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Polycystic ovary syndrome (PCOS) is a common and complex genetic disorder that develops under varying degrees of hyperandroge-
nemic and hyperinsulinemic conditions that cause phenotypic variability ranging frommild hirsutism to anovulation and infertility. In
addition to increased risk of reproductive disability, PCOS is associated with metabolic diseases including type 2 diabetes, dyslipidemia,
and cardiovascular disease. Similar prevalence rates and shared genetic susceptibility of PCOS among different populations suggest that
genetic risk factors were already present in the ancestors of humans. Contemporary human genetic studies inform us that the origin of
human ancestors is from Africa. Sharing common susceptibility loci between Chinese and European ancestry suggests that PCOS may
have persisted for more than 50,000 years, before the migration of humans out of Africa. Although PCOS is the most common cause of
anovulatory infertility, its high prevalence is still a paradox. From an evolutionary perspective, the pathogenic mechanisms underlying
PCOS might be candidate factors for survival advantage of the human being. Former compensatory advantageous factors may become
pathogenic mechanisms underlying complex metabolic disease with prolonged life expectancy and transition to sedentary lifestyle.
(Fertil Steril� 2016;106:33–41. �2016 by American Society for Reproductive Medicine.)
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P COS is a complex genetic disorder
of women in reproductive age (1).
The prevalence of PCOS accord-

ing to proposed diagnostic criteria has
been reported to be 6%–19% in different
studies (2, 3). The syndrome is
characterized by hyperandrogenism,
chronic oligo-/anovulation, and insulin
resistance, and it is associated with
increased risk of reproductive disability
and metabolic diseases such as type 2
diabetes, dyslipidemia, cardiovascular
disease (4, 5). The interactions of
multiple inherited genetic factors
related to hyperandrogenism and
environmental or acquired factors, such
as sedentary lifestyle and westernized
dietary habits, can together trigger the
dysregulation of androgen synthesis,
which is the main factor causing
ovarian follicles not to grow as much
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as a dominant follicle, resulting in
oligo-/anovulation. The secretion
dynamics of GnRH pulses are changed
due to lack of progesterone peaks
through the luteal phase of the
menstrual cycle, which in turn leads to
the increase of LH secretion. An
increased LH secretion causes
stimulation of androgen synthesis and
secretion by the ovaries. The adrenals
also contribute to androgen excess in
PCOS (6). The inherited genetic factors
and westernized lifestyle can also
induce insulin resistance and/or obesity
that both cause a hyperinsulinemic
milieu and low-grade chronic inflam-
mation, which are other stimulators of
androgen synthesis (1). Consequently,
PCOS develops under varying degrees
of hyperandrogenemic and hyperinsuli-
nemic conditions that cause phenotypic
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variability ranging from mild hirsutism
to anovulation and infertility.

In simple terms, an evolutionary
approach aims to understand the life
history of an organism or a phenotypic
trait. To be classified as a subject of an
evolutionary study, first the phenotypic
trait of interest should demonstrate
variation in the population under
study. Second, some proportion of the
variation should be genetic; therefore,
the trait should be heritable. Finally,
the phenotypic trait should have an ef-
fect on fitness. PCOS, as a phenotypic
trait, clearly fulfills all of these three re-
quirements, and as a clinically impor-
tant phenotype transcending human
evolution it is a good case for evolu-
tionary medicine (7).

When traditional proximate (im-
mediate) cause–oriented medicine is
not sufficient to fully understand a dis-
ease and offer innovative therapies, a
novel approach focusing on the ulti-
mate (evolutionary) causes underlying
a chronic condition such as PCOS has
a lot to offer to medicine (8). Ultimate
causes affect human populations for
much longer spans of time, on the order
33
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of thousands of generations, compared with the short life
span of an individual. An evolutionary approach to the life
history of PCOS can give us an important perspective for un-
derstanding the adaptive value of traits underlying the dis-
ease, with certain traits, such as hyperandrogenism and
insulin resistance, being advantageous at one stage of human
development (prehistoric times) and detrimental at another
stage (modern times). In this succinct review on the evolu-
tionary determinants of PCOS, we start with a synopsis of hu-
man development, followed by a determination of how long
PCOS has been with the human lineage based on evidence
from genetic data. Finally, we discuss possible selective ad-
vantages that the major PCOS clinical traits might have
conveyed in our ancestors.

A SYNOPSIS OF HUMAN DEVELOPMENT
Similar prevalence rates of PCOS among different contempo-
rary human populations (2, 9, 10) and shared genetic
susceptibility among these different groups (11) suggest that
the genetic risk factors were already present in our human
ancestors before they migrated out of Africa. This suggestion
necessitates a closer look at the history of human development.

Anthropologic and molecular studies show that humans
diverged from their most common recent ancestors with
chimpanzees around 6 million years ago and evolved in Af-
rica adapting to the ever-changing needs in their environ-
ment (12, 13). Comparative morphology and paleontologic
studies reveal that physiology, body shape, brain size and
associated tool-making and communication skills, diet, and
social structure were changing, in what appears to be in burst
intervals, since the early hominids to anatomically modern
humans (14–18). Up until 50,000 years ago, Africans with
more modern skeletons were lean-bodied simple hunters
directed at easy-to-kill land animals. These are the conditions
that most probably selected the metabolic thrift, increased fat
storage, and muscle and bone strength in our early ancestors.

By the Late Stone Age, around 50,000 years ago, coin-
ciding with the major dispersal of humans out of Africa,
sometimes called the Great Leap Forward, more sophisticated
stone tools and cultural artifacts began to appear and hunter-
gatherer societies started to exhibit accelerating cultural evo-
lution and larger and denser populations (19). Late Paleolithic
(40,000–10,000 years ago) people were rather inventive and
made technologic innovations that enabled them to inhabit
new niches, including rather cold and harsh geographic areas
(20). The vital statistics of Late Paleolithic people are rather
hard to decipher owing to scarcity of remains. It is argued
that child mortality was high, women died before the age of
40 years (possibly owing to risks associated with childbearing)
and men before the age of 60 years. Their community groups
contained more older people, possibly enhancing group sur-
vival, and enabling young women to have additional children
much sooner, explaining the larger and denser populations
(21). In this new social structure, ‘‘grandmothering’’ might
have been an advantage selected for that allowed for the
longer post-reproductive life span unique to humans.

Hunter-gatherer groups became increasinglymore adapted
to sedentary lifestyles, better managing their proximate natural
resources, which led to an agricultural revolution in the Near
34
East (Fertile Crescent), China, and Mesoamerica around
10,000 years ago, initiating the cultural period of the Neolithic
(22–24). The sudden population increase could, in part, be due
to better nutrition, which fostered the development of earlier
menarche in women, resulting in a longer period of fertility,
and a stable food supply might mean fewer miscarriages and
childhood deaths. Also, decreased mobility allowed for
shorter intervals between births.

However, the development of agriculture and animal
domestication also imposed a heavy disease burden on prac-
ticing societies, in some cases reducing the average life expec-
tancy to lower levels than those of hunter-gatherers (23, 25).
Dependence on fewer crops might have led to selective
nutrient deficiencies. And animal-derived and -transmitted
infectious diseases (zoonosis) and the development of epi-
demics owing to the high population density exerted a signif-
icant selection on these populations, signatures of which are
still evident in our genetic makeup today. Therefore, early
reproduction age success should still have been rather impor-
tant in these communities.

HOW LONG HAS PCOS AFFECTED HUMANS?
EVIDENCE FROM GENETIC DATA
In line with the fossil record hypothesis that modern humans
arose in Africa around 200,000 years ago, human genetic
studies demonstrate that all modern human mitochondria
and Y chromosomes are descendants of their respective com-
mon ancestors in Africa (26–28). Today, most human genetic
diversity is found in Africa, and the vast majority of genetic
diversity is found within populations rather than between
human populations (29–31). Humans are genetically a very
homogeneous species, where the average difference between
two human genomes is less than 0.1% (32, 33) indicating a
very small effective population size (the number of
individuals in a population who contribute to the offspring
to the next generation) (34, 35).

One of the methods to understand human evolution is to
estimate the history of human population size (36). Individual
genome-sequencing studies are also potentially informative
regarding human evolution (37). The Khoisan-speaking hunt-
er-gatherer populations of southern Africa, also called collec-
tively the San, and other native groups from central and
southern Africa, exhibit the highest known levels of genetic
divergence from other populations. Therefore this important
genetic feature was used in a study aimed at investigating
ancient human demography, and the San's divergence time
was estimated to be around 130,000 years ago (38). The study
also predicted that ancestors to Chinese and Europeans
diverged from Africans about 50,000 years ago.

Taken together, contemporary human genetic studies
inform us that since their origin from an African common
ancestor, humans have been through multiple evolutionary
bottlenecks, particularly affecting those populations moving
out of Africa, resulting in only a small number of individuals
contributing to today's genetic pool diversity (37, 38).

With the advance of very-high-throughput genotyping
technologies, we began to understand the influence on
PCOS of this small, but significant, genome-wide variation
observed between and among human populations. The first
VOL. 106 NO. 1 / JULY 2016
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genome-wide association study (GWAS) on PCOS was con-
ducted in Chinese women and identified three susceptibility
loci (2p16.3, 2p21, and 9q33.1, related to the genes LHCGR,
THADA, and DENND1A) (39). In a subsequent study, in addi-
tion to those three loci, eight new susceptibility loci (9q22.32,
11q22.1, 12q13.2, 12q14.3, 16q12.1, 19p13.3, 20q13.2, and a
second independent signal at 2p16.3) were identified in a new
Chinese ancestry cohort (40). It was found that single-
nucleotide polymorphisms (SNPs) in several candidate genes
(C9orf3, FSHR, INSR, and HMGA2, YAP1, RAB5B/SUOX,
TOX3, and SUMO1P1) were related to hormones and organ
growth, respectively. Similar genetic alterations were also
identified in type 2 diabetes (41, 42).

The effects of these loci on PCOS have been replicated in
women of European ancestry (43–46). A meta-analysis eval-
uating cross-ethnic effects of these Chinese PCOS loci in
northern European ancestry demonstrated that 12 out of 17
genetic variants mapping to these loci had similar effect
size and identical direction, representing a common genetic
susceptibility profile for PCOS across different ethnic groups
(11). Recently, seven Chinese PCOS loci were replicated in a
Korean GWAS (47). The latter study also identified new sus-
ceptibility loci for PCOS, and the strongest association was
observed in an SNP at chr 8q24.2, located upstream of the
KHDRBS3 gene, which is associated with telomerase activity
and may trigger the PCOS phenotypes. All of the aforemen-
tioned studies used the Rotterdam 2003 criteria as the diag-
nostic tool for PCOS, which allows for the detection of
multiple PCOS phenotypes (48).

The phenotype of PCOS at greatest risk for insulin resis-
tance and its related metabolic features are those defined by
the National Institutes of Health (NIH) 1990 criteria (49, 50).
More recently, common genetic susceptibility loci in a
GWAS were mapped in European-ancestry women who fit
the phenotype of PCOS described by NIH (51). In addition to
the locus chr 9q22.32, which was previously reported in the
Chinese PCOS cohort, two novel loci, chr 8p32.1and chr
11p14.1, were identified in this study. Chr 11p14.1 was in
the region of the FSH b-polypeptide (FSHB) gene, and the
chr 11p14.1 SNP, rs11031006, was strongly associated with
both LH levels and the PCOS phenotypes of NIH.

Shared common susceptibility loci between Chinese and
European ancestry suggests that these loci could be conserved
genetic susceptibility factors for PCOS. When we consider the
time that it took for Chinese and Europeans to migrate from
Africa and then racially diverge, PCOS may have persisted
for more than 50,000 years (51, 52). In addition, the similar
prevalence rates of PCOS between different nations, when
using same diagnostic criteria (2, 9, 10), supports this
assumption (52). Finally, studies evaluating the effect of
excess calorie intake and obesity demonstrate surprisingly
limited effects of these burdens on the prevalence of PCOS,
particularly in populations with very high background
prevalence rates of overweight and obesity (53, 54).
WHY PCOS?
Although PCOS is the most common cause of anovulatory
infertility all over the world, its high prevalence is still a great
VOL. 106 NO. 1 / JULY 2016
enigma and paradox. From an evolutionary perspective, the
increasing prevalence of complex metabolic disorders such as
obesity, diabetes, and PCOS in developed and developing coun-
tries brings attention to the idea that genetic triggers leading to
pathogenic mechanisms underlying these syndromes might be
candidate factors for survival advantage of the human being
(55–58). Former compensatory and advantageous factors may
become pathogenic mechanisms with prolonged life
expectancy and transition to sedentary lifestyle, underlying
the development of complex metabolic diseases (59).

Hyperandrogenemia as a Positive Selective Force

One of the most common autosomal recessive genetic disor-
ders is nonclassic congenital adrenal hyperplasia (NCAH),
largely caused by mutations in CYP21A, which encodes
for the enzyme cytochrome P450c17, determining
21-hydroxylase activity (60). Carrier frequency of these mu-
tations is nearly 10% in all populations. It was proposed
that these mutations might have compensatory advantages
like those seen in heterozygous individuals with sickle cell he-
moglobinopathy, who are resistant tomalaria infestation (55).
According to this hypothesis, early puberty and masculiniza-
tion caused by increased adrenal androgen secretion due to
NCAH might constitute a selective force for women and their
children in the setting of struggle and recurrent cruelty. Simi-
larly, the increased bone mineral density (61–65), muscle
mass, and strength (64–67) observed in women with PCOS
may provide a positive selective evolutionary force.

Another hypothesis is that the protective role of adrenal
DHEA on the immune system can be a positive genetic selec-
tive force to respond to endemic diseases (55). In addition to
adrenal androgen hypersecretion, Witchel et al. (56) demon-
strated brisk cortisol response in CYP21A heterozygote car-
riers of 21-hydroxylase deficiency and postulated that this
response might be protective against inappropriate immune
responses and facilitate the restoration of homeostasis in
response to infectious, inflammatory, or other stressor factors.
Role of Insulin Resistance

Insulin receptor (INSR) has a central role in insulin meta-
bolism and mutations in INSR can cause severe hyperinsuli-
nemia and insulin resistance (68–70). According to a recent
GWAS (40) and other earlier studies (71, 72) on PCOS, one
of the evolutionary inherited susceptibility loci is associated
with INSR. Insulin resistance is evolutionarily well
preserved in insects, worms, and vertebrates, including
humans, meaning that it provides a compensatory
advantage for survival (73). Why has insulin resistance
persisted through the evolution of modern humans?
Evolutionary approaches to metabolic diseases hypothesized
that our ancestors left us vulnerable to diseases because of
inheritance of a thrifty gene that organizes the insulin
action/resistance according to the phases of feast and
famine (seasonality and uncertainty of the food supply) of
the hunter-gatherer lifestyle (74). The most important role
of insulin resistance during prolonged starvation is to mini-
mize protein losses by diminishing the necessity to utilize
amino acid carbon skeletons to produce glucose, which is
35
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the major determinant of long-term survival in starving indi-
viduals (75). It was recently hypothesized that insulin resis-
tance (or a capacity of selectively modifying the cellular/
tissue response to insulin) provides glucose availability for in-
flammatory responses to protect from starvation, disease, and
trauma, as well as to promote growth during pregnancy,
puberty, and cancer, and in preparing the organism for
migration/hibernation (76).

A different perspective on the development of hunter-
gatherer communities was offered by the 1963 discovery of
G€obekli Tepe, in the southeasternpart of Turkey, oneof theold-
est religious sites identified to date (77). German archaeologist
Klaus Schmidt (78) suggested that G€obekli Tepe was built by
hunter-gatherer humans during the early Neolithic (New Stone
Age) period, having developed rapidly to form a large-scale so-
cial organization rather than through the recognized process
involving increasing sedentary community as small-scale
farming developed (79). In this setting it is possible that
hunter-gatherers might have also had to deal with infectious
and ecologic diseases, as well as social problems in a setting
of struggle, as one of the causes of death before the Neolithic
revolution. According to Schmidt's suggestion (79), high levels
of social stressors might have been the main selection factors
for hyperandrogenemia and insulin resistance to protect or-
ganisms against stress and prolonged starvation.

When the human lifestyle changed from hunter-gatherer
to sedentary-agricultural, and acquiring food was now less of
a limitation, the defensive mechanisms selected for, including
insulin resistance, might now act against the organism.
Although insulin resistance protects the organism from starva-
tion and social stress, in the setting of food abundance it favors
the development of metabolic disorders such as PCOS (59).
Role of the Changed Dynamics of Gonadotropins

A dysregulation of androgen synthesis is another major patho-
genic factor for PCOS.Genomic variants related to hyperandro-
genismmay contribute to this dysregulation. Variants in FSHR
(FSH receptor) have been considered as a candidate gene for
PCOS (80). Recent GWAS reports on PCOS revealed that one
of the inherited susceptibility loci was near FSHR (40). Another
possible evolutionarily inherited susceptibility locus for PCOS
demonstrated by a recent GWAS in European-ancestry women
with NIH PCOS phenotype is near FSHB/ARL14EP (51). The
SNP in this locus was strongly associated with both LH levels
and PCOS diagnosis. The GWAS (51) also demonstrated that
LH mediated the association with FSHB, and that variation in
FSHB contributes to major changes in secretion of gonado-
tropin in PCOS. Another locus demonstrated by the same study
(51) was in the region of GATA4, implicated in regulation of
gonadal development and steroidogenic genes. Deletion of
this gene disrupts the gonadotropin responsiveness (81).
Another GWAS in PCOS (82) uncovered a new susceptibility
allele near FSHB which was strongly associated with higher
LH/FSH ratios, possibly promoting ovarian androgen produc-
tion and follicular growth arrest (83).

Although FSH regulates ovarian folliculogenesis, which
is dysfunctional in PCOS, LH regulates theca cell testosterone
synthesis, which is increased in PCOS in an LH-dependent
36
manner (84). Variants at the loci related to gonadotropin ac-
tions (LHCGR and FSHR) might have contributed to ovarian
follicles not growing as much as a dominant follicle, i.e.,
through defective FSH action. Similarly, variants at the loci
related to gonadotropin secretion (FSHB) might have led to
hyperandrogenemia, i.e., through increasing LH levels (lead-
ing to increased androgen synthesis and secretion by the
ovaries and adrenals, which negatively affects ovarian follicle
growth as well).

From the evolutionary perspective, changes in gonado-
tropin dynamics, like those seen in the PCOS phenotype,might
have been among the compensatory adaptation mechanisms
leading to decreased ovulation and conception. Considering
the aforementioned adaptive evolutionary changes one can
speculate that early human lineages lived in small hunter-
gatherer communities, had to efficiently utilize food energy,
and had few children to care for. In a population-based study,
women suffering from oligo-amenorrhea and/or hirsutism
(major phenotypic features of PCOS)were comparedwith non-
symptomatic women (85). Having both oligo-amenorrhea and
hirsutismwas found to be associatedwith the least fecundabil-
ity rate. These symptomatic women also had a smaller family
size than nonsymptomatic women. Another recent study re-
ported that women with PCOS had lower pregnancy experi-
ences per woman than healthy women (86). Natufian
women, in an Epipaleolithic culture that existed from 12,500
to 9,500 BC in the Levant and lived as semisedentary
hunter-gatherers, gave birth less frequently and lived longer
than men, who had to perform higher hunting activities and
deal with social conflicts (87). Decreased fecundability and
number of pregnancies, as a result, decreased the family size
of women with PCOS, which in turn might have favored
maternal and infant survival during prehistoric times (56,
58, 59). Maternal mortality may have been reduced in
ancient PCOS women. Therefore, PCOS might also have led
to a rearing advantage by providing more child care and
food compared with women without PCOS.

By the Neolithic revolution, in which farming started,
improved food resources might have favored human health
and consequently life expectancy and fertility. Having a
bigger family was an advantage to provide more labor force
for agricultural communities. However, Neolithic transition
affected men and women differently, and men experienced a
longer life expectancy thanwomen (87). Because of the earlier
onset of pregnancy and increase in number of births, adult fe-
male mortality might have increased. Lower pregnancy rate
than women without PCOS might have protected Neolithic
PCOS women from an increased maternal mortality. Never-
theless, with initiation of coitus ability at early age, occurrence
of coital habitus more frequently, and the absence of common
obesity together with relative insulin resistance, which may
have served more energy to women, ancient PCOS women
may have experienced more pregnancy than at present (52).
Leptin and Adipose Tissue Expandability
Hypothesis

Lipodystrophies characterized by leptin insufficiency or defi-
ciency are associated with PCOS phenotype and insulin
VOL. 106 NO. 1 / JULY 2016
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resistance (88–90). Furthermore, the effect of leptin
replacement on LH secretion and restoration of menstrual
cycles has already been demonstrated in patients with
lipodystrophy (91). In addition to the role of leptin in
fertility (92), its importance in pregnancy, fetal
development, and pubertal growth has been shown in novel
studies (93, 94).

Evolution along the human lineage also produced rather
unique life history patterns, such as extended gestation time,
longer juvenile period, delayed maturation, and longer life
span (95–99). An extended gestation time and a longer
juvenile period could be directly related to seasonality and
deficiency of the food supply, which could lead to an
insufficiency of fat tissue and its hormones, such as leptin.
Accordingly, seasonal changes in food supply seen in the
hunter-gatherer lifestyle might have contributed to PCOS
phenotype by means of seasonal variation in leptin levels as
a compensatory adaptation. Although seasonal leptin defi-
ciency leading to insulin resistance may have minimized pro-
tein losses, it might also have interfered with the dynamics of
gonadotropins to prevent ovulation and conception during
prolonged starvation.

According to the adipose tissue expandability hypothesis,
which explains the insulin resistance in both obesity and lip-
odystrophy, subcutaneous adipose tissue has a restricted ca-
pacity, and various environmental and genetic factors can
define the limits of an individual's subcutaneous lipid storage
(100). When these limits are exceeded, lipotoxicity, character-
TABLE 1

Allelic nature and population frequency distribution of genetic variants a

Gene SNP

Allelic naturea

Effect onAncestral Derived PCOSc

FSHR rs2268361 C T C Protective
C9orf3 rs4385527 G A G Protective

rs3802457 G A G Protective
rs10993397 C T C Protective

DENND1A rs10986105 T G T Susceptibl
SUMO1P1 rs6022786 A G A Susceptibl
GATA4/NEIL2 rs804279 A T A Protective
KRR1 rs1275468 C T C Susceptibl
ERBB3 rs7312770 C T C Susceptibl
THADA rs12468394 A C C Protective

rs12478601 T C C Protective
rs7563201 G A A Protective

LHCGR rs13405728 A G G Protective
DENND1A rs10818854 G A A Susceptibl

rs10760321 G A A Susceptibl
YAP1 rs1894116 A G G Susceptibl

rs11225154 A G A Susceptibl
RAB5B/SUOX rs705702 A G G Susceptibl
HMGA2 rs2272046 A C C Protective
TOX3 rs4784165 T G G Susceptibl
INSR rs2059807 G A G Susceptibl
KHDRBS3 rs10505648 A G G Protective
KCNA4/FSHB rs11031006 G A A Susceptibl
ERB4 rs1351592 C G G Susceptibl
RAD50 rs13164856 C T T Susceptibl
ERBB2 rs7218361 G A A Susceptibl
a Information based on dbSNP and 1000 Genomes data.
b Allele state associated with PCOS.
c Frequency of PCOS-associated alleles among human population samples in 1000 Genomes proje

€Unl€ut€urk. Evolutionary determinants of PCOS. Fertil Steril 2016.
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ized by low-grade inflammation and insulin resistance,
emerges and subsequently hyperandrogenemia can develop.
The dramatic and rapid changes of human behaviors may
have led to the overfilling of subcutaneous fat depots, espe-
cially in people who carried a susceptibility allele for PCOS.
Impact of Rapid Changes in Lifestyle

The hunting-gathering lifestyle evolved to sedentary life
about 350 generations ago with the agricultural revolution.
The industrial revolution brought more sedentary life experi-
ences for humans about seven generations ago (101–103).
Within the past two generations, beyond the sedentary life,
an ‘‘almost immobile’’ lifestyle has emerged under the effect
of the digital revolution. The lifestyle of recent generations
would be the exact opposite of the definition of hunter-
gatherer lifestyle. In parallel to the large decrease in the
need of physical activity, average food intake also dramati-
cally increased compared with the preindustrial agrarian so-
cieties in which obesity and amount of consumed food were
very low, and average calorie intake was less than 2000–
2500 kcal/day until the eighteenth century (58). Therefore,
the dramatic and rapid changes of human behaviors may
not have permitted any compensatory adaptations. The pro-
posed protective PCOS phenotype, even for the Neolithic
period, could have turned into a diseased phenotype, espe-
cially in those who carry the susceptibility genes for PCOS.
ssociated with polycystic ovary syndrome (PCOS) in multiple GWAS.

PCOS

Effect allele population frequencyb

African European East Asian South Asian American

0.75 0.36 0.50 0.46 0.37
0.90 0.60 0.18 0.77 0.65
0.72 0.98 0.89 0.97 0.97
0.87 0.60 0.73 0.71 0.65

e 0.15 0.04 0.05 0.06 0.08
e 0.57 0.41 0.41 0.44 0.34

0.64 0.73 0.81 0.74 0.78
e 0.62 0.70 0.57 0.68 0.66
e 0.51 0.46 0.22 0.31 0.31

0.54 0.48 0.73 0.34 0.70
0.18 0.41 0.71 0.34 0.60
0.37 0.53 0.28 0.55 0.31
0.32 0.07 0.27 0.17 0.19

e 0.08 0.05 0.05 0.08 0.07
e 0.65 0.71 0.65 0.66 0.73
e 0.07 0.08 0.18 0.22 0.05
e 0.02 0.08 0.19 0.24 0.05
e 0.05 0.32 0.22 0.20 0.23

0.001 0.03 0.08 0.03 0.01
e 0.44 0.26 0.36 0.27 0.33
e 0.82 0.62 0.37 0.68 0.47

0.28 0.52 0.09 0.27 0.36
e 0.05 0.15 0.03 0.10 0.10
e 0.64 0.19 0.09 0.28 0.21
e 0.63 0.70 0.62 0.69 0.58
e 0.002 0.05 0.0 0.02 0.03

ct.
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With the obesity epidemic of recent decades, studies have
suggested that excess weight may be increasing the preva-
lence of PCOS (3, 104, 105) and may be unmasking
previously latent PCOS and increasing severity of
phenotypic presentation (105–108). In this context,
compared with even decades ago, anovulatory infertility
may now be increased by obesity or visceral obesity due to
sedentary/almost-immobile lifestyle and excess calorie
intake. Overall, in prehistoric time or even a few decades
ago when obesity was uncommon, women with the PCOS ge-
notypes might have been protected from severe infertility, a
situation reversed in the setting of the modern obesity
epidemic.
Lessons from Ancestral and Derived Alleles of
Candidate Gene Polymorphisms

It is very hard to test the aforementioned physiologic hypoth-
eses based on fossil and remaining cultural artifact data. An
alternate way to test possible selective advantages of a
contemporary disease in our distant past is to focus on the ge-
netic data related to the disease of interest. To show an effect
on a disease, a gene must have more than one form (variation)
in a population. Nucleotide changes at the DNA sequence
level create these alternate forms of a gene, called ‘‘allele.’’
When a nucleotide change occurs, such as a change from C
to T, owing to a mutation in a gene in a human population,
the new allele T is called the ‘‘derived allele’’ and old C allele
FIGURE 1

Evolutionary advantages and disadvantages of polycystic ovary syndrome (P
for PCOS may have constituted protective factors for human beings durin
triggers for complex metabolic diseases through changing lifestyle conditio
€Unl€ut€urk. Evolutionary determinants of PCOS. Fertil Steril 2016.
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is called the ‘‘ancestral allele.’’ Because the derived T allele was
just formed, its frequency will be very low in the population,
and it will also be called the ‘‘minor allele.’’ The most frequent
ancestral allele will be called ‘‘major allele.’’ In successive
generations, under the influence of selection or by chance
(drift) the frequency of the new derived allele can increase
in the population. Alternately, under the influence of selec-
tion or by chance it can disappear. There are millions of
derived alleles in our genome. These are human lineage–
specific changes that happened after the separation of
humans from their most recent common ancestor with chim-
panzees. Some of these alleles occurred early in the ancestors
of humans. These types of relatively old derived alleles are
usually found among all human groups around the globe
and usually with highest frequencies in African populations,
where humans originated. Some of these derived alleles can
influence physiology, such as cold adaptation, and will be
much more common in certain populations and reaching
toward becoming the major allele. However, once-
advantageous alleles can be risk factors for diseases in our
contemporary societies, such as the alleles of genes associated
with insulin resistance. Therefore, one way of deducing ge-
netic changes leading to PCOS under selection is to compare
the distribution of ancestral and derived alleles of candidate
gene polymorphisms between PCOS case and control subjects.
Table 1 presents the allelic nature and population frequency
distribution of genetic variants associated with PCOS in mul-
tiple GWAS (40, 47, 51, 82, 97). From the first half of Table 1,
COS). From an evolutionary perspective, although susceptibility genes
g prehistoric times, these inheritances would have turned into genetic
ns.
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ancestral allele associations indicate that more than one-half
of the derived alleles (5 of 9) that originated in the human
lineage are risk factors for PCOS. Looking at derived
(human lineage specific) alleles associated with PCOS, one
can see that 11 out of 17 variants are associated with
increased risk for PCOS. These individual SNP associations
indicate that among the genes associated with PCOS, only
47% (9 out of 19 genes) had these increased risk allele changes
in the human lineage. Moreover, the distribution of ancestral
and derived alleles between protective and susceptible pheno-
types is not statistically significant (P>.5) suggesting that
PCOS susceptibility was not solely driven by a positive selec-
tion in human evolutionary history but already included ge-
netic risk variants from their ancestors. Had PCOS conveyed
a significant selective advantage for humans, the frequency
of PCOS-associated genes with derived alleles should have
been much higher.

Comparing the distribution of PCOS risk alleles among
human populations, one can see that nearly all of the PCOS
risk alleles are rather high frequency (>10%) in human pop-
ulations sampled from four different continents (Table 1),
indicating lack of purifying selection on these risk alleles.
Moreover, population genetic calculations based on published
PCOS risk allele frequencies show that the homozygote risk
genotype (presence of two risk alleles in the same individual)
frequency in 13 out of 19 PCOS-associated genes is >11%, a
frequency rather similar to the 6%–19% PCOS prevalence rate
reported in literature. This observation argues against any
significant purifying (negative) selection on women (or
men) with homozygote risk genotypes. Alternately, there
should be either a strong heterozygote advantage or a
balancing selection counteracting the effect of any negative
selection acting on the risk alleles and genotypes. Indeed, a
possible balancing selection on PCOS risk variants based on
sexually antagonistic selection and intralocus conflict had
been suggested (109, 110).

Interestingly, there are substantial allele frequency differ-
ences between populations. For example, the frequencies of
PCOS risk alleles observed in FSHR, C9orf3, LHCGR, FSHB,
RAB5B/SUOX, and ERBB2 are much higher in non-African
populations. On the other hand, the frequencies of PCOS-
protective alleles observed in DENND1A, SUMO1P1,
GATA4/NEIL2, THADA, HMGA2, TOX3, INSR, and ERB4
are also higher in non-African populations. These observa-
tions suggest complex selective pressures, perhaps a balance
of positive and negative factors, acting on PCOS-related
genes under different environmental and cultural factors.
Even if one can not exclude the role of genetic drift due to se-
rial founder effects during ancient humanmigrations creating
the observed allelic differences among populations (109),
there is an ongoing active debate about this topic for PCOS
(111). Clearly, more genetic research from different human
populations is necessary to understand the evolutionary
forces behind PCOS.
CONCLUSION
According to contemporary human genetic studies, PCOS
may have persisted for more than 50,000 years. These find-
VOL. 106 NO. 1 / JULY 2016
ings also support the idea that genetic triggers leading to
PCOS might be candidate factors for the survival advantage
of the human being (Fig. 1). Although natural selection can
eliminate deleterious genes resulting in the harmful predispo-
sition of the living organism, the persistence of susceptibility
genes as a risk factor for metabolic diseases may be due to the
fact that the rapid changes in human lifestyle may not have
allowed enough time for any compensatory adaptation.
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