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Abstract Model-based testing (MBT) involves creating an abstraction, called a model, to

represent the system and automatically deriving test cases from this model. MBT can be

performed using various approaches that generally employ certain assumptions or

requirements affecting the test performance in practice. Here, we consider the harmonized

state identifiers (HSI) method, which is based on finite state machine (FSM) models and

generates test sets that cover all faults in a given domain under certain conditions. We are

interested in the application of the HSI method in practical scenarios where some condi-

tions do not hold or are not straightforward to satisfy. Thus, we propose a heuristic

extension to the HSI method, called heuristic HSI (HHSI), to consider imperfect situations
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as they often occur in practice. To analyze the characteristics of HHSI, we empirically

compare it to random testing and coverage-based testing using non-trivial case studies. The

experiments include model-based mutation analyses over several FSM models.

Keywords Model-based testing � Fault domain-based � Finite state machines �
HSI method � Imperfect situation � Heuristic HSI

Abbreviations
MBT Model-based testing

FSM Finite state machine

SUC System under consideration

HSI Harmonized state identifiers

HHSI Heuristic HSI

1 Introduction

Computer-based systems pervade nearly all contexts, from cell phones to giant banking

systems. It is important that these systems work correctly and provide a high level of

reliability. Thus, there has been an increasing demand for formal and systematic testing,

such as model-based testing (MBT). MBT is an approach that aims at automatic test case

generation using rigorous test models created by testers. According to Hierons et al.

(2009), the adoption of formal models and specifications increases the efficiency and

effectiveness in the testing process. Moreover, the literature reports various benefits, such

as high fault detection capability, requirement evolution, reduced cost and time for testing,

and traceability (Utting and Legeard 2006).

To exploit such benefits, MBT should be applied carefully and correctly in a project.

This involves issues regarding the adoption of an MBT approach in a project requires

making some critical decisions on the selection of test generation methods and modeling

techniques based on the characteristics of the system under consideration (SUC). From a

testing point of view, the selection of test generation method is especially important,

because it determines the testing approach to be employed.

Finite state machines (FSMs) have been studied for more than 50 years, being often

used in MBT (Mealy 1955; Hennie 1964; Vasilevskii 1973; Chow 1978; Lee and Yan-

nakakis 1996); they usually represent the SUC by means of states and transitions that

consume inputs and produce outputs. In this context, several test generation methods, such

as W (Vasilevskii 1973; Chow 1978), Wp (Fujiwara et al. 1991), HSI (Luo et al. 1995), H

(Dorofeeva et al. 2005), and SPY (Simao et al. 2009), have been proposed and used in

system/software testing, such as testing of protocols and Web-based systems. These

methods are fault domain-based since they produce test sets aiming at covering all faults in

a given fault model or domain. Among the approaches to FSM-based testing, fault domain-

based testing is the most prominent topic. In general, such testing approaches rely on

defining a certain set of faults that may exist in the SUC and is intended to be revealed,

called fault domain. Under certain conditions or assumptions, test sets generated using

these approaches guarantee the discovery of all possible faults from the defined domain.

Usually, these conditions require that the test models are reduced, i.e., there are no

redundant states, and that the maximal number of states in the implementation is known.

However, the conditions required to do this may be difficult or even impossible to satisfy in

real-life scenarios.
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From a practical point of view, it is often hard to obtain properly reduced test models,

because testers usually design non-reduced models and the application of traditional FSM

minimization algorithms may yield models that are not suitable for test generation. Also, it

is difficult for testers to determine the number of states or an upper bound on the number of

states in the implementation, since one does not always have access to the internals of the

system. From another point of view, even if a fault domain-based test generation method

relies on relatively weaker conditions, it may not be practical to use. Thus, in a broader

context, the situations in which one or more conditions required by the fault domain-based

testing approach to be applied effectively do not hold are called imperfect situations.

In this paper, we propose an improvement of the fault domain-based testing to enable

its application in real-life scenarios which lead to imperfect situations. Such situations

hinder employing some well-known methods. Therefore, we describe the use of heuristic

extensions to those methods. To exemplify our approach, we select HSI (harmonized

state identifiers), since it is applicable to partial FSMs, it is a simple algorithm that scales

well with large models, and it works with an implementation with more states than the

specification. This method is revised and named as the heuristic HSI method (HHSI) to

be applicable in the imperfect situation characterized as follows.

• The FSM test model designed by the tester is not reduced, i.e., some state pairs cannot

be distinguished by any input sequence.

• The direct application of traditional FSM minimization to the test model does not yield

a properly reduced machine, because infeasible test cases can be generated from the

reduced machine.

In comparison with random and coverage-based testing, we focus on answering the

following questions to provide practical insight for helping testers to better choose, adapt,

and properly use MBT techniques in imperfect situations.

• What are the characteristics of the test sets generated using the heuristic HSI method?

• What is the fault detection effectiveness of using the heuristic HSI method for different

fault domains?

• What are the costs associated with each approach from a practical point of view?

• What are the trade-offs while testing in imperfect situations?

Themain contributions of the paper are twofold. First, a heuristic version of the fault domain-

based HSI method is introduced for the imperfect situation where the FSM specification is not

reduced and the direct application of traditional FSM minimization does not yield a properly

reducedmachine. Second, experiments are performed to analyze characteristics of the proposed

method with respect to traditional approaches (random testing and coverage-based testing)

in situations where the SUCs and their models have the same and different numbers of states.

The paper is organized as follows. Section 2 discusses relatedwork. Section 3 presents the

fault domain-based testing approach used in this paper. Section 4 introduces the heuristic that

is used for its adaptation.After deriving themethodology for theHHSImethod,we describe in

Sect. 5 experiments to compare it to random testing and coverage-based testing and to analyze

its characteristics. Finally, Sect. 6 presents the conclusion and discusses future work.

2 Motivation and related work

FSM-based testing has intensively been researched over the past few decades (Mealy 1955;

Moore 1956; Gill 1962); comprehensive surveys on this topic can be found in Lee and
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Yannakakis (1996), Lai (2002), Hierons et al. (2009), and Dorofeeva et al. (2010). In this

area, the problem of selecting a test set that demonstrates the conformance between a

specification and an implementation is arguably pivotal. This problem, so-called confor-

mance testing, is formally discussed in Sandberg (2005), Krichen (2005), Björklund

(2005), and Gargantini (2005). Conformance testing has been investigated in test case

generation methods that cover all faults in a given domain. In general, fault domain-based

methods require a set of assumptions and/or model properties to be effectively applied. For

instance, some methods are applicable only for deterministic models and others require a

reduced specification. Assumptions can be made about the fault domain so that test sets can

be selected and proved to reveal all intended faults in this domain. Using FSMs, the proofs

are based on the relationship between the specification and the implementation. In other

words, if all assumptions hold, then the test set is capable of proving the equivalence (or

trace inclusion, depending on the chosen conformance relation) between specification

(model) and implementation.

Given a specification (which might be a test model in MBT) and an implementation

under test (also referred as SUC), FSM-based test generation methods are based on the

following assumptions:

• Reliable reset: There exists a reliable operation that brings the implementation to its

initial state.

• FSM implementation: The implementation can be represented/abstracted by an FSM

model.

• Known upper bound number of implementation states: Prior to generating the tests, the

upper bound number of states in the implementation is known by the tester.

Furthermore, the following requirement is also expected to be fulfilled by most of the

fault domain-based methods:

• Reduced specification: The model designed by the tester is reduced, which means that

all states are pairwise distinguishable (the concept of reduced model and distinguish-

ability of states are formally defined in Sect. 3.1).

The aforementioned assumptions are required by most of methods found in the litera-

ture, such as W (Vasilevskii 1973; Chow 1978), Wp (Fujiwara et al. 1991), HSI (Luo et al.

1995), H (Dorofeeva et al. 2005), and SPY (Simao et al. 2009). The W method (Vasilevskii

1973; Chow 1978) is considered the seminal work on these methods. It basically uses a

transition cover set to reach states and a specific group of sequences called characterization

set (or W set) for state identification. Other methods adopt different ways to identify states

such as identification sets (Fujiwara et al. 1991) and separating families (Luo et al. 1995).

Section 3.3 provides a detailed description of one of these methods, namely HSI. The

fundamental difference among these methods is the size of the generated test sets.

Researchers have investigated means to reduce the test set, while keeping the same

properties. Experimental results on test set sizes comparing the existing methods can be

found in (Dorofeeva et al. 2010; Endo and Simao 2013). These studies show that the recent

methods (H and SPY) are able to produce test sets smaller than the traditional ones (W,

Wp, and HSI). To do so, recent methods rely on identifying separating sequences that will

have less impact on the test size while the test set is built (this strategy is called on-the-fly).

The proposal of on-the-fly methods are backed up by sufficient conditions that determine

whether an arbitrary test set has the required properties or not (Dorofeeva et al. 2005;

Hierons and Ural 2006; Simao and Petrenko 2010). It was observed that recent methods
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rely on fewer and longer sequences to reduce the test set, while traditional methods show

many short sequences (Endo and Simao 2013).

Initiatives have been taken to remove one or more of the assumptions, e.g., the reliable

reset. Accordingly, the generation of checking sequences has been investigated (Hennie

1964; Gonenc 1970; Sidhu and Leung 1989; Rezaki and Ural 1995; Hierons and Ural

2006), where the test set consists of a single test case. However, most of the checking

sequence generation methods impose other restrictions, such as strongly connected FSMs

and the existence of a unique separating sequence for all state pairs (i.e., a distinguishing

sequence—DS) (Hennie 1964; Gonenc 1970; Hierons and Ural 2006). Among them, the

work of Gonenc (1970) has inspired other methods that use a DS to construct checking

sequences. His method generates checking sequences through the manipulation of two

types of sequences: a-sequence and b-sequence. The a-sequence aims to recognize all

states identifying states reached after applying a DS, and the b-sequence is defined to test

the transitions. The need for a DS was removed in the work of Rezaki and Ural (1995) by

using W sets instead. As W sets exist for all reduced FSMs (Gill 1962), the Rezaki and

Ural’s method is more general. However, the checking sequence length grows exponen-

tially with the number of sequences in the W set.

Most of discussed papers have focused on the use of deterministic FSMs. Nevertheless,

there has been interest in investigating the test from non-deterministic machines (Zhang

and Cheung 2003; Hierons 2004; Petrenko and Yevtushenko 2014). Non-determinism may

occur in two ways: (i) a state can have different reactions (outputs and/or next states) for

the same input, and (ii) internal transitions may exist and move the machine to a different

state without producing any output (Zhang and Cheung 2003). As non-determinism usually

prevents to decide which the next state is, input sequences used for deterministic FSMs

(described in Sect. 3.1) are replaced by testing strategies, frequently represented as trees

whose transitions indicate which inputs can be applied after a specific output is observed.

Zhang and Cheung (2003) investigate three optimization problems related to the transfer

tree (TT), which is used to reach a given state, and diagnosis tree (DT), which is used to

identify a given state. Hierons (2004) introduces an adaptive algorithm that aim at reducing

the test suite size in non-deterministic FSMs. The algorithm basically produces, at each

state, an input sequence or an adaptive test case on basis of the input/output sequences

already observed. Similar to the TT and DT, the adaptive test case is also a tree. Petrenko

and Yevtushenko (2014) propose a method to generate adaptive test cases from non-

deterministic specifications, allowing the implementation to behave non-deterministically.

As in methods for deterministic FSMs, the authors define assumptions to be considered

when assuring the coverage of all faults in a given domain.

Almost all generation methods (for both test sets and checking sequence) work with the

assumption that the test model is a reduced specification. Motivated by the adoption of test

generation methods and by the manipulation of simpler models with redundant states,

several algorithms have been proposed to remove redundancy in FSMs (Grasselli and

Luccio 1965; Pena and Oliveira 1998). The so-called minimization algorithms [as in

(Grasselli and Luccio 1965; Pena and Oliveira 1998)] identify redundant states and try to

remove them, while keeping the equivalence between the original and modified machine.

At the end, a reduced specification is produced.

Among the required conditions, obtaining a reduced model is one of the bothersome

tasks for testers. The mentioned minimization algorithms assume that undefined inputs in a

state are ‘‘don’t care’’ types (Luo et al. 1995). This assumption does not hold in many real-

life systems (for example, for systems with GUIs). Undefined inputs usually mean that an

input (event) is not enabled, that is, there is no way to fire the event in that state.
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Consequently, the application of traditional FSM minimization and the use of the reduced

model in test generation cause some test cases to be infeasible; i.e., they are not executable

in the real SUC.

In such situations, depending on the SUC and the selected fault domain-based method,

one may be allowed to perform additional operations on the model so that the conditions

required by the fault domain-based method are satisfied. However, it is possible that such

operations serve only as some heuristics to enable the application of the favored method.

Thus, in the end, the generated test sets may have a reduced fault detection power, being

unable to detect all the faults in the defined fault domain. Another point with a large effect

on the fault detection power of the testing method is whether the upper bound number of

states in the implementation is known or not. Some methods use this information in test

generation to cover additional faults that originate from the difference between the number

of states in the test model and in the implementation (Simao et al. 2009).

To our knowledge, state-counting (SC) (Petrenko and Yevtushenko 2005) is the only

method in the literature that is applicable to both reduced and non-reduced FSMs and has

the same theoretical guarantees of other classical methods (W, Wp, HSI, and so on). When

applied on reduced specifications, it has the same behavior of traditional methods (e.g.,

HSI). What differs it from other methods is that SC is directly applicable to non-reduced

FSMs (Petrenko and Yevtushenko 2005). In this scenario, the SC method basically counts

how many times the tests passed by a given state and use this information to identify a state

and distinguish it from other states. However, SC has some scalability problems since the

strategy employed to distinguish states produces test sets that rapidly grow in function of

the number of states. As a consequence, impractically big test sets can be derived from

medium/large FSMs.

In this paper, we use the HSI method for fault domain-based test generation. However,

since our models contain states that are not distinguishable (since not all inputs are defined

for all states), we insert additional transitions to the model so that we are able to identify

the states that can be merged, perform a proper minimization, and run the HSI method.

Later, we remove the events related to these additional transitions from the sequences

yielded by the HSI method and obtain our test sequences, which are not guaranteed to

detect all the intended faults. We call this method heuristic HSI (HHSI) and analyze its

characteristics by comparing it to random testing and coverage-based testing in both sit-

uations where (i) the implementation and the test models have the same number of states

and (ii) they do not.

3 Fault domain-based testing

3.1 Model definition

In this paper, we consider a deterministic Mealy machine model that is composed of states

and transitions. For each transition, an input symbol is consumed and an output symbol is

produced. An FSM can be represented by a state diagram, which is a directed graph so that

nodes are states and edges are transitions. The edges are annotated with inputs and outputs

associated with the transition. Figure 1 exemplifies a state-transition diagram of an FSM.

Definition 1 A finite state machine (FSM) M is a 7-tuple (S, s0, I, O, D, d, k), where:

• S is a finite set of states with initial state s0,

• I is a finite set of inputs,
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• O is a finite set of outputs,

• D ( S 9 I is a specification domain,

• d: D ? S is a transition function, and

• k: D ? O is an output function.

Tuple (s, x) [ D is defined as a transition in state s that consumes input symbol x. A

transition can be represented using the form (si, x/y, sj), which means there is a transition

t from head state si to tail state sj that consumes input symbol x and produces output symbol

y. We say that t is an outgoing transition of si and an incoming transition of sj. An FSM

which has defined transitions for each input symbol in all states, i.e., D = S 9 I, is

complete; otherwise, it is partial. A sequence a = x1…xk (a [ I*) is defined as an input

sequence for state s [ S, if there exist states s1,…, sk?1 such that s = s1 and d(si, xi) = si?1

for all 1 B i B k. Also, X(s) is used to denote all input sequences defined for state s and

XM is an abbreviation for X(s0). Therefore, XM represents all defined sequences for FSM

M. The empty sequence is denoted by symbol e.
Notation ax is used to denote the concatenation of the two sequences, a and x.

Sequence a is a prefix of sequence b, denoted by a B b, if b = ax, for some sequence x.
Sequence a is a proper prefix of b, denoted by a\b, if b = ax for some sequence x = e.
Given two sets of sequences D1 and D2, D1.D2 is the set of sequences obtained by

concatenating all sequences in D1 with all sequences in D2, that is, D1.D2 = {ab| a [ D1

and b [ D2}. Furthermore, D0 = {e} and Di?1 = D.Di, for i C 0.

The transition and output functions are extended for defined input sequences, including

the empty sequence e, as follows. For a state s [ S, d(s, e) = s and k(s, e) = e; given an

input sequence ax [ X(s), we have d(s, ax) = d(d(s, a), x) and k(s, ax) = k(s, a)k(d(s,a),
x).

Two states si, sj [ S are distinguishable if there exists a separating sequence c [ X(si) \
X(sj), such that k(si, c) = k(sj, c); otherwise they are not distinguishable. An FSM M is

reduced if all states are pairwise distinguishable; otherwise it is non-reduced. Given a

different FSM N = (S0, q0, I, O, D, K), we say that two machines M and N are distin-

guishable if there exists a sequence c [ XM \ XN, such that k(s0, c) = K(q0, c).
A test case of M is an input sequence a [ XM. A test set of M is a finite set of test cases

ofM, such that there are no two test cases a and b, such that a\b. In fact, if a test case a is
a proper prefix of a test case b, the execution of b will always imply the execution of a.
Thus, a can be removed without altering the test result.

Fig. 1 An example FSM (which
is also a reduced FSM)
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Definition 2 Set Q of input sequences is a state cover of M if, for each state si [ S, there

exists a sequence ai [ Q that transfers the FSM from the initial state to si. This set includes

sequence e to reach the initial state.

Definition 3 Set P of input sequences is a transition cover of M if for each transition (s,

x) [ D there exist the sequences a, ax [ P such that d(s0, a) = s. Set P also includes

sequence e.

For the FSM in Fig. 1, we have that Q = {e, a, aa, ab, aaa} and P = {e, a, aa, ab, aaa,
aab, aba, abb, aaaa}. After removing the prefixes properly, both sets can be used as test

sets for state and transition coverage.

3.2 Fault domain

We now discuss the rationale behind the fault domain-based testing by defining the fault

domain and its classes, as well as describing the complete test sets.

Set I represents all deterministic FSMs with the same input alphabet as M for which all

sequences in XM are defined, that is, for each N [ I, XM ( XN. Let m C 1 be an integer,

Im denotes the set of all FSMs with at most m states such that Im ( I.

Definition 4 (m-complete test sets) Given a specification M with n states, a test set T in

XM is m-complete if, for each N [ Im distinguishable from M, there exists a test case in

T that distinguishes M from N. An m-complete test set has full fault coverage for the

defined domain, being able to detect all faults in any implementation with at most m states.

A test set is called n-complete in the case that m = n.

The methods that generate m-complete test sets are based on the assumption that the

implementation itself can be represented by an FSM. Thus, Im represents the domain of

possible faulty implementations with at most m states. Under this assumption, these

methods are formally proved with respect to the ability to produce complete test sets.

3.3 The HSI method

In this paper, we extend the HSI method, which is able to generate m-complete test

sets for partial and reduced FSMs (Luo et al. 1995). We select HSI because it is

applicable to partial FSMs and it is a simple algorithm that scales well with large

models. Moreover, it works with an implementation with more states than the speci-

fication (m C n).

In the HSI method, separating families are used to identify states. A separating

family is a set of input sequences Hi ( X(si) for a state si [ S that satisfies the fol-

lowing condition (Luo et al. 1995): For any two distinct states si, sj, there exist

sequences b [ Hi, c [ Hj and a, such that a B b, a B c and k(si, a) = k(sj, a). The

separating families for the FSM in Fig. 1 are H0 = {ab, aab}, H1 = {aab}, H2 = {a,

b}, H3 = {b, aa, ab}, and H4 = {a, b}.

The number of states in the specification is n and the number of states in the imple-

mentation is assumed to be m, m C n. The application of HSI method can be divided into

two parts:

(i) Construction of Z: Z is defined by concatenating the transition cover P with all defined

sequences of up to a certain length that is defined by the number of extra states, that is,

sequenceswith lengthm–n (Simaoet al. 2009). Formally,Z = (P[P.I[…P.Im-n)\XM.
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(ii) Concatenation of Z and separating families: The generation of m-complete test sets is

performed by concatenating the sequences in Z with their separating families and

removing the proper prefixes. In other words, TSHSI = {a Hi| a [ Z and d(s0,
a) = si}.

When the specification and implementation have the same number of states n = m,

Z = P.{e}. Therefore, for the FSM in Fig. 1, when Z is concatenated with Hi, we have

TSHSI(n) = {aaaaab, aabaab, aabab, abaaab, abaab, abbaab, aaaaaab}.

When the implementation has one or two more states than the specification, that is,

m = n?1 or m = n?2, respectively, Zn?1 = P.{e} [ P.I and Zn?2 = P.{e} [ P.I [ P.I2,

respectively, such that Zn?1 ( XM and Zn?2 ( XM. Thus, for the FSM in Fig. 1, we have

TSHSI(n?1) = {aaaaab, aabaab, aabab, abaaab, abaab, abbaab, aaaaaab, aabaaa, abaaaa,

abbaaab, aaaaaaa} and TSHSI(n?2) = {aabaab, abaaab, abbaab, aaaaaab, aabaaa, aba-

aaa, abbaaab, aaaaaaa, aababb, aababa, abaabb, abaaba, abbaaaa, aaaaabb, aaaaaba}.

4 Heuristic HSI method (HHSI)

In many event-based systems, such as GUI systems, when an input event is not defined in a

given state, it means that this event is not enabled or cannot be fired. For instance, when a

‘‘deletion’’ event occurs, a modal dialog window is presented (reaching some state s) and

only two events are enabled, ‘‘OK’’ and ‘‘Cancel.’’ When modeling such a case, a partial

machine needs to be used. However, it is likely that state s will not be distinguishable from

the others since ‘‘OK’’ and ‘‘Cancel’’ may not be defined in other states. This fact leads to

an imperfect situation, because it hinders the direct use of traditional FSM minimization

algorithms, since they tend to merge states with disjoint sets of defined inputs. As a

consequence, some test sequences derived from such reduced model cannot be applied to

the SUC and, therefore, they are useless. Consequently, the imperfect situations considered

in this paper are defined as follows.

Definition 5 (Imperfect situation) Let M be a non-reduced FSM and N be an FSM that is

reduced from M (using traditional FSM minimization). An imperfect situation occurs if

XN = XM.

For instance, when the FSM in Fig. 2 is reduced, some states are merged and we have a

smaller machine with three states, as demonstrated in the FSM in Fig. 3. Test sequence

adbc obtained from this reduced machine is not applicable to the SUC. In other words,

sequence adbc is not defined in the original FSM (Fig. 2) and, as a consequence, cannot be

executed on the SUC. Thus, the machine in Fig. 3 is not a properly reduced FSM for our

case, causing an imperfect situation.

To tackle this issue, we present a heuristic solution we called heuristic HSI method

(HHSI). This approach is divided into three parts that are described as follows.

Part 1: Construct a modified machine: First, we assume that undefined inputs in a given

state of an FSMM are not enabled for that state, that is, they cannot be fired or provoked. For

example, in Fig. 2, input a can only be applied to states s1, s4, and s6, while no input can be

fired in state s5. This assumption holds for the models used in the case studies (Sect. 5).

The heuristic solution is based on the idea of minimizing the FSM while keeping the

same defined input sequences. This is performed by merging only the states with the same

defined input sequences. To do so, we add a self-transition for each state that consumes a

special input f and produces an output which is the set of enabled inputs in that state. These
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transitions are labeled as f-transitions. For the FSM in Fig. 2, a modified FSM with the

f-transitions is illustrated in Fig. 4.

Part 2: Minimize the machine: Using this modified machine, a traditional minimization

algorithm (Grasselli and Luccio 1965; Pena and Oliveira 1998) is applied to obtain a

reduced FSM. In this example, states s2 and s3 are not distinguishable and then merged in

one state s2–3, as shown in Fig. 5.

When compared with the FSM in Fig. 3 which is reduced from the original

model by a direct application of FSM minimization, the FSM in Fig. 5 correctly

identifies the compatible states to prevent generation of infeasible sequences. Thus, it is

a properly reduced version of the original FSM in our case, whereas the FSM in Fig. 3

is not.

Part 3: Generate the test set: When the heuristic HSI method is applied to the reduced

machine in Fig. 5, separating families are built prioritizing sequences without f, that is,

sequences with f are used only if no other sequence exists to distinguish a pair of states.

The separating families for the FSM in Fig. 5 are H1 = {a, f}, H2–3 = {c, bc, f}, H4 = {a,

f}, H5 = {f}, H6 = {a, c, bc, f}, and H7 = {c, f}. Notice that especial input f is enough to

distinguish states s2–3 and s6. Although f would be shorter, we prioritize sequence bc

which is included instead.

Next, the HSI method is applied in the FSM in Fig. 5 as explained in Sect. 3.3.

Given that P = {e, a, f, ab, ac, af, acd, aca, acf, acdf, acaa, acab, acac, acaf, acabc,

Fig. 2 An example of a non-
reduced FSM

Fig. 3 Directly reduced FSM
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acabf} and the specification and implementation have the same number of states

n = m, we have TSHHSI(n) = {abc, ff, fa, abf, abbc, aff, afc, afbc, acff, acfa, acdff,

acaaf, acaac, acaabc, acacf, acaca, acaff, acafc, acafa, acafbc, acabcf, acabcc, acabff,

acabfc}. Notice that event f occurs in both the transition cover P and the produced test

suite TSHHSI(n).

Later, we remove the occurrences of event f from the generated test sequences, because

event f does not really exist in the system. At the end, for the FSM in Fig. 2 (initially used

and passed by intermediate steps illustrated in Figs. 4, 5), we have TSHHSI(n) = {abc, abbc,

acd, acaac, acaabc, acaca, acabcc}. These steps are the same for the case when the

implementation has more states than the specification m[ n.

As a consequence of the heuristic use of event f, the resulting test set may detect fewer

faults, though states and transitions are still verified when possible. This procedure also

assures that the generated test cases (from FSM in Fig. 5) are also defined in the original

FSM presented in Fig. 2. Algorithm 1 outlines this process that is divided into three parts.

Fig. 4 An FSM with f-transitions

Fig. 5 Reduced FSM with f-transitions
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It is important to emphasize that all produced test sequences in TSHHSI are defined in M,

that is, TSHHSI ( XM.

Formally, any FSM can be reduced using direct application of FSM minimization

(Grasselli and Luccio 1965; Pena and Oliveira 1998). However, as discussed, this causes

the states that do not have the same set of enabled inputs, that is, incompatible states, to be

merged in the reduced machine. Therefore, test cases generation from such a machine

results in infeasible test cases. The introduction of f-transitions does not violate the defi-

nition of an FSM; thus, it does not prevent the machine from being reduced. The

f-transitions only help to identify the compatible states properly so that the incompatible

states are not merged during the minimization. As a consequence, the reduced FSM keeps

the same set of defined sequences as the original and, therefore, it can be used for test

generation properly.

Notice that, from an FSM minimization perspective, the inclusion of f-transitions has an

effect similar to completing the FSM with loopback transitions for unspecified inputs and

producing null outputs (Sidhu and Leung 1989). However, this completeness strategy will

introduce much more transitions (proportional to n.|I|) and, as a consequence, the perfor-

mance of minimization and test generation algorithms will decline significantly. Moreover,

greater number of non-executable test cases will need to be removed in the following steps.

In addition, without the proper treatment during the selection of separating families, the

direct application of traditional methods will always choose the shortest sequences which

usually include the artificially added transitions. As we discuss above, we treat all these

issues in the HHSI method.
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5 Case studies

This section describes the case studies conducted to compare the fault domain-based

testing approach proposed in Sect. 4, that is, the heuristic HSI method, to random testing

and simple coverage-based testing. We aim to evaluate the performance of the HHSI

method with respect to cost (through test set characteristics) and effectiveness (through the

fault detection ratio).

First, we present three SUCs, which represent important facilities provided by a large

commercial Web-based system. Later, the experiment details are outlined. After per-

forming the experiments, we analyze the results of (model-based) mutation analysis to

evaluate fault detection and simple cost-effectiveness of test sets generated by the test

generation methods (namely HHSI, random, and state/transition coverage). Finally, we

discuss the results of the experiments and limitations of the approach.

5.1 Systems under consideration

ISELTA (Isik’s System for Enterprise-Level Web Centric Tourist Applications—http://

www.iselta.de) is a Web portal for marketing tourist services. It enables travel and tourist

enterprises, such as hotel owners and agencies, to create their own individual search and

service offering masks. These masks can be embedded in the existing homepage of the

hotels as an interface between customers and system. Potential customers can then use

those masks to select and book hotel rooms and benefit from various different facilities.

We use three non-trivial facilities of ISELTA as SUCs. Therefore, the test models are built

using the following three facilities available in ISELTA: Specials, Additionals, and Prices.

Through Specials, a hotel owner or a travel agent is able to add special prices to the

marketed hotel. To add a special, at least the room type, number of rooms of this type,

basic price, and time period information should be provided, together with a unique name

for the special. One can also upload a photo or write additional descriptions. Using this

facility, the existing specials can also be edited or deleted.

Additionals provides functionalities to manage offerings of additional facilities, such as

extra beds or extra rooms in specified periods and service days. To add an additional

service, at least the period, service days, room type, amount per day, price, and a unique

name should be provided. Optionally, descriptions and photos can be included, and

existing additional services can also be edited or deleted using this facility.

In addition, using Prices, hotel owners or travel agencies can define reduced or addi-

tional prices per person based on, for example, number of children, number of persons,

duration of the stay, and/or some specific dates. To define a price, at least a unique name

and the price should be entered. In addition, if discount is selected, some additional data

like age group and number of persons have to be entered. Also, existing prices can be

edited or deleted using this facility.

For more information on the SUCs, reader may refer to Appendix A of ESM.

5.2 Experimental configuration

For each SUC, inputs are identified by listing relevant user actions and outputs are iden-

tified by considering the observed Web pages and certain relevant elements in these Web

pages. More precisely, inputs are identified using the events that can be performed by the

user in different phases of system activity; for example, different types of data entering and

canceling events are distinguished from each other by using slightly different labels.
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Outputs are characterized by considering certain properties of the list elements and the

form elements in the pages; the properties of list elements considered are the number of

current list elements, the change in this number, and the presence of a locked element in

the list; and the properties of form elements considered are the page type, the completeness

of field elements, and the presence of warning messages, warning pop-ups and delete pop-

ups. Later, states are identified carefully by using the possible input–output combinations

to build a correct transition function.

Based on these artifacts, FSM models are derived to employ the fault domain-based

approach developed in Sect. 4. After the construction of the initial, redundant FSM models,

reduced machines are computed automatically for test generation. For the sake of saving

space, we include the FSM models in Appendix B.

Using the heuristic HSI method (Sect. 4) on FSM models, n-complete, (n ? 1)-com-

plete, and (n ? 2)-complete test sets are generated. We refer to these three test sets as

HHSI(n), HHSI(n ? 1), and HHSI(n ? 2), respectively.

After generating HHSI(n), HHSI(n ? 1), and HHSI(n ? 2), considering the size of

these test sets, we generate three random test sets which have approximately the same sizes

as the HHSI test sets, namely Random(n), Random(n ? 1), and Random(n ? 2), respec-

tively. To assure that the corresponding fault domain-based and random test sets have

approximately the same size, we generate random test sets to satisfy the following prop-

erties. For each Random(i) where i = n, n ? 1, n ? 2:

• Each test case in Random(i) has length X, where X is the smallest integer larger than or

equal to the average length of the test cases in HHSI(i).

• Random(i) contains Y test cases, where Y is the smallest integer larger than or equal to

||HHSI(i)||/X, where ||HHSI(i)|| is the sum of all test case lengths in HHSI(i).

In this way, the size of Random(i), X.Y, is very close to the size of HHSI(i), for i = n,

n ? 1, n ? 2.

We also generate two additional test sets using conventional FSM-based coverage

criteria. More precisely, two test sets are additionally generated by covering states and

transitions [using the testing tree in (Chow 1978)], referred to as state (cover) and transition

(cover), respectively. Furthermore, random test sets having approximately the same size as

these test sets are generated following the methodology similar to the above. These random

test sets are referred to as Random(state) and Random(transition), respectively.

To obtain average trends for random testing approach, in each case study, we generate

and use 10 random test sets for each Random(i) where i = n, n ? 1, n ? 2, state, and

transition. Figure 6 summarizes the process performed for each SUC to obtain the test

model and generate the test sets.

The effectiveness of the test sets, generated as shown in Fig. 6, is compared in two steps

using mutation analysis. Figure 7 illustrates the mutation analysis process adopted in the

case studies. For each SUC, mutants are generated using two different types of FSM

models:

• Reduced FSM models, which are also used for generating HHSI test sets: This induces

a situation where the models and the SUCs have the same number of states, which may

not always be the case in practice.

• Non-reduced FSM models: This induces a situation where the models and the SUCs

have different number of states and the difference is unknown. For instance, the tester

does not have access to the internals of the system and/or is incapable of determining

the exact number of states in the system.
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Fig. 6 Modeling and test set generation

Fig. 7 Mutation analysis

Software Qual J (2015) 23:423–452 437

123



Note that it is important whether corresponding models and SUCs have the same

number of states or not, because it directly affects the size of the fault domain and the

power of the generated test cases. In the end, for each generated test set, two sets of

mutation scores are calculated.

5.3 Mutation operators

Mutation operators introduced in this subsection are used to seed faults into FSM speci-

fications. The following operators are defined in (Fabbri et al. 1994; Simao et al. 2008) for

FSMs:

• Change Initial State (CIS): The initial state of the FSM is changed to a different state.

• Change Input (CI): Input of a transition is changed to a different one. The operator is

not applied if the change produces a non-deterministic machine (mutant).

• Change Output (CO): Output of a transition is changed to a different one.

• Missing Transition (MT): A given transition is removed from the FSM.

• Tail State Exchange (TSE): Tail state of a transition is changed to a different one.

• Head State Exchange (HSE): Head state of a transition is changed to a different one.

The operator is not applied if the change produces a non-deterministic machine

(mutant).

In mutation analysis, these operators are applied one by one to the original specification

and a set of first-order mutants are generated. During test execution, outputs obtained from

a mutant are compared to the outputs obtained from the original FSM. If a test case reveals

a mismatch between these outputs, the mutant is killed; otherwise, it is alive. Thus,

mutation score ms is calculated as

ms ¼ #km= #tm � #emð Þ

where #tm is the total number of mutants, #km is the number of killed mutants, and #em is

the number of equivalent mutants. The equivalent mutants are identified automatically by a

polynomial time algorithm that searches for a separating sequence between the initial states

of the original and mutant FSMs (Lee and Yannakakis 1996).

As mentioned, mutation analysis is performed using both reduced and non-reduced

FSM models for the test sets generated using fault domain-based, coverage-based, and

random testing approaches (See Sect. 5.2). Non-reduced models naturally contain extra

states; therefore, we opted not to use state adding mutations to include states artificially.

5.4 Test models and test sets

This subsection presents the data about the adopted test models and generated test sets.

Table 1 presents general information about reduced and non-reduced FSM models for each

SUC. FSM models of Specials have the smallest size, whereas the models of Prices are the

largest ones. Also, for each SUC, a non-reduced FSM model represents the model which is

constructed initially from the system specification. It contains redundancy; therefore, its

size is bigger.

Besides the number of states, transitions, inputs, and outputs, Table 1 also shows the

averages (and the standard deviations) of the numbers of incoming transitions and of

outgoing transitions. The number of outgoing transitions shows less variation (in all

models, it varies from 0 to 8 transitions). The number of incoming transitions has more

variation, as can be seen by the standard deviation values given in the parentheses. In
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addition, we have observed that most of the states have from 1 to 10 incoming transitions

(around 90 %), while a relatively small percentage of states have from 11 to 49 incoming

transitions (around 10 %).

Table 2 presents the information about the test sets generated using different methods

for each SUC, as already explained in Sect. 5.2. The size of each test set is measured by its

total length, which is the sum of the length of the test cases in the test set. This can be used

as a rough estimate for testing cost, because it gives an idea of how many events need to be

executed in total since all events have approximately the same execution cost/time. The

size order given in Fig. 8 is observed for the test sets generated for the three SUCs.

The differences between HHSI(n), HHSI(n ? 1), and HHSI(n ? 2) (and their corre-

sponding random test sets) are expected, since there is an subsumption relation (Zhu et al.

1997) between HHSI(n), HHSI(n ? 1), and HHSI(n ? 2) (and the random test sets are

generated correspondingly to have approximately the same sizes). Table 2 also shows that,

except for random test sets, the shortest test case lengths are the same for all models and

test sets and the longest test case lengths are very close. The length of the longest and the

average test case grow approximately by one for HHSI test sets, and the standard deviation

is also low. In addition, for each random test set, the shortest, the longest, and the average

test case length values are all equal, because random test cases have fixed length.

For the three SUCs (Specials, Additionals, Prices), all separating sequences (which

compose the separating families as defined in Sect. 3.1) have length 1, i.e., one input event

is sufficient to distinguish state pairs in these models, probably due to the fact that the

outputs of the SUCs are in the form of web pages and, thus, they are rich of information,

which makes it easier to distinguish the states without requiring longer separating

sequences. Furthermore, the FSMs of the three SUCs used in the experiments have the

same diameter, that is, the minimum number of inputs required to reach the state farthest

from the initial state. The diameter of each FSM is equal to 12.

5.5 Mutation analysis

We herein present the results of mutation analysis to evaluate the fault detection power of

the generated test sets using reduced and non-reduced FSM models. Table 3 presents the

Table 1 Data related to models

Model Model element Specials Additionals Prices

FSM (reduced) States 71 75 103

Transitions 305 377 533

Inputs 13 14 14

Outputs 54 57 43

Incoming transitions 4.3 (4.3) 5.0 (5.2) 5.2 (6.1)

Outgoing transitions 4.3 (1.9) 5.0 (2.3) 5.2 (2.2)

FSM (non-reduced) States 91 94 148

Transitions 428 512 828

Inputs 13 14 14

Outputs 54 57 43

Incoming transitions 4.7 (4.5) 5.4 (5.8) 5.6 (7.2)

Outgoing transitions 4.7 (1.9) 5.4 (2.2) 5.6 (2.2)
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Table 2 Data related to test sets

Test set Total
length

Number of
test cases

Shortest test
case length

Longest test
case length

Average test case length/
standard deviation

Specials

State 260 35 3 12 7.43/2.2

Transition 1,992 236 3 13 8.44/2.1

HHSI (n) 6,755 714 3 14 9.46/2.0

HHSI (n ? 1) 39,699 3,725 3 15 10.66/2.0

HHSI (n ? 2) 223,102 18,887 3 16 11.81/1.9

Random(state) 264 33 8 8 8/0

Random(transition) 1,998 222 9 9 9/0

Random (n) 6,760 676 10 10 10/0

Random (n ? 1) 39,699 3,609 11 11 11/0

Random (n ? 2) 223,104 18,592 12 12 12/0

Additionals

State 276 38 3 12 7.26/2.3

Transition 2,359 282 3 13 8.37/2.1

HHSI (n) 8,549 918 3 14 9.31/2.1

HHSI (n ? 1) 57,003 5,435 3 15 10.49/2.0

HHSI (n ? 2) 363,262 31,270 3 16 11.62/2.0

Random(state) 280 35 8 8 8/0

Random(transition) 2,367 263 9 9 9/0

Random (n) 8,550 855 10 10 10/0

Random (n ? 1) 57,013 5,183 11 11 11/0

Random (n ? 2) 363,264 30,272 12 12 12/0

Prices

State 368 50 3 12 7.36/2.0

Transition 3,522 432 3 13 8.15/2.0

HHSI (n) 15,086 1,656 3 14 9.11/1.9

HHSI (n ? 1) 101,353 9,920 3 15 10.22/1.9

HHSI (n ? 2) 667,050 58,970 3 16 11.31/1.9

Random(state) 368 46 8 8 8/0

Random(transition) 3,528 392 9 9 9/0

Random (n) 15,090 1,509 10 10 10/0

Random (n ? 1) 101,354 9,214 11 11 11/0

Random (n ? 2) 667,056 55,588 12 12 12/0

Fig. 8 Test set sizes
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mutation scores obtained using the reduced FSM models as implementation models to

generate the mutants [for each system under consideration (SUC)]. Note that, since

reduced FSM models are also used for generation of HHSI(n), HHSI(n ? 1), and

HHSI(n ? 2) test sets, an original model and each mutant generated from this model have

the same number of states.

During mutation analyses, all CIS, CI, CO, MT, and HSE mutants are killed by HHSI

test sets. TSE mutants turned out to be the hardest-to-kill mutants, presenting live mutants

for all the test sets. Also, no equivalent mutants were observed.

Overall, 51,782 mutants were generated for Specials, 66,406 mutants for Additionals,

and 108,104 mutants for Prices, and none of the test sets managed to achieve the perfect

mutation score for any of the SUCs.

Random test sets achieve lower mutation scores than their non-random counterparts.

The lowest mutation scores are achieved by Random(state) with 11.99 to 14.15 %. They

are followed by state covers (14.82 to 18.37 %), Random(transition) (24.50 to 27.22 %),

Random(n) (35.88 to 40.41 %), Random(n ? 1) (53.49 to 59.83 %), transition cover

(59.20 to 68.06 %), and Random(n ? 2) (67.95 to 80.46 %).

HSI test sets have significantly superior mutation scores when compared with the other

test sets with HHSI(n ? 1) and HHSI(n ? 2) achieving exactly the same and the highest

scores (99.29 to 99.41 %), and HHSI(n) is following them with the scores between 99.12

and 99.33 % by killing 36, 113, and 87 fewer mutants for Specials, Additionals, and Prices,

respectively.

Thus, we can order the test sets using the averages of the mutation scores achieved over

different SUCs as shown in Fig. 9.

Table 4 presents the mutation scores obtained using the non-reduced FSM models as

implementation models to generate the mutants (for each SUC). In this case, an original

model and each mutant obtained from this model have different number of states. This

represents a situation which decreases the power of the heuristic HSI method. However, the

results show a similar trend with those obtained using reduced FSM models as explained

above.

During mutation analyses, all CI, CO, MT, and HSE mutants were detected by

HHSI(n ? 1) and HHSI(n ? 2) test sets for Specials and Additionals. Furthermore, this

time, equivalent mutants were observed but only for TSE operator, which turned out to

generate the hardest-to-kill mutants once again.

Overall, 82,736 mutants were generated for Specials, 101,287 mutants for Additionals,

and 216,181 mutants for Prices, representing a larger fault domain with almost twice the

number of mutants obtained from reduced FSMs. None of the test sets managed to achieve

the perfect mutation score for any of the SUCs.

Once again non-random test sets achieve higher mutation scores than their random

counterparts. The lowest mutation scores are achieved by Random(state), 9.01 to 10.86 %.

They are followed by state covers (9.31 to 12.82 %), Random(transition) (19.13 to

22.39 %), Random(n) (31.12 to 34.79 %), Random(n ? 1) (45.76 to 52.38 %), transition

covers (35.47 to 46.46 %), and Random(n ? 2) (66.14 to 71.88 %).

HHSI(n ? 2) test sets achieve the highest mutation scores in range 92.09–99.04 %

where HHSI(n ? 1) test sets manage to achieve second to best mutation scores with

88.45–99.04 %. HHSI(n) test sets attain mutation scores in the interval from 70.01 to

83.21 %, falling significantly behind of HHSI(n ? 1) and HHSI(n ? 2).

When we order the test sets using the averages of the mutation scores achieved over

different SUCs (Fig. 10), we have an ordering similar to that obtained using reduced FSM
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models. The only difference is that HHSI(n ? 1) test sets achieve smaller mutation scores

than HHSI(n ? 2) for each SUC.

As already mentioned, using non-reduced FSMs causes the fault domain to grow, and,

in general, all test sets experience a decrease in mutation scores. If we express the average

decrease for each test set relative to its average mutation score obtained using non-reduced

FSM models, we have the followings: State and transitions covers suffer from relatively

greater decreases where, on the average, transition covers experience a relative decrease of

*33.62 % and state covers a relative decrease of *31.51 %. These test sets are followed

by Random(state), HHSI(n), Random(transition), Random(n), Random(n ? 1), and Ran-

dom(n ? 2) with relative decreases of *23.04, *22.02, *19.94, *15.20, *14.30, and

*7.90 %, respectively. HHSI(n ? 1) and HHSI(n ? 2) are the test sets which have the

smallest relative decreases in mutation scores with *3.97 and *2.20 %, respectively.

This shows that HHSI(n ? 1) and HHSI(n ? 2) are relatively more tolerant to changes in

fault domain which is caused by the use of redundant models.

Furthermore, let us consider the test set size as a rough estimate for the testing costs and

calculate the number of mutants revealed per event by using the ratio of average mutation

scores to test set sizes for each test set and each SUC. If we use the average of these ratios

for the corresponding random and non-random test sets, we obtain the inequalities in

Fig. 11 for both of the cases where reduced and non-reduced FSMs are used. This order

suggests that non-random test sets are likely to attain better performance with respect to

their random counterparts in testing.

5.6 Analysis of the results

In the light of the data presented and discussed in Sects. 5.4 and 5.5, we can briefly state

the following results.

The adaptation of the HSI method is successful in the sense that the corresponding test

sets achieve higher mutation scores and manage to detect more faults than random test sets

and coverage-based test sets in mutation analyses. However, due to the nature of fault

domain-based testing methods, the test sets generated using the heuristic HSI method have

greater sizes than coverage-based test sets. Furthermore, although we selected and used

random test sets having approximately the same sizes, test execution costs associated with

HHSI test sets turn out to be slightly greater.

The change in the fault domain (caused by the difference between the number of states

in the SUC and the number of states in the model of the SUC) has a non-negligible

negative effect on fault detection performance of the generated test sets. HHSI test sets

suffer less from this negative effect with respect to their random counterparts, for suffi-

ciently large parameter values, because the effect becomes less apparent when the value of

method parameter m is increased.

Although state and transition covers are quite commonly used in MBT with transition-

based models (Utting and Legeard 2006), our experiments show that they tend to miss

more faults. Using these methods, the tester can be risking leaving out 50 % of the faults in

the domains we defined.

Random(state) < state < Random(transition) < 
Random(n) < Random(n+1) < transition < Random(n+2) < 

HHSI(n) < HHSI(n+1) = HHSI(n+2)

Fig. 9 Mutation scores over
reduced FSM models
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5.7 Threats to validity and discussion

As for every study with an experimental component, we also suffer from certain issues

explained as below.

First, we selected and used three SUCs to perform the experiments and obtain results.

Some results may have been affected by unique inherent properties of these SUCs, which

we are not aware of. However, we tried to reduce this threat by discussing our results based

on averages and/or minimum and maximum values; we mainly demonstrated common

trends, relations, and relative changes, instead of focusing on specific values.

The ISELTA system was developed in collaboration of Isik Touristic (www.isik.de)

with the Software Engineering Department of the University of Paderborn. We recognize a

possible threat here given the fact that two of the authors are from this department. This

threat was mitigated because (i) the tester who designed the models is neither a developer

nor one of the authors and (ii) the researchers that performed the experiments were not

involved in the development either.

For each SUC, we used a single FSM model, which is the initial FSM model constructed

from the system specifications, to create a redundant system model to represent a situation

where the SUC and its model have different number of states. However, a deterministic

FSM model may have infinitely many equivalent but redundant deterministic FSM models.

Unfortunately, to our knowledge, there is no systematic way to generate a sufficiently large

finite subset of these redundant models by controlling the number of states. Also, there is

no prior work that studies which of these models are likely to occur in practice, and, thus,

realistic to use. Still, we believe that our selection of redundant FSM models makes sense,

at least, to gain some insights into such situations.

In our analyses, all input events have approximately the same cost of execution. This

means that when the test set is considered as a whole, each event has similar execution time

on average. In practice, each system has its characteristics and some events can run faster

or slower. To handle this challenge, the test methods have to take into account input events

with weights, which is out of the scope of this paper.

We generated random test cases with fixed length to have test sets whose sizes are

similar to the non-random test sets used in the case studies. Thus, the size served as a

common criterion to approximately equalize the test execution efforts. Another and

probably more sensible common criterion would be to generate m-complete test sets

randomly. However, to our knowledge, there is no such random test generation method.

Therefore, our results hold for a specific type of random test sets, which still belong to a

substantially large pool of random test cases.

One may argue that HHSI should be compared with test case generation methods

‘‘stronger’’ than state/transition coverage and random testing. There are three main reasons

Random(state) < state < Random(transition) < 
Random(n) < Random(n+1) < transition < Random(n+2) < 

HHSI(n) < HHSI(n+1) < HHSI(n+2)

Fig. 10 Mutation scores over
non-reduced FSM models

Random(state) < state,
Random(transition) < transition,

Random(n) < HHSI(n),
Random(n+1) < HHSI(n+1), and

Random(n+2) < HHSI(n+2)

Fig. 11 Approximate testing
costs based on test set sizes
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for the comparisons we conducted. First, HHSI test sets cover all states and transitions by

definition. As a consequence, we can reason that HHSI test sets have, at least, the same

fault detection capability of state/transition cover test sets. However, this comparison is

still valid since as these coverage criteria are widely used in practice (Utting and Legeard

2006), practitioners may be interested in the gains of adopting a new method like HHSI

with respect to these widely used criteria. Second, random testing is frequently used as a

reference in software testing (Juristo et al. 2004). The presented results have provided

evidences that test sets generated by HHSI outperform random test sets with similar sizes.

This eliminates the argument that more faults were detected just because the test sets are

arbitrarily greater. Finally, there are stronger methods as already discussed, like W, Wp,

HSI, H, and SPY. These methods are able to generate m-complete test sets but it is

mandatory that the FSM model is reduced. As HHSI is intended to work with non-reduced

machines, a direct comparison is not possible. When HHSI is applied to reduced FSMs, the

method performs just like the original HSI and f-transitions (and other steps in Sect. 4) will

have no effect. Detailed comparisons involving HSI and other methods can be found in

(Dorofeeva et al. 2010; Endo and Simao 2013).

Another method which is similar to the method we propose is the SC method (Petrenko

and Yevtushenko 2005) (see also Sect. 2). The SC method also works with non-reduced

FSMs and yet it is able to generate m-complete test sets. As a drawback, it can be

unfeasible when applied to FSMs with several equivalent states. Formally, equivalent

states are distinguished by using traversal sets that are expanded until states are covered

m times in each branch; this step can lead to sequences with up to * m.k symbols, where

k is the maximum number of states which are pairwise equivalent (k = 1 if all states are

distinguishable). As for each prefix of such sequences, there may exist l distinct inputs,

where l is the number of inputs. Thus, in the worst case, a test set of size O(lm.k) inputs is

generated. For example, an n-complete test set with the total length of 1,892 inputs is

generated when the SC method is applied to the machine in Fig. 2. The size of this test set

is very large when compared with the n-complete test set generated using the HHSI method

from the same machine, which has the total length of only 32 inputs (see Sect. 4—Part 3).

Furthermore, our implementation of SC was not able to produce a test set even for a small

portion of Specials (an FSM with 12 states). These results prevented us from including the

SC method in our comparisons since the method would not scale for the models used in the

experiments, which have 91, 94, and 148 states. In future, we intend to improve our SC

implementation so that the scalability can be increased, enabling comparisons between

HHSI and SC.

6 Conclusion and future work

In this paper, a heuristic application of the fault domain-based HSI method has been

presented. We consider that the conditions required by fault domain-based methods may

not be feasible to be satisfied in practice and, therefore, certain workarounds may be

needed to apply these methods to imperfect situations. The method we have proposed is

(i) designed for the systems which are not input enabled, that is, not all the inputs can be

performed in every state, and (ii) based on the idea of minimizing the FSM while keeping

the same defined input sequences. To do this, an initial FSM model is augmented with

auxiliary transitions which prevent the states with disjoint sets of defined inputs from being

merged during minimization. After performing the minimization, the HSI method is
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applied to generate test sets and inputs in these test sets corresponding to the inserted

transitions are removed to assure that test cases are executable.

Since the heuristic HSI method is not guaranteed to detect all the faults in the defined

fault domain, we also conducted extensive experiments to compare it to random testing and

commonly used coverage-based testing methods. The comparison was performed in two

different situations where (i) the test model and the SUC have the same number of states,

and (ii) they have a different number of states. In the former, test sets generated using the

heuristic HSI method revealed on average 15 to 352 % more faults and achieved on the

average 25 to 107 % higher fault detection rates than their corresponding random coun-

terparts. In the latter, test sets generated using the heuristic HSI method revealed on

average 22 to 387 % more faults and achieved on average 28 to 90 % higher fault detection

rates than their corresponding random counterparts. The results provided evidences that, in

both cases, the proposed method managed to detect more faults than other methods and

also achieved better fault detection rates than the random testing method when the

respective test execution efforts are approximately equal.

As for the future work, the issues pointed out by the threats to validity can be used to

improve the results. For example, it would be interesting to devise a method which sys-

tematically generates non-reduced FSM models from a given reduced deterministic FSM

model to induce other types of imperfect situations. In this way, one can analyze the results

considering the difference in the number of states.

Also, a comparison to different types of random testing methods can also be performed

to extend the validity of the results. Instead of, or in addition to, approximately equalizing

the size of the test sets, different test set metrics, such as coverage or distribution of the

length of the test cases, can be used in the generation of random test sets.

Last but not the least, heuristic versions of other fault domain-based testing methods can

be developed for adaptations to imperfect situations. Similar analyses can be performed in

comparison with test generation methods which are not fault domain-based, such as Belli

(2001), and Belli and Beyazit (2010).
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