
Communications in Algebra®, 44: 416–428, 2016
Copyright © Taylor & Francis Group, LLC
ISSN: 0092-7872 print/1532-4125 online
DOI: 10.1080/00927872.2014.982816

NEAT-FLAT MODULES
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Let R be a ring. A right R-module M is said to be neat-flat if the kernel of any
epimorphism Y → M is neat in Y , i.e., the induced map Hom�S� Y� → Hom�S� M� is
surjective for any simple right R-module S. Neat-flat right R-modules are projective if
and only if R is a right

∑
-CS ring. Every cyclic neat-flat right R-module is projective

if and only if R is right CS and right C-ring. It is shown that, over a commutative
Noetherian ring R, (1) every neat-flat module is flat if and only if every absolutely
coneat module is injective if and only if R � A × B, wherein A is a QF -ring and B

is hereditary, and (2) every neat-flat module is absolutely coneat if and only if every
absolutely coneat module is neat-flat if and only if R � A × B, wherein A is a QF -ring
and B is Artinian with J 2�B� = 0.
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1. INTRODUCTION

Throughout, R is an associative ring with identity and all modules are unitary
right R-modules. For an R-module M , E�M�, Soc�M� will denote the injective hull,
the socle of M , respectively. The character module HomZ�M��/�� of M is denoted
by M+. The Jacobson radical of the ring R is denoted by J�R�.

A submodule K of an R-module M is called closed (in M) provided K

has no proper essential extension in M . When R is a Dedekind domain (more
generally a Prüfer domain), a submodule K of an R-module M is said to be pure
if and only if K ∩ aM = aK for all a ∈ R. Inspired by this characterization of
pure submodules over Dedekind domains, Honda [14] introduced neat subgroups
in order to characterize closed subgroups in abelian groups. Namely, a subgroup
A of an abelian group B is called neat in B if Ap = A ∩ Bp for every prime p. A
subgroup A of an abelian group B is closed if and only if it is neat if and only if
Hom�S� B� → Hom�S� B/A� → 0 is surjective for each simple R-module S. Neatness
over arbitrary associative rings considered by Renault [20], namely, a submodule
A of an R-module B is called neat if Hom�S� B� → Hom�S� B/A� → 0 is surjective
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for each simple R-module S. Closed submodules are neat, but the converse is true
exactly for C-rings (i.e., Soc�R/I� �= 0 for every proper essential right ideal I of R).

A submodule K of M is called small in M if M �= K + T for every proper
submodule T of M . As the dual of closed submodule, the submodule K is called
coclosed in M if for every submodule A of M with A ≤ K, K/A � M/A implies K =
A. Recently, Zöschinger showed in [28] that, over a commutative Noetherian ring R,
closed submodules are coclosed if and only if coclosed submodules are closed if and
only if R is distributive. In his recent article, as a dual of neat submodule, Fuchs
[10] defined a submodule N of M to be coneat if Hom�M� S� → Hom�N� S� → 0 is
surjective for each simple R-module S. In that article, he proved that for an integral
domain R neat submodules and coneat submodules coincide if and only if every
maximal ideal of R is finitely generated. Crivei is also concerned with the same
problem in [7], and he showed that if R is a commutative ring whose maximal ideals
are principal then neat and coneat submodules of every module coincide.

Recently, there is a significant interest to some classes of modules that are
defined via (co) closed submodules and (co) neat submodules, (see, [7, 17, 25–
28]). An R-module M is said to be m-injective (weakly-injective, absolutely coneat,
respectively) if it is neat (coclosed, coneat, respectively) in every extension. Note
that closed submodule of an injective module is injective. m-injective modules are
injective if and only if every neat submodule is closed (i.e., R is a right C-ring),
(see [24]). Weakly-injective modules are introduced and discussed by Zöschinger in
[27, 28]). Absolutely coneat modules are introduced and studied by Crivei in [7].

Motivating by the relation between weakly-flat modules and closed
submodules, we investigate the modules M , for which any short exact sequence
ending with M is neat-exact. Namely, we say M is neat-flat if the kernel of any
epimorphism Y → M is neat in Y , i.e., the induced map Hom�S� Y� → Hom�S� M�
is surjective for any simple R-module S. Projective modules, weakly-flat modules,
and nonsingular modules are neat-flat. In [17], the author introduced simple-
projective modules to characterize the rings whose simple modules have projective
(pre)envelope. An R-module M is called simple-projective if for any simple right
R-module N , every homomorphism f � N → M factors through a finitely generated
free right R-module F .

The article is organized as follows. In Section 2, it is shown that neat-flat
modules coincide with simple-projective modules over arbitrary rings. Next, we give
the main properties of the class of neat-flat R-modules. The right socle of R is zero
if and only if neat-flat modules coincide with the modules that have zero socle. A
ring R is a right C-ring if and only if neat-flat modules are weakly-flat. We also
investigate the rings over which neat-flat modules are projective. Namely, we prove
that, (1) every neat-flat module is projective if and only if R is a right

∑
-CS ring;

(2) every finitely generated neat-flat module is projective if and only if R is a right
C-ring and every finitely generated free right R-module is extending; and (3) every
cyclic right R-module is projective if and only if R is right CS and right C-ring.

In Section 3, it is shown that, over a commutative Noetherian ring R, (1) every
neat-flat module is flat if and only if every absolutely coneat module is injective
if and only if R � A × B, wherein A is QF -ring and B is hereditary; and (2) every
neat-flat module is absolutely coneat if and only if every absolutely coneat module
is neat-flat if and only if every neat-flat module is weakly-injective if and only if
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every absolutely coneat module is weakly-flat if and only if R � A × B, wherein A
is QF -ring and B is Artinian with J 2�B� = 0.

In Section 4, localization of neat exact sequences and neat-flat modules are
investigated. It is shown that, over a commutative N -ring R, (1) a short exact
sequence 0 → A → B → C → 0 is neat exact, i.e., A is neat in B if and only if 0 →
AP → BP → CP → 0 is neat exact for each maximal ideal P of R; and (2) a module
M is neat-flat if and only if, for all maximal ideals P of R, MP is neat-flat RP-module.

For the unexplained concepts and results, we refer the reader to [1, 4] and [16].

2. NEAT-FLAT MODULES

Let � � 0 → K
f→ L

g→ M → 0 be a short exact sequence. � is called neat
exact if f�K� is a neat submodule of L. In this case, f and g are called neat
monomorphism and neat epimorphism, respectively. By definition, the class of neat
exact sequences is projectively generated by the class of simple R-modules. Hence
neat-exact sequences form a proper class in the sense of Bushbaum, (see[4, 10.8]).
For the following lemma we refer to [18, Proposition 1.12-1.13]. The proof is
included for completeness.

Lemma 2.1. The following statements are equivalent for a right R-module M:

(1) M is neat-flat;
(2) Every exact sequence 0 → A → B → M → 0 is neat exact;
(3) There exists a neat exact sequence 0 → K → F → M → 0 with F projective;
(4) There exists a neat exact sequence 0 → K → F → M → 0 with F neat-flat.

Proof. �1� ⇒ �2� ⇒ �3� ⇒ �4� are clear.
�4� ⇒ �1� Let 0 → A → B

g→ M → 0 be any short exact sequence. We claim
that g is a neat epimorphism, i.e., Ker�g� is a neat submodule of B. By (4), there

exists a neat exact sequence 0 → K
f→ F

s→ M → 0 with F neat-flat. Considering
the pullback of g and s, we obtain a commutative diagram with exact rows

Since F is neat-flat, ��A� is neat in B′. As ��A� is neat in B′ and f�K� is neat in F ,
we have ��A� is neat in B by [4, 10.1]. This completes the proof. �

Remark 2.2.

(1) Clearly, if Soc�M� is projective, then M is neat-flat. In particular, if M has no
simple submodules, then M is neat-flat.

(2) Obviously, projective modules are neat-flat. On the other hand, the infinite direct
product of the ring of integers � is neat-flat, but not projective.

(3) Note that a simple right R-module is neat-flat if and only if it is projective. Thus
R is a semisimple Artinian ring if and only if every right R-module is neat-flat.
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(4) By [22, Lemma 2.3(a)], every nonsingular module is weakly-flat. Since weakly-
flat modules are neat-flat, nonsingular modules are neat-flat.

The following observation is useful for the further characterization of neat-flat
modules.

Lemma 2.3. Let R be a ring. An R-module M is simple-projective if and only if M is
neat-flat.

Proof. Suppose M is simple-projective and s � R�I� → M be an epimorphism.
Let S be simple right R-module and f � S → M be a homomorphism. As M is
simple-projective f factors through a finitely generated free module, i.e., there
are homomorphisms h � S → Rn and g � Rn → M such that f = gh� Since Rn is
projective, there is a homomorphism t � Rn → R�I� such that g = st� We get the
following diagram:

Then f = gh = sth, and so the induced map Hom�S� R�I�� → Hom�S� M� → 0 is
surjective. Therefore, the sequence 0 → Kers → R�I�

s→ M → 0 is neat exact. Hence
M is neat-flat by Lemma 2.1(3).

Conversely, let M be a neat-flat module. Then there is a neat exact sequence
0 → K → F

g→ M → 0 with F free by Lemma 2.1. Let S be a simple module and
f � S → M be any homomorphism. Then there is a homomorphism h � S → F such
that f = gh� As S is finitely generated, h�S� ≤ H for some finitely generated free
submodule of F . Then we get f = gh = �gi�h′, where i � H → F is the inclusion and
h′ � S → H is the homomorphism defined as h′�x� = h�x� for each x ∈ S� Therefore,
f factors through H , and so M is simple projective. �

From the proof of the lemma above, we have the following corollary.

Corollary 2.4. If M is a neat-flat right R-module, then any simple submodule of M is
isomorphic to a minimal right ideal of R.

Let M be a module with Soc�M� = 0. Then Hom�S� M� = 0 for any simple
right R-module S, and so M is neat-flat. Corollary 2.4 yields the following corollary.

Corollary 2.5. Let R be a ring. The following statements are equivalent:

(1) Soc�RR� = 0;
(2) An R-module M is neat-flat if and only if Soc�MR� = 0.

Proposition 2.6. The class of neat-flat R-modules is closed under extensions, direct
sums, pure submodules, and direct summands.

Proof. By Lemma 2.3 and [17, Proposition 2.4]. �
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Recall that a ring R is called a right C-ring if Soc�M� �= 0 for every (cyclic)
singular R-module M . Left perfect rings, right semiartinian rings and almost perfect
domains are right C-rings. R is a right C-ring if and only if neat submodules are
closed if and only if m-injective modules are injective, (see [24, Lemma 4], [11,
Theorem 5]).

Following, Zöschinger [28], a right R-module M is called weakly-flat if the
kernel of any epimorphism Y → M → 0 is a closed submodule of Y . Every
nonsingular module is weakly-flat, and the converse is true exactly when the
underlying ring is nonsingular (see, [22, Lemma 2.3]).

Proposition 2.7. A ring R is a right C-ring if and only if neat-flat are R-modules are
weakly-flat.

Proof. Necessity is clear. For the sufficiency suppose an R-module M is m-injective.
We claim that M is injective. Consider the exact sequence 0 → M ↪→ E�M� →
E�M�/M → 0. By [6, Theorem 3], Soc�E�M�/M� = 0, and so E�M�/M is neat-flat.
Now, M is closed in E�M� by the hypothesis. Therefore, M is injective, so R is a
right C-ring by [24, Lemma 4]. �

Corollary 2.8. A ring R is right C-ring and right nonsingular if and only if neat-flat
modules are nonsingular.

The following result is a generalization of [28, Satz 1.1].

Proposition 2.9. Let R be a right C-ring and M be a right R-module. The following
statements are equivalent:

(1) M is weakly-flat;
(2) M is neat-flat;
(3) Soc�M� = M�Soc�RR�.

Proof. �1� ⇔ �2� By Proposition 2.7.
�2� ⇒ �3� Let S be simple submodule of M . Then the inclusion map i � S →

M factors through R by Lemma 2.3. That is, there are homomorphisms f � S → R
and g � R → M such that gf = i. As S is simple, f�S� = AR is a simple right ideal
of R. Therefore S = i�S� = gf�S� = g�A� = g�R�A ≤ M�Soc�RR�. Hence Soc�M� ≤
M�Soc�RR�. The reverse containment is clear.

�3� ⇒ �2� Suppose M � F/K for some free module F and a submodule K of
F . Assume K is not closed in F . Then there is a submodule T of F containing
K essentially. Now Soc�T/K� �= 0, because T/K is singular and R is right C-ring.
Let A be a complement of K in F . Then A ⊕ K is essential in F , and so Soc�F� =
Soc�A� ⊕ Soc�K�. We get Soc� F

K
� = � F

K
�Soc�RR� = �Soc�F�+K�

K
= �Soc�A�+K�

K
. Therefore

T
K

∩ 
 �Soc�A�+K�

K
� �= 0, and this implies A ∩ K �= 0, a contradiction. Hence K is a closed

submodule of F , and so M is weakly-flat. �

A module M is said to be extending or a CS-module if every closed submodule
of M is a direct summand of M . R is a right CS ring if RR is CS. M is called

∑
-CS

module if every direct sum of copies of M is CS, (see [8]). The
∑

-CS rings were first
introduced and termed as co-H-rings in [19].
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Theorem 2.10. Let R be a ring. The following statements are equivalent:

(1) Every neat-flat R-module is projective;
(2) R is a right

∑
-CS ring.

Proof. �1� ⇒ �2� Let P be a projective R-module and N be a closed submodule of
P. Then P/N is neat-flat by Lemma 2.1, and so P/N is projective by (1). Therefore,
the sequence 0 → N → P → P/N → 0 splits, and so N is a direct summand of P.
Hence R is a

∑
-CS ring.

�2� ⇒ �1� Every right
∑

-CS ring is both right and left perfect by [19, Theorem
3.18]. Hence, R is a right C-ring by [1, Theorem 28.4]. Let M be a neat-flat
R-module. Then there is a neat exact sequence 0 → K ↪→ P → M → 0 with P
projective by Lemma 2.1. Since R is a right C-ring, K is closed in P by [11, Theorem
5]. By the assumption, K is direct summand in P, and so M is projective. �

Theorem 2.11. Let R be a ring. The following statements are equivalent:

(1) Every finitely generated neat-flat R-module is projective;
(2) R is a right C-ring and every finitely generated free R-module is extending.

Proof. �1� ⇒ �2� Let I be an essential right ideal of R with Soc�R/I� = 0. Then
Hom�S� R/I� = 0 for each simple R-module S, and hence I is neat ideal of R. So R/I
is neat-flat by Lemma 2.1. But it is projective by (1), and so I is direct summand of
R. This contradicts with essentiality of I in R. So that R is a right C-ring.

Let F be a finitely generated free R-module and K a closed submodule of F .
Since every closed submodule is neat, F/K is neat-flat by Lemma 2.1. Then F/K is
projective by (1), and so K is a direct summand of F .

�2� ⇒ �1� Let M be a finitely generated neat-flat R-module. Then there
is an exact sequence 0 → Ker�f� ↪→ F → M → 0 with F finitely generated free
R-module. By Lemma 2.1 Ker�f� is a neat submodule of F . Since R is a C-ring,
Ker�f� is a closed submodule of F by [11, Theorem 5]. Then 0 → Ker�f� ↪→ F →
M → 0 is a split exact sequence. Hence M is projective. �

Following the proof of Theorem 2.11, we obtain the following corollary.

Corollary 2.12. Every cyclic neat-flat R-module is projective if and only if R is right
CS and right C-ring.

A module N is called semiartinian if every nonzero homomorphic image of N
contains a simple module.

Remark 2.13. Let M be an R-module. Then the socle series �S�
 of M is defined
as S1 = Soc�M�, S�/S�−1 = Soc�M/S�−1�� and for a limit ordinal �, S� = ∪�<�S�� Put
S = ∪�S�
. Then, by construction M/S has zero socle. M is semiartinian if and only
if S = M (see, for example, [8]).

From the proof of Theorem 2.10, we see that the condition that every free
R-module is extending implies R is a right C-ring. In the following example, we show
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that, if every finitely generated free R-module is extending, then R need not be a
right C-ring. Hence the right C-ring condition in 2.11 is not superfluous.

Example 2.14. Let R be the ring of all linear transformations (written on the left)
of an infinite dimensional vector space over a division ring. Then R is prime, regular,
right self-injective and Soc�RR� �= 0 by [13, Theorem 9.12]. As R is a prime ring,
Soc�RR� is an essential ideal of RR� Let S be as in Remark 2.13, for M = R. Then
S �= R, by [5, Lemma 1(2)]. Since R/S has zero socle, S is a neat submodule of RR.
On the other hand, S is not a closed submodule of R, otherwise S would be a direct
summand of R because R is right self injective (i.e., extending). Therefore, R is not
a right C-ring. Also, as R is right self injective Rn is injective, and so extending for
every n ≥ 1�

3. N-RINGS

A commutative domain R is called an N -domain if every maximal ideal of R is
finitely generated. These domains are characterized as those domains R, over which
coneat submodules and neat submodules coincide (see, [10]). A ring R is called a
right N -ring if every maximal right ideal of R is finitely generated.

Remark 3.1. An R-module M is said to be FP-injective or absolutely pure if it is
pure in every extension, i.e., Ext1�N� M� = 0 for each finitely presented R-module N .
If R is a right N -ring, then it is easy to see that every pure submodule is neat. So
that, in this case, any flat (resp. FP-injective) module is neat-flat (resp. m-injective).
An R-module M is said to be pure-injective if M is injective relative to all pure exact
sequences. The character module M+ of an R-module M is pure injective left R-
module, and every R-module M is a pure submodule of the pure injective R-module
M++ (see [9, Proposition 5.3.7]).

The following result will be used in the sequel.

Theorem 3.2 ([3, Theorem 1]). The following statements are equivalent:

(1) R is a right coherent ring;
(2) MR is FP-injective if and only if M+ is a flat module;
(3) MR is FP-injective if and only if M++ is an injective right R-module;
(4) RM is flat if and only if M++ is a flat left R-module.

Definition 3.3. An R-module M is called max-flat if Tor1
R�M� R/I� = 0 for every

maximal left ideal I of R (see [26]).

Note that an R-module M is max-flat if and only if M+ is m-injective by the
standard isomorphism Ext1�S� M+� � Tor1�M� S�+, for all simple left R-module S.

Using the similar arguments of [26, Theorem 4.5], one can prove the following
lemma. The proof is omitted.

Lemma 3.4. Let R be a right N -ring. The following statements hold:

(1) An R-module M is m-injective if and only if M+ is max-flat;
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(2) An R-module M is m-injective if and only if M++ is m-injective;
(3) An R-module M is a max-flat left R-module if and only if M++ is a max-flat left

R-module.

Proposition 3.5. Assume that every neat-flat R-module is flat. Then the following
statements hold:

(1) Every m-injective R-module is FP-injective;
(2) For every left R-module M , M is max-flat if and only if M is flat.

Proof. (1) Let M be an m-injective R-module. By [6, Theorem 3], Soc�E�M�/M� =
0, and so E�M�/M is a neat-flat R-module. Then E�M�/M is flat by our hypothesis.
Hence M is a pure submodule of E�M�, and so M is an FP-injective module.

(2) Assume M is a max-flat left R-module. Then M+ is m-injective, and so
it is FP-injective by (1). But M+ pure injective by [9, Proposition 5.3.7], so M+ is
injective. Then M is flat by [21, Theorem 3.52]. The converse statement is clear. �

Proposition 3.6. Let R be a ring. Consider the following statements:

(1) R is a right N -ring and every neat-flat R-module is flat;
(2) An R-module M is m-injective if and only if M+ is flat;
(3) An R-module M is m-injective if and only if M is FP-injective, and R is right

coherent.

Then �1� ⇒ �2� ⇔ �3��

Proof. �1� ⇒ �3� By Proposition 3.5(1), every m-injective R-module is FP-injective.
On the other hand, every FP-injective R-module is m-injective since every simple R-
module is finitely presented by (1). Then, for every R-module M , M is FP-injective
if and only if M is m-injective, if and only if M+ is max-flat by Theorem 3.4(2), if
and only if M+ is a flat module by Proposition 3.5(2). Hence R is a right coherent
ring by [3, Theorem 1]. This proves (3).

�2� ⇒ �3� Let M be a left R-module. We claim that, M is a flat R-module if and
only if M++ is a flat module. If M is flat, then M+ is injective by [21, Theorem 3.52],
and so M++ is flat left R-module by (2). Conversely, if M++ is a flat module, then M
is flat since M is a pure submodule of M++ by [9, Proof of Proposition 5.3.9.], and
flat modules are closed under pure submodules (see, [16, Corollary 4.86]). So R is a
right coherent ring by Theorem 3.2. The last part of (3) follows by (2) and Theorem
3.2 again.

�3� ⇒ �2� By Theorem 3.2. �

Proposition 3.7. A finite direct product of left C-rings is also a left C-ring.

Proof. Assume R is a finite direct product of the left C-rings R1� R2 � � � Rn. We
will show that Soc�R/I� �= 0 for each essential left ideal I of R. By assumption,
I = I1 × I2 × · · · × In, where Ii ≤ Ri for i = 1� 2� � � � � n. Since I is essential in R,
Ii is essential in Ri for i = 1� 2� � � � � n. Then Soc�Ri/Ii� �= 0 for i = 1� 2� � � � � n.
Soc�R/I� � ∏n

i Soc�Ri/Ii� �= 0, as desired. �
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Set Sa�M� �= �Mi∈�Mi, where � is the class of all semiartinian submodules Mi

of M . Then M/Sa�M� is neat-flat for each R-module M , because Soc�M/Sa�M�� = 0
by [15, pp. 238].

Note that �1� two-sided hereditary Noetherian rings are C-ring by [4, 10.15(3)],
and �2� noetherian semiartinian rings are artinian by [23, Proposition 3.1].

Remark 3.8. Let R be a ring and e be a central idempotent in R. Then for a right
R-module M one has, M = Me ⊕ M�1 − e�. It can be easily verified that, M is a neat-
flat (flat) R-module if and only if Me is a neat-flat (flat) eR-module and M�1 − e� is
a neat-flat (flat) �1 − e�R-module.

Theorem 3.9. Let R be a commutative Noetherian ring. The following statements are
equivalent:

(1) Every neat-flat module is flat;
(2) Every absolutely coneat module is FP-injective;
(3) R � A × B, wherein A is QF -ring and B is hereditary.

Proof. �1� ⇔ �2� By [2, Lemma 4.4].
�1� ⇒ �3� By the assumption, R/Sa�R� is projective and Sa�R� is direct

summand of R, i.e. R � A × B, where A = Sa�R� is artinian, and Soc�B� = 0 as
Soc�R� ≤ Sa�R�. By Remark 3.8, we can assume R is artinian or Soc�R� = 0. In the
former case, every neat-flat module is projective by the assumption, and hence R is
a QF -ring by Theorem 2.10 and [19, Theorem 4.4]. In the later case, let I be an ideal
of R. Since Soc�R� = 0, we have Soc�I� = 0. Then, I is flat by �1� and Corollary 2.5.
But R is Noetherian, and so I is finitely generated. Therefore, I is projective, and so
R is hereditary.

�3� ⇒ �1� Assume that R � A × B, wherein A is QF -ring and B is hereditary.
Let M be a neat-flat R-module. Since M = MA ⊕ MB, MA is a neat-flat A-module
and MB is a neat-flat B-module, by Remark 3.8. Then MA is a projective A-module
by Theorem 2.10, and MB is a flat B-module by Corollary 2.8 and [12, Proposition
2.3]. Therefore, M is a flat R-module. �

Recall that an R-module M is said to be weakly-injective if M is coclosed in
every extension. M is weakly-injective if and only if M is coclosed in its injective
hull (see [27]). Clearly, weakly-injective modules are absolutely coneat.

Theorem 3.10. Let R be a commutative noetherian ring. The following statements are
equivalent:

(1) Every weakly-flat module is weakly-injective;
(2) Every weakly-injective module is weakly-flat;
(3) Every neat-flat module is absolutely coneat;
(4) Every absolutely coneat module is neat-flat;
(5) Every neat-flat module is weakly-injective;
(6) Every absolutely coneat module is weakly-flat;
(7) R � A × B, wherein A is QF -ring and B is artinian with J 2�B� = 0.
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Proof. �1� ⇔ �2� ⇔ �7� By [28, Satz 3.8].
�5� ⇒ �3� and �6� ⇒ �4� are clear.
�3� ⇒ �4� Let M be an absolutely coneat R-module. Then M+ is neat-flat by

[2, Proposition 4.3]. By �3�, M+ is absolutely coneat. Again by [2, Proposition 4.3],
M++ is neat-flat. Since M is a pure submodule of M++, M is neat-flat by Proposition
2.6.

�4� ⇒ �3� Let M be a neat-flat R-module. Then M+ is absolutely coneat by
[2, Proposition 4.3]. By �4�, M+ is neat-flat. Again by [2, Proposition 4.3], M++ is
absolutely coneat. Since M is a pure submodule of M++, M is absolutely coneat by
[2, Proposition 3.6].

�7� ⇒ �5� A finite direct product of C-rings is also a left C-ring by Proposition
3.7, and so R is a C-ring. Then neat-flat R-modules are weakly-flat and, by [28, Satz
3.8], neat-flat R-modules are weakly-injective.

�3� ⇒ �7� First we shall prove that, every finitely generated weakly-flat R-
module is weakly-injective. Let N be a finitely generated weakly-flat R-module and
N ≤ M any extension of N . Then N is neat-flat, and absolutely coneat by �3�. Then
NI = N ∩ MI for each maximal ideal I of R by [10]. Since N is finitely generated, it
is coatomic (i.e., every submodule U � N lies in a maximal submodule of N ). Hence
N is coclosed in M by [27, Lemma A.3(b)]. Then N is weakly-injective.

The rest of the proof follows as in proof of �i′ ⇒ iii� of Satz 3.8 in [28].
�4� ⇒ �6� By the equivalence of �4� ⇔ �7�, R � A × B, wherein A is a QF -ring

and B is artinian with J 2�R� = 0. Now, R is a C-ring by Proposition 3.7. Then neat-
flat R-modules are weakly-flat. Therefore, the claim follows by �4�. �

4. LOCALIZATION OF NEAT-FLAT MODULES

In this section, we shall consider localization of neat exact sequences and neat-
flat modules on commutative N -rings.

For an R-module M and a prime ideal P of a commutative ring R, as usual,
MP will be denote the localization of M at P. The elements of MP are of the form
m
s

, where m ∈ M and s ∈ R\P. MP turns out to be an RP-module with multiplication
r
s
� m

s′ = rm
ss′ , where r

s
∈ RP� m

s′ ∈ MP .
A submodule A of B is neat in B if and only if the following hold: if for b ∈ B

and for a maximal ideal P, we have Pb ≤ A, then there is an element a ∈ A such
that P�b − a� = 0, (see [10, Lemma 2.1]).

We can also rephrase the definition of neat submodule in terms of systems of
equations to make the resemblance to purity more transparent: if the maximal ideal
P is generated by the elements ri �i ∈ I�, then we consider the system of equations

rix = ai ∈ A� �i ∈ I�

with the single unknown x and constants in A.

Lemma 4.1 ([10, Lemma 2.2]). A is neat in B if and only if such systems are solvable
in A, whenever they are solvable in B.

Let R be a commutative ring and M a finitely presented R-module. It is well
known that M is projective if and only if MP is a free RP-module for each prime
ideal P of R, if and only if MP is a free RP-module for each maximal ideal P of R.
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Lemma 4.2. Let R be a commutative N -ring. Then, a short exact sequence 0 → A →
B → C → 0 is neat exact if and only if 0 → AP → BP → CP → 0 is neat exact for
each maximal ideal P of R.

Proof. �⇒� Assume that 0 → A
f→ B → C → 0 is a neat exact sequence of R-

modules and P is a maximal ideal of R. We show that the exact sequence

0 → AP

fP→ BP → CP → 0

is neat exact of RP-modules. Assume that I is an index set, and

ri

si

x = f�ai�

s
′
i

∈ fP�AP�� ri ∈ RP� si� s
′
i ∈ R\P� ai ∈ A� i ∈ I

is a system of equations which is solvable in BP , i.e., ri

si

b
l

= f�ai�

s
′
i

for some b ∈ B,

l ∈ R\P. Thus for each i ∈ I , there exists an element ti ∈ R\P such that tiris
′
ib =

tisilf�ai� ∈ f�A�. Now, consider the system of equations tiris
′
ix = tisilf�ai� ∈ f�A�

which is solvable in B. Since f�A� is a neat submodule of B, by Lemma 4.1, there
exists an f�a� ∈ f�A� such that tiris

′
if�a� = tisilf�ai� for each i ∈ I . Thus ri

si

f�a�

l
= f�ai�

s
′
i

,

i.e., the system of equations ri

si
x = f�ai�

s
′
i

is solvable in fP�AP�. Therefore, fP�AP� is a
neat submodule of BP by Lemma 4.1.

�⇐� Assume that 0 → A → B → C → 0 is not a neat-exact sequence of R-
modules but 0 → AP → BP → CP → 0 is neat exact for each maximal ideal P of
R. Then there is a simple R-module S = R/P where P is maximal ideal of R
such that Hom�S� B� → Hom�S� C� is not surjective. By the hypothesis, the natural
homomorphism

HomRP
�SP� BP� → HomRP

�SP� CP�

is an epimorphism. Since S is finitely presented, we have the commutative diagram

by [21, Lemma 4.87]. Since the �∗� row is exact, the �∗∗� row is also exact.
Note that for a maximal ideal Q �= P, SQ = RQ ⊗R S = 0. Therefore,

HomR�S� B�Q = HomR�S� C�Q = 0. Then HomR�S� B�P → HomR�S� C�P is an
epimorphism for every maximal ideal P. Thus, by [21, Lemma 4.90], HomR�S� B� →
HomR�S� C� is an epimorphism. This contradict with our assumption, and hence
0 → A → B → C → 0 is a neat exact sequence of R-modules. �

Corollary 4.3. Let R be a commutative N -ring. A module M is a neat-flat R-module
if and only if, for all maximal ideals P of R, MP is a neat-flat RP-module.
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