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Abstract
For the last two decades, developments in damage detection algorithms have greatly increased
the potential for autonomous decisions about structural health. However, we are still struggling
to build autonomous tools that can match the ability of a human to detect and localize the
quantity of damage in structures. Therefore, there is a growing interest in merging the
computational and cognitive concepts to improve the solution of structural health monitoring
(SHM). The main object of this research is to apply the human–machine cooperative approach
on a tower structure to detect damage. The cooperation approach includes haptic tools to create
an appropriate collaboration between SHM sensor networks, statistical compression techniques
and humans. Damage simulation in the structure is conducted by releasing some of the bolt
loads. Accelerometers are bonded to various locations of the tower members to acquire the
dynamic response of the structure. The obtained accelerometer results are encoded in three
different ways to represent them as a haptic stimulus for the human subjects. Then, the
participants are subjected to each of these stimuli to detect the bolt loosened damage in the
tower. Results obtained from the human–machine cooperation demonstrate that the human
subjects were able to recognize the damage with an accuracy of 88 ± 20.21% and response time
of 5.87 ± 2.33 s. As a result, it is concluded that the currently developed human–machine
cooperation SHM may provide a useful framework to interact with abstract entities such as data
from a sensor network.

Keywords: structural health monitoring, damage diagnosis, damage sensation, haptics, vibro-
tactile, sensory substitution, human–machine interface

(Some figures may appear in colour only in the online journal)

1. Introduction

In order to improve the reliability, safety and operational life
of a structure, it is vital to monitor its integrity. The process of
implementing a damage detection strategy for aerospace and
civil and mechanical engineering infrastructures is referred to
as structural health monitoring (SHM). Here, the damage is

defined as changes to the material and/or geometric properties
of these systems including changes in boundary conditions
(Farrar and Worden 2013). For years, the research into SHM
in particular has been more or less influenced by bioinspira-
tion or biomimetics. There is a strong analogy between SHM
and human sensing systems, and this relation is a real source
of innovation. In other words, the SHM community has
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worked on structures that were equipped with various types of
sensors having a nervous system similar to that of living skin
organisms. Recently, bio-inspiration has been adapted to
improve the performance of complicated sensor networks for
SHM. In addition to that, as these sensor networks evolve,
they become even more complicated with an increasing
number of sensors (Loh et al 2015). There have been efforts
using bio-inspired concepts to improve the SHM (Loh and
Azhari 2012, Salowitz et al 2013). A prime example of a bio-
inspired SHM sensor was developed by Zhu et al (2010). Loh
et al (2008) demonstrated strain sensing using layer by-layer
thin films assembled with single-walled carbon nanotubes
(SWNTs) and various polyelectrolyte species. SWNT-based
films inspired by biological skin were also embedded in fiber-
reinforced composites for damage detection (Loyolo
et al 2010). However, despite the advances in skin-like thin
films, strain sensing can only be carried out in an averaged
sense, in other words averaged over the area of the film.
Currently, structural damage such as corrosions or cracks may
not be detected using an averaged strain measurement. Strain
sensing, as well as monitoring delamination and micro-crack
damage were also studied by Böger et al (2008), and Nofar
et al (2009) using bio-inspiration analogy. However, this
analogy has remained superficial, because living tissues are
really auto-adaptive smart structures that can control their
integrity. At the micro-scale, the number of sensors in living
tissues is incomparable to the nervous sensor systems of man-
made structures (Balageas et al 2006). It was reported that
there are 640 000 sensory receptors to sense and monitor the
changes in temperature, deformation, flow and injury damage
in the entire system of the human skin (Schmidth 1986).
Another analogy is often used comparing the nervous system
of living tissues and structures integrated by sensors and
equipped with a central processor (Beral and Speck-
mann 2003). The gap between living systems and artificial
structures is smaller in this case and the study of the func-
tioning of the nervous system and the brain is important when
conceiving control systems. After the signals have been
detected by the sensors embedded in the structure, a central
processor can build a diagnosis or prognosis and predict the
action to undertake. This process is often carried out with an
SHM algorithm to remove the human factor from the SHM
loop and build a system that is completely autonomous.
However, a significant regulatory problem should be over-
come before a fully automated SHM is applied to the struc-
tures. Currently, SHM analysis techniques do not have the
capability to deal with this kind of problem. However, the
human nervous system can easily adapt to a wide variety of
variables such as pressure, singular force, strain and dis-
placement. In other words, we are still struggling to build
autonomous tools that can match the ability of a human to
detect and localize a quantity of damage in structures.
Therefore, there is a need for merging machine computational
processes with human cognitive processes to improve the
solution of SHM.

The concept of the human–machine SHM approach was
recently demonstrated in a series of scientific conferences by
the authors, before it was tested on human participants

(Brown et al 2013, Mascarenas et al 2013, Block et al 2014).
Then, the approach’s sensitivity was investigated on human
participants using a three-mass-storey structure as a first
experiment (Mascareñas et al 2014). As outlined in those
studies, generally the approach was inspired by the neu-
roscience community. The idea of neural plasticity, which is a
branch of neural science, has been explored for a number of
years. Neural plasticity refers to a multitude of different
processes of reorganization within the brain, each of which
affects the way information is processed and may ultimately
result in behavioral changes (Grosse-Wentrup et al 2011).
Sensory substitution, which is used in neural plasticity, refers
to the translation of sensory information that is normally
available via one sense to another. It has been demonstrated in
various studies that sensory substitution is technically and
practically possible (Melchner et al 2000, Sharma et al 2000,
Visell 2009). It can happen through all sensory systems, such
as touch-to-sight, or within a sensory system such as touch-to-
touch. Paul Bach-y-Rita initiated a project to explore late
brain plasticity, which soon after was to grow into a wide area
of sensory substitution studies (Bach-y-Rita and Ste-
phen 2003). The best example is the phenomenon of ‘blind-
sight’ by visually impaired people through which the
heightened use of auditory channels enables individuals to
discern objects, obstacles or structures in front of them
(Weiskroniz 1986). The studies mentioned above suggest that
humans could achieve a new sense over time. The other
application of neural plasticity is echolocation. It was outlined
in some studies that blind persons can discern their sur-
roundings by producing clicks with their mouths and listening
to the returning echoes, in a manner similar to bats (Stoffren
and Pittenger 1995). The techniques used in echolocation
suggest that humans could achieve new senses for abstract
data. This approach could combine ultrasonic-based SHM
measurements for future studies using the echolocation con-
cept. By outfitting humans with the vibrotactile interface, they
may localize ultrasonic scatterers that are representative of
damage in a structure.

Recent advancements in SHM are towards the applica-
tion of statistical signal processing techniques to diagnose the
damage in structures. Such methods are based on signatures
obtained from the sensor data to extract the features that
change with damage. These features can then be dis-
criminated in a pattern classification framework. A statistical
pattern recognition involves the following processes: (1)
operational evaluation, (2) data acquisition, (3) feature
extraction and data reduction and (4) statistical model
development (Sohn and Farrar 2001, Cheung et al 2008). In
this study, the human neural network (NN) capability of
damage localization based on vibrohaptic actuators is
explored instead using statistical model development. The
reason for using the human NN comes from some studies that
show humans have the capability of classification. Moreover,
some studies show that humans often exceed the con-
temporary algorithms (Schwamb et al 2012). Stallkamp et al,
presented a comparison of the traffic sign recognition per-
formance of state-of-the-art machine learning algorithms and
humans in detail. They found that humans were able to
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recognize types of traffic signs in such conditions (Stallkamp
et al 2012). One of the most famous pattern recognition
algorithm artificial neural networks (ANNs) was inspired by
the high performance of the human brain, which, with its
sophisticated topology, can determine and extract significant
features for feature extraction problems, so it is intuitively
reasonable to simulate a similar structure for the feature
extraction problem (Dashti et al 2010). Vapnik revealed the
advantage of the inclusion of ‘empirical’ concepts and opened
the way for machine learning to take advantage of human
factors beyond conventional ANN architecture (Vap-
nik 1998). Barlow (1969) made seminal contributions to the
role of sparse coding information in the brain’s performance.
It is known that machines are assumed to be good for com-
putational processes, whereas humans are best for facing
unforeseen or unknown conditions (Bainbridge 1987). The
‘human-out-of-loop’ mechanism was often stressed
(Hoc 2000). According to the study of Vanderhaegen, that is
probably one of the reasons why human air-traffic controllers
rejected an automatic mode of conflict allocation between
human and machine (Vonderhaegen et al 1994). The studies
listed above are a part of the research that depicts the human
cognitive effect on computational studies. In this study, we
think that by merging the human cognitive system with the
machine computational process, a higher computational pro-
cess could be built for SHM problems. In other words, that
the formula of ‘human + machine’ will result in a better
process for enhanced performance is one of the main ideas
behind the concept of cooperative SHM. Therefore, the
cooperative SHM concept appeared: the combination of the
idea of high computational performance of humans and
machines teaming with the idea of sensory substitution. In the
future, perhaps it could be considered to interact the highly
developed human nervous system distributed measurement
system to solve the SHM problem better. In the cooperative
SHM approach, the data collected by a distributed SHM
measurement system are interfaced with a human nervous
system using the principle of sensory substitution. The current
trends in SHM are to obtain the sensor network data from the
structure, process them with various tools and present them
with visual graphs. Here, instead of presenting the results of
SHM visually, they are represented to the human using non-
invasive haptic vibrations. We anticipate that this approach
has potential applications where humans are in the loop such
as remotely piloted vehicles (aircraft or watercraft etc), tele-
operated systems and robots. For instance, to the best of our
knowledge the possibility of interfacing the SHM system on-
board for robotic platforms has been largely unexplored to
date. However, if the data of robotic SHM system are outfitted
with the human nervous system, this can help robots to avoid
dangerous stimuli in their environments. Moreover, in the
case of semi-autonomous or teleoperated robots, it would be
helpful if an embedded SHM system onboard a robot could be
elegantly interfaced with the nervous system of the human
controlling it. This would enable the human operator to avoid
commanding actions that could potentially cause damage to
the robot.

The layout of the study is as follows. First, the metho-
dological concept of the human–machine SHM cooperation
concept is summarized and the experimental setup of the
structure is demonstrated. Next, hardware and software
development for the proposed experiment is presented. Prin-
cipal component analysis (PCA) modeling of the time signals
is explained. Then, the types of stimuli presented to the
human subjects with haptic experimental devices are
expressed. Finally, the results obtained from human subject
tests are discussed.

2. The methodological concept of human–machine
SHM cooperation approach

The human–machine haptic SHM paradigm has been given in
detail in previous work (Mascareñas et al 2014). In general,
the cooperative SHM approach consists of the stages outlined
in figure 1. The numbers depict the sequence data processes.
Initially, a structure of interest is equipped with a distributed
measurement system. These measurements could be accel-
erometer, strain, voltage or temperature. Next, the data are
collected from the distributed measurement system. (1) The
data are then normalized. (2) Multivariate statistical analysis
is applied to reduce the data. (3) Once the data have been
reduced with statistical techniques, the next step is to encode
the data in a form that can be sent to a device. The encoded
data are referred to as ‘haptic code’. This is then used to
modulate the actuation of a set of actuators such as haptic
motors that are interacted with a human.

In this study, haptic actuators were used to stimulate the
human nervous system. The nature of this haptic encoding
depends on many factors including the type of haptic actua-
tion used, the dynamic characteristics of the haptic actuators,
the location on the body where the haptic actuation is applied,
the dynamic characteristics of the portion of the body the
actuators are applied to, the number of available haptic
actuators, the characteristics of the basis that can represent the
pre-processed data in the most sparse fashion, and the
representative spatial/temporal timescales of the data. Once
the physical stimuli are applied to humans, the hypothesis at
this point is that the human will develop a sense of the state-
of-health of the structure in a manner similar to the phe-
nomenon of ‘sensor substitution’ over time. The concept is
that the human becomes aware of changes in the structure as a
result of communication from the haptic interface. (4) Once
the human results are acquired, their responses are evaluated
statistically to figure out significant differences between
human subjects and damage cases. (5) The eventual goal is to
enable humans to make judgments on the performance of
structures, and to decide what, if any, action should be taken.
To conduct the flow steps given in figure 1, a software
application for the admin coordinator and human subject was
developed using the PYTHON object oriented programming
language. During the experiment, the software allowed us to:
(i) send signals to the haptic experimental device to stimulate
humans, (ii) supply feedback for the participants, (iii) log and
save the responses of the subjects for different cases.
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Figure 1. Flow chart of the developed human–machine cooperative SHM system.

Figure 2. Experimental setup of the tower structure.
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2.1. Experimental setup

In this study, a steel tower structure having bolted lattices was
manufactured as a test platform as shown in figure 2. This
structure was mounted on an aluminum plate that was located
on horizontal rails and excited with a servo motor (Omron)
that vibrated at a single frequency. The structure that was
located on the plate slid on rails that allowed movement only
in the lateral direction. The steel lattice tower consisted of
four legs. The joints were designed to transfer the axial forces
safely and also provide adequate strength and ductility to
resist fracture. The structure, manufactured from low carbon
steel, had a height of 2.95 m while the span of the base was
300 mm. The dimensions of the members were L20 × 20 × 2.
The position of the bolts could be set to vary the extent of
impacting that happens at a special excitation value. In this
experiment, the bolt tip was set to be 2 mm away from the
member. By varying the number and location of loosened
joints, the structure could have a wide variety of damage
scenarios. The structure was placed on a shake table and
excited by a servo motor. The table slid on rails, which were
mounted on motionless supports on two sides of the table.
The desired motion was transmitted to the moving table by
means of the servo motor, an infinite screw and a bolted
connection. The entire system was placed on a high stiffness
reinforced concrete foundation. This foundation minimized
extraneous sources of unmeasured excitation from being
introduced through the base system. Four accelerometers
(PCB, Piezotronics) with nominal sensitivity of 1000 mV g−1

were bonded to the center line of the tower members at the
front side of excitation direction to measure the dynamic
response of the system. The heights of the accelerometers
from bottom to top were 85 cm, 166 cm, 198 cm and 295 cm,
respectively.

The location of the servo motor was centered at the edge
of the table. The tower and accelerometers were placed on the
same line as the shake table’s lateral axis to minimize the
torsion effects of excitation of the system. NI 9234 type data
acquisition was used to get the data. Labview software was
used to process the data. The analog accelerometer sensors
were discretized with 4268 data points sampled at
1707.06 Hz. Exciting the structure while no joints were loo-
sened produced a linear dynamic response of the structure,
while loosened joints or any combination of joints resulted in
a non-linear dynamic response. The sample parameter yields
were 2.5002 s in terms of duration. Initially, the natural fre-
quencies of the system were determined. The natural fre-
quencies of the base system model (all bolts fixed) were
found by using an earthquake simulator to create an impulse
at the base of the tower. The shake table was driven by a
velocity of 600 mm s−1 for 1 s and then it was stopped. The
resulting structural free vibrational responses were recorded.
A simple Fourier transformation yielded the system’s natural
frequencies as 13.33, 13.74 and 14 Hz for the first three
modes. Then, the excitation level was set to a 14 Hz sinu-
soidal wave for the third mode. This excitation signal was
selected to prevent rigid body motions of the structure.
Measurement sensor data were categorized according to

whether bolts were loosened or not. Sixteen different damage
scenario combinations (24 = 16) were simulated. The accel-
eration time series for the sixteen different scenarios were
collected as given in table 1. Eight measurements were
obtained for each scenario, and a total of 128 test measure-
ments were collected.

2.2. Hardware design

An electronic board based on a microcontroller was devel-
oped to actuate the vibratory haptics elements. The archi-
tecture of the actuator control system was based on an
embedded code with a microcontroller unit to deliver the
signals to the actuator. An Arduino Mega 2560 based on
ATmega2560 was used for the human–machine prototype.
The prototype for the developed SHM human–machine
interface is given in figure 3. The prototype device comprised
four miniature haptics elements (Precision Microdrives,
London, UK), each independently providing identical force
amplitude. The diameter, height and mass of the vibratory
element were 10 mm, 3.4 mm and 1.2 g, respectively. Each of
these haptics elements was controlled with a TIP 120 Dar-
lington transistor and driven using pulse with modulation
(PWM) that was generated by the microcontroller. The
operating range of these vibratory elements was 2.2–3.8 V.
Here, the driving current increased the vibration frequency
and hence the produced force amplitude was proportional to
the PWM duty cycle. These vibratory actuators were attached
between the two cloth layers of a glove. They were attached
between the two layers of the glove for the finger joints (Art.
interphalangealis proximalis ligament) to capitalize on paci-
nian corpuscles. The vibrotactile actuators were situated on
the back of the left hand. The back of the hand may be
advantageous since it has been found that vibrations are best
on hairy bones (Bear et al 2007, Myle and Binseel 2007). In

Table 1. Various scenarios of the structural conditions (1 depicts the
bolt is loosened, while 0 depicts the bolt is not loosened).

Bolt loose location representation

Case
Number
of tests Region 1 Region 2 Region 3 Region 4

1 8 0 0 0 0
2 8 1 0 0 0
3 8 0 1 0 0
4 8 0 0 1 0
5 8 0 0 0 1
6 8 0 0 1 1
7 8 0 1 0 1
8 8 1 0 0 1
9 8 1 1 0 0
10 8 1 0 1 0
11 8 0 1 1 0
12 8 1 0 1 1
13 8 0 1 1 1
14 8 1 1 1 0
15 8 1 1 0 1
16 8 1 1 1 1
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addition to that, according to the law of mobility, the closer
the location to anatomical landmarks (joints like wrist or
elbow), the better the localization of stimuli. Therefore,
humans can localize the same vibration better at a position
where movement is allowed.

The haptic codes were sent by a laptop computer through
an RS232 serial interface with an X-bee dongle and received
by the X-bee radio receiver to transmit them to the micro-
controller. All data transmitted to the microcontroller encoded
the response of one of the four actuators presented in the
haptic interface. This allowed us to set the frequency, the
timbre and the duration of stimulation of each vibrotactile
element. By mapping the location of each actuator on the
interface, signals could be tailored to align groups of actuators
in tandem by creating sweeping, alternating, circling or more
complex patterns. In this study, the generated actuation pat-
terns were given in detail at the part of stimuli presentation. A
resistance with a value of 1 kΩ was connected to the base
component of the transistor, and a rectifier diode with a value
of 1 A was connected to the components of each vibration
actuator. The microcontroller was programmed to represent
the digital codes that were transferred from the computer to
the haptic prototype wirelessly as a vibration pattern for each
stimulation.

Figure 4 shows the measured current at different duty-
cycles. As can be seen, the relation between the input duty-
cycle and the current is linear. As the PWM duty cycle
increases, the vibration magnitude of a vibratory element
increases. Patterns representing the structural data are enco-
ded and sent wirelessly to the prototype microcontroller that
is worn by the user. Here, once the signals are received by the
microcontroller, an embedded program distributes the signals
to the actuators to initiate the vibrators. The microcontroller,
enclosure, radio receiver, circuit board, actuators and power
unit are assembled so as to be a completely portable
mobile unit.

2.3. Software design

To test the human–machine interface SHM concept, a gra-
phical user interface (GUI) was designed for the administrator
and human subject using a PyQT4 development suite for
creating GUIs in PYTHON on a Linux Ubuntu 12.04 oper-
ating system. Figures 5 and 6 represent the developed GUIs
for cooperative SHM facilities for admin and human subject
respectively. The admin GUI is capable of analyzing the
acquired data from sensors, generating haptic data, shuffling
and sending them both to the human subject GUI on TCP-IP
to the developed prototype via a serial or socket port con-
nection simultaneously, receiving the human responses and
measuring human response duration. The network connection
between the admin GUI, human subject GUI and haptic
experimental device is given in figure 1. Here, a Samsung
Galaxy SIII mobile phone was used as a WiFi hotspot to
provide the connection between the admin and human sub-
ject. The admin connects to the human via TCP-IP with a
robotic operating system (ROS) to send the questions to the
human (publisher) and to acquire the human response (sub-
scriber). The codes are transmitted at the same time to both
the human GUI and the haptic prototype.

In the admin GUI, first the connection type should be
chosen for transferring the haptic codes from the admin GUI
to the developed experimental haptic device. If the haptic
codes are transmitted on an IP socket, an XBee Wi-Fi type
product is used with the haptic device, and input widget of ‘IP
address’ and ‘Port’ number for the X-Bee should be filled,
then the ‘IP Socket’ radio button is signed. If the haptic codes
are transmitted on serial communication, an XBee ZigBee-
mesh based on an RF type product should be used with the
haptic device, and an input widget of serial ‘Port Name’ for
the X-Bee dongle, which is connected to the computer, should
be filled, then the IP Socket radio button is checked. In this
study, a wireless XBee mesh type product based on RS232
serial communication was used. The ‘Stop’ button stops
sending signals that are transmitting on the IP-socket or serial
port from the admin GUI to the haptic device. The ‘Load
Data’, allows the user to load the test regime file. The
‘Actuate’ button allows the user to transmit the haptic codes
to both the human subject GUI with TCP-IP type connection

Figure 3. Haptics experimental device (glove).

Figure 4. PWM duty cycle versus current delivered by the
microcontroller.
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and to the haptic device via the serial port using the wireless
X-Bee radio.

In the human subject GUI, check boxes allow the user to
choose the answers that reflect which bolt/bolts are loosened.
After the human subjects send their responses to the admin at
each test, the clicked checked boxes are automatically
removed, which allows the facility to be used for the next test.
The ‘Submit’ button allows the user to send his/her responses
to the admin GUI after clicking the check boxes.

The admin and human subject communicate via GUIs to
follow and monitor the test status with the line ‘Current
Status’. For example, when the admin sends the haptic codes
to the human subject,‘test_index = test_no of 128 is actuated’
is shown in this line as well as when the human subjects
receives the message ‘Message received for shuffled test
index = shuffled_test_number’ in the human interface. When
the human subject sends his/her responses, ‘Message is sent’
is shown in this line as well as when the admin receives the
message ‘RESPONSE RECEIVED! test_index = test_no of
128’. It should be noted that test_no and shuf-
fled_test_number are integer values that show the current test
number and shuffled test number, respectively in the admin
GUI. In addition, the digital haptic codes that are sent to the
haptic experimental device by the admin GUI are transferred
back and can be monitored in a terminal in order to verify that
the represented haptic stimuli on human subjects work

Figure 5. Graphical user interface (GUI) for administration.

Figure 6. Graphical user interface (GUI) for a human subject.
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correctly. This process was conducted by programming the
microcontroller unit.

2.4. Procedure

The testing procedure begins with data collection, storage and
categorization of data collected from the test structure. For
consistency, data used in testing will be pre-recorded, and the
same set of data must always be used to indicate a given set-
up. Data are categorized according to which bolt/bolts are or
are not loosened as given in table 1. For each of the sixteen
combinations in structure, a data structure containing the
recorded accelerometer data is maintained. Each of these data
structures constitutes an instance of a ‘test’. Tests are com-
bined to create one ‘test regime’. In this research, three test
regimes for each stimulation type containing all 16 cases and
totaling 128 tests were used, though in further research more
test regimes could be created, i.e., where the number of times
one test occurs in the regime could vary. Once the test regime
has been created for each stimulation type, the test could be
applied on humans. Initially, a poster representing the concept
and how the system works is shown to each subject. Then, the
subject’s test session begins with familiarizing the human
subject with the interface and the actuation patterns that may
be encountered due to various structure responses. This step is
referred to as training. Subjects are outfitted with the glove
interface and allowed to make adjustments until comfortable.
Once comfortable, a test regime is loaded into the software.
For each test, the subject is informed what combination of
bolt loosening is being used, and the corresponding test is
used to actuate the glove. The full test regime including 128
tests is used, exposing the subject’s ability to internalize the
sensations caused by bolt loosening. Training is completed
when the subject indicates that he/she feels ready. After
completion of testing, the process begins to determine how
well the subject has learned to feel the structure health. Using
developed interfaces (one for each test) between the subject
and the test administrator, the vibrohaptic interface allows the
subject to input his or her diagnosis of which bolt is loose.
Data are recorded indicating which bolt they believe to be
loose, the amount of time it takes the human subject to make a
decision regarding which bolts are loose, and the number of
repeats of any test case that they request. Then, these data are
used to begin characterizing the accuracy and certainty of the
human subjects.

2.5. Participants

The experiment conducted in this research was approved by
the Ege University Medical Faculty ethics committee with
document 13-11/104 prior to the study. The subjects used in
the experiment were mainly research assistants and students
graduated from Ege University. All subjects were between the
ages of 25 and 34. The mean and standard deviations of the
human subject ages were 29.6 and 4.61, respectively. The
human subjects were encouraged to adopt a comfortable
position that allowed them to feel vibrotactile stimulation
better. All of the subjects wore the glove on their left hand

and used the mouse with their right hand to choose which
bolts they believed to be loosened. They were seated at a desk
with a human subject software screen.

First, a discriminator test was performed on the partici-
pants to determine whether the participants had the capability
to discriminate the four tactips from each other before the
experimental session. This test consisted of a verbal response
indicating whether the participants could identify and dis-
criminate the vibration magnitude of each tactip in the dis-
criminator stimulation. The developed GUI for the
discriminator test is given in figure 7. The sliding button was
scaled with a 0-100 PWM duty cycle. Here, none of the
subjects reported any difficulties in discriminating the haptics
actuators from each other. After completing the discriminator
test for each subject, the goal was to test the SHM concept for
the structure on the same human subjects. Next, three dif-
ferent vibrotactile stimulations as explained in the stimuli
section were applied to the humans with the cooperative SHM
experimental glove device. Each of the vibrotactile stimula-
tions consisted of two sessions. In the first session, the sub-
jects were allowed to familiarize themselves with the pattern
of stimulation at training. All of the human subjects were told
how the system works and the structural health (bolt loose/no
bolt loose) for each test was explained at this training period.
Upon completion of testing, the first step was to determine
how well the subject had learned to feel the structure.

2.6. Principal component analysis

PCA is a multivariate analysis technique that was first pre-
sented by Pearson (1901). The goals of PCA are to extract the
most important details from the data, compress the size of the
dataset by keeping only the important information, and to
analyze the structure of the observations and variables. In
order to achieve these goals, PCA calculates new variables
named principal components that are linear combinations of

Figure 7. Graphical user interface GUI for haptics discriminator test.
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the original variables. The first principal component is
required to have the largest possible variance. The second
principal component is calculated under the limitation of
being orthogonal to the first component. The other compo-
nents are calculated in the same way. The new obtained
variables extracted from PCA are called factor scores; these
factors can be calculated by the projection of the variables
onto the principal components. In order to build a PCA
model, it is required to arrange the data obtained from the
experimental sensor.

The implementation of the PCA technique in SHM steps
is as follows.

(a) Organize the measurement data set as an I × J matrix,
where I represents the measured variables and J
represents the experimental trails.

(b) Standardize the data
(c) Calculate the eigenvectors and eigenvalues.
(d) Choose the first and the second eigenvectors as the

principal components.
(e) Transform the data into the first and second principal

components.
(f) Calculate the loadings for the first and second principal

components.
(g) Normalize the loadings in a range of 0–1, then scale

them for the PWM duty cycle in a range of 0–100, and
finally encode them as haptic stimulation codes to
transmit them from the administrator GUI to the haptic
experimental device. Normalized loadings of the first
and second components are given in figure 8. The
sequence numbers from 1 to 8 represent the first two
components of the variables. In other words, 1 and 2
represent the loadings of the first and second compo-
nents of the first channel, 3 and 4 represent the loadings
of the first and second components of the second
channel, 5 and 6 reflect the loadings of the first two
components of third channel, and the last two numbers
depict the loadings of the first two components of the
fourth channel.

2.7. Stimuli presentation

The sense of touch can be perceived through a combination of
many sensory pathways. Sensory signals through human
hands are interpreted as temperature, texture, location, size,
movement, and, in some situations, pain. For tactile percep-
tion in glabrous skin (i.e., hairless skin such as the palms of
the hands), receptors are embedded within the skin and are
referred to by receptor ending, speed of action, or psycho-
physical channel. The exact frequency range of sensitivity of
each channel is not well defined, partly due to the difficulty of
stimulating any one channel in isolation and also due to
individual differences (Mansfield 2005). Therefore, many
related efforts should be focused on characterizing the human
perception of haptic stimuli parameters to determine what
makes the stimuli distinguishable. It would be desirable to
investigate the human ability to subjectively recognize the

haptic stimuli that might provide an opportunity for SHM
applications.

This study is multi-disciplinary in the sense that we are
trying to learn how results from the psychophysics procedures
can be applied to SHM. Many relevant psychophysical
properties are known for human sensation. These include the
relevant ranges of frequency sensitivity, receptor density,
receptor field size and sensory correlations: all quantities that
are highly salient. The most frequently cited is the two-point
threshold. The two-point thresholds have been directly cor-
related to the skin sensitivity level. The method of limits is
one of the most frequently used techniques for determining
sensory thresholds, and although it is considered to be less
precise than the method of constant stimuli, it is less time
consuming, resulting in being considered to be more efficient
(Gescheider 1997). The perception of vibration across most of
the frequency continuum (10–300 Hz) is mediated largely by
two psychophysical channels, the pacinian and nonpacinian
(Verrillo et al 1969). The nonpacinian channel II, has a
sensitivity over much of the 10–300 Hz frequency range that
is only slightly less than that of the nonpacinian I channel.
The two main features of a vibrotactile stimulus are vibration
amplitude and frequency.

The perception of various amplitudes and frequencies on
different body parts has been studied in depth. The ability to
discriminate changes in frequency depends on the given sti-
mulation frequency (Verrillo 1985). The amplitude dis-
crimination threshold (the lowest perceptible difference
between the two signals) for human hairy skin is known to be
approximately an order of magnitude higher than for glabrous
skin (Merzenich and Harrington 1969). The thresholds
depend on the reference stimulus, and varies with stimulation
frequency. For hairy skin, it decreases at higher frequency.
The best result obtained for the ability to discriminate changes
was when the frequency was lower than about 200 Hz (Mahns
et al 2006).

There are various methods to generate skin sensation.
They can be categorized in various types like piezoelectric
actuators, thermal feedback, voice coil motors and electrical
pulses. A vibrating motor uses a counter-weight and a motor
to vibration. These motor vibrations can be operated at low
voltage (1–5 V). They have been used in research of sensory
substitution for the design of prostheses (Dhillon and
Horch 2005, Cipriani et al 2012), cyber (Cipriani et al 2012)
and fluid hands (Christian et al 2006) due to their low cost
and size. Another haptic stimulation approach is functional
neuromuscular stimulation which provides stimulation
directly to the neuromuscular system. Electrodes are placed in
muscles and the neural system. Because neuromuscular sti-
mulation is invasive and painful it is not a preferred method.
In this study, it was aimed to capitalize on the sense of touch
by targeting pacinian corpuscles in the hand.

The microcontroller unit (MCU) is designed to control
the activation of the vibration tactips to create the haptic
pattern from the haptic codes transmitted from administration.
The temporal characteristic of the activation of each vibro-
haptic actuator’s duration of activation and time interval
between actuations were arranged by coding the MCU, which
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transforms the haptic codes’ array patterns into voltages to
drive each of these haptic actuators. In this study, three dif-
ferent stimulations were performed for the human to recog-
nize the damage in the structure. In some studies reported in
the literature, humans appear to have the ability to recognize
unique periodic haptic stimuli and their associated meanings.
For example, Chan et al (2005) observed a 95% successful
recognition rate of a set of seven unique periodic haptic sti-
muli and their associated meanings, following a short learning
period of three minutes. Additionally, Enriquez and
MacLean (2008) observed that humans could successfully

learn and recognize abstract meanings associated with indi-
vidual parameters of periodic haptic stimuli, such as wave-
form and frequency. These studies showed the potential
ability of humans to learn and remember abstract meanings
associated with any haptic stimuli for extended periods of
time. Based on this, we considered that human perception
may recognize and distinguish the raw data obtained from the
four sensors to characterize the damage in a structure, because
the bolt loss during the excitation produces a nonlinear
behavior that simulates the damages in the structure. The idea
in the first stimulation is to investigate whether humans

Figure 8. Normalized loadings of the first and second components.
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become aware or not of this damage using time series data of
sensors. The pre-processing steps were also used in the study
conducted by the authors for a three-mass storey structure
(Mascareñas et al 2014). They investigated the human ability
to discriminate between the eight damage classes. In the
previous study, the damage was conducted through a bumper
system, and a total of eight damage cases were investigated.
Specifically, they implemented logarithmic data processing
procedures to generate vibrotactile stimuli. They represented
the participant’s responses in a confusion matrix, and found
the average score of participants to be 66.5%. It is noted that,
in a previous study, the data points of time series were pre-
processed with decimating, shifting and dividing steps. More
details can be found in Mascareñas et al (2014). In the current
study, we explore the potential of humans to discriminate 16
structural cases. In order to make large measurements that
were easier for humans to discriminate, they were reduced
using the PCA. Note that this step is similar to pre-processes
mostly conducted in machine learning algorithms. However,
also note that the approach used here is not a statistically
based classifier because the decision making about the
structural state is conducted by a human. The details of
implementing the PCA with sensor measurement to generate
haptic stimuli are given in the previous section.

In the first stimulation we aimed to figure out the human
capability for damage localization in the tower structure. It
was noted that in the first stimulation, we did not benefit from
the advantages of the machine computational process (the
machine refers to the computer). In other words, no signal
processing or classification techniques were performed on
signals during the creation of the stimulation. Only human
intelligence was used in the first stimulation. The basic
implementation of the first stimulation procedure is as
follows.

Initially, time points from each signal were obtained in a
range of 0–585.94 ms. The mean frequency of the obtained
signals was 14 ± 0.03 Hz. Since it is difficult for the human to
remember the wave shape of the signal from these time points
with haptic stimuli in a range of 0–585.94 ms, the frequency
of all the signals was reduced by a factor of 4.4373. This
process reduced the initial sampling rate of these signals to
the lower rate. The final time range of all signals was
increased from 585.94 s to 2600 ms by performing this
reduction process. Next, the signals consisting of the modified
time points were scaled in a range of 0–100 to represent them
with the PWM duty cycle. Finally, all the signals were
mapped onto a vibration motor according to their arrangement
number to stimulate the human hand. (Channels 1, 2, 3, and 4
were mapped onto vibration motor numbers 1, 2, 3, and 4,
respectively as given in figure 9). The duration for each signal
shape actuation and the pause between them was arranged to
be 2.6 s and 1.3 s, respectively (similar to the study of Morley
and Rowe 1990, Cipriani et al 2012). At the end of com-
pletion of the fourth vibration motor stimulation, the vibration
motors restarted stimulating in an order of 1-2-3-4 after an
idle time of 1.3 s. The signal pattern was repeated con-
tinuously until a new haptics code was sent to the MCU.
These processes were conducted by programming the MCU.

In the second and third stimulations, we aimed to perform
the human–machine cooperation SHM approach by benefit-
ing from both the machine computational process and the
human cognitive system to recognize and evaluate the
damage for the experiment. As described in the human–
machine cooperative concept section, the formula of ‘human
+ machine’ will result in a better process. Here the machine
computational process was used to extract the features of the
data from the PCA. Once the data were preprocessed, the next
step was to encode the data in a form that could be sent to a
haptic experimental device. In the second stimulation, the
vibrotactile stimuli used in this scheme utilized the encoding
of loading patterns obtained from PCA to convey information
to human subjects. There are eight different types of vibro-
tacile value that were extracted from PCA as given in
figure 10(a). It is noted that the first and second values were
mapped on the first actuator, the third and fourth pattern
values mapped on the second actuator, the fifth and sixth
values were mapped on the third actuator and the last two
values were mapped on the fourth actuator of the glove. When
a haptic code threshold was satisfied, the stimulation was
displayed to the user with the magnitude of the scaled squared
loadings values. The duration for each pattern activation and
the pause between them were 1 s and 0.5 s, respectively. At
the end of completion of the fourth vibration motor stimula-
tion, the vibration motors restarted stimulating in an order of
1-2-3-4 after an idle time of 1.3 s. The signal pattern was
repeated continuously until a new code was sent to the MCU.

In the third stimulation, all four vibration motors were
activated simultaneously to evaluate the subjects’ ability to
recognize the damage in the tower structure. For instance, the
first and the second gray bar values represent the loading
scaled scores of the first and second principal components of
the first variable, respectively as shown in figure 10(b), and
these values were mapped on the first actuator. The activation
duration of vibration was 1 s for each pattern, and the pause
between the gray and green bar patterns was 0.5 s. The only
difference of the third stimulation from the second stimulation
is that all the vibration motors were activated simultaneously
in two parts. At the end of activation completion of all
vibration motors, they restarted stimulating together after an
idle time of 1.3 s. The signal pattern was repeated con-
tinuously until a new haptic code was sent to the MCU. It is
noted that all the three different stimulation types were con-
ducted with the haptic experimental device by programming
the MCU.

3. Results

In this study, a new cooperative SHM approach that involves
adaptively combining the intelligence of humans with dis-
tributed SHM sensing systems was tested. All the tasks
explained in methodology were performed on 10 participants,
eight males and two females, aged between 25 and 34 years
old (29.6 ± 4.61). They were all right-hand-dominant. Each of
the participants was taught which damage scenario was active
during the training period. The experiment was performed in
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Figure 9. Basic implementation of the first stimulation procedure example for case 1 and test 1. (a) Time points from each signal in a range of
0–585.94 ms are obtained, (b) Frequency domain of these time points. (c) Time signals are modified by reducing the time sampling by a
factor of 4.4373; (d) frequency domain of all modified signals. (e) The modified time points were scaled in a range of 0–100 to represent them
with the PWM duty cycle. (The duration for each signal shape stimulation and the pause between them was arranged to be 2.6 s and 1.3 s,
respectively.)
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three sessions. Every session was related to a unique stimuli
type. Each of the sessions consisted of 128 trials and 128
tests. 10 min breaks were given at every interval of each
session. The participants were instructed to take extra breaks
if needed, especially under fatigued or uncomfortable situa-
tions. The participants could also abort the experiment at any
time if they were was unable to continue due to annoying or
uncomfortable reasons. In this experiment, none of the par-
ticipants aborted the procedure. The experiment task took
approximately 120 min per participant. The assessment was
arranged in terms of participants’ percentage of correct
answers and response times. A correct answer resulted in one
point, and an incorrect response resulted in zero points. Then,
the maximum number of points was 100% identification score
for the total of each case (correct_response/total number of
tests × 100). All users felt reasonably comfortable wearing
the device, and with the seating and hand positioning
arrangement. All users felt that they improved their perfor-
mance during the training period. Some users noted that it
required a more conscious effort to improve the percentage of
correct answers. The human responses were acquired after
completing the test. The participants’ results were evaluated
statistically with ANOVA to figure out significant differences
between human subjects, damage cases, and stimuli type in
terms of percentage of correct answers and response time. To
determine whether the differences between stimulus means
are statistically significant, p-value is used to compare the
significance level to assess the null hypothesis. Here, p-value
tests the null hypothesis that data from all groups are drawn
from populations with identical means. P-values less than
0.05 are accepted as ‘statistically significant’.

Results relative to the stimuli types I, II and III are pre-
sented in figures 11, 12 and 13, respectively. Here, the x axes
denote the case number and y axes denote the human subject
number. The intensity of the color scale represents the per-
centage of correct answers (left-hand side graphs in
figures 11–13) and human response time (right-hand side
graphs in figures 11–13). In these three stimulating types, no
significant differences between human responses were found.
However, individual variabilities have been observed as given

in figures 11, 12 and 13. These occurred due to the interval
variance of mechanoreceptor sensitivity between individuals
as well as the types of stimuli presentation. In addition, the
individuals’ personal motivation to explore stimuli actively is
another factor that determined to what degree mechan-
oreceptors in hands were able to learn, memorize and dif-
ferentiate the health status of the structure. Additionally,
person-related factors that could have played a role in abso-
lute sensation threshold measurements are levels of relaxation
and stress, levels of concentration, as well as degree of
nervousness.

Figure 11 shows the percentage of correct answers and
response times for each of the participants for the first stimuli
type. The mean correct percentage of all cases was
18.91 ± 11.61% while the mean response time was
12.52 ± 1.98 s. The mean percentage of highest and lowest
correct answers was found in case 6 (26.25 ± 10.94%) and
case 4 (10 ± 7.91%), while the mean longest and shortest
response times based on 10 subjects were observed in case 14
(13.41 ± 1.78 s) and case 1 (11.61 ± 0.76 s). The ANOVA test
showed that there was no significant difference between the
case combinations in terms of percentage of correct answers
and response times (p> 0.05). As illustrated in figure 11, the
averaged performance for all subjects shows that the indivi-
duals could identify structural damage with a low accurate
value. In addition, all participants expressed that it was dif-
ficult to distinguish between the cases during the training
period.

The distribution of percentage of correct answers and
response times for each of the participants for the second
stimuli type is given in figure 12. In nine participants, the
percentages of correct answers were higher than 90%. The
mean percentage of highest and lowest correct answers of all
humans was found in case 1 (95 ± 12.08%) and case 10
(78.75 ± 32.83%), while the mean longest and shortest
response time was observed in case 3 (7.08 ± 2.7 s) and case
16 (4.87 ± 1.34 s). The averaged percentage of recognizing
the right case and answer times of all the human subjects were
observed to be 88.13 ± 20.21% and 5.87 ± 2.33 s, respectively
as given in table 2. One interesting point was that the shortest

Figure 10. A visual representation of vibrotactile stimuli patterns used in the second and third stimulation by encoding the loading values
obtained from the PCA for case 1 and test 1. (a) Stimulation sequence patterns for the second stimuli. The vibrotactile actuators are vibrated
in the order of 1-2-3-4. (b) Stimulation sequence patterns for the third stimuli. Here, all the vibrotactile actuators are activated simultaneously.
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response time was found in case 16. Figure 12 represents that
there was also no direct correlation between the structural
case variations in terms of humans’ percentage of correct
answers in the second type stimulation. There was also no
significant difference between cases both in terms of per-
centage of correct answers (p = 0.916 > 0.05) and response
times (p= 0.891 > 0.05). It is noted that all the humans
reported that the structural cases could be distinguished better
compared to the first one during the training phase. They also
reported that they were able to recognize the pattern and
trends for all cases easily.

The main objective of the third stimulation was to eval-
uate the subjects’ ability to recognize the damage by acti-
vating all of the four vibration motors simultaneously
according to results obtained from PCA loading scores. The
results obtained from the human subjects for the third stimuli
type are given in figure 13. The mean percentages of the
highest and the lowest values of recognizing were found in
case 1 (100%) and case 12 (37.5 ± 21.25%), while the longest
and the shortest response times of recognizing the damage
were in case 12 (11.54 ± 4.83 s) and case 1 (5.10 ± 1.24 s).
The average correct response percentage and response

Figure 11. Performance score of all the human subjects for the first stimulus type: (a) percent correct, (b) response time.

Figure 12. Performance score of all human subjects for the second stimulus type: (a) percent correct, (b) response time.

Figure 13. Performance score of all human subjects for the third stimulus type: (a) percent correct, (b) response time.
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Table 2. Statistical results of all human responses for different case and stimulus types.

Percent correct (%) Response time (s)

Case no
Test stimuli
1 (n = 10)

Test stimuli
2 (n= 10) Test stimuli 3 (n = 10) p

Test stimuli
1 (n= 10)

Test stimuli
2 (n = 10)

Test stimuli
3 (n= 10) p

1 25.00 ± 10.21 95.00 ± 12.08 100.00 ± 0.00 3.2967E −17 11.61 ± 0.76 5.40 ± 1.60 5.10 ± 1.24 1.8073E−12
2 16.25 ± 8.44 90.00 ± 12.91 93.75 ± 10.62 8.2377E−16 12.27 ± 2.14 6.13 ± 3.15 6.25 ± 1.86 0.000004
3 16.25 ± 13.24 92.50 ± 16.87 83.75 ± 22.86 4.3408E−10 12.48 ± 2.02 7.08 ± 2.70 6.62 ± 2.40 0.000009
4 10.00 ± 7.91 86.25 ± 19.94 78.75 ± 27.67 3.8303E−9 12.66 ± 1.78 6.49 ± 2.50 7.01 ± 2.10 6.2356E−7
5 21.25 ± 16.72 87.50 ± 14.43 86.25 ± 24.62 9.8727E−9 12.07 ± 1.83 6.34 ± 2.81 6.23 ± 1.95 0.000002
6 26.25 ± 10.94 92.50 ± 15.81 85.00 ± 15.37 4.6384E−11 12.13 ± 1.98 5.65 ± 2.14 8.76 ± 2.33 0.000002
7 17.50 ± 12.08 86.25 ± 25.31 45.00 ± 28.99 0.000002 12.64 ± 2.41 5.39 ± 1.60 9.82 ± 2.50 3.2201E−7
8 15.00 ± 9.86 86.25 ± 22.40 58.75 ± 30.65 6.7325E−7 12.73 ± 2.41 5.38 ± 1.89 9.82 ± 4.11 0.000031
9 25.00 ± 5.89 90.00 ± 15.37 75.00 ± 28.87 8.8069E−8 12.82 ± 1.97 5.60 ± 2.61 8.06 ± 2.53 0.000001
10 11.25 ± 10.94 78.75 ± 32.83 40.00 ± 26.22 0.000010 12.44 ± 1.90 5.86 ± 2.00 9.75 ± 3.34 0.000013
11 22.50 ± 7.91 93.75 ± 10.62 77.50 ± 25.55 7.5026E−10 12.16 ± 2.30 6.44 ± 2.08 8.55 ± 2.39 0.000022
12 15.00 ± 7.91 78.75 ± 35.87 37.50 ± 21.25 0.000014 12.10 ± 2.27 6.29 ± 3.44 10.57 ± 3.33 0.000680
13 22.50 ± 14.19 90.00 ± 16.46 70.00 ± 29.58 3.9133E−7 12.93 ± 1.25 5.83 ± 2.45 9.65 ± 2.60 4.2772E−7
14 17.50 ± 10.54 91.25 ± 11.86 71.25 ± 26.39 1.9941E−9 13.41 ± 1.78 5.86 ± 2.51 9.00 ± 2.64 4.5636E−7
15 16.25 ± 11.86 83.75 ± 23.61 45.00 ± 35.45 0.000013 12.59 ± 2.25 5.24 ± 2.15 11.55 ± 4.83 0.000057
16 25.00 ± 13.18 87.50 ± 23.57 56.25 ± 30.76 0.000013 13.21 ± 2.56 4.87 ± 1.34 9.44 ± 3.08 1.6573E−7
Total (n = 160) 18.91 ± 11.64 88.13 ± 20.21 68.98 ± 30.91 3.47E−104 12.52 ± 1.98 5.87 ± 2.33 8.51 ± 3.22 7.377E−80
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duration in test stimuli session III were equal to
68.98 ± 30.91% and 8.51 ± 3.22 s, respectively, based on the
result given in table 2. The ANOVA results demonstrated that
there was a significant difference between cases in terms of
percentage of correct response (p< 0.001) and response time
(p< 0.001).

Figure 14 shows the bar graphs of the aforementioned
averaged values and standard error of three different stimuli
of the 10 humans for 16 cases. As discussed before, the upper
and lower percentages of the humans’ correct answers show
that the structural cases were not significantly different from
each other in test stimuli I and II, but were significantly dif-
ferent for test stimuli III. This result probably reflects that the
human subjects had no difficulty in recognizing and dis-
criminating the appropriate damage combinations in test sti-
muli II.

The results obtained from human subjects for three dif-
ferent stimulations are also illustrated in contour plots. The x
and y axes given in figure 15 represent the case number as
identified in table 1 and test stimuli number, respectively. In
the data analysis, values of human correct responses as well
as their response times for three different stimulus types were

analyzed in order to seek an effective stimulus type for SHM
applications. The averaged percentages of correct answers
were 18.91 ± 11%, 88.13 ± 20.21% and 68.98 ± 30.91%,
respectively and the averaged response times were
12.52 ± 1.98%, 5.87 ± 2.33%, 8.51 ± 3.22% for the first, sec-
ond and third stimuli types as given in figure 16 and table 2.

An assessment was performed to determine the robust-
ness of test stimuli types in terms of percentage correct
answer and response time of humans via the Tukey test as
given in tables 3 and 4 respectively. Significant differences
between the types of stimuli were found during the statistical
analysis. The results for test stimuli I were significantly lower
than test stimuli II (p < 0.01) and test stimuli III (p< 0.01) in
terms of percentage of correct responses, but they were higher
than stimuli II and test stimuli III in terms of response time.
While the human results in test stimuli II were significantly
higher than test stimuli I (p< 0.01) and test stimuli III
(p< 0.01) in terms of percentage of correct responses, they
were lower than I (p< 0.01) and III (p< 0.01) in terms of
response time. Finally, test stimuli III had significantly higher
values of correct answer percentage than test stimuli I
(p< 0.01), but lower than test stimuli II (p< 0.01) as well as

Figure 14. Summary of human subject results in all cases in terms of (a) percent correct, (b) response time. (Error bars: 95% confidence
interval.)

Figure 15. Contour plots of all human subjects for all cases: (a) percent correct, (b) response time.
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lower human response durations than test stimuli I (p< 0.01)
and higher than test stimuli II (p< 0.01), (tables 3 and 4).

4. Discussion and conclusion

This study demonstrated a new, simple and noninvasive
human–machine cooperation approach for SHM applications.
The inspiration comes from the historical advances in the
neuroscience community. The neuroscience field has

investigated haptic-based methods for replacing lost sensa-
tions. In this study, we investigated the probability of deli-
vering humans a sense that represents the health of the
structure. Here, the collaboration system is composed of both
computations of machines and the human cognitive system.

First, a steel tower structure having bolted lattices was
manufactured as a test bed, which could be set to show
non-linear dynamic responses by loosening the bolts.
Then, signal processing was used that takes four accel-
eration time series measurements, then reduces the

Figure 16. All human subject results for different test stimuli for all cases: (a) correct percent, (b) human response time. (Error bars: 95%
confidence interval.)

Table 3. Multiple comparison of the human percent correct results with the Tukey test for all cases.

95% Confidence interval

(I) Test_stimuli (J) Test_stimuli Mean difference (I–J) Std. error pa Lower bound Upper bound

1 2 −69.21875 2.49928 5.1E−9 −75.0947 −63.3428
3 −50.07813 2.49928 5.1E−9 −55.9541 −44.2022

2 1 69.21875 2.49928 5.1E−9 63.3428 75.0947
3 19.14063 2.49928 5.1E−9 13.2647 25.0166

3 1 50.07813 2.49928 5.1E−9 44.2022 55.9541
2 −19.14063 2.49928 5.1E−9 −25.0166 −13.2647

a

Significant at the 0.05 level.

Table 4. Multiple comparison of the human response time results with the Tukey test for all cases.

95% Confidence interval

(I) Test_stimuli (J) Test_stimuli Mean difference (I–J) Std. error pa Lower bound Upper bound

1 2 6.64991 .28630 5.1002E−9 5.9768 7.3230
3 4.00499 .28630 5.1002E−9 3.3319 4.6781

2 1 −6.64991 .28630 5.1002E−9 −7.3230 −5.9768
3 −2.64492 .28630 5.1002E−9 −3.3180 −1.9718

3 1 −4.00499 .28630 5.1002E−9 −4.6781 −3.3319
2 2.64492 .28630 5.1002E−9 1.9718 3.3180

a

Significant at the 0.05 level.
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dimensionality of those data by using PCA. PCA is com-
monly used for dimensional reduction of data for the pre-
processing step when training using the ANN (Figueiredo
et al 2011). In this study, the ANN was replaced with the
human NN by using vibrotactile elements. To investigate
the improved approach to damage detection, three different
stimulation types were designed and each of them was
tested independently on ten human subjects. The first sti-
mulation type is based on the encoding of the waveform of
the acceleration measurement for humans to find patterns
in SHM. The test stimuli I experiment showed that subjects
were able to discriminate the current structural health with
a low value (success < 19%). Since no statistically sig-
nificant differences in discrimination percentage across the
16 cases were found, it can be concluded that the capability
of subjects to detect the right case did not change. In
addition to that, it was found that the subjects did not have
a high capability to localize the damage with acceleration
waveforms for this experiment. The test stimuli II experi-
ment was designed as a concept-proof of the cooperative
human–machine SHM approach. The most promising
results obtained in this experiment showed that the subjects
were able to localize the damage with a high performance
(success < 88%).

Application of the concept to the tower structure
demonstrated that the developed cooperative approach is
effective in discriminating the corresponding combinational
values of various types of bolt-loosened damage. In test sti-
muli II, although the outcomes demonstrated low success in
terms of correct answers per time for the first case, it was
found to be higher than in some other cases as given in
figure 17. The test stimuli III experiment showed that the
subjects were able to localize the damage with a mean per-
centage of 69%. Here, the highest and lowest values of
CorrectPercent/ResponseTime were found in human subject 2
(12.98 ± 5.55% s−1) and human subject 5 (7.61 ± 5.94% s−1),
respectively. In addition, the highest and lowest values of
CorrectPercent/ResponseTime were found in human case 1
(19.81 ± 5.33% s−1) and case 2 (17.93 ± 9.14% s−1), respec-
tively. The trend of CorrectPercent/ResponseTime decreased
until case 7 for the third stimulation. This result probably
shows that the greater the complexity and damage in struc-
tures, the worse the discrimination being achieved. This result
is in accordance with the psychophysical haptics study of

Ciprinai et al (2012). However, this trend was found to be
opposite for cases 5, 9, 11 and 14. The human subjects’
results showed that sorting the three different stimuli types in
terms of correct answer per time from high to low is test
stimuli II, I and III.

The limitation of this study is that the structural tower
was tested for a structure excited at sinusoidal signals in well
controlled laboratory settings. However, real world engi-
neering structures are subjected to environmental and opera-
tional variations. Sometimes these variations can mask the
damage related to the features of correlation between the
magnitude of these features and damage level. The obtained
results are encouraging, but further investigations will be
needed to test the validity of the technique with other data
related to environmental and operational conditions before it
can be used in real engineering structures.

In this study, three different vibrotactile stimulations
were used. However, what type of stimulation and how
much information should be provided are still open ques-
tions, and still impossible to tackle without a practical
validation. In others words, it should be noted that it is not
possible to conduct experiments requiring thousands of
trials which may take days for participants to complete.
However, in the authors’ opinion, for enriched recognition
of the patterns of the damage, three types of basic infor-
mation need to be considered when improving a stimulation
in future studies: (i) vibrotactile coding type of the SHM
measurement data, (ii) vibrotactile map pattern (where the
tactile actuation is taking place, which part of the human
should be stimulated) and (iii) vibrotactile frequency and
amplitude.

In conclusion, as an alternative to other SHM techniques,
a human–machine cooperation approach concept was tested
on time series data obtained from the structural tower to a
build a highly computational performance of human and
machine teaming with the idea of sensory substitution. The
results showed that this technique appears to be a promising
tool for SHM applications. To further verify the technique,
future efforts should be directed to applicability of this
technique in various structures including real-world applica-
tions with large sensor networks.
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