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1 Introduction The ability to open up a gap in bulk 
graphene, a semimetal, by changing the size, shape, edge 
character, number of layers, carrier density and screening 
by the substrate offers an exciting possibility of simultane-
ously tuning the electronic [1–10], magnetic [5, 9–17] and, 
most importantly, optical properties of graphene quantum 
dots (GQD) [18–30] continuously from THz to UV. In this 
contribution, we discuss the effects of electron–electron in-
teractions on the energy gap and optical properties of gra-
phene quantum dots.  

The dependence of the energy gap on the number of 
atoms N, the size and the shape of the graphene quantum 
dots has already been introduced in this issue by Ozfidan  
et al. The optical gap determines the lowest energy photon 
that can be absorbed. For hexagonal quantum dots with 
armchair edges, the tight binding gap decreases as the in-
verse of the square root of N, as expected for confined 

Dirac fermions with photon-like linear energy dispersion  

gap min( 2π/ 1/ ).E k x Nμ ª D μ  Similarly,  the valence band  
(VB)-conduction band (CB) energy gap in the triangular, 
zigzag edged structures  also follows the Dirac fermion  
power law, gap 1/ ,E Nμ  allowing for the variation of the  
energy gap from ≈2.5 eV (green light) for a quantum dot 
with ≈100 atoms to ≈30 meV (8 THz) for a quantum dot 
with a million atoms and a diameter of ≈100 nm. In addi-
tion to these transitions, in triangular GQDs with zigzag 
edges, the energy spectrum contains a shell of degenerate 
levels at the Fermi level. The presence of the degenerate, 
zero-energy states in the middle of the energy gap results 
in additional transitions with energies lower than that of 
the VB–CB transitions which are needed for e.g., interme-
diate band solar cells. Moreover, the presence of the spin 
polarized band of partially occupied degenerate states at 

We present here a theory of the optical properties of graphene
quantum dots (GQDs) with tunable band gaps by lateral size
confinement, from UV to THz. Starting from the Hartree–
Fock ground state, we construct the correlated many-body
ground and excited states of GQDs as a linear combination of
a finite number of electron–hole pair excitations. We discuss
the evolution of the band gap with size and its renormaliza-
tion by self-energy and excitonic effects. We calculate and
analyze the dipole moments of graphene quantum dots that
possess a degenerate valence and conduction band edge, and
construct a characteristic exciton and biexciton spectrum. We
find an exciton band consisting of a pair of robust, spin

 singlet bright exciton states and a band of dark, spin singlet
and spin triplet, exciton states at lower energies. We predict a
characteristic band of biexciton levels at the band edge, dis-
cuss the Auger processes and identify a biexciton–exciton
cascade. Our theoretical results are compared with experi-
mental linear absorption and non-linear transient absorption
spectra of colloidal GQDs. We next discuss the optical prop-
erties of triangular GQDs with zigzag edges whose magnetic
moment can be controlled by gates. The control over the
magnetic moment through carrier density manipulation re-
sults in optical spin blockade and gate tunable optical proper-
ties over a wide range of photon energies. 
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the Fermi level provides the unique opportunity to simul-
taneously control magnetic and optical properties of 
TGQDs [24]. This offers interesting opportunities in opto-
electronic, opto-spintronic and intermediate-band solar cell 
photo-voltaic applications. GQDs may also be exploited in 
quantum communication, e.g., in the generation of entan-
gled photon pairs [27]. A detailed analysis of the zigzag 
edges on the magnetic properties of triangular GQDs were 
discussed in this issue by Güçlü et al. 
 

2 Interaction of light with graphene quantum 
dots Light-matter interactions are introduced at a single 
particle level. In Coulomb gauge, interaction of an electron 
with the electromagnetic field given by weak vector poten-
tial ( ),A r t  is written as  

int ( )eH
m

= , ◊ ,A r t p  (1) 

where p is the momentum of the electron. The electro- 
magnetic    field    is    described   by   the   vector   potential  

0 ˆ( ) e ei i t i i tA ◊ - - ◊ +È ˘
Í ˙Î ˚, = +k r k rA r t ω ωε , where ε̂  is the polariza-

tion of light.  
The absorption/emission spectrum of a quantum dot is 

obtained from Fermi’s golden rule:  
2

int( ) | | | | δ( )q p q
q p

A W p H q E E
,

= · Ò - ± ,Âω ω  (2) 

where ,pE  qE  are the energies of the initial and the final 
quantum dot electronic states | |q i i

i
q k ϕ,Ò = ÒÂ  participating 

in the excitation process, qW  is the occupation probability 
of the initial state and ω is the energy of the photon with  
–(+) sign corresponding to absorption (emission).  

Assuming the wavelength of the light absorbed during 
the transition is much greater than the size of the graphene 
quantum dot, e 1,i ◊k r �  and the matrix elements of the light 
matter interaction Hamiltonian can be expressed in terms 
of the dipole elements,  

int 0 ˆ ˆ| | ( ) | |pqp H q i A p er qω ε· Ò = ◊ · Ò ,  (3) 

where ˆ| | ( )p er q d p q· Ò = ,  is the dipole element between 
states p and q, evaluated in the basis of atomic pz orbitals 

( ) :iϕ -r R  

| | d ( ) ( )fp f q i
i f

p q k k ϕ ϕ* *
, ,

,

· Ò = - - .Â Ú ir r r r rR R  (4) 

Replacing fÆ +r r R  and taking into account only the 
nearest neighbor (NN) i f· , Ò and the next nearest neighbor 
(NNN) i f·· , ÒÒ  terms, the dipole element is rewritten as 
[18],  

ˆ ˆ ˆ ˆ ˆ| | ( ) ( )i f fi i f fi l ljf i D R R d R R Rδ δ δ· Ò ·· ÒÒ· Ò = - + - + ,r  (5) 

where the coefficients d ( ) ( )fiz zD · Ò
*= -Ú r r r r Rϕ ϕ  

= 0.343542 a.u. and d ( ) ( )fiz zd ·· ÒÒ
*= -Ú r r r r Rϕ ϕ  

= 0.0873 a.u. are computed using the Slater-type pz orbitals 
for NN and NNN orbitals respectively and ˆ

iR  are unit vec-
tors. In calculation of the dipole elements, contributions 
from the overlap of the non-orthogonal Slater-type orbitals 
are neglected.  

One can write the light-matter interaction in terms of 
the polarization operator P̂+  and photon creation/ 
annihilation operators ( )a a+ -  as int

ˆ ˆ .H P a P a+ - - += +  In 
second quantization,  suitable  for  many-electron quantum  
dots,  the polarization operator ˆ ( ) ,p q

pq
P d p q b bσ σ

σ

+ += ,Â  cre- 

ates a single pair excitation by moving an electron from a 
state q to state p while annihilating a photon. Here ( )p qb bσ σ

+  
creates (annihilates) an electron in a state .pσ   

As described in detail in Ref. [26], for 3-fold symmet-
ric GQDs such as benzene, hexagonal and triangular GQDs, 
the eigenstates can be characterized according to their an-
gular momenta projections, m, and the dipole elements can 
be simplified to reveal the selection rules for angular mo-
menta projections of the eigenstates. In order to distinguish 
states according to m, the GQDs are divided into three 
segments by defining 3 symmetry axes. Introducing a rota-
tion operator, ˆ,R  that maps rotationally equivalent atoms 
from each segment onto one another with a phase of 2π/3e ,im  
where 0 1 2,m = , ,  vectors invariant under this rotation are 
obtained. Note that 2m =  is equivalent to 1m = -  and we 
will often implicitly use this relation. Once the Hamilto-
nian is separated into three angular momentum blocks, 
each block is diagonalized to obtain angular momentum 
separated single particle eigenvectors and energies with ei-
genvalue index ν and quantum number m, | .mν , Ò  The ei-
genvalues 1 2m m= , =  (or 1)m = ∓  are degenerate as their 
corresponding eigenvectors are complex conjugates of one 
another.  

Expanding the rotationally invariant eigenvectors 
| mν , Ò  in terms of localized orbitals and assuming circular 
polarization of light ,ε ±  following selection rule for the di-
pole element between the eigenstates | mν , Ò  can be derived 
[26],  

1| | m m m mm m C ν νν ν δ ¢, ± , ¢, , ¢· , ◊ , Ò = ,¢ ¢ rε  (6) 

where C is a constant determined numerically. 
  

3 Many body Hamiltonian and ground and ex-
cited states In a charge neutral graphene quantum dot 
with one electron per orbital, there are many ways of plac-
ing N electrons on N orbitals. The ground state of N non-
interacting electrons can be written as a single Slater de-
terminant, created by placing N electrons on the lowest N 
single-particle orbitals. Turning on the interactions, there 
will be a competition between minimizing the kinetic 
energy versus minimizing the interactions between 
electrons. In order to find an approximate ground state of 
an interacting electron system that can be expressed as a 
single Slater determinant, the Hartree–Fock (HF) theory 
can be used as described by Ozfidan et al. in this issue.  
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In general, the wavefunction of an interacting system 
cannot be expressed as a single Slater determinant. This is 
due to the correlations among electrons that cannot be de-
scribed with a mean-field approach. In order to account for 
these correlations we need a linear combination of many 
body configurations. Starting with the HF ground state that 
is obtained by placing the electrons in the lowest HF-
quasiparticle levels, electron–hole pairs are generated by 
moving an electron from the valence band to the conduction 
band, leaving a hole behind. In the configuration interaction 
(CI) method, a Hamiltonian that is generated in the basis of 
HF ground state and electron hole pairs is diagonalized to 
obtain the exact ground state of the correlated system. The 
new correlated ground state can be expressed as a linear 
combination of Slater determinants. For small structures 
with several electrons, an exact ground state can be obtained 
by creating all possible excitations out of the HF ground 
state. However the number of configurations grows factori-
ally with the number of states and electrons in hand, making 
the configuration interaction method very computationally 
expensive. Thus, the CI-space is truncated to obtain a good 
approximation to the correlated ground state.  

Since the starting point is the HF ground state, it is 
beneficial to express the Hamiltonian in terms of the HF 
operators ( )p pb bσ σ

+  that creates (annihilates) an electron on 
HF quasiparticle level q. As introduced in Ozfidan et al. in 
this issue, the configuration interaction Hamiltonian has 
the following form,  

N

p p p
p

H b bσ σ σ
σ

ε +

,

= Â  

 HF
1 | |
2

N

p q r s
p q r s

pq V rs b b b b+ +
¢ ¢

, , , , , ¢

+ · ÒÂ σ σ σ σ
σ σ

 

 MF
N

pq p q
p q

V b b+

, ,

- ,Â σ σ σ
σ

 (7) 

where MF
pqV σ  is the mean-field interaction among quasi elec-

trons.  
In this paper, because we are interested in excitons (X) 

and bi-excitons (XX), we limit the CI subspace to include 
up to two quasi electrons and quasi holes. Upon diagonali-
zation, the correlated X and XX states are expressed as a 
linear combination of electron–hole pairs generated out the 
HF ground state. 

  
4 Excitons in hexagonal and triangular quan-

tum dots In order to calculate the absorption spectrum, in 
addition to the dipole matrix elements, one needs the corre-
lated ground and excited states. In calculating the ground 
state via the HF method, it is assumed that the valence 
band is filled with electrons up to the Fermi level. Then 
placing an electron on any one of the HF levels, it already 
feels the presence of a filled valence band as the HF eig-
enenergies include self energy that represents the mean 
field interaction of an electron with the filled valence band. 

For a graphene quantum dot with a band gap, the self en-
ergy, ( ),pΣ  of an electron placed on HF level p is ex-
pressed as  

( )
Fermi

0

( ) 2 | | | |
N

q
p pq V qp pq V pqΣ

=

= · Ò - · Ò ,Â  (8) 

where the summation is over all filled levels q. Using this 
definition of self energy, the ground state GSE  energy can 
be expressed as  

( )
Fermi

GS
0

2 ( )
N

p
p

E p
=

= - ,Â ε Σ  (9) 

where pε  is the eigenenergy of the HF level p. The 2 in 
front of pε  accounts for up and down spins occupying each 
valence orbital. Since energy of each HF orbital already 
includes self energies, one would be over counting the in-
teractions just by adding up the eigenvalues of the HF  
levels. To avoid the over counting, a self energy per orbital 
is subtracted in the equation above.  

Moving an electron from a valence state ( )i σ,  with 
/2i N£  to a conduction band state ( )j σ,  with /2,j N>  

single pair excitations are created. Taking the symmetric 
and antisymmetric combinations of single pair excitations 
with opposite spins, the singlet and triplet configurations 
are obtained as  

( )
| / |GS

2
j ij ib b b b

j i S T
+ +

Ø Ø≠ ≠ ±, , Ò = Ò ,  (10) 

where + and – signs correspond to a singlet and a triplet, 
respectively. Following the definition of self energy, ener-
gies of these excitations measured from ground state en-
ergy GS ,E  are obtained as  

( ) | | | |S T j iE j i ji V ij ji V jiε ε/, = - - · Ò + · Ò  
 | |ji V ji± · Ò . (11) 

In the expression above, the third term | |ji V ij-· Ò  is the at-
traction between the electron and the hole and the fourth 
term, | | ,ji V ji+· Ò  is the short ranged, repulsive exchange 
interaction. Note that in vertex corrections, thedirect Cou-
lomb interaction is attractive while exchange is repulsive; 
opposite of the contributions to quasiparticle energies and 
consistent with Ward identities. The singlet and triplet 
states of electron–hole pair are distinguished by the last 
term, | | ,ji V ji±· Ò  which ensures that triplet is the lowest 
energy state and the singlet/triplet splitting is given by 
2 | | ,ji V ji· Ò  twice the exchange interaction. The pair excita-
tions ( )j i,  are not eigenstates of the interacting system, 
they are mixed by Coulomb interactions resulting in corre-
lations between excitations.  

We will now study the role of each interaction term  
by turning them on, one by one, in GQDs with degener- 
ate valence and conduction band edges, as depicted in  
Fig. 1. 
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Figure 1 Band edge exciton configurations. Blue and red corre-
sponds to 1m = -  and 1m =  levels. The excitons are separated ac-
cording to change in angular momentum electron hole.m m mD = -  

 
The 8 8¥  electron–hole pair subspace created at the 

degenerate band edge can be block diagonalized according 
to .mD  Since the degenerate levels have 1,m = ±  removing 
an electron from the valence band level with 1m = -  and 
placing it on the conduction band level with 1m = -  will 
create a 0mD =  configuration. However, if the removed 
electron is placed on the 1m =  conduction band level, the 
electron–hole pair would have 2mD = +  or, equivalently, 

1.mD = -  These configurations are depicted in Fig. 1.  
Since there are two electrons on each level, a spin up 

and a spin down, the 0mD =  subspace contains 4 pairs 
while the 1mD = ±  subspaces each have 2 pairs at the band 
edge. Within each subspace linear combinations of these 
configurations result in the singlet and triplet states, further 
reducing the size of each subspace (Fig. 2). For example, 
the 1mD =  configuration for spin up and spin down elec-
trons can be combined to give the non-interacting singlet 
and triplet states. 

Now, as an example, let us turn on different interac-
tions one by one and examine their effects on the level  
ordering for a 168 atom 3-fold symmetric GQD obtained 
using colloidal chemistry [19, 26, 27, 31]. Singlet or triplet, 

 

 
Figure 2 Evolution of the lowest 8 excitations with inclusion of 
different interaction terms [26]. 

each pair will have the direct electron–hole interaction cor-
rection to its energy. The far left and right columns in 
Fig. 2 depict the energies of 0mD =  and 1mD = ±  pairs af-
ter the inclusion of self energies and direct interaction cor-
rections. Turning on the exchange interaction separates the 
singlets and triplets as depicted in the second columns 
from right and left in Fig. 2. The 1mD = ±  states do not 
change any further since each total-spin subspace contains 
only one state. Within 0,mD =  each total spin subspace has 
2 interacting states. Correlations among these states cause 
them to separate in energy. Since in a triplet the attractive 
scattering is not partially compensated by repulsive ex-
change interaction and is stronger, the repulsion of triplet 
levels is greater than singlet levels, as shown in the center 
column of Fig. 2.  

As a result, at the band edge, there are two bright de-
generate singlet exciton states and at lower energies a band 
of dark excitons composed of two orbitally dark singlets 
and four dark triplets, as shown in the center column of 
Fig. 2.  

Figure 3 shows the evolution of the band edge exci-
tonic spectrum associated with the degenerate band edge 
states of a GQD calculated in different levels of approxi-
mations. Figure 3(a) shows the absorption spectrum of the 
non-interacting triangular GQDs with N = 168 in the tb ap-
proximation. At this level, the energy of the absorption 
peak is equivalent to the single particle tb band gap. Fig-
ure 3(b) shows the absorption in the tb + HF approxima-
tion. We see that energy blue-shifts due to inclusion of self 
energies of the electron and the hole. Figure 3(c) shows the 
band-edge exciton spectrum calculated using the configu-
ration interaction method. Inclusion of spin and electron–
hole interactions (vertex corrections) red-shifts the absorp-
tion spectrum. Most importantly, we see the structure of 
the band edge excitonic spectrum where a band of dark 
 

 
Figure 3 Evolution of the band edge absorption peak with in-
creasing accuracy of approximation (a) Tight binding, (b) Hartree 
Fock, (c) configuration interaction [26].  
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Figure 4 Evolution of the energy of the bright band edge exci-
tons with size of hexagonal graphene quantum dots with armchair 
edges. For comparison, the plot also depicts the tight binding and 
the Hartree–Fock gaps. 

 
singlet and triplet exciton states appears at lower energy 
separated from the two bright, degenerate, singlet exciton 
states. The structure of the exciton band and presence of 
the degenerate bright singlet excitons are robust and are 
independent of the shape as long as the 3-fold rotational 
symmetry is preserved. For the quantitative absorption 
spectrum of the band edge, additional HF levels 
higher/lower in energy must be included. Furthermore, al-
though two-pair excitations do not directly appear in the 
linear absorption spectrum, their inclusion modifies the en-
ergies of the single pair excitons.  

We now turn to the size dependence of the bright  
exciton spectrum. Figure 4 depicts how the energy of the 
bright degenerate exciton peak calculated in the 
tb + HF + singleX-CI approximation evolves with the size 
N of the hexagonal quantum dot. For comparison, the tight 
binding and the Hartree–Fock gaps are also shown. All 
calculations assume identical screening of Coulomb inter-
actions by environment, with 6.κ =  We see that for small 
GQD ( 42)N =  HF blue shift is small and the only renor-
malization is the electron–hole attraction. For largest GQD 
we find the HF renormalization large but compensated by 
the vertex correction so the tight binding and the bright ex-
citonic transitions are very close in energy.  

Even though we see both the blue and the red-shifts, 
the tight binding appears to provide a good method in pre-
dicting the relation between the size and the energy of the 
bright, band edge peak. For additional discussion of the re-
normalization of the absorption by e–e interactions we  
refer the reader to Ref. [29]. 

  
5 Absorption spectrum of colloidal graphene 

quantum dots Figure 5 compares the experimental [19] 
and calculated absorption spectra for a 3-fold symmetric, 
168 atom colloidal graphene quantum dot. The screen- 
ing constant, 5 0κ = .  and tunnelling matrix elements 

4 2 eVt = - .  are set to match the position of the main peak  

 
Figure 5 Absorption spectrum of a 168 atom colloidal graphene 
quantum dot fitted to the experiment. 5 0,= .κ  4 2 eV,t = - .  

0 1 eV.t = - .¢  Higher order corrections due to XX’s are included in 
the calculation of the spectrum 

 
and the reduced absorption observed right after the main 
peak in the experimental spectrum. The main peak at 

2 1 eVE = .  is associated with the doubly degenerate, orbi-
tally bright singlets at the band edge. The absorption thresh-
old at 1 6 eVE = .  is attributed to the calculated orbitally 
dark singlets. Coupling to phonons, impurities or breaking 
of the symmetry due to, e.g., charge and spin fluctuations 
in the surrounding fluid, can lead to optical activation of 
these levels [26, 31–33]. Assuming that this peak is indeed 
due to the orbitally dark singlets and spin dark triplets, the 
theory leads to a significantly underestimated bright singlet 
dark triplet splitting when compared with experiments. The 
main reason for such discrepancy may be the uniform 
treatment of screening, independent of the length scale. 

  
6 Biexcitons and higher order excitations Dou-

ble excitations are created by moving two electrons from 
the valence band to the conduction band, leaving two holes 
behind; 

1 2 1 21 2 1 2 GS| | .p m q np m q n b b b b HF+ +, ; , Ò = Òσ σ σ σσ σ σ σ  At 
the band edge one can create 18 double excitations. Out of 
these, ten have 0.S =  Just as for single pair excitations, 
due to electron–hole pair correlations all biexciton configu-
rations will be mixed with one another.  

The 0S =  band edge exciton and biexciton levels are 
depicted in Fig. 6. The biexciton levels are color coded ac-
cording to the most probable two-pair configuration and its 
excitonic constituents. For example, the biexciton level 
XX10 is composed of a 1mD =  and a 0mD =  exciton which 
are assigned by the colors red and blue, respectively, giv-
ing the XX10 the blue–red color.  

The energy of a biexciton, based on the most  
probable two-pair configuration is calculated as 

1 2XX X X XXE E E= + + Δ  where Xi
E  are the energies of the 

excitons forming the biexciton and XXΔ  is the biexciton 
binding energy. The sign of XXΔ  can be positive or nega-
tive, corresponding to excitons attracting (binding) or  
repelling (unbinding) each other, respectively. It is also an  



Phys. Status Solidi RRL 10, No. 1 (2016)  107 

 

www.pss-rapid.com  © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 

Review

@ RRL

 
Figure 6 Band edge S = 0, exciton and biexciton levels. Levels 
are color coded according to their exciton content. Blue and red 
correspond to 1mD = -  and 1mD =  excitons while 0mD =  is 
shown in black. The blue and red arrows depict the allowed tran-
sitions via circularly polarized light. 

 

indicator of degree of correlation, which is measured by 
the number of two-electron–hole configurations contribut-
ing to the XX state. 

Experimentally, the binding energy can be obtained in 
transient absorption experiments and can be compared with 
theoretical calculations. Although the two lowest-energy 
singlet states (LX = X1,2) are not accessible directly from 
the ground state, they are accessible in transient absorption 
experiments [26, 31, 32]. Theoretical calculations suggest 
that the only optically accessible biexciton levels from LX 
are XX4–7. Starting with either one of the LX levels, opti-
cally adding X3,4 will generate these levels. Then the  
biexciton binding energies are calculated as XX(4 7), =Δ  

XX(4 7)E ,  – LXE  – X(3 4) 104 145 meV.E , = -  Comparing the 
predicted transient absorption spectra with the experimen-
tally measured one, the source of the absorption peaks in 
the experiment can be determined and the binding energies 
can be fitted. The experimental prediction for the binding 
energies of XX(4 7)-Δ  = 0.17 ± 0.01 eV are in good agreement 
with the theory [28, 31]. 

  
7 Biexciton–exciton cascade The process of XX-X 

cascade proposed for the generation of entangled photon 
pairs in semiconductor quantum dots [34–37] relies on two 
degenerate exciton levels. The degeneracy is a result of 
strong spin–orbit interaction. Unlike semiconductor quan-
tum dots, graphene has a weak spin–orbit coupling [1–4, 
6–18, 20, 24, 38–43] yet we have shown the presence of 
degenerate bright exciton states. Hence GQDs could poten-

tially replace semiconductor QDs in entangled photon ge-
neration if a well defined biexciton level could be identi-
fied [27].  

Since the excitons that contribute to a XX–X cascade 
need to be optically active, only the degenerate X3 and X4 
can participate in entangled photon generation. Due to op-
tical selection rules, there are only two ways of accessing 
these degenerate states from a biexciton; emitting a photon 
with σ -  or σ +  polarization. Then the only possible biexci-
ton states that would emit to these excitons are obtained  
by creating an electron hole pair with 1mD =  on a 
( 1) ( 2)m m= - =  valence–conduction pair or with 1mD = -  
on a ( 2) ( 1)m m= - =  pair. At the band edge, there are 
only three states that fit into this description; two of which 
are degenerate XX8,9, while the third one is the highest en-
ergy band edge biexciton XX10.  

From a superposition of degenerate biexcitons XX8,9, 
the emerging photons will be polarization entangled. How-
ever if the initial state is either one of them, then the po-
larization of the photons emerging will collapse to a certain 
handedness, destroying the entanglement.  

Preparing the initial state as XX10, the entangled Bell-
state of the two photons generated in its radiative recombi-
nation will be polarization entangled:  

( )1| | |
2

ψ σ σ σ σ- + - +Ò = Ò + Ò .  (12) 

 
8 Auger processes As more and more electron–hole 

pairs are included, the CI subspace grows factorially. Since 
the CI Hamiltonian is a two-body interaction Hamiltonian, 
N-pair excitations within a 2± -pair range interact with one 
another directly. For example, a 3-pair exciton will have 
first order contributions from a range of 1-pair to 5-pair 
excitations only. Beyond that, all other N-pair excitations 
have second or higher order contribution to the energy of a 
3-pair exciton. As a result, in a weakly interacting quantum 
dot, exciton and biexciton energies will not be greatly af-
fected by the presence of excitations beyond 4-pair.  

For strongly interacting electrons however, interactions 
can no longer be considered as perturbations. Thus, excita-
tions interact with one another strongly and higher order 
excitations become important in determining the true 
ground state.  

Due to the higher number of quasi particles, there are 
more pair-interaction terms one would need to consider. 
Furthermore, due to correlations among electron–hole pairs, 
even if a pure-biexciton configuration is the most probable 
configuration in a state, there can be significant contribu-
tions from excitons and other biexcitons with similar ener-
gies. The XX spectral function can help assess the purity of 
biexcitons and understand Auger processes.  

In quantum dots, Auger recombination is important in 
determining biexciton lifetime. It is a non-radiative process 
in which a biexciton is converted into an excited exciton. 
Starting with a biexciton, one of the electron–hole pairs 
can recombine and give the excess energy to the remaining 
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electron (hole), exciting it to a higher (lower) conduction 
(valence) band, creating excited excitons. This process 
may decrease the lifetime of the biexciton, making it short-
lived and difficult to detect.  

In order to properly capture all Auger processes, the CI 
subspace must include the excited exciton levels that can 
be generated through non-radiative recombination of a pair 
in a biexciton. Concentrating on the band edge biexcitons, 
CI subspace should include all single pair excitations that 
can be generated in a 3× band gap energy window of HF 
states [27].  

Calculation of the spectral function requires, separately, 
the eigenstates and eigenvalues of the mixed system 
(GS + X + XX) and the eigenstates and values of the con-
served system in which only two electron–hole pair con-
figurations are taken into account. Finally, both bases need 
to be restricted in the same manner; by including all X’s 
and XX’s within the window of g3 E¥  to capture Auger 
processes at the band edge, which results in a subspace of 

52 10¥  configurations. After exact diagonalization of the 
Hamiltonians their eigenfunctions are obtained as  

(1)
0 HF| |GS |mn

mn
k k i jν ν

ν
σ

Φ σ σÒ = Ò + ; ÒÂ  

 
1 2

(2)
1 2 1 2|pmqn

pmqn
k p m q n …ν

σ σ

σ σ σ σ+ , ; , Ò +Â Â  (13) 

for the mixed system corresponding to eigenvalues Eν  and 
[44]  

1 2

1 2 1 2|XX |pmqn
pmqn

k p m q nη
η

σ σ

σ σ σ σÒ = , ; , Ò .Â Â  (14) 

for the conserved system with eigenvalues .Eη  In order to 
quantify the degree of mixing between a biexciton state 
|XX νÒ  and the rest of the excitations, the spectral function 

XX ( ),Aη ν,  is introduced as  
2( ) XX | δ( )A E E E= | · | Ò - ,Âη η ν ν

ν

Φ  

 ( )
1 2

2
(2)

pmqn E Epmqn
pmqn

kk
ν

νη

ν σ σ

δ*
-= .Â Â Â  (15) 

This function projects a conserved biexciton state, XX ,η  
onto the states of the mixed system [44]. It approaches 

( ) 1A Eη ν Æ  for a weakly coupled system where Eν  corre-
sponds to the eigenstate mainly composed of XXη  in the 
mixed system. As an example, the spectral function of the 
XX 10  state ( 10η = ) of the conserved system is shown in 
Fig. 7. The highest 10 ( )A Eν  peak with a value of 0 90.  cor-
responds to the energy of XX 10  in the mixed state. The 
size of this peak tells us that XX 10  is coupled weakly to 
the excited excitons in the mixed system and is expected to 
be stable against Auger recombination [27]. 

  
9 Optical spin blockade in triangular quantum 

dots with zigzag edges In triangular graphene quantum 
dots (TGQD) with zigzag edges, the existence of the zero  

 
Figure 7 Spectral function of the highest energy band edge biex-
citon. 

 

energy band allows for the control of magnetic and optical 
properties of GQDs [18, 42, 45]. As depicted in the optical 
joint density of states for a 97 atom TGQD with zigzag 
edges in Fig. 8, in addition to the valence-conduction tran-
sition (VC), there are intermediate energy optical transi- 
tions allowed through valence-to-zero (VZ) and zero-to-
conduction (ZC) transitions in the TeraHertz energy spec-
trum within the zero energy band (ZZ) that do not exist for 
sublattice symmetry preserved GQDs. The energies of ZZ 
transitions are determined by next nearest neighbour hop-
ping and electron–electron interactions as without the two 
the levels are degenerate.  

At half filling, due to exchange interaction, the electron 
spins of the zero energy band align. As a result, with a  
single electron per level, transitions to and from the zero-
energy band are allowed. However, the ZZ transitions are 
not allowed as a photon cannot flip the spin of an electron.  

The carrier density, thus, the filling of the zero energy 
shell, can be tuned by external metallic gates or doping. 
The addition or removal of an electron to the spin-
polarized band of electrons greatly influences the optical 
transitions. Increasing the shell filling, the number of 
available states at the zero energy band reduces, quenching 
the VZ transition that requires addition of an electron to 
the zero energy band while enhancing ZC transitions. On 
the other hand, removal of electrons activates the ZZ tran-
sitions, quenches ZC transitions and enhances VZ.  

 

 
Figure 8 Joint density of states of a 97 atom triangular graphene 
quantum dot with zigzag edges. Black lines correspond to transi-
tions within the zero energy band. Green lines are from valence to 
conduction band transition. Blue and red depicts valence-to-zero 
and zero-to-conduction band transitions, respectively. Reprinted 
from Ref. [18]. 
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Figure 9 Electron total spin of the ground state as a function of 
zero-energy band filling. The solid and dashed lines compare the 
ground state without and with optical activation, respectively. 
The red dashed line depicts a disallowed transition due to spin 
blockade.  

 

Especially in the TeraHertz regime, the transitions can 
be tuned by metallic gates. The ZZ transitions are turned 
off either at half filling, or by emptying/filling up the zero 
energy band. The total spin of the ground state becomes 

3S =  upon removing an electron from the half filled band. 
The tHz transitions for such ground state correspond to the 
optically allowed excited states of a single hole. Addition 
of an electron to the total spin 7/2S =  ground state de-
stroys the polarization of the band and the ground state be-
comes a highly correlated, 0S =  state. As a result, there 
are many allowed transitions from the 0S =  ground state 
leading to a very rich absorption spectrum. These varia-
tions in the optical spectra at the tHz regime are a good 
way of charge detection in graphene quantum dots.  

In addition to altering the absorption spectrum, as dis-
cussed above, adding/removing an electron allows for ma-
nipulation of the magnetic moment of the ground state. As 
depicted in Fig. 9, adding an electron erases the magnetic 
moment, from 7/2S =  to 0.S =  The magnetic moment can 
be restored by optical manipulation; exciting an electron 
from the valence band to the zero energy band, creates an 
exciton. The presence of the hole in the valence band re-
stores the spin polarization of electrons in the zero energy 
band since the exchange energy between the hole and the 
zero-energy band electrons is maximal if the electron spins 
align. This results in an electron total spin e 5/2S =  and a 
net spin (with the hole) 3S =  ground state. 

  
10 Conclusion To summarize, we presented a theory 

of the optical properties of graphene quantum dots based 
on a combination of tight binding, Hartree–Fock and con-
figuration interaction (CI) methods. The evolution of the 
band gap with lateral size and its renormalization by self-

energy and excitonic effects was determined. For hexago-
nal and triangular graphene quantum dots a band of exci-
tons, including bright degenerate singlet pair and a group 
of dark exciton states as well as a band of biexcitons was 
predicted. The exciton and biexciton spectrum was suc-
cessfully compared with linear and transient absorption 
experiments on colloidal graphene quantum dots. Finally, 
the optical spin blockade in quantum dots with tunable car-
rier density and magnetic moments was described.  
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Editor’s Note 

Please check Ref. [35] and [44]. 
 


