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ABSTRACT

INTERACTIONS OF CANCER CELLS AND MACROPHAGES ON
THE EGF-EGFR AXIS: CHEMOTAXIS, HAPTOTAXIS OR DIRECT
CONTACT?

Breast cancer cells (BCC) and macrophages are known to interact via epidermal
growth factor (EGF) produced by macrophages and colony stimulating factor-1 (CSF-1)
produced by BCC. Despite contradictory findings, this interaction is perceived as a
paracrine loop. Yet, the underlying mechanism of interaction remains unclear. Here, we
investigated interactions of BCC with macrophages in 2D and 3D. BCC did not show
chemotaxis to macrophages in custom designed 3D cell-on-a-chip devices, which was
in agreement with ELISA results showing that macrophage-derived-EGF was not
secreted into macrophage-conditioned-medium. Live cell imaging of BCC in the
presence and absence of iressa showed that macrophages but not macrophage-derived-
matrix modulated adhesion and motility of BCC in 2D. 3D co-culture experiments in
matrigel and collagen showed that BCC changed their multicellular organization in the
presence of macrophages. In custom designed 3D co-culture cell-on-a-chip devices,
macrophages reduced and promoted migration of BCC in matrigel and collagen,
respectively. Furthermore, adherent but not suspended BCC endocytosed EGFR when
in contact with macrophages. Collectively, our data revealed that macrophages showed
chemotaxis towards BCC-derived-CSF-1 whereas BCC required direct contact to
interact with macrophage-derived-EGF. We propose that the interaction between cancer

cells and macrophages is a paracrine-juxtacrine loop of CSF-1 and EGF, respectively.

Keywords and Phrases: breast cancer, epidermal growth factor, macrophage colony
stimulating factor-1, paracrine signaling, juxtacrine signaling, chemotaxis, lab-on-a-

chip, three dimensional cell culture
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OZET

EGF-EGFR EKSENINDE KANSER HUCRELERI VE
MAKROFAJLARIN ETKILESIMLERI: KEMOTAKSIS,
HAPTOTAKSIS YA DA DIREKT TEMAS?

Meme kanseri hiicreleri (MKH) ve makrofajlarin, makrofajlar tarafindan iiretilen
epidermal biiylime faktorii (EBF) ve MKH tarafindan iiretilen koloni uyarict faktor-1
(KUF-1) araciligryla etkilesime girdigi bilinmektedir. Celiskili bulgulara ragmen, bu
etkilesim parakrin dongii olarak algilanir. Bununla birlikte, etkilesimin altinda yatan
mekanizma belirsizligini koruyor. Burada, MKH’nin makrofajlarla etkilesimlerini 2
boyutta (2B) ve 3 boyutta (3B) arastirdik. MKH, makrofaj tiirevli EBF’nin makrofaj-
kosullandilmig-ortama salgilanmadigini1 gosteren ELISA sonuglarina uygun olarak, 6zel
olarak tasarlanmis 3B yonga-iistii-hiicre cihazlarinda makrofajlara kemotaksis
gostermedi. Iressa varliginda ve yoklugunda MKH’nin canli hiicre goriintiilemesi,
makrofajlarin MKH’nin adezyon ve motilitesini modiile ettigini, makrofaj tiirevli
matriksin ise etmedigini gosterdi. Matrigel ve kollajendeki 3B ortak kiiltiir deneyleri,
makrofajlari varliginda, MKH’nin ¢ok hiicreli organizasyonunu degistirdigini gosterdi.
Ozel olarak tasarlanmis 3B yonga-iistii-hiicre ortak kiiltiir cihazlarinda, makrofajlar
sirastyla matrigel ve kollajendeki MKH nin migrasyonunu azaltt1 ve ylikseltti. Ayrica,
makrofajlarla temas halinde, asili MKH etmezken yapistk MKH EBF reseptoriinii
endositize etti. Toplu olarak, verilerimiz makrofajlarin MKH tiirevli KUF-1'e kars1
kemotaksis gdsterdigini, buna karsilik MKH'nin makrofaj kaynakli EBF ile etkilesime
girmesi i¢in dogrudan temasa ihtiya¢ duydugunu ortaya koydu. Kanser hiicreleri ile
makrofajlar arasindaki etkilesimin sirasiyla KUF-1 ve EBF'nin bir parakrin-jukstakrin

halkas1 oldugunu 6nermekteyiz.

Anahtar Kelimeler ve Deyimler: meme kanseri, epidermal biliylime faktorii, makrofaj
koloni stimiilan faktor-1, parakrin sinyalizasyon, junkstakrin sinyalizasyon, kemotaksis,

yonga-iistii-laboratuvar, ii¢ boyutlu hiicre kiiltiirii
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CHAPTER 1

INTRODUCTION

Metastasis is the leading cause of death for cancer patients. Metastasis defines
both the process of spreading of cancer cells from the primary tumor and the resulting
secondary tumors. During metastasis of carcinoma (cancer of epithelial tissue), tumor
cells degrade the underlying basement membrane and degrade into the connective
tissue, migrate towards blood vessels, intravasate, extravasate and seed secondary sites
in distant organs (Quail and Joyce 2013).

Stephen Paget’s seed and soil hypothesis suggests that both the tumor cell and
the microenvironment determine the sites where metastases occur (Paget 1989,
Mendoza and Khanna 2009). The breast cancer microenvironment is composed of
extracellular matrix (ECM), growth factors, chemicals and stromal cells such as
macrophages, fibroblasts and endothelial cells (Liotta and Kohn 2001, Gupta and
Massague 2006, Alphonso and Alahari 2009) (Figure 1.1).

Microenvironment in Breast Cancer

Cells

Cancer cells

Normal epithelial cells
Macrophages
Fibroblasts
Endothelial cells

and others

Growth factors

Epidermal growth factor
Fibroblast growth factor

Vascular endothelial growth factor
and others

Extracellular matrix

Collagens

Laminin

Fibronectin

Hyaluronan
Nidogen/entactin

Heparan sulfate proteoglycan
and others

Chemicals

Reactive oxgen species
Transforming growth factor
Metal ions

and others

Figure 1.1. Microenvironment in breast cancer.




The relationship between tumor cells, ECM and soluble growth factors has been
studied more than the intercellular interactions. Studies of tumor cells and stromal cells
have explored tumor cell — macrophage (Goswami et al. 2005), tumor cell — fibroblast
(Studebaker et al. 2008) and tumor cell — endothelial cell interactions (Mierke et al.
2008). Most research to date has focused on the cancer cells rather than the
microenvironment: 90% of the papers on cancer and microenvironment are published in
the last ten years (Web of Science). Yet, microenvironment is an important target for
therapeutic purposes (Hu and Polyak 2008): Bissell and colleagues succeeded in
reverting the malignant phenotype of breast cancer cells to normal by blocking B1
integrins (Weaver et al. 1997, Kenny and Bissell 2003). However, an in-depth and
cohesive understanding of tumor cell interactions with the microenvironment is lacking.

As cancer cells metastasize, they interact with various extracellular molecules
and stromal cells such as macrophages and fibroblasts (Condeelis and Pollard 2006,
Marusyk et al. 2016). Macrophages have been shown to promote invasion and change
multicellular organization of cancer cells (Pollard 2004, Ward et al. 2015). While
interactions of tumor cells and macrophages have been perceived as a paracrine loop
(Knutsdottir, Condeelis, and Palsson 2016, Wyckoff et al. 2004), an in-depth
understanding of the mechanistic basis of this interaction is lacking.

Growth factors act as intercellular signaling molecules that promote various
processes such as cell growth, adhesion and motility. Growth factors can be soluble,
transmembrane or extracellular matrix bound proteins (Massague and Pandiella 1993,
Taipale and KeskiOja 1997). Epidermal growth factor (EGF) is one of the seven ligands
of EGF receptor (EGFR also known as ErbB1), and is the most studied member of the
ErbB receptor family. While other EGFR ligands can bind to different members of the
ErbB family, EGF binds only to EGFR (Carpenter and Cohen 1990, Harris, Chung, and
Coffey 2003, Singh and Harris 2005). In addition, EGFR expression correlates with
poor prognosis in breast cancer (Memon et al. 2006, Sainsbury et al. 1985).

The challenge of determining the physiologically relevant mechanism of action
of EGF and its receptor is that in vitro set-ups do not reflect the in vivo
microenvironment and that pertinent in vivo experiments are far too complicated. In
standard cell culture, soluble EGF is provided through a micropipette to the growth

medium and breast cancer cells show chemotaxis, i.e. move towards the source of EGF.



However, the experimental setting of culturing cells on a 2D surface with liquid
medium on top, does not represent in vivo conditions. In the organism, cells are
embedded in a 3D matrix. Some cells produce their own EGF while some depend on
other cells as the EGF source. Mature EGF (6 kDa) is not detected in conditioned
medium (Dickson et al. 1986, Vlaicu et al. 2013). It is also known that soluble EGF and
conditioned medium of macrophages do not promote breast cancer cell invasion into
collagen matrix and breast cancer cells do not invade into collagen if they are not co-
cultured with macrophages(Goswami et al. 2005). Furthermore, it has been shown that
EGFR can be activated with membrane bound ligands (Iwamoto, Handa, and Mekada
1999, Singh et al. 2004). Yet, EGF has both positively and negatively charged residues
and charged molecules can bind the extracellular matrix (ECM) (Lieleg, Baumgartel,
and Bausch 2009). What is more, growth factors such as HB-EGF, FGF and VEGF
have specific domains that can bind ECM molecules (Taipale and KeskiOja 1997).
Furthermore, cells can move by holding on to surface immobilized molecules, which is
defined as haptotaxis (Aznavoorian et al. 1990).

Based on the above, we tested the hypotheses that (1) Breast cancer cells show
chemotaxis to EGF that diffuses in the ECM. (2) Breast cancer cells show haptotaxis to
EGF that is bound to the ECM. (3) Breast cancer cells are stimulated by binding EGF
that is on the cell surface of macrophages (Figure 1.2).

If EGF is soluble in a 3D matrix, breast cancer cells can move towards
macrophages which are the source of EGF. Breast cancer cell motility will increase
with proximity to macrophages (Figure 1.2 top). If EGF binds ECM, breast cancer
cells will require to contact the parts of ECM with bound EGF to move (Figure 1.2
middle). In this case, EGF-specific antibodies will detect EGF in the ECM produced
by macrophages; ECM produced by macrophages will stimulate breast cancer cell
motility. If however, EGF stays on the surface of macrophages, breast cancer cells will
not invade into matrix without direct contact to macrophages (Figure 1.2 bottom). In

this case, EGF-specific antibodies will detect EGF on the surface of macrophages.
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Figure 1.2. Hypotheses: (1) Soluble EGF (2) Matrix-bound EGF (3) Cell-bound EGF.

Breast cancer is the leading cancer type for women in Turkey as it is worldwide.
However, we have not reached the desired diagnostics or therapy levels. Currently,
success rate of clinical trials is only 10% (Woodcock and Woosley 2008). Almost all in
vitro testing and even some animal models do not provide the orthotopic setting of the
relevant cancer (McMillin et al. 2010). Thus better in vitro systems that can mimic the
in vivo microenvironment are needed (Wolf et al. 2009). In addition, there is no ongoing
research on the topic of 3D cancer microenvironments in Turkey.

Nanotechnology is providing powerful tools for life scientists. Lithography and
other processes of micro-electro-mechanical systems used in the semiconductor
industry are now being applied to cell and molecular biology to fabricate microarrays,
protein chips and other lab-on-a-chip devices (Thery et al. 2005, Pesen and Haviland
2009, Chen et al. 1997, Cavalcanti-Adam et al. 2007). UV photolithography is a high
throughput and versatile technique to create both 2D (surface) and 3D (microfluidic)
patterns (Young and Simmons 2010, Qin, Xia, and Whitesides 2010). UV lithography
enables us to fabricate portable devices with patterns scaling from micrometers to
millimeters and liquid handling volumes of microliters.

Using UV lithography, we created 3D controlled microenvironments where

breast cancer cells and macrophages were cultured at specific distances from each other.



This approach forms the foundation of an experimental system that allows us to
investigate the interactions of breast cancer cells and various stromal cells. In addition,
the experimental system has the potential to allow the study of many different cell types
simultaneously. Such 3D controlled microenvironments facilitate and improve research
on inter-cellular communication and allow us to develop new diagnostic and therapeutic
lab-on-a-chip devices. The results achieved in this interdisciplinary thesis project, in
terms of both technology and concept, will seed new projects.

Most widely used in vitro cell culture systems neither reflect the organization
and complexity of the in vivo microenvironment nor provide extensive spatial and
temporal control. On the other hand, microfluidics based cell-on-a-chip devices can
provide both 2D and 3D settings, position multiple cell types at specific locations,
provide static and dynamic chemical and physical inputs and gradients, and enable real
time monitoring or visualization (Huh et al. 2010, Jeon et al. 2015, Keenan and Folch
2008, Au et al. 2016). Therefore, cell-on-a-chip devices are now proving to be a
necessary step which links in vitro studies, in vivo animal models and clinical trials.

In this study, using a multidisciplinary approach including classical and up-to-
date techniques such as cell-on-a-chip devices, we tested the three hypotheses outlined
in Figure 1.2, with an emphasis placed on the 3" hypothesis that a juxtacrine interaction

is required for the activity of macrophage-derived-EGF on breast cancer cells.



CHAPTER 2

MATERIALS AND METHODS

2.1. Cell Culture

MDA-MB-231 (BCC) and RAW264.7 macrophages were acquired from ATCC
(LGC Standards GmbH, Germany). BCC and macrophages were grown in tissue culture
treated petri dishes in DMEM supplemented with 10% FBS, 1X penicillin-
streptomycin, 1X L-glutamine and in non-treated petri dishes in RPMI supplemented
with 5% FBS, 1X penicillin-streptomycin, 1X L-glutamine, respectively, at 37°C, 5%
CO,. BCC and macrophages were trypsinized and mechanically collected for sub-

culturing, respectively.

2.2. Cell-on-a-chip Experiments

Fabrication of the cell-on-a-chip devices was performed as previously described
(Ozdil et al. 2014) (APPENDIX A) and schematically summarized in Figure 2.1. Cell
laden (6.5x10° cells/ml) and cell-free matrigel (354234, Corning) or collagen gels
(354249, Corning) were loaded to the corresponding channels and polymerized at 37°C
5% CO; for 15 min Then culture media were loaded into the medium reservoirs. The
samples were kept at 37°C and 5% CO, for 7-14 days. Partially overlapping raster-scan
phase-contrast images of fields of interest in cell-on-a-chip devices were acquired on at
least days 1, 3 and 5 using an Olympus CX41 microscope or a Euromex OX.3120
microscope equipped with a Dino-Lite Eyepiece Camera and imaging software

(DinoCapture 2.0). Images were stitched using Photoshop (Adobe).
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Figure 2.1. Cell-on-a-chip workflow.

For quantification of migration of co-cultured cells in cell-on-a-chip devices,
each region between two PDMS posts was defined as an ROI and the maximum

distance migrated in each ROI was measured using Imagel.

2.3. Protein Quantification and ELISA

Macrophage-derived-matrix and cancer cell-derived-matrix were prepared by
seeding 21K RAW 264.7 cells per cm” and 51K MDA-MB-231 cell per cm® and
culturing cells for 7 days prior to sample collection. Macrophages and cancer cells were
removed using 2M urea. Conditioned medium was prepared by culturing confluent cells
for 24 hours in serum-free medium. Samples were collected and processed for Bradford
(39222.02, Serva), EGF Mouse ELISA (ab100679, Abcam) and CSF Human ELISA

(ab100590, Abcam) assays according to the manufacturers’ instructions.

2.4. Live Cell Imaging

BCC were starved in serum free Leibowitz’s medium supplemented with BSA,
collected using cell dissociation buffer (Biological Industries, Israel) and re-suspended
in starvation medium and added on glass, matrigel, macrophage-derived-matrix or

macrophages. Imaging was started immediately using an Olympus IX70 microscope



equipped with a heating plate set to 37°C. Phase-contrast images were captured with a
Euromex camera with the ImageFocus Software every 30 seconds.

For mgel surfaces, 100 png/ml matrigel was used for coating glass coverslips. For
MCm surfaces, macrophage derived matrix was prepared by seeding 48K RAW 264.7
cells per 15mmx15mm area of a glass coverslip and culturing cells for 7 days prior to
the live cell imaging experiment. Macrophages were removed using 2M urea. For MC
surfaces, 6K cells were seeded, cultured for 7 days and used after rinsing with serum-
free medium.

For live cell experiments on MC surfaces, BCC and macrophages were stained
with CellTracker Green CMFDA or Blue CMAC (Molecular Probes), respectively,
according to the manufacturer’s instructions. Fluorescence images were captured for the
first and last time points.

BCC were treated with 2 uM Iressa (‘Gefitinib’ sc-202166, Santa Cruz
Biotechnology) for 16 hours prior to using the cells in live cell imaging experiments.
Medium with Iressa was replenished just before live cell imaging.

Cell area, circularity and aspect ratio of the cells were measured from manually
tracked cell boundaries using ImageJ. BCC cells were classified as ‘round’ or ‘spread’
on different surfaces. If a cell had any flat protrusions, it was classified as spread.

For motility, cell nuclei were manually tracked over time. Speed was calculated
as the ratio of the net distance travelled to time for each time interval of 15 minutes.

Persistence was calculated as the ratio of the net distance to the total distance.

2.5. 3D Co-culture Hydrogel Experiments

2x10° cells/ml of BCC and macrophages were seeded alone or together in 1:1
matrigel or 2 mg/ml collagen hydrogel drops of 2 pl in multi-well plates which were
placed upside down during hydrogel polymerization. Another 15 pl of the
corresponding cell-free hydrogel was then polymerized on the cell-laden hydrogels.
Next, macrophage culture medium was added to the wells, and cells were cultured at

37°C and 5% CO,. Image acquisition was performed as for cell-on-a-chip experiments.



cell-laden

hydrogel drop

well in a multi-well plate

+ cell-free

hydrogel drop *+ Medium

Image atday 1,3, 5

Cell-laden hydrogel drop: BCC only, macrophage only, co-culture

Figure 2.2. 3D Hydrogel drop model.

The outermost 328 um (250 pixels) ring of the cell-laden matrigel drops was
examined. A line structure was defined to contain at least 2 cells and be more than 100
pixels in length. A branch was defined to contain at least 3 cells and to have a ‘Y’ or ‘T’
shape. A multicellular complex was defined to contain at least 4 cells which had
connections with each other.

The boundary at the cell-laden and cell-free collagen was examined. An along
cell was defined to be aligned along the boundary. A perpendicular cell was defined to
be perpendicular to the boundary. Round and clustered cells at the boundary were also
counted.

Assignments of different structures were performed by two or three independent

observers and cross-checked.

2.6. Endocytosis in Suspended Cells

BCC were starved and incubated in a cell dissociation buffer (Biological
Industries, Israel) for collection. BCC were then treated with 3.5 nM EGF or
macrophages in suspension for 10 minutes. Samples were then fixed with 4%
paraformaldehyde and processed for immunostaining with EGFR (D38B1) XP rabbit
mAb (4267, Cell Signaling Technology, 1:100), anti-rabbit secondary antibody Alexa



Fluor 555 Conjugate (4413, Cell Signaling Technology, 1:200) and Alexa Fluor 488
Phalloidin (8878, Cell Signaling Technology, 1:200). Fluorescence images were
captured with an Olympus 1X83 microscope equipped with a DP73 camera and cellSens
software. Fluorescence signal of EGFR localized to the membrane divided by the total

cellular signal was measured using ImageJ.

2.7. Endocytosis in Adherent Cells

BCC were transiently transfected with EGFR-GFP, a gift from Alexander
Sorkin (Addgene plasmid # 32751). BCC were starved and treated with 3.5 nM EGF or
suspended macrophages labelled with Blue CMAC (Molecular Probes). Images were
acquired with a Zeiss Observer microscope equipped with an incubation chamber set to
37°C, an MRm camera and Zen software. BCC showing inward movement of EGFR-

GFP from the cell membrane to the cytosol were counted as endocytosis positive.

2.8. Image Analysis

Photoshop (Adobe) and Image] (NIH) were used for image processing and

analysis.

2.9. Statistical Analysis and Data Presentation

Mann-Whitney two-tailed test (MATLAB), y” test (Microsoft Excel) and two
sample t-test between percents (StatPac) were used to determine significances.
Statistical significance was taken as p < 0.05. Data are represented as means + s.e.m.
Detailed statistics and source data are available in Supplementary Dataset (APPENDIX
O).
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CHAPTER 3

RESULTS AND DISCUSSION

3.1. BCC cells did not show chemotaxis towards macrophages whereas

macrophages showed chemotaxis towards BCC

To determine the mechanism of interaction between macrophages and BCC on
the EGF — CSF-1 axis, in particular to determine how macrophage-derived-EGF acts on
BCC, we first investigated chemotaxis in 3D cell culture (Figure 3.1). We used custom
cell-on-a-chip devices comprising three neighboring hydrogel channels where
constituents from adjacent channels had access to each other through gaps between
regularly spaced posts that formed the borders between channels. We loaded cell-free
matrix into the middle channel and then different cell-laden matrices into the left and
right channels. The two reservoirs, each adjacent to the left and right channels, were
filled with culture medium. Such a cell-on-a-chip design allowed assessment of the
chemotactic responses between two cell types in a 3D cell culture setting. We initially
used a cell-on-a-chip device where the two cell types embedded in matrigel were
positioned at an equal distance of 2 mm from each other and the cell culture medium in
the reservoirs was serum-free. Here, macrophages showed low level of migration
towards BCC which, on the other hand, did not migrate. To remove any limitations due
to the absence of serum and long distances between cells, we used another cell-on-a-
chip design where the distance between the two cell types changed from 3 mm to 0.3
mm and the cell culture medium in the reservoirs contained serum (Ozdil et al. 2014).
Here, macrophages showed prominent migration towards BCC which still did not
migrate notably. These results showed that BCC did not show chemotaxis towards

macrophages whereas macrophages did so.
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Figure 3.1. BCC cells did not show chemotaxis towards macrophages whereas
macrophages showed chemotaxis towards BCC.

(A) Current and proposed model for interaction of BCC with macrophages. In the current model (top), BCC show
chemotaxis towards macrophage-derived-EGF and macrophages show chemotaxis towards BCC-derived-CSF-1. In
the proposed model (bottom), macrophage-derived-EGF is associated with macrophages and direct contact is
required for interaction of macrophage-derived-EGF and EGFR on BCC. (B) Cell-on-a-chip design to test distant
interactions. Cell-free matrix was loaded into the middle channel. Cell-laden matrices were loaded into channels on
either side of the middle channel. The two reservoirs neighbouring the cell-laden channels were filled with cell
culture medium. (C) Representative image for a cell-on-a-chip device where the cell-free middle channel had a
constant width (from 2 cell-on-a-chip devices). (D) Representative image for a cell-on-a-chip device where the cell-
free middle channel had a varying width (from 3 cell-on-a-chip devices). (Scale bars, 500 um.)
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3.1.1. ELISA Results

To confirm that BCC provided a soluble signal whereas macrophages did not,
we determined the EGF and CSF-1 content of macrophage- and BCC-conditioned
medium, macrophage- and BCC-derived-extracellular matrix (ECM) and the cells
themselves using ELISA. The majority of the protein and the growth factors were
present in cells, as expected (Table 3.1). The ECMs from MC and BCC constituted
about 37% and 19% of the total protein and they contained 7% and 12% of EGF and
CSF-1, respectively. The conditioned medium of macrophages was 1% of the total
protein content and it contained only 1% of the total EGF, showing that EGF was not
secreted. Yet, the conditioned medium of BCC was almost 1% of the total protein
content and contained 35% of the total CSF-1 showing that CSF-1 was secreted.
Together, cell-on-a-chip and ELISA results indicated that macrophages could show
chemotaxis to BCC-derived-CSF-1 whereas BCC did not show chemotaxis to

macrophages in consistent with the lack of EGF in macrophage-conditioned-medium.

Cells Matrix CM Total*
EGF % 92 7 1 100
Macrophages
Total Protein % 62 37 1 100
CSF-1 % 53 12 35 100
BCC
Total Protein % 81 19 1 100

Table 3.1. CSF-1 but not EGF was secreted.

ELISA and total protein analysis for BCC, BCC-derived matrix, BCC-conditioned medium, MC, MC-derived matrix
and MC-conditioned medium. *Total % can exceed 100 due to rounding.
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3.2. Macrophages but not macrophage-derived-matrix modulated

adhesion and motility of BCC in an EGF-dependent manner

Since growth factors may bind ECM, we investigated adhesion and motility of
BCC on macrophage-derived-ECM (Figure 3.2, Figure 3.3 and Figure 3.4). BCC were
imaged live as they were introduced onto glass coated with matrigel (mgel), glass
coated with macrophage-derived-ECM (MCm), glass dispersedly coated with
macrophages (MC) and bare glass surfaces. During the first fifty minutes, BCC on mgel
surfaces attached and spread, increasing their cell area 4.79 fold (p<0.0001). Yet, BCC
on the other surfaces did not spread significantly except on glass surface where there
was a small (1.075 fold) increase in cell area (p<0.05). At fifty minutes, cell area on
mgel surfaces was larger than those on all other surfaces (p<<0.005). Circularity of BCC
decreased in time on mgel (p<0.001), but not on other surfaces. At fifty minutes,
circularity of BCC on mgel surfaces was smaller than those on all other surfaces
(p<0.001). Aspect ratio of BCC did not change in time or between different surfaces.
These results showed that presence of macrophages or macrophage-derived-ECM did
not support initial cell attachment as well as matrigel. We also analyzed cell
morphology at the end of 5 hours on each of the above mentioned surfaces in the
presence and absence of iressa (gefitinib), an EGFR inhibitor (Wakeling et al. 2002).
Areas of BCC decreased from mgel (784.5£30.9 pm?) to MCm (704.1+58.9 um?) to
MC (383.5+32.3 um?) to glass (245.1+6.6 um?) surfaces (p<0.036). Although the
addition of iressa did not change the cell area of BCC on MCm and glass surfaces, it
decreased and increased cell area on mgel (0.74 fold) and MC (1.24 fold) surfaces,
respectively (p<0.0001). Circularity of BCC increased from mgel to MCm to MC to
glass (p<0.0001). Presence of iressa increased the circularity of BCC on mgel and glass
surfaces whereas it decreased that on MC (p<0.0001) surfaces. Aspect ratio of BCC was
similar between mgel and MCm and decreased from MCm to MC to glass surfaces
(p<0.0001). Presence of iressa decreased and increased aspect ratio of BCC on mgel
and MC surfaces, respectively (p<0.016). These results showed that the presence of
macrophage-derived-ECM supported adhesion and spreading of BCC as well as
matrigel and better than the presence of macrophages. Presence of iressa affected
adhesion on mgel and MC but not MCm surfaces suggesting that EGF was present in

matrigel and was associated with macrophages.
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We examined BCC motility on mgel, MCm and MC surfaces in the presence or
absence of iressa during the first 5 hours of being introduced onto the surfaces of
interest (Figure 3.2G-H, and Figure 3.4). Average speed of BCC on mgel (0.48%0.06
um/min) surfaces was larger than those on MCm (0.18£0.02 pwm/min) and MC
(0.094£0.01 pm/min) surfaces (p<0.00002). Iressa did not have an effect on BCC on
mgel and MCm surfaces probably because while the rich composition of matrigel
allowed compensation, motility on MCm was minimal to begin with. Thus MCm
surfaces promoted cell adhesion but not motility. Yet, presence of iressa increased the
average speed of BCC on MC surfaces 2.5 fold (p<0.00001), which was consistent with
the increase in cell adhesion in the presence of iressa on MC surfaces because cells can
be motile after they have adhered well enough and there is a positive feedback from
adhesion to motility. Persistence of BCC on all surfaces was similar. Thus any EGF
mediated effect on cell motility was apparent only on MC surfaces. These results
aligned with ELISA results showing majority of EGF was associated with macrophages
and cell adhesion data suggesting that macrophage-derived-EGF provided pro-motility
input. Together, cell adhesion and motility results showed that BCC changed EGF-

mediated-behavior on macrophages but not on macrophage-derived-ECM.
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Figure 3.2. Macrophages but not macrophage-derived-matrix modulated adhesion and
motility of BCC in an EGF-dependent manner.

Quantification of (A) area, (B) circularity and (C) aspect ratio of cells during the first 50 minutes of adhesion (mean +
s.e.m. n = 18, 24, 23, 6 cells). Quantification of (D) area, (E) circularity and (F) aspect ratio of cells at 6 hours of
adhesion in the presence and absence of iressa (mean + s.e.m. n = 283, 145, 213, 97, 185, 255, 182, 130 cells).
Quantification of (G) average speed and (H) persistence of cells in the presence and absence of iressa (mean + s.e.m.
n = 20, 22, 29, 15, 24, 23 cells). Asterisks show significant differences between t = 0 and 50 minutes. Double
asterisks show significant differences between matrigel and all other three surfaces. Horizontal bars show significant
differences between control and iressa groups.
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Figure 3.3. Cell shape changed as a function of the underlying substrate.

EGF dependency was observed for mgel and MC surfaces. (A) Representative images for BCC at 6 hours of adhesion
on mgel, MCm, MC and glass surfaces in the presence and absence of iressa. Macrophages (magenta) were cultured
for 7 days prior to addition of BCC (green). (Scale bars, 20 pm.) (B) Percentage of round and spread BCC cells at 6
hours of adhesion on mgel, MCm, MC and glass surfaces in the presence and absence of iressa (3 test for n = 280,
445, 273, 281, 545, 512, 359, 271 cells). (C) Representative images for BCC on MC surface at 6 hours of adhesion.
x: BCC on MC, y: BC in contact with MC, z: on MC-free area in the merged image of BCC (green) and MC
(magenta) (Xz test for n = 30, 75, 53 cells). (Scale bars, 20 pm.) (D) Percentage of round and spread BCC cells on
MC at 6 hours of adhesion (y” test for n = 30, 75, 53 cells). Horizontal bars show significant differences.
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Figure 3.4. Cell motility changed as a function of the underlying substrate.

Cell tracks of BCC motility on mgel, MCm, MC and glass surfaces in the presence and absence of iressa during 5
hours of live cell imaging (for n = 15-29 cells).



3.2.1. Snapshots from S hours Long Live Cell Imaging at every 15 min

Figure 3.5. Live cell imaging on Matrigel.
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Figure 3.6. Live cell imaging on Matrigel in the presence of iressa.
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Figure 3.7. Live cell imaging on macrophage-derived-ECM.
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Figure 3.8. Live cell imaging on macrophage-derived-ECM in the presence of iressa.
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Figure 3.9. Live cell imaging on disperse macrophage culture. Macrophages in red,
MDA-MB-231 cells in green, labeled with CellTracker dyes.
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Figure 3.10. Live cell imaging on disperse macrophage culture in the presence of iressa.
Macrophages in red, MDA-MB-231 cells in green, labeled with CellTracker
dyes.
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Figure 3.11. Live cell imaging on bare glass surface.

3.3. Co-culture of BCC with Macrophages in Hydrogel Drops or in
Cell-on-a-chips

3.3.1. Co-culture of BCC with macrophages in matrigel or collagen

hydrogel drops changed their multicellular organization

As cells can also interact with membrane-bound growth factors, it is possible
that BCC interact with EGF which is macrophage-bound. In this case, direct contact
with macrophages is likely to modulate phenotypes of BCC. Results for adhesion and
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motility of BCC on MC surfaces reported above supported such a juxtacrine mode of
interaction. Here, we further investigated BCC and macrophages in 3D co-culture
(Figure 3.12 and Figure 3.13). The multicellular organization of BCC changed in
matrigel and collagen hydrogel drops in the presence of macrophages. In matrigel, BCC
alone organized into star-like multicellular complexes, branched structures or lines of
cells. On day 5 of co-culture, presence of macrophages changed the percentile
distribution of these structures (%* p<0.002). Percentage of branch and line structures
decreased and increased, respectively (Percent t-test <0.05) (Table 3.2). The number of
branched structures decreased 3-fold per hydrogel drop (p<0.029). In collagen, BCC
appeared as round or elongated and along or elongated and perpendicular cells as well
as clusters along the cell-laden hydrogel drop border. On day 5 of co-culture, presence
of macrophages changed the percentile distribution of these structures (3 p<5.77303E-
14). Percentage of along and clustered cells decreased and increased, respectively
(Percent t-test <0.05) (Table 3.3). The number of round cells and clusters per hydrogel
drop decreased (1.9-fold) and increased (24-fold), respectively (p<0.041). Thus 3D co-
culture results showed that BCC and macrophages did interact, resulting in changes in

single and multi-cellular organization in 3D.
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Figure 3.12. Co-culture of BCC with macrophages in matrigel changed their
multicellular organization.

Presence of macrophages decreased the number of branched structures of BCC per hydrogel drop 3-fold (p<0.029)
and changed the percentile distribution of structures (3> test p<0.002). The multicellular organization of BCC in
matrigel hydrogel drops alone or with the presence of macrophages on dayl (A), day 3 (B) and day5 (C). (Scale bars,
500 um.) M: star-like multicellular complexes, B: branched structures, L: lines of cells. (D) The number of the M, B,
L structures for BCC alone and BCC co-culture with MCC on day 5 (mean + s.e.m. n= 121, 59 structures. (E) The
percentile distribution of the structures (x” test). Horizontal bars show significant differences.
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BCC BCC+MC Significance™
L% 23 49 p<0.05
B% 53 36 p<0.05
M% 24 15 p>0.05

Table 3.2. Significances of the changes in the individual percentiles of L, B, M
structures of BCC cultured in matrigel alone or in the presence of

macrophages. *Two sample t-test between percents.
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Figure 3.13. Co-culture of BCC with macrophages in collagen changed their
multicellular organization.

Presence of macrophages decreased the number of round cells (p<0.015) and increased the number of clusters per
hydrogel drop (p<0.041), respectively and changed the percentile distribution of structures (x> test p<5.77E-14). The
organization of BCC alone or with the presence of macrophages in collagen hydrogel drops on day 1 (A), day 3 (B)
and day 5 (C). (Scale bars, 500 um.) A: elongated and along, P: elongated and perpendicular, R: round, C: clusters
along the cell-laden hydrogel drop border. (D) The number of the A, P, R, C structures on BCC alone and BCC co-
culture with MCC on day 5 (mean =+ s.e.m. n= 261, 124 structures). (E) The percentile distribution of the structures
(x* test). Horizontal bars show significant differences.
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BCC BCC+MC Significance™
R% 52 57 p>0.05
A% 23 5 p<0.05
P% 25 19 p>0.05
C% 0 19 p<0.05

Table 3.3. Significances of the changes in the individual percentiles of R, A, P, C
structures of BCC cultured in collagen alone or in the presence of
macrophages. *Two sample t-test between percents.

3.3.2. Macrophages reduced and promoted migration of BCC in

matrigel and collagen, respectively

To determine cell migration in 3D in a controlled manner, we used a custom 3D
co-culture cell-on-a-chip device, where we seeded BCC or macrophages alone or in
combination in collagen or matrigel into a channel sided by channels containing cell-
free hydrogels (Figure 3.14). In matrigel, BCC alone showed more migration than
macrophages alone and presence of macrophages reduced the migration distance 2 fold
on days 1, 3 and 5 (p<0.028). In collagen, BCC alone showed less migration than
macrophages alone and presence of macrophages increased the migration distance 2.8
fold on day 5 (p<1.54E-06). Thus macrophages reduced and promoted migration of

BCC in matrigel and collagen, respectively.
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Figure 3.14. Macrophages reduced and promoted migration of BCC in matrigel and
collagen, respectively.

(A) — (C) BCC alone, BCC and macrophages or macrophages alone in matrigel were loaded into the middle channel

of a cell-on-a-chip device. (D) — (F) BCC alone, BCC and macrophages or macrophages alone in collagen were

loaded into the middle channel of a cell-on-a-chip. Cell-free channels were loaded with the corresponding matrices.

Quantification of distances migrated by cells in matrigel (G) and collagen (H) matrices (mean + s.e.m. n= 8, 16
ROIs). Horizontal bars show significant differences between groups on the same day. (Scale bars, 250 pm.)

3.4. Adherent but not suspended BCC endocytosed EGFR when in

contact with macrophages

To confirm that juxtacrine signaling is the mechanism of interaction between

macrophage-derived-EGF and BCC, we examined endocytosis of EGFR in BCC in
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suspension and adherent cell culture (Figure 3.15 and Figure 3.16). When starved BCC
were treated with BSA, EGF or macrophages in suspension, the fraction of membrane
EGFR was the highest for BCC treated with macrophages than with BSA than with
EGF (p<0.0015) (Figure 3.15B). EGFR was expected to be internalized in the presence
of macrophage-derived-EGF. Yet interactions of BCC with macrophages did not
promote receptor internalization, which was probably because BCC in suspension did
not have enough traction to disengage the macrophage-bound-EGF (Ivaska and Heino
2011). In adherent culture on the other hand, BCC cells transfected with EGFR-GFP
starved and treated with macrophages endocytosed EGFR (69% of cells) more and less
than those treated with BSA (11% of cells) and EGF (92% of cells), respectively (y°
p<0.035) (Figure 3.16B and Movie S1-S3) (APPENDIX B).
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Figure 3.15. Endocytosis of EGFR in suspended BCC.

(A) Starved and suspended BCC were treated with BSA, EGF or macrophages for 15 minutes in suspension, fixed
and stained. Representative immunostaining images for EGFR and actin localization. (Scale bars, 10 um.) (B) The
fraction of membrane EGFR derived from immunofluorescence signal (mean + s.e.m. n = 35, 45, 27 cells).
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Figure 3.16. Adherent BCC endocytosed EGFR when in contact with macrophages.
(A) Representative images for Oth and 16th minute of live imaging of EGFR endocytosis in BCC transfected with
EGFR-GFP, starved and treated with EGF or macrophages. (Scale bars, 10 pm.) (B) The percentage of the BCC cells

showing EGFR endocytosis when treated with BSA, EGF or macrophages (x> test for n = 66, 24, 42 cells).
Horizontal bars show significant differences.

Although breast cancer cells (BCC) and macrophages are accepted to interact in
a paracrine loop of epidermal growth factor (EGF) and colony stimulating factor-1,
direct evidence to support this perception is lacking and the underlying mechanism of
interaction remains unclear. We investigated the interaction between BCC and
macrophages using a multidisciplinary approach. Our results support the hypothesis that
a juxtacrine interaction is required for the activity of macrophage-derived-EGF on
breast cancer cells, and thus the interaction between cancer cells and macrophages is a
paracrine-juxtacrine loop of CSF-1 and EGF, respectively.

Growth factors can act either in soluble or ECM-bound or cell-bound (Singh and
Harris 2005). Our first results showed that CSF-1 was secreted and thus a chemotactic
response by macrophages towards BCC was possible and observed whereas EGF was
not detected in the conditioned medium of macrophages and a chemotactic response by
BCC to macrophage-derived-EGF was not observed. Secondly, we examined whether
macrophage-derived-EGF could act as an ECM-bound growth factor. Here, we used
mgel surfaces as positive controls. An important difference between mgel and MC
surfaces was that unlike the latter, the former presented a rich ECM composition. Iressa

decreased adhesion on mgel surfaces as expected since matrigel is a rich mixture of

33



ECM proteins and growth factors. Presence of EGF can promote adhesion via crosstalk
between integrins and growth factor receptors and presence of iressa can remove the
positive (pro-adhesion) input from EGFR (Comoglio, Boccaccio, and Trusolino 2003,
Eliceiri 2001, Kim et al. 2008, Yamada and Even-Ram 2002). EGF is also known to
promote motility. Macrophages appeared to inhibit cell adhesion and presence of iressa
removed the negative (pro-motility) input from EGFR. This result was in agreement
with the previous studies which found that EGF can promote rounding of adherent cells
(Welsh et al. 1991), inhibit adhesion (Maheshwari et al. 1999) and promote a motile
phenotype (Xie et al. 1998).

Adhesion of MDA-MB-231 cells, used here as a model for BCC, on collagen IV
has been shown to increase in the presence of EGF and this increase can be reverted by
EGFR inhibitors (Genersch et al. 1998). However, we cannot directly compare our
results with those reported in that study because in our experimental system, soluble
EGF is not present. Our results collectively indicated that macrophage-derived-EGF
was cell-bound. On the other hand, in that study EGF has been shown to inhibit
adhesion for cells with high EGFR expression. Thus it appears that the form of EGF —
soluble or immobilized — and the number of EGFR per cell can modulate the effect of
EGF on cell adhesion.

Iressa dependent differences on adhesion and motility were observed on
macrophages but not on macrophage-derived-ECM, directing us to the investigation of
cell-to-cell contact based interactions. In matrigel hydrogel drops, in the presence of
macrophages, the number and percentage of branched structures decreased and the
percentage of line structures increased suggesting that macrophages could induce a
more dispersed organization of BCC. On the other hand, changes in the single and
multi-cellular organization in collagen suggested that BCC and macrophages could
cluster in a poor microenvironment such as collagen.

In 3D co-culture cell-on-a-chip devices, macrophages reduced and promoted
migration of BCC in matrigel and collagen, respectively. In matrigel, BCC alone could
migrate well due to the rich composition of matrigel which can activate both integrins
and growth factor receptors; yet as BCC encountered macrophages which acted as
concentrated point sources of EGF, they migrated less. This was probably because local
EGF, that was the sum of EGF present in matrigel plus macrophage-derived-EGF,
became too high and inhibited migration of BCC, consistent with biphasic EGF
dependence of EGFR auto-phosphorylation (Needham et al. 2016) and results of in vivo
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invasion assays performed with microneedles stably inserted into xenograft tumors in
mice (Philippar et al. 2008). On the other hand, in 3D co-culture cell-on-a-chip devices
comprising collagen, BCC alone did not migrate as well due to the poor composition of
collagen; yet in this case interactions with macrophages, which acted as rich sources of
EGF, promoted cell migration, as expected. Our 3D migration results for cells in
collagen in custom cell-on-a-chip devices are also in agreement with previous studies
where dissemination of tumor cells is induced by contact with macrophages (Bai et al.
2015, Goswami et al. 2005). Direct contact with macrophages is also known to induce
other changes in cancer cells, such as formation of more invadopodia, which EGF is
known to enhance (Roh-Johnson et al. 2014).

Our results on endocytosis of EGFR in suspension BCC when stimulated with
macrophages are consistent with those of a study where cells were stimulated with
surface immobilized EGF which has been suggested to be useful for studying juxtacrine
signaling (Chen, Ito, and Imanishi 1997). Furthermore, our results on endocytosis of
EGEFR in adherent BCC when stimulated with macrophages align with those of a study
where cells were stimulated with EGF-beads (Verveer et al. 2000).
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CHAPTER 4

CONCLUSION

EGF — CSF-1 based interactions between cancer cells and macrophages have
long been perceived as a paracrine loop. Using a multidisciplinary approach, our results
revealed that cell-to-cell contact was required for the activity of macrophage-derived-
EGF on BCC. To the best of our knowledge, this is the first study providing direct
evidence and showing that the mechanism of interaction between macrophage-derived-
EGF and BCC is juxtacrine signaling. The paradigm shift we provide is likely to
promote a better understanding of cell-to-cell communication in both health and disease
states, and well-designed cellular microenvironments to control and assay cell-to-cell
interactions in tissue engineering applications and finally better therapeutic and

diagnostic approaches in the future.
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Movie S1. EGFR endocytosis in BCC transfected with EGFR-GFP and starved.

Movie S2. EGFR endocytosis in BCC transfected with EGFR-GFP, starved and treated
with EGF.

Movie S3. EGFR endocytosis in BCC transfected with EGFR-GFP, starved and treated

with macrophages.
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ABSTRACT

Microfluidics-based lab-on-a-chips have many advantages, one of which is to provide physiologically relevant

settings for cell biology experiments. Thus there is an ever increasing interest in their fabrication. Our goal is to

construct three dimensional (3D) Controlled in vitro Microenvironments (CivMs) that mimic the in vivo

microenvironments. Here, we present our optimized fabrication method that works for various lab-on-a-chip

designs with a wide range of dimensions. The most crucial points are:

e While using one type of SU-8 photoresist (SU-2075), fine tuning of ramp, dwell time, spin speed, durations of soft
bake, UV exposure and development allows fabrication of SU-8 masters with various heights from 40 to 600 pum.

e Molding PDMS (polydimethylsiloxane) at room temperature for at least two days instead of baking at higher
temperatures prevents not only tears and bubbles in PDMS stamps but also cracks in the SU-8 master.

e 3D nature of the CivMs is ensured by keeping the devices inverted during gel polymerization.
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Microfluidics-based lab-on-a-chips have many advantages [1]: Small volumes down to pL are used.
Small volumes provide enhanced safety when dangerous or toxic chemicals or biological agents are
used. Precise spatial and temporal control can be achieved. High throughput analysis is facilitated [2].
Fabrication costs are low. The devices are portable. Finally, the devices provide physiologically
relevant settings for cell biology experiments [3-8]. Such advantages have resulted in an increased
interest in the methodological details of fabrication of lab-on-a-chips [9-11].

Method details
UV lithography

UV lithography (UVL) which is also called photolithography is a parallel writing method for
fabrication of 2D and 3D micrometer scale designs using photo-reactive materials, called photoresists
[10]. There are two types of photoresists: Positive and negative. Positive photoresist is degraded by
exposure to UV light followed by dissolution in a developer while negative photoresist such as SU-8, is
cross-linked in the same process. SU-8 is widely used for fabrication of masters that are in turn used
for both 2D and 3D structures of interest. SU-8 is an epoxy based negative photoresist. SU-8 is
available in different viscosities and is categorized as SU-8 2000 and 3000 series. The higher the
viscosity (and the number following ‘SU-8’), the higher the thickness of the polymer spun on a surface.
We fabricate SU-8 masters with heights between 40 and 600 wm using SU-8 2075. These masters can
then be used for PDMS molding. PDMS molds in turn are used for fabricating 3D Controlled in vitro
Microenvironments (CivMs). Some of our 3D microfluidic platforms have a set of microfluidic channels
separated by an array of posts. Such systems are convenient for studying different hydrogels and cell
types in the same device at predefined dimensions while mimicking in vivo conditions [2-5].

UV lithography is carried out in a Class 1000 clean room. Special lab overalls suited for clean room
use are worn.

First improvement of our method is the ability to generate SU-8 layers with different thicknesses
ranging from 40 to 600 microns using only SU-8 2075 through careful optimization of the steps of UV
lithography, in particular the spinning step. Thus the users do not need to procure all different kinds of
SU-8 in their laboratories.

Materials

Photoresist SU-8 2075 [!Caution: Wear protective gloves].
SU-8 developer (Stored at +4°C)

Si wafer

Acetone

Isopropanol

Dust-free tissue paper

Aluminum foil

Paper towel

Designed mask

Tweezers

Equipment

Hot plate

Mask aligner

Spin coater [!Caution: Do not open lid until the spinner comes to a full stop]
Fume hood

Stereoscopic microscope

Spin coating of SU-8

Day 1. First set the hot plate to 65 °C at least half an hour beforehand to ensure uniform heating and
place the SU-8 bottle on the bench so that its temperature equilibrates to room temperature.
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A piece of aluminum foil should be placed on the hot plate before placing the wafer to avoid any
photoresist residues contaminating the hot plate and to facilitate handling of the wafer. In addition, the
tweezers used for handling SU-8 should not be used for handling other materials.

- Take a silicon wafer using tweezers from its package and leave it on the hot plate for approximately
5min, then pick up the wafer with its aluminum foil and place it on the bench.

- Pour the SU-8 onto the wafer holding the SU-8 bottle very close to the wafer surface to prevent the
formation of bubbles.

Slowly retract the SU-8 bottle by rotating it and place again in the hood but do not close its mouth with
its cap. Loosely cover the mouth of the bottle with a piece of aluminum foil and wait until all the SU-8 moves
back towards the bottom of the bottle. Any SU-8 remaining on the mouth of the bottle will crystallize in time
and can interfere with a uniform SU-8 coating on the silicon wafer.

- Disperse the SU-8 on the wafer homogenously by gently moving the wafer at an angle in a circular
motion. Avoid generating any bubbles or waves.

- Keep the wafer on the bench for approximately 10min so that it equilibrates to room temperature
and the photoresist relaxes.

Relaxation of the photoresist can alternatively be carried out on the chuck of the spin coater. This ensures
smaller temperature differences between the chuck and the sample and a homogenous surface during
various spin rates.

- Cover the inner surface of the spin coater with aluminum foil beforehand to keep the spin coater clean.
- Use the proper recipe that will yield the desired thickness of the SU-8 layer.

For instance: For a final SU-8 thickness of 200 um, perform the following steps:

Ramp up to 500rpm in 5s, spin at 500rpm for 5,
ramp up to 1000rpm in 5s, spin at 1000rpm for 20s,
ramp down to 500rpm in 55, spin 500rpm for 5s,
ramp down to Orpm in 5s.

- Wait until the spinner comes to a full stop before opening the lid.

- Remove the wafer from the spin coater and place it on a piece of aluminum foil on the bench to allow
for the relaxation of photoresist. Any waves present will slowly disappear.

- Place the wafer with its aluminum foil on the hot plate set to 65°C for 20min. Then increase the
temperature to 95 °C and leave the wafer at this temperature for 5 h. This is the soft bake step. If thin
SU-8 layers are prepared, 3-4h are enough.

- Dispose of the materials contaminated with SU-8 according to your institution’s guidelines.

Exposure of the SU-8 coated wafer to UV light

Day 2. First set the hot plate to 95°C at least half an hour beforehand to ensure uniform heating.

- To test whether any wrinkles will form and to confirm that the soft bake is complete, place the SU-8
coated wafer on the hot plate at 95 °C. If there are no wrinkles on the SU-8 surface, then the sample is
ready for UV exposure. If wrinkles appear, place the SU-8 coated wafer on the bench for the
relaxation of the photoresist for approximately 5min and then re-place it on the hot plate for an
additional bake of 10 min. Repeat these steps until no wrinkles form.

- Based on the power settings of the mask aligner, one can calculate the time for exposure for a desired
final dose (mWatt/cm?s=m]J/cm?). For a setting of 8 mWatt/cm?, we used exposure times up to 60s.

- Adjust the time of the exposure to 60s for an SU-8 thickness of about 400 wm, and to 30s for
thicknesses less than 200 um. Here, SU-8 is intentionally overexposed to facilitate PDMS removal in
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later steps. However, too much overexposure will prevent the proper development of the SU-8
pattern.

- Place the SU-8 coated wafer on the mask aligner stage. Then place the acetate film mask on the wafer.
The opaque surface of the mask should face the SU-8 layer.

- After UV exposure is completed, place the sample on the bench for 5min for relaxation of the
photoresist.

- Place the sample on the hot plate set at 65°C for 5min, then increase the temperature to 95°C and
leave the wafer at this temperature for about 15 min. This is the post bake step. Turn off the hot plate
and leave the sample on the hot plate to let it cool down slowly to room temperature.

Development of the SU-8 master

Day 3.

- Place the SU-8 developer and isopropanol on the bench so that they equilibrate to room temperature.

- Keep the SU-8 master in a petri dish filled with developer for 5 min without shaking. Then shake the
sample in the developer for 15 min. After this, dispose of the developer. Shake SU-8 master in a fresh
volume of developer again for 20 min. The UV exposed parts of SU-8 will remain on the wafer and the
unexposed parts will be washed away.

If the pattern has posts (pillars) on a thin SU-8 layer, treat the sample with SU-8 developer for 10-15min,
i.e. shorter durations, and check that all the pillars are developed well under a stereo microscope with a UV
filter. Even if only one pillar region is not open (developed), this may cause absence of a PDMS post in turn
and thus leakage of the hydrogels through the adjacent channels during the CivMs experiments.

- Apply the isopropanol (IP) test. When a few drops of IP are applied on a small part of the SU-8 sample,
usually the corner of a pattern, a white precipitate will form if the SU-8 is under-developed. If this is
the case, shake the sample again in a fresh volume of developer. If the sample is well-developed, i.e.
there is no white precipitate, hold the sample vertically and wash it 10 times with developer to
remove any remaining small SU-8 particles on the wafer, and then wash it 10 times with IP which
stops the development.

- Dry the SU-8 master with dust-free tissue paper. The SU-8 master is now ready.

- Wash the petri dishes and tweezers with acetone, IP and finally with H,O.

Remember that SU-8 is sensitive to light. All the applications on the wafer with SU-8 should be
performed in a clean room which is illuminated with yellow light. After the SU-8 master is ready, it can be
handled in a standard laboratory.

PDMS molding

Second improvement of our method is for PDMS molding through room temperature
polymerization, which not only preserves the SU-8 masters for years but also prevents damage to
the resulting PDMS molds.

Materials
Sylgard 184 silicone elastomer base and curing agent
Demolding agent: Triton-X-100:H,0:Absolute EtOH 1:9:40

Plastic cups and spoons
Aluminum foil and paper towel

Equipment

Balance
Vacuum desiccator
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PDMS is provided as base and curing agent. The typical ratio for mixingis 10:1. A 5:1 ratio results in
a stiffer PDMS.

- Determine the final weight of PDMS needed and calculate the required weight for base and curing
agent. Weigh the base first and then add the appropriate amount of curing agent which is easier to
weight. For a four inch wafer, a total of 30g of PDMS is sufficient.

- Mix the base and curing agent well.

The high number of bubbles reflects how good the base is mixed with the curing agent.

- Degas the mixture to remove all the bubbles by placing the mixture in a desiccator coupled to
vacuum for 2x 10min.

- In the meantime, wash the SU-8 master with EtOH (70%), and H,0. Then clean it with the demolding
agent (cleaning buffer). Demolding agent provides easy separation of PDMS mold from the SU-8
master in later steps.

- Use a 10cm glass petri dish to shape a piece of aluminum foil into a shallow container. Place a piece
of double sticky tape in the middle and place the SU-8 master inside.

- Pour the degassed PDMS mixture onto the SU-8 master.

- Leave the PDMS mixture on a uniformly level surface for polymerization at room temperature for at
least 2 days.

If the PDMS mixture on the SU-8 master is baked just after it is poured on the wafer, any possible bubbles
generated during the pouring of the PDMS mixture will be fixed in the PDMS and the SU-8 master will be
more likely to crack.

- After at least 2 days, separate the polymerized PDMS from the wafer.
Applying EtOH at the PDMS - SU-8 interface helps removal.
Construction of 3D Controlled in vitro Microenvironments (CivMs)

Construction of 3D Controlled in vitro Microenvironments needs to be preceded with the
fabrication of SU-8 masters and molding of PDMS. Bonding of glass slides and PDMS molds is required
for the completion of the 3D devices. Fabricated devices should be well sterilized to prevent any
contamination that may hinder the biological application. SU-8 masters are reusable while the devices
themselves can also be cleaned and reused although this is neither required nor recommended.

Third improvement of our method is that keeping the devices inverted during gel polymerization
ensures a truly 3D distribution of cells in the matrix. Otherwise cells sink the bottom glass surface and
show a 2D phenotype. In addition, we provide a detailed procedure for a rather neglected step of
cleaning of the PDMS molds as well cleaned PDMS molds are essential for proper formation of 3D
microenvironments that are devoid of any contaminants.

Materials

Glass slides

Scotch tape

70% EtOH

Deionized water (H,0)
Matrigel

Equipment

Sonicator
UV/Ozone Plasma Cleaner [!Caution: Do not inhale the gases generated during the process].
Hot plate
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Preparation of PDMS molds

- Cut out the PDMS molds along their borders and punch holes at proper positions for inlets and
outlets.

- Use Scotch tape to remove any dust from the PDMS surfaces.

- Holding the PDMS molds with plastic tweezers, wash them with H,0 several times and place them
into glass containers such as beakers.

- Sonicate in H,O for 10 min; rinse with H,O 5 times.

- Sonicate in 70% EtOH for 5min; rinse with 70% EtOH twice.

- Keep in 70% EtOH for 5min on bench.

- Place the samples inside a laminar hood, rinse with H,0 once and aspirate any liquid left on or inside
the samples.

- After the PDMS molds are dry, place them into an autoclaved petri dish; the patterned sides of the
PDMS molds should be facing up. Cover the petri dish with aluminum foil.

- Keep these samples at room temperature for 2 days so that they are completely dry as the next step is
bonding and the samples that will be treated in UV/ozone plasma should be completely dry.

Permanent bonding of 3D CivMs

- Treat a clean slide and a PDMS mold in the UV/ozone cleaner for 5 min. Then immediately bond the
treated surfaces facing each other to obtain the complete 3D CivMs.

At each UV/ozone treatment, clean one slide and one PDMS mold as the bonding step should be done
immediately without losing the effect of the UV/ozone treatment.

- Place the 3D CivMs on the hot plate at nearly 100°C for at least 10 min and cover them with elevated
aluminum foil pieces to create an oven effect, to protect from dust and to ensure permanent bonding
of the PDMS molds with the slides.

- Turn off the hot plate and let the 3D CivMs cool down to room temperature.

Sterilization of 3D CivMs

- Rinse all inside and outside surfaces of the 3D CivMs and the petri dish with 70% EtOH and take them
into a laminar flow hood.

- Aspirate any liquid on or inside the 3D CivMs and wash inside the channels with autoclaved H,O twice.

- Aspirate any liquid on or inside the 3D CivMs and place them into a new autoclaved petri dish.

- Let the samples dry and expose them to UV light for 30 min.

- Place the 3D CivMs inside the petri dish covered with aluminum foil in an oven and heat the samples
at 80°C for 24h for restoration of hydrophobicity.

During UV/ozone treatment, the PDMS and glass slide surfaces become hydrophilic. In order to make
them hydrophobic again, and thus, prevent the leakage of the hydrogels through the adjacent
microchannels during loading, the samples are heated at 80°C for at least 24h (4). Once this heating
process is completed, the samples are ready for loading of the hydrogels.

Loading of 3D CivMs with hydrogels

- Mix Matrigel with cell suspension at 1:1 ratio on ice.

A rack made of aluminum placed on ice is very useful for holding tubes at a constant and cold
temperature of +4°C.

Matrigel is normally stored at —80°C. Thaw the matrigel overnight within ice bath at +4°C. Other
hydrogels such as collagen can also be used instead of matrigel.
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- Place the 3D CivMs directly on 70% EtOH soaked sterile filter paper placed on an aluminum block in
contact with an ice bath.

If the 3D CivMs are not cold, matrigel will start to polymerize upon contact and loading can be
compromised.

- Load the cell laden Matrigel to the corresponding channel with a 200 p.l-pipette and allow for
polymerization at room temperature for 30 min. Invert the samples to prevent cells from sinking to
the bottom glass surface.

While loading the gels, hold the sample vertically and work slowly to prevent the gel of interest from
passing through pillar regions to other channels. Inverting the 3D CivMs just after loading a (cell-laden)
matrix makes the borders of gels more defined and ensures that cells do not precipitate to the bottom of the
device.

- After gel loading and polymerization are complete, add culture media into the medium reservoirs.

- Place the 3D CivMs into new sterile petri dishes and place open microcentrifuge tubes filled with
autoclaved H,0 to minimize the evaporation of medium from the devices. Also close inlets and
outlets of the gel channels with PDMS pieces to minimize evaporation.

- Keep the samples at 37°C and 5% CO, or other cell culture conditions required by the cells.

- Collect data on cell behavior, for example, by taking phase contrast or fluorescence images of cells in
3D CivMs every day. Once image data are collected, Photoshop and/or Image] can be used for image
processing and analysis.
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APPENDIX B

SUPPLEMENTARY VIDEOS

Movie S1. EGFR endocytosis in BCC transfected with EGFR-GFP and starved.

Movie S2. EGFR endocytosis in BCC transfected with EGFR-GFP, starved and treated
with EGF.

Movie S3. EGFR endocytosis in BCC transfected with EGFR-GFP, starved and treated

with macrophages.
Movies are available at the following link:

https://yadi.sk/d/z-N-dayF3Gp2n7



APPENDIX C

SUPPLEMENTARY DATASET

Excel S1. Descriptive statistics and statistical tests.
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FIG 3.15B
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