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Abstract Resistive force theory is concise and reliable approach to resolve flow-induced viscous forces on
submerged bodies at low Reynolds number flows. In this paper, the theory is adapted for very thin shell-
type structures, and a solution procedure within a nonlinear finite element framework is presented. Flow
velocity proportional drag forces are treated as configuration-dependent external forces and embedded in a
commercial finite element solver (ABAQUS) through user element subroutine. Furthermore, incorporation of
magnetic forces induced by external fields on magnetic subdomains of such thin-walled structures is addressed
using a similar perspective without resolving the magnetic field explicitly. The treatment of viscous drag
forces and the magnetic body couples is done within the same user element formalism. The formulation
and the implementation are verified and demonstrated by representative examples including the bidirectional
swimming of thin strips with magnetic ends.

1 Introduction

There is an increasing interest in the mechanics of swimming at microorganism length scales since man-made
replicas of micro-swimmers might be very effective alternatives in emerging fields such as robotic surgery and
targeted drug delivery [1].

At micrometer scale flows, the role of inertia forces is negligible, and the flow is essentially governed by the
viscous forces resulting in low Reynolds number flow regime [2,3]. The physics of fluid–structure interaction
(FSI) at this flow regime is substantially different from what is observed at high Reynolds number flows. In
his seminal works dating back to early 1950s, Taylor presented a rigorous analysis of swimming sheets at low
Reynolds number flows [4]. Soon after, a concise theory to compute hydrodynamic forces exerted by the fluid
on the finite sized slender bodies was presented by Gray and Hancock [5] which is called the resistive force
theory (RFT). In RFT, forces exerted on the slender deformable body by the surrounding fluid are described
externally applied normal and tangential tractions with velocity proportional magnitudes. The proportionality
constants are the so-called drag coefficients which typically show a strong anisotropy for slender bodies. This
theory has been extensively used and tested against more refined theories such as slender body theory of
Johnson [6], direct numerical simulation [7], and experimental measurements [8,9]. These studies show that
the predictions of RFT agree well with their findings provided that the drag coefficients appearing in RFT
are calibrated properly. However, it has to be noted that experimental results–RFT predictions comparison
presented in reference [10] reveal that RFT might be unsatisfactory for certain geometries such as helical tails
with small pitches. Nevertheless, recent studies addressing granular locomotion by RFT indicate that the use
of this theory is not limited to the mechanics of micro-swimmers exclusively, see for example [11].

İ. Özdemir (B)
Department of Civil Engineering, Izmir Institute of Technology, Gülbahçe Kampüsü, Urla, İzmir, Turkey
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Referring back to potential applications of micro-swimmers, one of the major challenges that has to be
addressed is the need for an effective actuationmechanism.On board power sources and actuators are of limited
use due to their miniaturization limitations. As an alternative, magnetic actuation by means of an external field
is considered to be a promising option which gives better control on micro-swimmers by manipulating the
magnetic field from a distance [12]. Furthermore, the required intensities are quite low so that they are harmless
to human cells and can be generated easily. In fact, one of the first artificial swimmers proposed in the literature
used this activation mechanism [13].

RFT-basedmodels can be solved analytically only under certain limitations on swimmer’s motion [14]. The
insight gained by such solutions is invaluable, but unrestricted motions of swimmer’s can only be addressed by
invokingnumerical solution schemes [15,16]. Furthermore, the treatment of swimmerswith passive deformable
components, bodies with irregular geometries and/or heterogeneous/anisotropic elastic properties calls for a
flexible numerical solution framework. Furthermore, almost all of these studies focus on slender beam-type
structures which are typically modeled as 1-D structural elements.

Before moving further, the focus of the current work, namely RFT-based interaction models, should not
mislead the interested reader about the spectrum of the available analysis tools for FSI at low Reynolds number
flows. For example, a fully coupled implicit solver for the interaction of slender flexible shells and Stokes flow
is presented in [17] where geometrically nonlinear elastic structural response is resolved by FEM, and BEM
is used for the Stokes flow. The resulting framework has been successfully used to analyze artificial cilia and
to investigate swimming direction control strategies, see [18]. However, a simpler, solely finite element-based
approach would be a valuable tool to address similar problems within shorter computational times. In fact,
the locality of RFT makes it a suitable formulation that can be embedded in nonlinear finite element solvers.
However, to the author’s knowledge, the treatment of thin shell-type flexible bodies in combination with the
resistive force theory has not been addressed fully yet. The only work in this context was presented in the
appendix of reference [18] in which an RFT-based analysis of a slender flexible shell was carried out. However,
in this analysis, the elastic forces developing in the slender deformable bodywere not taken into account, and in
that sense it was incomplete. It is interesting to note that even without these elastic forces, RFT-based analysis
was successful (to a certain extent) in capturing the main trend obtained by a more refined solution framework
used (implicitly coupled FEM-BEM approach mentioned above) within the main body of the same reference,
see [18].

Therefore, a complete RFT-based treatment would be very instrumental in exploiting the potentials and
characteristics of different swimming strategies such as micro-swimmers with strip-like geometries driven
by external magnetic fields. These novel swimming strategies [18–20] obviously require incorporation of
magnetic forces with potentially varying external magnetic field (both in terms of intensity and period) which
can be realized by a numerical solution framework. Therefore, embedding RFT and external magnetic field-
induced forces within a nonlinear finite element solution framework would yield an efficient tool possessing
the flexibilities of the finite element method.

Departing from this point, in this paper, an RFT-based one-way fluid–structure interaction problem is
treated within a nonlinear finite element solution framework for strip-like thin structures. The contribution of
the viscous forces to the force balance and to the tangent stiffness of the system is accounted consistently by
introducing ‘RFT elements.’ Similarly, the body couples induced by the external magnetic field are introduced,
and the associated tangent stiffness contribution is taken into account. The implementation is realized within
the commercial FE software ABAQUS through the user element subroutine (UEL) which supports that RFT
can be embedded in an existing nonlinear FE solver in a straightforward manner. It has to be noted that there
exists a similarity between viscous forces introduced by RFT and displacement-dependent external forces
(follower forces) confronted in, for example, shell-type structures bearing fluid pressure [21]. However, in
case of RFT, not only the directions but also the magnitudes of the tractions are configuration dependent.
Therefore, RFT-induced viscous forces do not fit to the classical definition of ‘follower forces’ typically
implemented in commercial FE solvers.

The paper is organized as follows. In the next section, RFT is addressed very briefly, and the resulting
viscous forces are put forward. Furthermore, body couples induced by an externally applied magnetic field on
slender bodies are introduced. In the following section, viscous and magnetic forces are embedded within the
weak form of linear momentum equation, and both spatial and temporal discretization schemes are explained.
A short subsection is reserved for consistent linearization of these new force terms. In Sect. 4, representative
examples highlighting the effectiveness of the formulation are presented before the paper is closed by the
conclusion and outlook section.
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Fig. 1 A slender body within a viscous fluid is shown in undeformed and deformed configurations, respectively. Gray lines are
the family of θ I and θ I I coordinate lines. (Colour figure online)

2 Problem formulation

A three-dimensional thin deformable body is moving within a viscous fluid as shown in Fig. 1. The movement
is typically achieved by creating bending waves along the body periodically.

For thin shell problems, an accurate and commonly used theory is based on mid-surface representation of
the 3D body which is generally described by convected coordinates as shown in Fig. 1. An orthonormal vector
triadE∗

1,E
∗
2,E

∗
3 is introduced which is used to quantify in-plane and out-of-plane drag coefficients of the body.

Referring to convected coordinates θ I and θ I I , the tangent vector pair GI ,GI I in the reference configuration
and the corresponding pair gI , gI I in the current configuration are defined as

GI = ∂X
∂θ I

, GI I = ∂X
∂θ I I

, GI I I = GI × GI I , (1)

gI = ∂x
∂θ I

, gI I = ∂x
∂θ I I

, gI I I = gI × gI I (2)

where GI I I and gI I I are the normal vectors of the surface at the point of interest in the reference and current
configuration, respectively. Similarly, X and x are the position vectors in the corresponding configurations.
The dual contravariant basis vectors GI ,GI I and gI , gI I are defined as,

Gi = Mi jG j with Mi j = (Mi j )
−1 and Mi j = Gi · G j for i, j = I, I I, I I I, (3)

gi = mi jg j with mi j = (mi j )
−1 and mi j = gi · g j for i, j = I, I I, I I I. (4)

At any point on the surface, body-attached orthonormal local triads are constructed via

e 0
I = GI

‖ GI ‖ , e 0
I I I = GI I I

‖ GI I I ‖ , e 0
I I = e 0

I I I × e 0
I , (5)

eI = gI
‖ gI ‖ , eI I I = gI I I

‖ gI I I ‖ , eI I = eI I I × eI (6)

where the superscript 0 distinguishes the fact that the triad is evaluated in the reference configuration.

2.1 Viscous drag forces

According to RFT, the drag traction exerted by the fluid on the structure is expressed as

t = −C v (7)

where C is a resistance tensor, and v is the instantaneous velocity at the point of interest. If a flat slender body
is translated parallel to its in-plane axes (E∗

1 and E
∗
2 directions in Fig. 1), the drag felt would be much smaller

when it is translated along E∗
3 direction. Therefore, the resistance tensor has an anisotropic structure and can

be expressed as
C∗ = C1(E∗

1 ⊗ E∗
1) + C2(E∗

2 ⊗ E∗
2) + C3(E∗

3 ⊗ E∗
3) (8)
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whereC1,C2, andC3 are the drag coefficients inE∗
1,E

∗
2 andE

∗
3 directions, respectively. Here it is assumed that

the resistances in orthogonal directions are uncoupled. It is more convenient to express the resistance tensor
with respect to e 0

I , e
0
I I , e

0
I I I basis, which can be realized byC = TC∗TT whereT is the transformation tensor

linking the two orthogonal vector triads. SinceC∗ is a diagonal tensor, the resulting transformed tensorC is also
diagonal with the drag coefficients CI , CI I , and CI I I appearing on the diagonal. Due to the convective nature
of e 0

I,I I,I I I and eI,I I,I I I vector triads, the resistance tensor has a diagonal structure in the current configuration
with identical drag coefficient values on the diagonal. In other words, push forward of the resistance tensorC∗
does not effect the drag coefficients. The drag traction can then be written as

t = −CI (v · eI )eI − CI I (v · eI I )eI I − CI I I (v · eI I I )eI I I (9)

where the terms in parentheses are the projections of the velocity vector onto eI , eI I and eI I I directions,
respectively. In fact, anisotropic drag which is locally opposite to the velocity is the source of propulsion. In
other words, fluid drag is used to generate thrust provided that the space- and time-averaged propulsive force is
nonzero, [3]. With a carefully selected sequence of body movements, the resultant of the drag tractions along
the body could be nonzero and pointing in the direction of the desired translation. More precisely, the traction
distribution along the whole body and a full cycle of the (periodic) motion has to be considered. In fact, if the
sequence of body shapes when it is recorded from start to end is identical to the sequence obtained from end
to start of the cycle (reciprocal motion), the body is not going to make a net translation as proved by Purcell
and called as the Scallop theorem, see [2].

2.2 Magnetically induced forces

An externally applied magnetic field has been used to induce propulsion on elastic and partially magnetic rod-
like and planar structures in viscous fluids, see for example [23]. The key factor of propulsion is the symmetry
breaking chiral shape which is a result of the torque induced by the external magnetic field, elasticity of
the flexible body and the viscous forces exerted by the surrounding fluid. A typical layout of such a micro-
swimmer is shown in Fig. 2. Themagnetic portion of the structure has a certain remnantmagnetization direction
designated by m. When an external magnetic field b is applied, magnetic body couples n = m × b develop
on the magnetic portion of the structure, and due to the resistive viscous forces and elasticity of the structure,
a chiral shape forms. Therefore, by controlling the external magnetic field and characteristics of the flexible
structure, one can control the propulsion of the body. In fact, as demonstrated by [18], it is possible to control
the swimming direction by using a thin strip with magnetically sensitive parts located at both ends as shown
in Fig. 2. This case is going to be re-examined in the examples section. The resulting magnetic body couples
n are treated as external moments acting on the body. As demonstrated in [22], magnetic interactions between
the two ends are small in case of thin structures and can be ignored.

b

Externally applied
magnetic field

magnetic end

magnetic end

Fig. 2 Magnetically driven elastic slender body. The white arrow indicates the remnant magnetization direction. The magnetic
portion of the body tends to align with the external magnetic field. The chiral shape develops as a result of viscous forces exerted
by the surrounding fluid and the elasticity of the slender body. (Colour figure online)
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3 Weak form and discretization

In a geometrically nonlinear setting, the principle of virtual work for a mid-surface-based thin shell is written
as

δW int −
∫
V

ρ(b∗ − v̇) · δu dv −
∫
A
td · δu dA

︸ ︷︷ ︸
δWd

− t0

∫
A
n · δφ dA

︸ ︷︷ ︸
δWm

= 0 (10)

where δWint is the virtual work done by the resultant internal forces, and its specific form depends on the shell
theory used. b∗ represents the body force vector, and v̇ (dot over a quantity designates differentiation with
respect to time) is the acceleration field within the body. The integrals are referring to the current configuration,
therefore A is the current mid-surface area, and V is the current volume of the body. δWd is the virtual work
done by the viscous drag tractions, and δWm represents the virtual work done by the magnetic body couples
over the virtual rotation field δφ. Although finite rotations are not vectorial quantities, typically a vector-like
parameterization and notation are used, see [24]. In the treatment of the last term, it is assumed that the thickness
change is small so that the current thickness t is equal to the initial thickness t0, and therefore the volume
integral can be represented by the product of initial thickness and an integral over the current mid-surface
area. By introducing this approximation, both δWd and δWm terms can be treated within a single user element
definition.

In the following subsections, the treatment of the last two terms, namely δWd and δWm , is going to be
detailed since the treatment of other terms is not within the scope of this work and can be found for example
in [21] and [24].

3.1 Spatial discretization

Although the following formulation can be adapted for any order and topology of finite strain mid-surface-
based shell elements, it is assumed that the discretization is done by 4-noded isoparametric shell elements.
Each node has 3 translational (û I ) and 3 rotational (φ̂

I
) degrees of freedom.

Referring to Fig. 3, the isoparametric coordinates ξ and η are adopted as the convected coordinates θ I

and θ I I , respectively. Reference and current position, displacement and velocity vectors are all based on the
mid-surface and approximated by

GI

GII

gI

gII

ξ
ξ

ξ

ηη

η

A

Fig. 3 Typical element in reference and current configurations. The parent element for isoparametric mapping is shown as well
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X =
4∑

I=1

NI X̂ I , x =
4∑

I=1

NI x̂ I , u =
4∑

I=1

NI û I , v =
4∑

I=1

NI v̂ I (11)

where NI are the Lagrangian shape functions. Therefore, the tangent vector pairs
{
GI ,GI I

}
and

{
g
I
, g

I I

}
are simply expressed as

GI = X ,ξ =
4∑

I=1

NI,ξ X I , GI I = X ,η =
4∑

I=1

NI,ηX I , (12)

g
I

= x ,ξ =
4∑

I=1

NI,ξ x I , g
I I

= x ,η =
4∑

I=1

NI,ηx I . (13)

On the basis of g
I
and g

I I
, one can construct the orthonormal triad attached to any point within the element

using the relations given by Eqs. (5) and (6). δWd can be expressed explicitly as

δWd =
∫
A
[CI (eI ⊗ eI ) + CI I (eI I ⊗ eI I ) + CI I I (eI I I ⊗ eI I I )] v · δu d A. (14)

Introducing an identical discretization for the virtual displacement field δu, one can convert δWd into the
following form:

δWd = δu
∫
A
NT [

CI E I + CI I E I I + CI I I E I I I

]
N v̂ Jd A� = δûT f d (15)

where δûT = [δu1x δu1y δu1z . . . δu4x δu4y δu4z ], v̂T = [v1x v1y v1z v2x v2y . . . v4x v4y v4z ], and J =‖ g1 × g2 ‖. E I ,
E I I & E I I I are the Cartesian component matrices of the dyadic products, e.g., (EI )i j = (eI )i (eJ ) j , and the
others are defined similarly. The explicit form of δWm reads

δWm = t0

∫
A
m(q × b) · δφ d A (16)

wherem is the intensity of the remnant magnetization and q is the unit vector in the direction of magnetization
in the current configuration. Since the magnetization vector q is a material vector, it is defined as

q = F q0
||F q0|| (17)

where q0 is the initial magnetization unit vector and F is the deformation gradient tensor of the mid-surface
defined as F = ∑3

i=1 gi ⊗ Gi . Introducing an identical linear interpolation for δφ, δWm takes the following
discrete form:

δWm = m t0 δφ̂

∫
A
NT q̂ b J d A� = δφ̂ f m (18)

where q̂ is the matrix form of the skew-symmetric tensor such that q × b = q̂ b. Obviously the nodal force

columns f d and f m have to be taken into account in the force balance.
The integrals in Eqs. (15) and (16) are evaluated by Gauss integration with four integration points per

element. The dependency of drag forces on vn+1 is obvious from δWd , and the dependency of drag and
magnetic forces on Δu (or un+1) stems from the fact that the body-attached local triad and q are both motion
dependent. The fully discrete equilibrium equations are obtained upon temporal discretization, and the resulting
system of nonlinear equations is solved by the Newton–Raphson method. Therefore, consistent linearization
is necessary which is going to be briefly mentioned following the temporal discretization summarized in the
next subsection.
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3.2 Temporal discretization

On the time axis, the discretization is realized by using the Hilber-Hughes-Taylor integration scheme [25].
Velocity proportional drag forces can be treated similar to the damping term appearing in classical structural
dynamics problems. Therefore, in a fully discrete form f d at time step n+1 reads

f d
n+1

=
∫
A
NT [

CI E I + CI I E I I + CI I I E I I I

]
N v̂n+1 Jd A�. (19)

Obviously, f m
n+1

enters the systemof equations as an externally applied force column.As presented concisely in

the next subsection, the linearization procedure requires partial derivatives of both f d
n+1

and f m
n+1

with respect
to nodal displacements. To this end, the following equalities of Hilber-Hughes-Taylor integration scheme,

dv̇
du

= 1

βΔt2
,

dv
du

= γ

βΔt
, (20)

are used. The variables β = 1/4(1−α)2 and γ = 1/2−α are the parameters of the integration scheme where
the numerical dissipation is controlled by α;−1/3 ≤ α ≤ 0. For details one can consult reference [25].

3.3 Consistent linearization

The directional derivative of δWd in the direction of incremental displacementsΔu can be split into two parts,

D[δWd ][Δu] =
∫
A�

D
[
J C̃

]
[Δu] v · δu dA� +

∫
A�

(J C̃)Dv [Δu] · δu dA�

with C̃ = CI (eI ⊗ eI ) + CI I (eI I ⊗ eI I ) + CI I I (eI I I ⊗ eI I I ),

(21)

where D [ ] [Δu] is the directional derivative of the term in square brackets in the direction of Δu. With the
aid of Eq. (20), the derivative of v can simply be expressed as

Dv [Δu] = γ

βΔt
Δu. (22)

The linearization of the dyadic product eI ⊗ eI reads

D [eI ⊗ eI ] = DeI [Δu] ⊗ eI + eI ⊗ DeI [Δu] , (23)

with DeI [Δu] = 1

‖ gI ‖ (I − eI ⊗ eI ) Δu,I , (24)

and directional derivatives of eI I ⊗ eI I , eI I I ⊗ eI I I and J can be carried out similarly.
As far as linearization of δWm is concerned, directional derivatives in the direction of Δφ and Δu have to

be considered. Therefore, the following explicit forms are obtained,

D
[
δWm]

[Δu] = t0

∫
A�

m (Dq [Δu] × b) · δφ J d A�

+ t0

∫
A�

m (q × b) · δφ DJ [Δu] d A�,

(25)

D
[
δWm]

[Δφ] = t0

∫
A�

m (q × b) · D [δφ] [Δφ] J d A� (26)

where D [δφ] [Δu] = − 1
2 δφ×Δφ due to the nonvectorial nature of finite rotations; for details one can consult

reference [26]. It can be shown that the directional derivative of q results in

Dq [Δu] = 1

||Fq0|| (I − q ⊗ q)DF [Δu]q0, (27)

and the evaluation of DF [Δu] can be realized in a rather straightforward manner by DF [Δu] =∑3
i=1 Dgi [Δu] ⊗ Gi .
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4 Examples

The presented formulation is implemented in ABAQUS 6.14 through user element (UEL) subroutine [27]. In
the following subsections, representative numerical examples are presented demonstrating the capabilities of
the formulation. For all cases, a 4-node large strain shell element (ABAQUS element type S4) is used for the
discretization of the thin body, and numerical damping is introduced by choosing α = −0.05.

4.1 Swimming sheet

The translation of a waving sheet in Stokes flow was addressed by Taylor [4], and an analytical solution for
the swimming velocity in terms of wave amplitude b and wavelength λ was derived as

Vs = σkb2
(

ξ − η

η

)
with σ = kVw and k = 2π/λ (28)

where Vw is the wave velocity; ξ and η are the in-plane and out-of-plane drag coefficients, respectively.
In this example, a 0.1-mm-thick flat rectangular shell of 2 mm by 20mm is considered which uses the same

strategy to translate in the surrounding viscous fluid. An undulating body profile is imposed by a transverse
displacement field of the form

Δ = b sin (k (Z − Z0) + Vwt) (29)

by means of the user-defined boundary condition capability of ABAQUS, [27]. The coordinates are taken as
the reference coordinates, and Z0 is the corresponding coordinate of the front end of the shell, see Fig. 3. The
material constants, drag coefficients, parameters of Eq. (29), and the details of different discretizations realized
are given in Table 1.

In Fig. 4, the translated configuration of the body by undulating body waves is shown, and in Fig. 5
time versus Z-displacement of the front node [highlighted in red (corner node) in Fig. 4] for three different
discretizations is presented along with the analytical result based on Eq. (28). After the initial transient phase
(the inset on the left upper corner) the curves clearly reach a steady-state profile fromwhich an average velocity

Table 1 Material constants, drag coefficients, motion parameters, the three discretizations (M#1, M#2 and M#3) realized.

E (MPa) ν ρ (kg/mm3) C1,2 (N s/m2) C3 (N s/m2)

100 0.3 0.00001 3.0 5.67

b (mm) k Vw (mm/s) M # I M # II M # III

0.15 0.5 200 4 × 20 4 × 50 4 × 100

U, U3

+4.266e+00
+4.271e+00
+4.275e+00
+4.279e+00
+4.283e+00
+4.287e+00
+4.291e+00
+4.296e+00
+4.300e+00
+4.304e+00
+4.308e+00
+4.312e+00
+4.316e+00

X

Y

Z

Fig. 4 Initial (gray) and final configuration of a swimming sheet. Contours represent displacement in Z -direction in mm’s. Nodes
located at the front end are highlighted in red. (Colour figure online)
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Fig. 5 Time–displacement graphs for different discretizations and the analytical solution. Initial transient response is visible in
the upper left inset, and the convergence trend and the characteristic wavy displacement response is visible in the lower right
inset

Table 2 Swimming sheet: problem data and swimming velocities for different cases and analytical velocity given by (28) (material
parameters and drag coefficients are identical to the ones given in Table 1)

Parameters b (mm) k Vw (mm/s) Mesh Vs (mm/s) VA
s

Case I 0.15 0.5 200 Mesh #1 0.4780 0.5298
Case II 0.15 0.5 200 Mesh #2 0.4951 0.5298
Case III 0.15 0.5 200 Mesh #3 0.4975 0.5298
Case IV 0.15 0.5 400 Mesh #2 0.9885 1.0595
Case V 0.075 0.5 400 Mesh #2 0.2479 0.2649

can be calculated. To exclude the effect of the initial transient phase, average velocity calculation is based on
displacement data at t = 1.5 and t = 2.0 s.

The comparison of numerical predictions and the analytical result given in Table 2 indicates that for
reasonable discretizations (e.g., mesh #2) the error is about 6%. Furthermore, the analytical solution given
by Eq. (28) contains some valuable scaling information on the swimming velocity as a function of body
waving parameters. To assess such capabilities of this numerical framework, two other cases are considered
as summarized in Table 2. The linear dependence on waving velocity (V Case IV

s /V Case II
s = 1.9966) and quadratic

dependence on wave amplitude (V Case V
s /V Case IV

s = 3.9875) are reproduced accurately as can be deduced from
Table 2.

4.2 Three-link swimmer

One of the simplest geometries that can achieve net translation in a viscous fluid is a three-link swimmer.
In this example, a three-link swimmer consisting of three thin sheets as shown in Fig. 6 is considered. The
components are identical in dimensions (L = 5 mm by W = 0.5 mm and the thickness t = 0.2 mm), and
the arms are connected by hinges allowing rotations around X-axis to the middle sheet. These connections
are realized by using proper ties between corresponding degrees of freedom of the nodes sharing the same
position along the joining line.

A set of different cases are considered in this example as well, and the corresponding data are tabulated
in Table 3. Scallop theorem [2] states that for a three-link swimmer with rigid arms a time-reversible motion
history (reciprocal motion) does not yield any net translation. In order to check the validity of the current
formulation, in the first case, the motion of a three-link swimmer with very stiff arms is considered.

The imposed displacement history of the end nodes of left and right arms (in the Y-direction) is also
sketched in Fig. 6 which is time symmetric. In other words, the sequence of motions as played from start to
end and the sequence from end to start are indifferent. In Fig. 7, the resulting motion of the reference corner
in Z-direction is plotted as a function of time.
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Fig. 6 Side view (top) and perspective view (bottom) of a three-link swimmer. Time histories of prescribed wL and wR are also
given.

Table 3 Three-link swimmer: subscripts L, M, and R stand for left, right and middle, respectively

Parameters EL (MPa) EM (MPa) ER (MPa) BC’s

Case I 400 400 400 wL & wR
Case II 40 40 400 wL & wR
Case III 40 40 400 wL
Case IV 4 4 400 wL

Other material constants and drag coefficients are identical to the ones given in Table 1

In order to investigate the net translation of the body, in Table 4, the z-displacement of the reference node
at equal time intervals is tabulated. Due to the dynamic and initiallly transient nature of the motion, at the end
of the first cycle (t = 0.4 s) there is a net movement of the body. However, as seen from the Table, the change
in displacement is very small (as compared to the in-plane dimensions of the three components and typical
values obtained by unsymmetrical systems considered in the sequel) from cycle to cycle. The cyclic motion is
repeating itself, and the net movement is not growing in a significant manner and consistent with the scallop
theorem.

In order to break the symmetry in the system, the stiffness of the left (EL ) and middle arms (EM ) reduced
to one-tenth of the right arm (ER), see case II in Table 3. As shown in Fig. 8, the swimmer starts to gain net
translation at the end of each cycle. When the boundary condition on the right arm is removed (corresponds
to case III in Table 3), both the amount of net translation and the cyclic characteristics of the movement are
changing. Referring to case IV in Table 3, decreasing the stiffness of left andmiddle arms results in an increased
net translation and a different signature of the movement. Obviously, finite element-based modeling allows one
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Fig. 7 Time history of z-displacement of the reference corner (see Fig. 5)

Table 4 Numerical values of the displacement of the reference corner (see Fig. 5)

Time (s) Position (mm)

0.4 −0.003758
0.8 −0.003759
1.2 −0.003650
1.6 −0.003648
2.0 −0.003535
2.4 −0.003537
2.8 −0.003420
3.2 −0.003427
3.6 −0.003305
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Fig. 8 Three-link swimmer: z-displacement of the reference corner (see Fig. 5) for different cases. The net displacements for
unsymmetrical systems are clearly visible

to test different possibilities in a straightforward manner. Embedding this framework within an optimization
loop might yield much efficient swimming strategies and layouts in terms of geometry and material property
distribution.

4.3 Bidirectional swimming of flexible strips

Magnetically driven flexible micro-swimmers are considered to be good candidates for certain applications in
micro-fluidics. A novel layout recently proposed by Namdeo and his colleagues [18] is shown on the left-hand
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Fig. 11 Swimming velocities at different rotation frequencies of the external magnetic field

side of Fig. 9. The ends of the strip are magnetically sensitive with a remnant magnetization direction and tends
to align itself parallel to the externally applied magnetic field. Therefore, as a result of internal forces, viscous
drag forces and the magnetic body couples, a chiral shape similar to a helix develops, and upon rotation of the
magnetic field, the strip translates. This particular form is designed to control/reverse the swimming direction
on the fly just by reversing the externally appliedmagnetic field. In this approach, the external magnetic loading
is decomposed into two phases.

In the first phase, the external magnetic field is positioned such that one of the magnetic ends of the strip
twists, while the other end keeps their configuration. Labeling the magnetic ends as end 1 and end 2 for the sake
of discussion, in the first phase the external magnetic field is kept parallel to end 2 which results in twisting of
end 1 until it gets parallel to end 2. A chiral shape forms at the end of this phase. In the second phase of loading,
the magnetic field is rotated with a certain frequency, and since both ends have almost parallel magnetization
directions, the strip translates as the external magnetic field rotates. If the magnetic field is reversed and the
same loading protocol is followed, end 2 twists until it gets parallel to end 1, and upon rotation of the magnetic
field, the strip translates in the opposite direction.

To investigate this strategy numerically with the proposed framework, a 0.1-mm-thick rectangular strip of
10 mm by 2 mm is considered. The length of the magnetic parts is 1 mm in length at both ends, and the strip is
discretized by 1200 S4 elements, see Fig. 9. The drag coefficients are the same as the values given in Table 1,
and the elasticity constants for the strip are E = 5 Mpa and ν = 0.3. Density is taken to be ρ = 1600 kg/m3,
and the remnant magnetization of the ends of the strip is 0.0629 kA/mm. These values are based on the data
used in reference [19], and the drag coefficients are of the same order of the values used in [16].

The remnant magnetization directions for end 1 and end 2 are not perfectly parallel to X and -X directions,
and their rectangular components read as (0.995, 0.0995, 0.0) and (0.995, 0.0995, 0.0), respectively. These
initial imperfections are introduced to induce twisting of the relevant end depending on the loading protocol.
In the first phase of loading, the intensity of the external magnetic field is linearly increased from zero to 0.75
N/(mm A); meanwhile, its direction is kept parallel to X (or -X) direction. In the second phase, the external
magnetic field is rotated following a sinusoidal function with frequency f as b = 0.75sin(2π f t).

The deformed shape at the end of phase I and at the end of phase II is shown in Fig. 10. Viscous forces
resist the motion of the swimmer, while the magnetically sensitive end follows the rotating external magnetic
field resulting in the chiral shape shown in Fig. 10. An immediate question which arises at this stage is the
relation between frequency of the magnetic field and swimming velocity. To this end, the analysis is repeated
with different frequencies, and the resulting swimming velocities are shown in Fig. 11.

It can be seen that the swimming velocity increases until a critical frequency fc is reached. In the literature,
see, e.g., [28], this frequency is called as the step-out frequency beyond which the swimmer’s front end cannot
follow the external magnetic field. For the example problem, the Z position of the swimmer for fc = 24 1/s
which is larger than fc is shown in Fig. 12.

For frequencies larger than fc, the swimmer loses its chiral shape, and erratic tumbling motion sets in as
can be deduced from Fig. 12.
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Fig. 12 Z coordinate of the swimmer for two different frequencies

5 Conclusions and outlook

In this paper, the resistive force theory which has been used extensively for beam-type slender bodies has been
adapted for thin shell-type structures. Furthermore, the formulation is enhanced by considering body couples
induced by externally applied varying magnetic fields. Both viscous and magnetic forces are treated within a
single user element formalism and implemented into ABAQUS.

As compared to the more refined approach presented by [17,18], the current work does not bring any
further insight into the physics of the problem. On the other hand, in this work, a simpler and more accessible,
purely finite element-based framework is laid out. The current formulation is most probably cheaper in terms
of computational cost as compared to a fully coupled FEM-BEM formulation. It is obvious that the physical
representation of the flow by RFT is weaker than the boundary element-based treatment of hydrodynamics.
However, it is shown that the current formulation is also successful in capturing the nontrivial physics as
exemplified by an analysis of a magnetically driven flexible micro-swimmer including an investigation on the
critical frequency (step-out frequency). This result suggests that the formulation can be potentially used in
design-oriented studies and can be placed within an optimization algorithm. An interesting and challenging
extension would be to investigate the optimum ‘loading’ protocol by varying the amplitude and frequency
characteristics of the externally applied magnetic field as discussed for beam-type swimmers in reference
[20]. More importantly, relying on the flexibilities of the finite element method, the influence of some other
parameters such as variable thickness along the body and anisotropic elasticity on the swimming performance
can be investigated in an efficient way.
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