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CO-COATOMICALLY SUPPLEMENTED MODULES

R. Alizade1 and S. Güngör2 UDC 512.5

It is shown that if a submodule N of M is co-coatomically supplemented and M/N has no maximal
submodule, then M is a co-coatomically supplemented module. If a module M is co-coatomically sup-
plemented, then every finitely M -generated module is a co-coatomically supplemented module. Every
left R-module is co-coatomically supplemented if and only if the ring R is left perfect. Over a discrete
valuation ring, a module M is co-coatomically supplemented if and only if the basic submodule of M
is coatomic. Over a nonlocal Dedekind domain, if the torsion part T (M) of a reduced module M has
a weak supplement in M, then M is co-coatomically supplemented if and only if M/T (M) is divisible
and TP (M) is bounded for each maximal ideal P. Over a nonlocal Dedekind domain, if a reduced mod-
ule M is co-coatomically amply supplemented, then M/T (M) is divisible and TP (M) is bounded for
each maximal ideal P. Conversely, if M/T (M) is divisible and TP (M) is bounded for each maximal
ideal P, then M is a co-coatomically supplemented module.

1. Introduction

Throughout the paper, R denotes an associative ring with identity and all modules are left unitary R-mod-
ules (RM), unless otherwise stated. Let U be a submodule of M. A submodule V of M is called a supplement
of U in M if V is a minimal element in the set of submodules L  M with U + L = M. The submodule V is
a supplement of U in M if and only if U + V = M and U \ V ⌧ V. A module M is called supplemented if
every submodule of M has a supplement in M (see [9], Section 41, or [5], Chapter 4). Semisimple, artinian, and
hollow (in particular local) modules are supplemented. A module M is called coatomic if every proper submodule
of M is contained in a maximal submodule (see [12]).

Let N be a submodule of a module M. We say that N is a co-coatomic submodule in M if M/N is
coatomic. Semisimple, finitely generated, and local modules are coatomic modules. Since every factor module
of a coatomic module is coatomic, every submodule of semisimple finitely generated and local modules is co-
coatomic. A module M is said to be a co-coatomically supplemented module if every co-coatomic submodule
of M has a supplement in M. A submodule N of M is called cofinite if M/N is finitely generated. M is called
a cofinitely supplemented module if every cofinite submodule of M has a supplement in M (see [1]). Clearly,
a co-coatomically supplemented module is cofinitely supplemented and a coatomic module is co-coatomically sup-
plemented if and only if it is a supplemented module. A module M is called co-coatomically weak supplemented
if every co-coatomic submodule N of M has a weak supplement in M, i.e., N + K = M and N \ K ⌧ M

for some submodule K of M. It is clear that a co-coatomically supplemented module is co-coatomically weak
supplemented. A submodule U of an R-module M has ample supplements in M if, for every submodule V

of M with U + V = M, there exists a supplement V 0 of U with V 0  V (see [5, p. 237]). A module M is
called co-coatomically amply supplemented if every co-coatomic submodule of M has ample supplements in M.

Clearly, a co-coatomically amply supplemented module is co-coatomically supplemented.
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In Section 2, we show that if a submodule N of M is co-coatomically supplemented and M/N has no maxi-
mal submodule, then M is co-coatomically supplemented. Every left R-module is co-coatomically supplemented
if and only if the ring R is left perfect.

In Section 3, we study co-coatomically supplemented modules over a discrete valuation ring. It is shown that
a module M is co-coatomically supplemented if and only if the basic submodule of M is coatomic if and only if
M = T (M)⊕X, where the reduced part of T (M) is bounded and X/Rad(X) is finitely generated.

In Section 4, we study co-coatomically supplemented modules over nonlocal Dedekind domains. A torsion
module M is co-coatomically weak supplemented if and only if it is co-coatomically supplemented. We show that,
for a reduced module M, if the torsion part T (M) of M has a weak supplement in M, then M is co-coatomically
supplemented if and only if M/T (M) is divisible and TP (M) is bounded for each maximal ideal P . For a reduced
module M, if M is co-coatomically amply supplemented, then M/T (M) is divisible and TP (M) is bounded for
each maximal ideal P of R . Conversely, if M/T (M) is divisible and TP (M) is bounded for each maximal
ideal P of R, then M is a co-coatomically supplemented module.

2. Co-Coatomically Supplemented Modules

For any module M, Soc(M) denotes the socle of M and Rad(M) denotes the radical of M. The Jacobson
radical of RR is denoted by Jac(R).

Let {Mλ}λ2⇤ be the family of simple submodules of M that are direct summands of M. By Soc

⊕
(M) we

denote the sum of Mλ s for all λ 2 ⇤, i.e.,

Soc

⊕
(M) =

X

λ2⇤
Mλ.

Clearly,

Soc

⊕
(M)  Soc(M).

Theorem 2.1. Let R be a ring. The following assertions are equivalent for an R-module M:

1. Every co-coatomic submodule of M is a direct summand of M.

2. Every cofinite submodule of M is a direct summand of M.

3. Every maximal submodule of M is a direct summand of M.

4. M/ Soc⊕(M) does not contain a maximal submodule.

5. M/ Soc(M) does not contain a maximal submodule.

Proof. (1) ) (2) is clear since every cofinite submodule is co-coatomic.

(2) ) (3). Clear.

(3) ) (4). Suppose that M/ Soc⊕(M) contains a maximal submodule K/ Soc⊕(M). Thus, K is a maximal
submodule of M. By the hypothesis, M = K ⊕K 0 and K 0 is simple. Hence, we get

K 0  Soc

⊕
(M)  K.

A contradiction.
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(4) ) (5). This is clear because Soc

⊕
(M)  Soc(M).

(5) ) (1). Let N be a co-coatomic submodule of M. Since

M/(N + Soc(M))

⇠
=

(M/N)/
�

(N + Soc(M))/N
�

and M/N is coatomic, we conclude that M/(N+Soc(M)) is also coatomic. Since M/ Soc(M) has no maximal
submodule, M/(N + Soc(M)) also has no maximal submodule. Therefore, M = N + Soc(M). It follows that
M = N ⊕N 0 for any submodule N 0 such that

Soc(M) =

�

N \ Soc(M)

�

⊕N 0.

A supplemented module is co-coatomically supplemented but co-coatomically supplemented modules need
not be supplemented as shown in the following example:

Example 2.1. The Z-module Q is co-coatomically supplemented since the only co-coatomic submodule is Q
itself. At the same time, the Z-module Q is not supplemented because Q is not torsion (see [10], Theorem 3.1).

Proposition 2.1. Let M be a semilocal module with small radical Rad(M). Then M is co-coatomically
supplemented if and only if M is supplemented.

Proof. Let N be a submodule of M. Since M is semilocal, M/Rad(M) is semisimple, i.e., coatomic.
Consider the following statement:

M/
�

N +Rad(M)

� ⇠
=

�

M/Rad(M)

�

/
��

N +Rad(M)

�

/Rad(M)

�

.

Since M/Rad(M) is coatomic, M/
�

N+Rad(M)

�

is also coatomic. Therefore, N+Rad(M) has a supplement
in M, say, K. Then

M = N +Rad(M) +K and
�

N +Rad(M)

�

\K ⌧ K.

Since Rad(M) ⌧ M, we conclude that M = N +K and

N \K 
�

N +Rad(M)

�

\K ⌧ K.

Thus, M is supplemented.
A co-coatomically supplemented module is cofinitely supplemented but the example presented in what follows

shows that a cofinitely supplemented module is not necessarily co-coatomically supplemented.
A ring R is called semiperfect if R/Jac(R) is semisimple and the idempotents in R/Jac(R) can be lifted

to R (see [9], 42.6).
A ring is called left perfect if R/Jac(R) is left semisimple and Jac(R) is right t-nilpotent (see [9], 43.9).
By RR

(N) we denote the direct sum of R-module R by the index set N. Note that N denotes the set of all
positive integers.

Any direct sum of cofinitely supplemented modules is cofinitely supplemented [1] (Corollary 2.4).

Example 2.2. Let p be a prime integer. We consider the following ring:

R = Z(p) =

na

b
| a, b 2 Z, b 6= 0, (b, p) = 1

o

,
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which is the localization of Z at (p). In this case, the R-module R is supplemented. Then the R-module R(N)

is cofinitely supplemented by [1] (Corollary 2.4). Furthermore, R is a semiperfect ring and, therefore, R/Jac(R) is
semisimple (see [9], 42.6). Hence, R is semilocal. However, R is not a perfect ring because its Jacobson radical
is not t-nilpotent by [9] (43.9). Note that Rad

�

R
R(N)� is a co-coatomic submodule of RR

(N) but Rad
�

R
R(N)�

does not have a supplement in RR
(N) because R is not a perfect ring (see [3], Theorem 1). Hence, RR

(N) is not
co-coatomically supplemented.

Example 2.2 shows that the cofinitely supplemented modules and co-coatomically supplemented modules not
necessarily coincide over semiperfect rings and discrete valuation rings.

Proposition 2.2. A factor module of a co-coatomically supplemented module is co-coatomically supple-
mented.

Proof. Let M be a co-coatomically supplemented module and let N be a submodule of M. Then any co-
coatomic submodule of M/N is a submodule of the form L/N, where L is co-coatomic submodule of M. By the
hypothesis, L has a supplement in M, say, K. This implies that (K +N)/N is a supplement of L/N in M/N

by [9] (41.1(7)).

Proposition 2.3. Let M be a co-coatomically supplemented module. Then every co-coatomic submodule of
the module M/Rad(M) is a direct summand.

Proof. Any co-coatomic submodule of M/Rad(M) has the form N/Rad(M), where N is a co-coatomic
submodule of M. Since M is co-coatomically supplemented, there exists a submodule K of M such that M =

N +K and N \K ⌧ K. This yields N \K  Rad(M). Thus,

M/Rad(M) =

�

N/Rad(M)

�

+

�

(K +Rad(M))/Rad(M)

�

,

�

N/Rad(M)

�

\
�

(K +Rad(M))/Rad(M)

�

=

�

N \K +Rad(M)

�

/Rad(M) = 0.

Hence,

M/Rad(M) =

�

N/Rad(M)

�

⊕
�

(K +Rad(M))/Rad(M)

�

.

To prove that a finite sum of co-coatomically supplemented modules is a co-coatomically supplemented mod-
ule, we use the following standard lemma (see [9], 41.2):

Lemma 2.1. Let N and L be submodules of an R-module M such that N is co-coatomic, L is co-
coatomically supplemented, and N + L has a supplement in M. Then N has a supplement in M.

Proof. Let K be a supplement of N + L in M. Note that

L/
�

L \ (N +K)

� ⇠
=

(N +K + L)/(N +K) = M/(N +K).

This module is coatomic and, therefore, there is a supplement H of L \ (N +K) in L, i.e.,

L = H + L \ (N +K) and H \ L \ (N +K) ⌧ H.

Hence,

M = N + L+K = N +K +H + L \ (N +K) = N +K +H,
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N \ (H +K)  H \ (N +K) +K \ (N +H)

 H \ (N +K) +K \ (N + L) ⌧ H +K.

Therefore, H +K is a supplement of N in M.

A (direct) sum of infinitely many co-coatomically supplemented modules need not be co-coatomically sup-
plemented by Example 2.2 but a finite sum of co-coatomically supplemented modules is always co-coatomically
supplemented.

Theorem 2.2. A finite sum of co-coatomically supplemented modules is co-coatomically supplemented.

Proof. Clearly, it is sufficient to prove that the sum M = M1 + M2 of two co-coatomically supplemented
modules M1 and M2 is a co-coatomically supplemented. Let U be a co-coatomic submodule of M. Then M =

M1 + M2 + U. Since M2 + U is a co-coatomic submodule of M and M1 is co-coatomically supplemented,
M2+U has a supplement in M by Lemma 2.1. Since M2 is co-coatomically supplemented and U is co-coatomic,
by Lemma 2.1, U has a supplement in M. Thus, M is co-coatomically supplemented.

Let M and N be R-modules. If there is an epimorphism f : M (⇤) ! N for some finite set ⇤, then N is
called a finitely M -generated module.

The following assertion is a corollary of Proposition 2.2 and Theorem 2.2:

Corollary 2.1. If M is co-coatomically supplemented module, then any finitely M -generated module is a co-
coatomically supplemented module.

A ring R is called a left V -ring if every simple R-module is injective (see [9, p. 192]). A commutative ring R

is a V -ring if and only if R is a von Neumann regular ring (see [9], 23.5).

Proposition 2.4. A module M over a V -ring R is co-coatomically supplemented if and only if M is semi-
simple.

Proof. (() Clear.

()) Since M is a co-coatomically supplemented module, M/Soc(M) has no maximal submodule by The-
orem 2.1. It follows from [9] (23.1) that

M/Soc(M) = Rad

�

M/ Soc(M)

�

= 0

because R is a V -ring. Thus, M is semisimple.

Corollary 2.2. Any direct sum of co-coatomically supplemented modules is co-coatomically supplemented
over a left V -ring.

Proof. By Proposition 2.4, co-coatomically supplemented and semisimple modules coincide over left V -rings.

Theorem 2.3. Let N be a co-coatomically supplemented submodule of an R-module M such that M/N

has no maximal submodule. Then M is a co-coatomically supplemented module.

Proof. Let L be a submodule of M such that M/L is coatomic. Clearly, M/(N + L) is also coatomic.
Since M/N has no maximal submodule, M/(N +L) also has no maximal submodule. Therefore, M = N +L.

By Lemma 2.1, L has a supplement in M. Thus, M is a co-coatomically supplemented module.
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The following corollary is a direct result of Theorem 2.3:

Corollary 2.3. Let M be a module and let M/ Soc(M) have no maximal submodule. Then M is co-
coatomically supplemented.

Proposition 2.5. Let M be a co-coatomically supplemented R-module. If M contains a maximal submod-
ule, then M contains a local submodule.

Proof. Let L be a maximal submodule of M. Then L is a co-coatomic submodule of M. Since M is a co-
coatomically supplemented module, there exists a submodule K of M such that K is a supplement of L in M,

i.e., M = K + L and K \ L ⌧ K. It follows from [9] (41.1(3)) that K is local.
A module M is called linearly compact if, for any family of cosets {xi + Mi}4, xi 2 M, and submod-

ules Mi  M (with finitely cogenerated M/Mi ), the intersection of any group of finitely many cosets from this
family is nonempty, then the intersection of the entire family of cosets is also nonempty (see [9], 29.7(c)).

The following proposition gives a characterization of a co-coatomically supplemented module by a linearly
compact submodule:

Proposition 2.6. Let K be a linearly compact submodule of an R-module M. Then M is co-coatomically
supplemented if and only if M/K is co-coatomically supplemented.

Proof. ()) By Proposition 2.2.

(() Let N be a co-coatomic submodule of M. Then (N + K)/K is co-coatomic submodule of M/K

because N + K is co-coatomic submodule of M. Since M/K is co-coatomically supplemented, (N + K)/K

has a supplement in M/K. The submodule K has a supplement in every submodule L of M with K  L because
K is linearly compact (see [8], Lemma 2.3). Moreover, K is supplemented by [9] (29.8(2)) and [8] (Lemma 2.3).
Therefore, N has a supplement in M by [8] (Corollary 2.7). Thus, M is co-coatomically supplemented.

Remark 2.1. A module M is called ⌃-selfprojective if, for each index set I, the module M (I) is selfpro-
jective. For an R-module M, if M is ⌃-selfprojective and U  Rad(M), then the following assertion is true:
U has a supplement in M and, hence, U is small in M [11] (Satz 4.1). Clearly, RR

(N) is ⌃-selfprojective and

Rad

�

R
R(N)�  Rad

�

R
R(N)�.

Therefore, if Rad
�

R
R(N)� has a supplement in RR

(N), then

Rad

�

R
R(N)� ⌧ RR

(N).

Theorem 2.4. Every left R-module is co-coatomically supplemented if and only if the ring R is left perfect.

Proof. (() Clear.

()) By the hypothesis, every left R-module is co-coatomically supplemented and, hence, every left R-mod-
ule is cofinitely supplemented. Then R is semiperfect by [1] (Theorem 2.13). Thus, R/Jac(R) is semisimple
by [9] (42.6). This means that RR

(N)/Rad
�

R
R(N)� is semisimple. Therefore, Rad

�

R
R(N)� is co-coatomic

in RR
(N). By the hypothesis, Rad

�

R
R(N)� has a supplement in RR

(N). By Remark 2.1,

Rad

�

R
R(N)� ⌧ RR

(N).

Since R/Jac(R) is semisimple and Rad

�

R
R(N)� ⌧ RR

(N), RR is perfect by [9] (43.9). Thus, the ring R is left
perfect.
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3. Co-Coatomically Supplemented Modules Over Discrete Valuation Rings

Throughout this section R is a discrete valuation ring. An R-module M is called radical-supplemented
if Rad(M) has a supplement in M (see [11]). A module M is radical supplemented if and only if the basic
submodule of M is coatomic (see [11], Satz 3.1). A module M is coatomic if and only if M is reduced and
supplemented (see [10], Lemma 2.1).

Proposition 3.1. Let M be an R-module. Then M is a co-coatomically supplemented module if and only if
the basic submodule of M is coatomic.

Proof. ()) M/Rad(M) = M/pM is semisimple and, therefore, coatomic. Since M is a co-coatomically
supplemented module, pM has a supplement. Thus, M is a radical-supplemented module. Then the basic sub-
module of M is coatomic by [11] (Satz 3.1).

(() Let X be a submodule of M such that M/X is coatomic and let B be the basic submodule of M.

Then M/(X + B) is also coatomic. Furthermore, M/(X + B) is reduced by [10] (Lemma 2.1). On the other
hand, M/(X+B) is divisible because M/B is divisible. Therefore, M/(X+B) = 0, i.e., M = X+B. By the
hypothesis, B is coatomic and, hence, supplemented by [10] (Lemma 2.1). Therefore, X has a supplement in M

by Lemma 2.1. Hence, M is a co-coatomically supplemented module.

Corollary 3.1. Co-coatomically supplemented modules and radical supplemented modules coincide.

The following corollary is a consequence of [11] (Satz 3.1) and Corollary 3.1:

Corollary 3.2. A module M is co-coatomically supplemented if and only if M = T (M) ⊕ X, where the
reduced part of T (M) is bounded and X/Rad(X) is finitely generated.

The following properties were presented in [11] (Lemma 3.2) for the radical-supplemented modules over a dis-
crete valuation ring. Since co-coatomically supplemented modules coincide with radical-supplemented modules,
these properties clearly hold for the co-coatomically supplemented modules:

Corollary 3.3. For an R-module M the following assertions are true:

1. The class of co-coatomically supplemented modules is closed under pure submodules and extensions.

2. If M is co-coatomically supplemented and M/U is reduced, then U is also co-coatomically supple-
mented.

3. Every submodule of M is co-coatomically supplemented if and only if T (M) is supplemented and
M/T (M) has a finite rank.

4. Co-Coatomically Supplemented Modules over Nonlocal Dedekind Domains

Throughout this section, R is a nonlocal Dedekind domain, unless otherwise stated.

Theorem 4.1. Let R be a Dedekind domain and let M be an R-module. Then M is a module whose co-
coatomic submodules are direct summands if and only if

1) T (M) = M1 ⊕M2, where M1 is semisimple and M2 is divisible,

2) M/T (M) is divisible.
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Proof. By Theorem 2.1 and [4] (Theorem 6.11).

A submodule N of a module M has (is) a weak supplement in M if M = N +K and N \K ⌧ M for
some submodule K of M. Clearly, every supplement is a weak supplement.

Recall that, over an arbitrary ring R, a module M is called co-coatomically weak supplemented if every
co-coatomic submodule has a weak supplement in M.

Proposition 4.1. Over an arbitrary ring, a small cover of a co-coatomically weak supplemented module is
co-coatomically weak supplemented.

Proof. Let M be a small cover of a co-coatomically weak supplemented module N. Then N ⇠
=

M/K for
some K ⌧ M. We take a co-coatomic submodule L of M. Thus, (L + K)/K is a co-coatomic submodule
of M/K because L +K is a co-coatomic submodule of M. By the hypothesis, M/K is co-coatomically weak
supplemented and, hence, (L+K)/K has a weak supplement in M/K, say, X/K. Since K ⌧ M, we get

(X \ L) +K = X \ (L+K) ⌧ M

(see [5], 2.2(3)). Therefore,

M = L+X and L \X ⌧ M,

i.e., X is a weak supplement of L in M. Thus, M is co-coatomically weak supplemented.

Proposition 4.2. Over an arbitrary ring, a factor module of a co-coatomically weak supplemented module is
co-coatomically weak supplemented.

Proof. Let M be a co-coatomically weak supplemented module and let N be a submodule of M. Then any
co-coatomic submodule of M/N is a submodule of the form L/N, where L is a co-coatomic submodule of M.

By the hypothesis, L has a weak supplement in M, say, K. Thus, (K + N)/N is a weak supplement of L/N
in M/N by [5] (2.2(5)).

Let M be a module and let K be a submodule of M. A submodule L of M is called a complement of K
in M if it is maximal in the set of all submodules N of M with K \ N = 0. A submodule L of M is called
a complement submodule if it is a complement of some submodule of M (see [5], 1.9). A submodule of M

is a complement if and only if it is closed (see [5], 1.10). A submodule L of M is called coclosed in M if L has
no proper submodules K for which L/K ⌧ M/K (see [5], 3.6). Over a Dedekind domain, a submodule N of M
is closed if and only if N is coclosed (see [10], Lemma 3.3). Over a domain R, a torsion submodule T (M) of
a module M is a closed submodule of M (see [7], Example 6.34). Therefore, over a Dedekind domain, a torsion
submodule T (M) of a module M is a coclosed submodule of M.

Proposition 4.3. Let M be a torsion R-module. Then M is co-coatomically weak supplemented if and only
if it is co-coatomically supplemented.

Proof. (() Clear.

()) Let K be a submodule of M such that M/K is coatomic. Since M is co-coatomically weak supple-
mented, K has a weak supplement in M, say, N. Then

M = K +N and K \N ⌧ M.

Since M is a torsion, N is also a torsion and, hence, it is coclosed. Therefore, K \N ⌧ N by [5] (3.7(3)). Thus,
M is co-coatomically supplemented.
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Let R be a Dedekind domain and let P be the set of all maximal ideals of R. For some P 2 P, the submodule

�

m 2 M | Pnm = 0 for some integer n ≥ 1

 

is said to be the P -primary component of M. This submodule is denoted by TP (M).

Over a discrete valuation ring, if a module M is torsion and reduced and the radical of M has a supplement
in M, then M is bounded (see [10, p. 48], 2nd Folgerung).

Theorem 4.2. Let M be a reduced R-module. If T (M) has a weak supplement in M, then M is co-
coatomically supplemented if and only if M/T (M) is divisible and TP (M) is bounded for each maximal ideal P.

Proof. ()) Let M be a co-coatomically supplemented reduced R-module. Then the module M/T (M)

is radical: Suppose K is a maximal submodule of M with T (M) ✓ K. Since M is co-coatomically supple-
mented, K has a supplement, say, V. Since K is maximal, V is local and, therefore, V is cyclic, i.e., V ⇠

=

R/I

(see [9], 41.1(3)). On the other hand, R is nonlocal and, thus, I 6= 0, i.e., V is torsion. Hence, V ✓ T (M);

a contradiction. Therefore, M/T (M) has no maximal submodule and, thus, M/T (M) is divisible (see [1],
Lemma 4.4). By [7] (Example 6.34), T (M) is closed, i.e., it is coclosed by [10] (Lemma 3.3). Since T (M) has
a weak supplement, it is a supplement by [5] (20.2). Hence, there is a submodule N in M such that

T (M) +N = M and T (M) \N ⌧ T (M).

Then

T (M)/T (M) \N ⇠
=

(T (M) +N)/N = M/N.

Since M is co-coatomically supplemented, it is co-coatomically weak supplemented and, thus,

T (M)/T (M) \N

is co-coatomically weak supplemented. By Proposition 4.1, T (M) is co-coatomically weak supplemented.
By Proposition 4.2, TP (M) is also co-coatomically weak supplemented for each P as it is a direct summand
of T (M). Moreover, TP (M) is a co-coatomically supplemented module by Proposition 4.3. Thus, TP (M) is
bounded for each maximal ideal P (see [10, p. 48], 2nd Folgerung).

(() Each TP (M) is bounded and, hence, it is supplemented by [10] (Lemma 2.1). Therefore, T (M) is
supplemented by [10] (Theorem 3.1). Now let K be a submodule of M such that M/K is coatomic. Then
M/(K + T (M)) is also coatomic. By the hypothesis, M/T (M) is divisible, i.e., it has no maximal submodules
(see [1], Lemma 4.4). Therefore, M = K + T (M). By Lemma 2.1, K has a supplement in M. Hence, M is
co-coatomically supplemented.

Remark 4.1. We see that the “if” part of the theorem is true without the condition that “T (M) has a weak
supplement in M .” We do not know whether this condition is necessary for the “only if” part.

Corollary 4.1. Let R be a nonlocal Dedekind domain and let M be a reduced R-module. If Rad(T (M)) ⌧
T (M), then M is co-coatomically supplemented if and only if M/T (M) is divisible.

Proof. ()) Clear by the proof of Theorem 4.2.
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(() By [2] (Corollary 4.1.2.), T (M)/Rad(T (M)) is semisimple and, thus, it is co-coatomically weak
supplemented. Then T (M) is co-coatomically weak supplemented because

Rad(T (M)) ⌧ T (M)

by Proposition 4.1. Therefore, T (M) is co-coatomically supplemented by Proposition 4.3. Since M/T (M) is
divisible, M/T (M) has no maximal submodule. Hence, M is co-coatomically supplemented by Theorem 2.3.

Theorem 4.3. Let R be a nonlocal Dedekind domain and let M be a reduced R-module. If M is co-
coatomically amply supplemented, then M/T (M) is divisible and TP (M) is bounded for each P 2 P.

Conversely, if M/T (M) is divisible and TP (M) is bounded for each maximal ideal P of R, then M is
co-coatomically supplemented.

Proof. Let R be a nonlocal Dedekind domain and let M be a co-coatomically amply supplemented re-
duced R-module. Then, by the proof of Theorem 4.2, M/T (M) is divisible. We now suppose that TP (M) is not
bounded for some P 2 P. If a basic submodule Bp(M) is bounded, then, by [6] (Theorem 5), we get

TP (M) = BP (M)⊕D,

where D is divisible. Therefore, M is not reduced and we arrive at a contradiction. Hence, Bp(M) is not bounded.
We now prove that BP (M) is co-coatomically supplemented. Let K be a co-coatomic submodule of BP (M),

i.e., BP (M)/K is coatomic. Thus, BP (M)/K is bounded by [10, p. 48] (2nd Folgerung). We get the following
commutative diagram with exact rows and columns:

K

i
✏✏

E : 0

// BP (M)

pure

//

σ

✏✏

M //

✏✏

X //
0

E0
: 0

// BP (M)/K

pure

// M 0 // X //
0

Since E is pure E0 is also pure. Hence, E0 is splitting because BP (M)/K is bounded (see [6], Theorem 5).
By applying Ext, we obtain the exact sequence

! ExtR(X,K)

i⇤! ExtR

�

X,BP (M)

� σ⇤! ExtR

�

X,BP (M)/K
�

! .

Since

Ext

�

X,BP (M)/K
�

= 0,

we find σ⇤(E) = 0 and, therefore, E 2 Kerσ⇤ = Im i⇤. Thus, there exists a short exact sequence

E00 : 0 ! K ! N ! X ! 0
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such that i⇤(E00
) = E. Hence, we arrive at the following diagram:

0

✏✏

0

✏✏

0

// K //

✏✏

N //

✏✏

X //
0

0

// BP (M)

//

✏✏

M //

✏✏

X //
0

0

// BP (M)/K

✏✏

BP (M)/K

✏✏

0 0

Without loss of generality, we can assume that K, BP (M), and N are submodules of M. In this diagram,

BP (M) \N = K and BP (M) +N = M

(see [9]; the Noether isomorphism theorem). Moreover, M/N is coatomic. Since M is co-coatomically amply
supplemented, there exists a submodule L of BP (M) such that

N + L = M and N \ L ⌧ L.

Therefore,

BP (M) = BP (M) \ (N + L) = L+ (BP (M) \N) = L+K

and

L \K  L \N ⌧ L.

Thus, K has a supplement in BP (M) and, hence, BP (M) is co-coatomically supplemented. Therefore, BP (M)

is bounded by [10, p. 48] (2nd Folgerung). This is a contradiction. This means that TP (M) is bounded for
each P 2 P.

The converse assertion is clear by Theorem 4.2.
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