warning message “any port from

49152 through 65535 is used by operating systems.
Finding any port in that range open may mean nothing
for a single scan”.
• a4: accept input.

5. Graphical User Interface Testing Using Data Con-
tracts

In this work, contracts are used as a specification mecha-
nism. Accordingly, the testing approach is contract-based.
A test case specifies input values for an operation of GUI.
A test suite is composed of test cases, which check all as-
sertions offered by a data contract of GUI. The input values
making up a test case can be derived from the conditions of
provided data contract. Expected outputs are also created
from data contract that are associated with the operations of
GUI. The data conract of a GUI is represented by a DT, of
which actions are “accept input” and “deny input” with error
messages. Warnings may accompany “accept input” action.

The data contract-based GUI testing process is pre-
sented in Algorithm 1. First, DT-augmented ESG is de-
veloped using GUI data contract. Then, CESs (see Defi-
nition 2) are created by covering all events. In the next step,
for each CES, contract-based test cases are generated. Fi-
nally, test suite is applied to GUI and outputs are checked
for a faulty event.

Algorithm 1 Data contract-based GUI testing process.
generate the DT-augmented ESG
cover all events by means of CESs
foreach CES

generate contract-based test cases
apply the test suite to GUI



TUGLULAR et al.: MODEL-BASED CONTRACT TESTING OF GRAPHICAL USER INTERFACES
1301

observe GUI output to check whether a faulty event oc-
cured

MTBDDs are used in generation of contact-based test
cases. One advantage of using a MTBDD is that it can be
reduced by eliminating nodes with same left and right chil-
dren. This reduction is valuable since the number of test
cases is minimized with respect to test coverage.
Definition 7: A Contract-MTBDD (C-MTBDD) is a re-
duced MTBDD (C ∪ A, E), whereby C is the set of the
non-terminal vertices, each holding one condition ci for
i ∈ {0, 1, . . . , n}, A is the set of terminal vertices, each hold-
ing one action aj for j ∈ {0, 1, . . . , k}, and E is the set of
edges connecting vertices, with n and k ∈ N0, whereby N0

represents the set of the natural numbers including 0 (zero).
Note that A = {Adeny ∪ Aaccept}, where Adeny represents deny
actions and Aaccept accept actions. The conditions in the C-
MTBDD are ordered in such a way that a Type-2 condition
follows Type-1 conditions, which contain the variables ap-
pearing in the Type-2 condition. �

A C-MTBDD does not contain test input values but
conditions with variables. These variables should be in-
stantiated to obtain concrete test input values. Another ad-
vantage of using a C-MTBDD is that it solves test cover-
age problem at the same time, since traversing each path
from root to terminal nodes covers whole graph, or diagram.
Moreover, C-MTBDD enables testers to stop testing at the
input acceptance line, if there are limited resources for test-
ing and priority is given to deny input cases.

The contract-based test case generation process is pre-
sented in Algorithm 2. First, the DT is transformed to
a MTBDD using Generalized If Then Else (GITE) algo-
rithm [35]. Then, this MTBDD is separated into two sub-
MTBDDs by the acceptance line, which clusters deny input
actions and accept input actions. Such a MTBDD is pre-
sented in Fig. 3 for JAPS’ GUI of port inputs. In the next
step, each sub-MTBDD is reduced in itself following reduc-
tion rules defined by Bryant [36]. The resulting MTBDD is
a C-MTBDD. An example of C-MTBDD is shown in Fig. 4.

To convert DT to MTBDD, an adjacency matrix, where

Fig. 3 MTBDD for JAPS’ GUI of port inputs.

the value 0 represents dashed edge and the value 1 represents
solid edge, is used. No value means that there is no edge
between two vertices. Since each rule in the decision table
is a path in the MTBDD, when all paths are represented in
the adjacency matrix, then the MTBDD is constructed from
the adjacency matrix. In the next step, it is converted to C-
MTBDD as explained above.

Algorithm 2 Contract-based test case generation process.
foreach event with DT do

convert DT into C-MTBDD
foreach path in C-MTBDD

generate test data by solving CSP
using equivalence class boundary values

endfor

Attempting to find values for variables to satisfy the
C-MTBDD path predicate is a special case of a constraint
satisfaction problem (CSP) [37]. The function for solving
CSP uses boundary values from valid and invalid equiva-
lence classes for each clause and searches the values that
make the expression true. The runtime complexity of the
whole algorithm mainly depends on this function, which has
to be solved for each path of the C-MTBDD. In this work
backtracking is combined with the techniques “arc consis-
tency check” and “minimum remaining values” (see [37]
for further information) to solve the given CSPs in the C-
MTBDD.

The runtime complexity of the backtracking algorithm
is given as O(n ∗ d) where n is the number of nodes for
the corresponding constraint graph and d is the depth of the
graph. The runtime complexity for the consistency check is
given as O(n2d3) [37]. However in practice, the number of
variables on a GUI is strictly limited due to usability restric-
tions. For instance, in the presented case study the number
of variables of the JAPS’ GUI is 5. Simultaneously, this
limits also the corresponding constraints so that the runtime
complexity of this algorithm can be neglected in the end.
Furthermore, the search space for numerical values may be
narrowed by considering only boundary values of equiva-
lence classes. Finally, the function for solving CSP returns
test case values for each path in the C-MTBDD.

Fig. 4 Contract MTBDD for JAPS’ GUI of port inputs.



1302
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

Since it is often not feasible to include all possible in-
put values for a test case, the central question of testing be-
comes how to select a set of test input values most likely
to uncover faults. This problem comes down to grouping
data into equivalence classes, which should have the prop-
erty that, if one value in the set causes a failure, then all
other values in the set will cause the same failure, and con-
versely, if a value in the set does not cause a failure, then
none of the others should cause a failure [25]. This property
allows using only one value from each equivalence class as
a representative for the class.

Equivalence class testing divides the test value domain
into equivalence classes using contract conditions. Each
test case selects one input value from each equivalence
class. The presented technique strengthens this approach by
boundary value selection of input values, which appear at
the boundaries of equivalence classes [38]. In summary, to
automatically generate concrete test cases from C-MTBDD,
equivalence class boundary value selection method is em-
ployed.

This work proposes use of equivalence class partition-
ing with boundary value analysis to derive test oracles from
the contracts in synchronization with the generation of test
case values. Moreover, the test oracle here uses data con-
tracts as means of checking test case result, hence test out-
puts can be easily compared with expected test results. This
test oracle makes a pass/fail evaluation of the test case: if ob-
tained results match the expected results, then the test case
passes, otherwise it fails.

A tool that implements Algorithm 2 is developed in
Python programming language using the following libraries:

• pyeda 0.26.0, which provides Symbolic Boolean alge-
bra classes with a selection of function representations
(https://pypi.python.org/pypi/pyeda).
• python constraint 1.2, is a module implementing sup-

port for handling CSPs over finite domains
(https://pypi.python.org/pypi/python-constraint).
• graphviz 0.4.2, which is a simple Python interface for

Graphviz (https://pypi.python.org/pypi/graphviz).

The tool takes a decision table as input and then draws
MTBDD using graphviz library. After that, it constructs C-
MTBDD utilizing pyeda library. Finally, CSPs represented
by each path are solved through python constraint library.

6. Case Study, Experimental Analysis, Strengths and
Limitations of the Approach

The presented approach is evaluated by means of the port
scanner developed in Java, namely JAPS Java Port Scanner.
Note that for the previous work [6] three port scanners writ-
ten in C++ were evaluated. A port scanning software ana-
lyzes a single port or ports in a given range represented by
begin port and end port to check for being open. The case
study is exemplified using the JAPS port scanner, of which
GUI is shown in Fig. 1. The case study is focused on the
port input of the GUI. The DT-augmented ESG of the GUI

of JAPS software is given in Fig. 2. JAPS Java Port Scan-
ner is a simple but good example as a case study because its
GUI data contract contains all possible constraints [34] that
a contract based on variables can have.

The C-MTBDD of JAPS port scanner GUI, which is
constructed from data contract given in Sect. 4, using the
method explained in Sect. 5, is given in Fig. 4. For each
path in the C-MTBDD, a test case value pair—since there
are two variables for the GUI under test—is instantiated us-
ing valid and invalid values, which are determined by equiv-
alence class partitioning with boundary value selection.

Each node in the C-MTBDD represents a condition
containing a single variable with two equivalence classes,
namely valid equivalence class ECv and invalid equivalence
class ECinv [38]. For instance, integer variable begin port
should be in [0..65535] for condition c0, which means ECv

for begin port is [0..65535] and invalid equivalence class
is partioned for begin port; one ECinv− is small in val-
ues (−∞..−1] and the other one ECinv+ is large in values
[65536..+∞). In case of testing for valid values defined by
ECv, one boundary value is 0 and another one is 65535 for
integer variable begin port in c0. In case of testing for in-
valid values defined by ECinv− and ECinv+, −1 and 65536 are
considered respectively. In summary, c0.ECv = {0, 65535}
and c0.ECinv = {−1, 65536} for c0. For the test case genera-
tion algorithm presented here, ECv and ECinv for all condi-
tions should be priorly defined.

The proposed contract-based test case generation algo-
rithm takes a path of C-MTBDD starting from root ending
at a terminal node and constructs a predicate for it. Then the
algorithm tries to solve the predicate using values in ECv

and ECinv sets. If there is a solution, then the values mak-
ing the solution possible are assigned as test case values.
The test case generation algorithm repeats this operation for
each path existing in C-MTBDD.

For the leftmost path of C-MTBDD given in Fig. 4,
the test case generation algorithm works as follows. The
path predicate representing the leftmost path in the C-
MTBDD is ¬c0 ∧ ¬c2. The actual predicate that is solved
by the CSP solver is ¬(0 <= begin port <= 65535) ∧
¬(begin port <= end port). Candidate test case values for
begin port in c0 are priorly defined as c0.ECv = {0, 65535}
and c0.ECinv = {−1, 65536}. For (begin port, end port)
pairs in c2, equivalence classes are determined using interde-
pendency relation as c2.ECv = {(0, 65535)} and c2.ECinv =

{(0,−1), (65536, 65535)}. Since value 65536 for c0 and
value pair (65536, 65535) for c2 presents a solution to
path predicate ¬c0 ∧ ¬c2, the concluded test case for
(begin port, end port) for the leftmost path of C-MTBDD
is (65536, 65535).

Executing test case generation algorithm for the path
with action a1 at its leaf results in a (65535, 0) test case
for (begin port, end port). Candidate test input values for
end port in c1 are determined as c1.ECv = {0, 65535} and
c1.ECinv = {−1, 65536}. By checking the path expression
c0 ∧ c1 ∧ ¬c2, it can be found that (65535, 0) test case for
(begin port, end port) makes the path expression true. For



TUGLULAR et al.: MODEL-BASED CONTRACT TESTING OF GRAPHICAL USER INTERFACES
1303

Table 2 Application of test cases to GUI of JAPS port scanner.

the rightmost path c0 ∧ c1 ∧ c2 ∧ c3 ∧ c4 in the C-MTBDD,
(0, 49151) test case for (begin port, end port) is found by
checking the following candidate test case values:

• for begin port in c0: c0.ECv = {0, 65535} and
c0.ECinv = {−1, 65536}.
• for end port in c1: c1.ECv = {0, 65535} and c1.ECinv =

{−1, 65536}.
• for (begin port, end port) pair in c2: c2.ECv =

{(0, 65535)} and c2.ECinv = {(0,−1), (65536, 65535)}.
• for begin port in c3: c3.ECv = {0, 49151} and

c3.ECinv = {−1, 49152}.
• for end port in c4: c4.ECv = {0, 49151} and c4.ECinv =

{−1, 49152}.
The proposed contract-based test case generation algo-

rithm produces the begin port and end port test case value
pairs, which are given at the second column of Table 2.

GUI of the JAPS port scanner is tested with generated
test case values. The GUI outputs are captured and recorded
at Table 2. Table 2 displays the test case value pairs, GUI
outputs, results of test cases (violation of any constraint or
not) with respect to data contract, any error or warning mes-
sages given by the GUI, and faults if found. The applica-
tion gives only one error message, namely Error Message 1:
“The format of the IP you supplied or the begin and end port
are wrong!” as indicated in Table 2, although there should
be three error messages and one warning message.

There are 7 faulty input pairs but the program behaves
as only 4 of them were not faulty and does not stop process-
ing the related task, which results in erroneous operation.
Moreover, for the last test case in Table 2 the program be-
haves as if it is faulty, although it is not.

Path coverage testing using reduced MTBDD instead
of row coverage testing using decision table reduces gen-
erated number of test cases considerably with the same
power of uncovering faults. The reduction in the number of
test cases for this case study is from 12 (number of paths
in MTBDD of Fig. 3) to 8 (number of paths in reduced
MTBDD of Fig. 4).

The generated test suite, which is given in Table 2, is
applied to other four port scanners, namely Pscan, Multi-

Table 3 Application of test cases to five different port scanners.

scan, Free Port Scanner, and Angry IP Scanner. The test
results are presented in Table 3. The generated test suite
revealed faults at each port scanner. One interesting case
is that Pscan is frozen when 0 is applied as a port value.
Another one is that Angry IP Scanner, although it does not
accept 65536 as end port value with error message “correct
port range is between (1–65535)”, accepts 0 and 65536 as a
begin port port value.

By considering GUI specification as contracts, reduc-
ing them through C-MTBDD and assigning values by solv-
ing CSP with equivalence class boundary values, the pro-
posed contract-based test case generation algorithm divides
the input space into specification-based partitions and se-
lects special values from those partitions that are likely to
fail by following competent programmer assumption [39].
Therefore, it is more likely that expected number of test
cases required to trigger at least one failure, called F-
measure [40], is lower for the proposed approach compared
to random, adaptive random and anti-random test case gen-
eration as well as search-based test case generation tech-
niques, which sweep the input space using different al-
gorithms. However, the cost of generation a single test
case is higher for the proposed approach compared to the
above mentioned techniques, because after construction of
C-MTBDD each path in C-MTBDD is represented as a CSP
and solved to obtain each test case.

Case study results encourages the generalization of the
fact that especially preconditions related to GUI input data
are not considered during software development and thus
countermeasure actions are not implemented. Therefore,
tools such as the one introduced in [6] are strongly recom-
mended for fault localization. By correcting deficient vali-
dation mechanisms in the software, similar undesirable situ-
ations can be minimized. A limitation of the proposed tech-
nique is that equivalence classes and boundary values for
each constraint in the data conract should be prepared man-
ually before building C-MTBDD. Another limitation is that
a single change in data contract can affect whole C-MTBDD
depending on the ordering.

7. Conclusion and Future Work

Based on event sequence graph notion, this paper introduces



1304
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.7 JULY 2015

a formal model to represent GUI data contracts. This model
enables a novel testing approach. Moreover, contracts are
combined with DT-augmented ESGs for refining the ap-
proach. The proposed solution automatically generates test
cases and test oracles using conditions defined for input val-
idation. A port scanning software written in Java has been
tested for the validation of the proposed approach. Test re-
sults show that the proposed approach is effective in detect-
ing faults with respect to data contracts.

To sum up, main contributions of this work are:

• The GUI data contract concept is introduced and im-
plemented using DT-augmented ESGs.
• The introduced data contract testing approach includes

an algorithm to automatically generate test cases from
an Contract-MTBDD constructed using the data con-
tract and applying equivalence class partitioning and
boundary value techniques.
• Finally, aspects of test coverage and test oracle prob-

lems within the context of GUI data contract testing
are examined as well.

Extension of the presented approach is planned by con-
sidering refinement and inclusion operations on data con-
tracts to simplify expression of complex GUI behavior,
where refinement enables specialization of contracts and in-
clusion allows contracts to be built from sub-contracts [16].
With these contract operations, we plan to define and ap-
ply an approach for combining GUIs and testing them as a
single unit.

References

[1] J.H. Hayes and A.J. Offutt, “Increased software reliability through
input validation analysis and testing,” IEEE 10th International
Symposium on Software Reliability Engineering, pp.199–209,
Washington, DC, USA, 1999.

[2] F. Belli, “Finite state testing and analysis of graphical user inter-
faces,” IEEE 12th International Symposium on Software Reliability
Engineering, pp.34–43, Washington, DC, USA, 2001.

[3] F. Belli and M. Linschulte, “On ‘negative’ tests of web applica-
tions,” Annals of Mathematics, Computing and Teleinformatics,
vol.1, no.5, pp.44–56, 2007.

[4] I. Ciupa and A. Leitner, “Automatic testing based on design by con-
tract,” 6th Annual International Conference on Object-Oriented and
Internet-Based Technologies, Concepts, and Applications for a Net-
worked World, pp.545–557, 2005.

[5] Y. Cheon and G.T. Leavens, “A simple and practical approach to unit
testing: The JML and JUNIT way,” 16th European Conference on
Object-Oriented Programming, Lecture Notes in Computer Science,
vol.2374, pp.231–255, Springer-Verlag, 2002.

[6] T. Tuglular, C.A. Muftuoglu, F. Belli, and M. Linschulte,
“Event-based input validation using design-by-contract patterns,”
IEEE 20th Annual International Symposium on Software Reliability
Engineering (ISSRE 2009), pp.195–204, Mysuru, India, 2009.

[7] L.C. Briand, Y. Labiche, and H. Sun, “Investigating the use of analy-
sis contracts to improve the testability of object-oriented code,” Soft-
ware Pract. Exper., vol.33, no.7, pp.637–672, 2003.

[8] A.M. Memon, M.L. Soffa, and M.E. Pollack, “Coverage criteria for
GUI testing,” ACM SIGSOFT Software Engineering Notes, vol.26,
no.5, pp.256–267, 2001.

[9] J.H. Hayes and J. Offutt, “Input validation analysis and testing,” Em-
pir. Softw. Eng., vol.11, no.4, pp.493–522, 2006.

[10] MSDN, Design guidelines for secure web application, Avail-
able at: http://msdn.microsoft.com/library/default.asp?url=/library/
enus/secmod/html/secmod77.asp, 2009.

[11] A.M. Memon, “An event-flow model of GUI-based applications for
testing,” Softw. Test. Verif. Rel., vol.17, no.3, pp.137–157, 2007.

[12] S. Arlt, A. Podelski, C. Bertolini, M. Schaf, I. Banerjee, and
A.M. Memon, “Lightweight static analysis for GUI testing,” IEEE
23rd International Symposium on Software Reliability Engineering,
pp.301–310, 2012.

[13] F. Belli, A. Hollmann, and N. Nissanke, “Modeling, analysis and
testing of safety issues — An event-based approach and case study,”
26th Int. Conf. Computer Safety, Reliability, and Security, Lecture
Notes in Computer Science, vol.4680, pp.276–282, Springer, 2007.

[14] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long,
J. Robert, R. Seacord, K. Wallnau, “Volume ii: Technical con-
cepts of component-based software engineering,” Technical Report
CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie
Mellon University, 2000.

[15] P. Collet, R. Rousseau, T. Coupaye, and N. Rivierre, “A contract-
ing system for hierarchical components,” Component-Based Soft-
ware Engineering, Lecture Notes in Computer Science, vol.3489,
pp.187–202, Springer, 2005.

[16] R. Helm, I.M. Holland, and D. Gangopadhyay, “Contracts: Spec-
ifying behavioral compositions in object-oriented systems,” ACM
SIGPLAN Notices, vol.25, no.10, pp.169–180, 1990.

[17] Y. Le Traon, B. Baudry, and J.M. Jezequel, “Design by contract to
improve software vigilance,” IEEE Trans. Softw. Eng., vol.32, no.8,
pp.571–586, 2006.

[18] B. Meyer, “Applying ‘design by contract’,” Computer, vol.25, no.10,
pp.40–51, 1992.

[19] D. Wampler, “Contract4j for design by contract in Java: De-
sign pattern-like protocols and aspect interfaces,” AOSD Workshop
on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), pp.27–30, Bonn, Germany, 2006.

[20] S. Vinoski, “REST eye for the SOA guy,” IEEE Internet Comput.,
vol.11, no.1, pp.82–84, 2007.

[21] H.L. Truong, G.R. Gangadharan, M. Comerio, S. Dustdar, and F. De
Paoli, “On analyzing and developing data contracts in cloud-based
data marketplaces,” 2011 IEEE Asia-Pacific Services Computing
Conference (APSCC), pp.174–181, 2011

[22] J.L. Crowley, J.F. Leathrum, and K.A. Liburdy, “Issues in the full
scale use of formal methods for automated testing,” ACM SIGSOFT
Software Engineering Notes, vol.21, no.3, pp.71–78, 1996.

[23] R. Plosch and J. Pichler, “Contracts: From analysis to C++ imple-
mentation,” IEEE 30th International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems (TOOLS
30), pp.248–257, 1999.

[24] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,” Softw. Test. Verif. Rel., vol.13,
no.1, pp.25–53, 2003.

[25] I. Ciupa, Strategies for random contract-based testing, Ph.D., ETH
Zurich (Swiss Federal Institute of Technology Zurich), 2008.

[26] R.V. Binder, Testing object-oriented systems: Models, patterns, and
tools, Addison-Wesley Longman, Boston, MA, USA, 1999.

[27] W. Zheng and G. Bundell, “Test by contract for UML-based soft-
ware component testing,” IEEE International Symposium on Com-
puter Science and Its Applications, pp.377–382, Washington, DC,
USA, 2008.

[28] R. Heckel and M. Lohmann, “Towards contract-based testing of
web services,” Electronic Notes in Theoretical Computer Science,
vol.116, pp.145–156, 2005.

[29] B. Beizer, Software testing techniques, 2nd ed., Van Nostrand Rein-
hold, New York, NY, USA, 1990.

[30] ISO 5806, Specification of single-hit decision tables, Information
processing, 1984.

[31] H. Hermanns, J. Meyer-Kayser, and M. Siegle, “Multi terminal bi-
nary decision diagrams to represent and analyse continuous time

http://dx.doi.org/10.1109/issre.1999.809325
http://dx.doi.org/10.1109/issre.2001.989456
http://dx.doi.org/10.1007/3-540-47993-7_10
http://dx.doi.org/10.1109/issre.2009.20
http://dx.doi.org/10.1002/spe.520
http://dx.doi.org/10.1145/503271.503244
http://dx.doi.org/10.1007/s10664-006-9025-1
http://dx.doi.org/10.1002/stvr.364
http://dx.doi.org/10.1109/issre.2012.25
http://dx.doi.org/10.1007/978-3-540-75101-4_27
http://dx.doi.org/10.1007/11424529_13
http://dx.doi.org/10.1145/97946.97967
http://dx.doi.org/10.1109/tse.2006.79
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/mic.2007.22
http://dx.doi.org/10.1109/apscc.2011.65
http://dx.doi.org/10.1145/226295.226303
http://dx.doi.org/10.1109/tools.1999.787553
http://dx.doi.org/10.1002/stvr.264
http://dx.doi.org/10.1109/csa.2008.66
http://dx.doi.org/10.1016/j.entcs.2004.02.073


TUGLULAR et al.: MODEL-BASED CONTRACT TESTING OF GRAPHICAL USER INTERFACES
1305

Markov chains,” 3rd Int. Workshop on the Numerical Solution of
Markov Chains, pp.188–207, 1999.

[32] JAPS, Japs: Java port scanner, Available at: http://antaki.ca/code/
java/japs/, 28.01.2014.

[33] IANA, Port numbers, Available at: http://www.iana.org/
assignments/service-names-port-numbers/
service-names-port-numbers.txt, 28.01.2014.

[34] A. Stevenson, Aspect-oriented smart proxies in Java RMI, M.Sc.,
University of Waterloo, Ontario, Canada, 2008.

[35] Y. Mokhtari, S. Abed, O.A. Mohamed, S. Tahar, and X. Song, “A
new approach for the construction of multiway decision graphs,”
Theoretical Aspects of Computing, ICTAC 2008, Lecture Notes in
Computer Science, vol.5160, pp.228–242, Springer, 2008.

[36] R.E. Bryant, “Symbolic boolean manipulation with ordered bi-
nary decision diagrams,” ACM Computing Surveys, vol.24, no.3,
pp.293–318, 1992.

[37] S.J. Russell and P. Norvig, Artificial intelligence: A modern ap-
proach, Prentice-Hall, Upper Saddle River, NJ, USA, 1995.

[38] T. Tuglular, “Test case generation for firewall implementation testing
using software testing techniques,” 1st International Conf. on Secu-
rity of Inform. & Networks, pp.196–203, Trafford, Northern Cyprus,
2007.

[39] A.P. Mathur, Foundations of Software Testing, 2nd ed., Pearson, In-
dia, 2008.

[40] A. Arcuri, M.Z. Iqbal, and L. Briand, “Random testing: Theoretical
results and practical implications,” IEEE Trans. Softw. Eng., vol.38,
no.2, pp.258–277, 2012.

Tugkan Tuglular received the B.S., M.S.,
and Ph.D. degrees in Computer Engineering
from Ege University, Turkey in 1993, 1995 and
1999, respectively. He worked as a research as-
sociate at Purdue University from 1996 to 1998.
He has been with Izmir Institute of Technology
since 2000.

Arda Muftuoglu received his M.Sc. in
Computer Engineering from Izmir Institute of
Technology in 2010 and B.Sc. in Computer En-
gineering from Yeditepe University in 2007. He
is currently working as a software engineer at
M.O.S.S. Computer Grafik Systeme GmbH in
Munich, Germany. Prior to joining M.O.S.S., he
worked as a researcher at Technische Universität
Darmstadt in Darmstadt, from 2011 to 2012.

Fevzi Belli completed his Ph.D. in for-
mal methods for self-correction features in se-
quential systems in 1978 and his “Habilitation”
(German Post-Doctoral degree) in software en-
gineering in 1986 at Berlin Technical Univer-
sity. In 1983, he was awarded a professor-
ship at the University of Applied Sciences in
Bremerhaven; in 1989 he moved to the Univer-
sity of Paderborn. Since 2014, he has been a full
professor at Izmir Institute of Technology.

Michael Linschulte studied Business Com-
puting Systems and received his Ph.D. degree
at University of Paderborn before he joined
Andagon in Cologne. His research interests in-
clude analysis and testing of web applications as
well as web services by means of model-based
testing. Further, he is interested in test automa-
tion, software reliability and fault tolerance.

http://dx.doi.org/10.1007/978-3-540-85762-4_16
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1109/tse.2011.121

