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ABSTRACT 

THE DEFORMATION BEHAVIOR OF A MULTI-LAYERED 
ALUMINUM CORRUGATED STRUCTURE AT INCREASING 

IMPACT VELOCITIES 
 

The compression impact deformation of a layered 1050 H14 aluminum 

corrugated sandwich structure was determined both experimentally and numerically 

under low, intermediate and high velocities to investigate the validity of the perfect and 

imperfect models. Three-dimensional finite element models of the tested specimens 

were developed using the LS-DYNA. At increasing velocities from quasi-static velocity 

to 200 m s-1, the tested corrugated structures showed three distinct deformation modes: 

between 0.0048 and 22 m s-1 the deformation was quasi-static homogenous mode; 

between 22 and 60 m s-1 a transition mode and above 90 m s-1 a shock mode.  These 

observations were also confirmed by the camera records and model layer strain profiles. 

The imperfect models predicted the deformation behavior in homogeneous and 

transition modes, while the imperfect and perfect models both well predicted the shock 

mode. Layer strain profiles showed that as the velocity increased, the crushed layer 

densification strains increased. The numerical models and experiments of direct impact 

tests showed that distal end crushing stress increased with increasing velocity. The 

increase of the stress within the homogeneous and transient mode velocities was 

ascribed to the micro-inertia effect and the tested corrugated structure showed a Type II 

behavior. The rigid perfectly plastic locking (r-p-p-l) model prediction using quasi-static 

plateau stress and densification strain and quasi-static plateau stress and numerically 

determined densification strain at that specific velocity resulted higher velocities and 

full densification, while the r-p-p-l model based on varying plateau stress and 

densification strain well predicted in the shock mode.  
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ÖZET 

ÇOK KATMANLI VE KATLANMIŞ ALÜMİNYUM BİR YAPININ 
ARTAN DARBE HIZLARINDA DEFORMASYON DAVRANIŞI 

 
 Katmanlı 1050 H14 alüminyum dalgalı sandviç yapının basma darbe 

deformasyonu hem mükemmel hem de kusurlu modellerin geçerliliğini araştırmak için 

düşük, orta ve yüksek hızlarda deneysel ve nümerik olarak belirlendi. Test edilen 

örneklerin üç boyutlu sonlu elemanlar modeli LS-DYNA kullanılarak geliştirildi. Yarı 

statik hızdan 200 m s-1’ye yükselen hızlarda, test edilen dalgalı yapılar üç farklı 

deformasyon modu göstermiştir: 0,0048 m s-1 ve 22 m s-1 arasındaki deformasyon, yarı 

statik homojen mod; 22 m s-1 ve 60 m s-1 arasında geçiş modu ve 90 m s-1'in üzerinde bir 

şok modudur. Bu gözlemler, kamera kayıtları ve model katman gerinim profilleri ile de 

doğrulanmıştır. Kusurlu modeller, homojen ve geçiş modlarında deformasyon 

davranışını öngörürken, şok modunda kusurlu ve mükemmel modellerin her ikisi de 

iyice tahmin edilmiştir. Katman deformasyon profilleri, hız arttıkça ezilmiş tabaka 

densifikasyon gerinimlerinin arttığını gösterdi. Direkt darbe testi nümerik modelleri ve 

deneyleri uzak uç çarpışma geriliminin hız arttıkça arttığını gösterdi. Homojen ve geçici 

mod hızlarındaki gerilim artışı, mikro atalet etkisine bağlıydı ve test edilen katmanlı 

yapı Tip II davranışı gösterdi. Yarı statik plato gerilimi ve densifikasyon gerinimi ve 

yarı statik plato gerilimi ve belirli bir hızda sayısal olarak belirlenen densifikasyon 

gerinimi kullanan katı mükemmel plastik kilitleme (r-p-p-l) modeli tahmini, daha 

yüksek hızlara ve tam densifikasyona neden olurken, değişen plato gerilimi ve 

densifikasyon gerinimine dayanan r-p-p-l modeli şok modunda iyice öngörüldü. 
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CHAPTER 1 

 

INTRODUCTION 

 
 The experimental and numerical studies on the dynamic deformation of metallic 

cellular structures have shown three distinct, sequential deformation modes at 

increasing velocities [1-4]. In the quasi-static and low velocity range, the structure 

deforms by random, discrete, non-contiguous crush bands, which is called quasi-static 

mode. The initial crushing in quasi-static mode starts at the weakest region of cellular 

structure and the initial peak or crushing stress is prone to the imperfections [5]. The 

stresses at the impact (proximal) and distal (rear) end are almost equal to each other. For 

that reason, this mode is also referred as to a homogenous mode. At the intermediate 

velocities, the crush bands form near the impact end rather than the distal end, while the 

progress of the crush band is not planar. The local crush band strain in this transition 

mode is diffusive and less than the densification strain. The densification strain is the 

critical strain in the quasi-static stress-strain curve of a cellular material, after which the 

stress increases sharply following an almost constant stress long plateau region. Above 

a critical velocity, the cellular structure deforms by forming sequential, planar crush 

band propagating from the impact end [4, 6]. This is known as the shock mode and was 

previously observed in the impact testing wood [7, 8], urethane foam [9], aluminum 

foam [6, 10], aluminum honeycomb [4] and multilayer corrugated structures [11]. The 

stress developed at the impact end in this mode is far greater than that at the distal end 

and increases with increasing impact velocity. The stain in the crush bands is at or 

above the densification strain. The stress enhancement above the critical velocity is 

attributed to the inertia caused by the strain localization associated with shock formation 

at the impact end. The stress enhancement below the critical velocity was ascribed to 

the Type-II micro inertia, which was reported to be relatively weak above the critical 

velocity [3, 6, 12, 13]. The recent studies have also shown that the densification strain 

increases with increasing impact velocity as similar with the stress [4, 14-17]. The 

strains in the crush bands are either measured from the deformation images [15, 16] or 

numerically determined in the crush band [4].  



2 
 

The experimental and numerical studies on the metallic cellular structures have 

been mostly on aluminum open and closed cell foams [10, 12, 18-26] and aluminum 

honeycombs [1, 2, 4, 27-31]. One problem with testing Al foams is that the dispersion 

in the strength measurement is relatively high, up to  20%, and may cover the increase 

in strength at increasing strain rates/velocities [23]. This puts a difficulty in 

differentiating the strain rate effect form the intrinsic strength of structure.   The 

modelling cellular structures is also problematic as the numerical models are usually 

constructed with the perfect geometry, but the real structure has random or local 

imperfections/defects or irregularities in the cells. The presence of imperfections tends 

to reduce the bending and buckling stresses, as a result, the perfect models overestimate 

the stiffness and strength values. To account the imperfections various methods have 

been numerically implemented including distortion in the mesh, node shaking, pre-

buckling of cell walls, modelling the actual size of the cell wall [32], implementing 

random mechanical properties [33] and deflection in the truss strut [5]. The effects of 

imperfections on the crushing behavior of aluminum foams [34, 35] and honeycombs 

[36, 37] were previously investigated; however, their effects on the response of multi-

layered cellular structures at increasing velocities have not been fully explored.  

The aim of present study was to investigate both experimentally and numerically 

the deformation of a multi-layered 1050 H14 aluminum corrugated sandwich core 

structure under low, intermediate and high velocities.  The validity of the investigated 

perfect and imperfect models as function velocity and layer crush sequences were also 

determined. The investigated sandwich corrugate core structure differs from the 

previously investigated corrugated cores in that it was made of multi corrugated layers 

(fins). The structure was previously shown to exhibit repeatable responses to 

mechanical forces under compression at both low and high velocities [11, 38, 39].  This 

allows accurate determination of the effect of strain rate on the mechanical properties. 

More importantly, the homogeneous layers of a multi-layered structure make it possible 

to construct 3D full models in order to monitor the velocity and strain histories of each 

layer during the course of deformation.   

In the thesis, four different tests were performed and the test results were 

compared with the model results. The quasi-static compression test was performed at 

~5x10-3 s-1; the Split Hopkinson Pressure Bar (SHPB) tests were performed between 6 

and 10 m s-1; the direct impact tests were performed between 9 and 90 m s-1 and the 

Taylor-like impact tests were performed at 135, 150 and 200 m s-1. Three-dimensional 
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finite element models of the tested specimens were developed using the LS-DYNA. The 

stress-time histories of the tests were verified by the simulations in the explicit finite 

element code of LS-DYNA. The perfect geometry model was coded as perfect model I, 

the fully bent fin wall model coded as perfect model II, the model with one layer bent 

fin coded as one layer imperfect model and the model with two layers of bent fin layers 

coded as two layer imperfect model. The validities of the implemented two perfect and 

two imperfect models were discussed along with the deformation velocity, high speed 

camera records and stress-time profiles. 

In the thesis, the quasi-static and high strain rate compression deformation of 

cellular metals are given in Chapter 2. Chapter 3 is on the materials and tests and 

Chapter 4 gives the details of the models implemented. The results of tests and models 

are given in Chapter 5. And, finally the results are discussed in Chapter 6 and the 

conclusions are made in Chapter 7.  
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CHAPTER 2 

 

DEFORMATION OF CELLULAR METALS 
 

2.1. Cellular Structures 
 

Cellular metal structures are made of regularly arranged and homogeneously 

distributed cells and have multifunctional features such as high energy absorption and 

heat dissipation [40-44]. As with other light-weight structures, cellular metal structures 

exhibit relatively high bending strength to weight ratios [41] and relatively high 

resistances to frontal impacts as compared with equal-mass monolithic panels, when 

used as cores in sandwich panels [45].  Cellular metal structures are classified  in two 

main groups of random and periodic as shown in Figure 2.1 [42]. Examples to random 

cell structures include open and closed cell metal alloy foams in which the cell size and 

the geometry vary with the location, inherited from the manufacturing routes used to 

produce them. The periodic metallic cellular structures encompass honeycombs, 

corrugated (prismatic) and lattice truss structures, Figure 2.1. Typical lattice truss 

topologies include tetrahedral, pyramidal, kagome, diamond textile, diamond collinear 

and square collinear [43]. The repeating unit topology may be in 2D, as in the case of 

honeycomb, or in 3D, as in the case of lattice truss. Honeycomb structures have high 

out-plane compression and transverse shear strength; therefore, they are widely used for 

designing with light weigh sandwich panels as cores. These structures allow the fluid 

flow only in one direction. The lattice truss structures exhibit high bending stresses and 

stretch-dominant deformation behavior. These structures allow 3D fluid flow through 

the sandwich panels when used as cores.  

Corrugated structures are relatively cheap materials. They are widely used in the 

building and ship construction. The corrugation may be straight, trapezoidal, triangular 

and curvilinear as seen in Figure 2.2. Each topology has geometry-specific response to 

mechanical loads as well as the direction of the loading. A multilayer form is also 

possible by applying appropriate joining processes of corrugated layers such as brazing 

and bonding. The investigated multi-layer corrugated structure in this thesis has a zig-

zag form which enables the fluid flow in 3D. The multi-layering transforms
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the compression deformation mechanism from global bending of a single layer [46] to 

the progressive crushing of multi layers as similar with foam metals [11 , 38, 39, 47]. 

 
Figure 2.1. Broad classification of cellular metals (honeycomb, corrugated and lattice 

structure pictures) are taken from [27] 
 

 
Figure 2.2. Examples to corrugated topologies: (a) straight, (b) trapezoidal, (c) 

triangular and (d) curvilinear 

 

2.2. Quasi-Static Compression Behavior Metal Foams 
 

The cellular metals show characteristic stress-strain behavior under compression. 

A typical stress-strain curve composes of three sequential distinct deformation regions: 

(i) linear elastic, (ii) plateau and (iii) densification [40] as depicted in Figure 2.3. In the 

linear elastic region, the cellular material deforms elastically until about a crushing 

stress( ). 
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 Following the crushing stress, the localized deformation in the form of cell wall 

bending and/or stretching starts. When the cells in a local region collapse, a deformation 

band or crush band forms. The initial collapse of the cells leading to the formation of a 

crush band at quasi-static strain rates starts in a region weakest in strength [23], then 

progresses to the uncrushed sections. The crush bands may be sequential, i.e. the crush 

band jumps to the neighboring cells, or discrete, i.e. the crush band jumps to the 

sections far from the initially formed crush band. The discrete bands are commonly 

observed at low velocities, while sequential bands are observed above a critical velocity 

at which a shock deformation occurs. The progression of the deformation bands 

throughout the cellular structure with increasing strain may result in stress oscillations 

between peak and valley stresses, which correspond to the start and end of a 

deformation band, respectively. This region of cell crushing is called plateau region. 

The stress in the plateau region is known as plateau stress ( ) (Figure 2.3). The 

crushing of metallic cellular materials in the plateau region is dominated by the cell wall 

buckling and stretching. After the crush of all cells in the form of crushing bands, the 

material starts to densify at a critical strain known as densification strain ( ). In the 

densification region, crushed layers are compressed together, leading to an abrupt 

increase in the stress. The imperfections in the cellular structure such as density 

variations, cell wall curvature and cell wall corrugations tend to decrease the crushing 

and plateau stress [48]. 

 

2.3. Dynamic Deformation of Cellular Structures 
 

Wu and Jiang in 1997 [49] experimentally investigated the quasi-static and 

impact loading (10 and 20 m s-1) behavior of an aluminum honeycomb through out-of-

plane. Stress enhancement up to 74% was observed in the crushing stress of the 

dynamically loaded samples (Figure 2.4(a)).  The stress enhancement was found to be 

proportional to the initial striking velocity of blunt projectiles (Figure 2.4(b)). 
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Figure 2.3. Quasi-static stress-strain behavior of a cellular metal 

 

 Zhao and Gary [27] investigated the out-of-plane and in-plane quasi-static and 

dynamic (2, 10 and 28 m s-1) compression behavior of an aluminum honeycomb. The 

dynamic mean crushing stress in out-of-plane direction showed 40% increase as 

compared with the quasi-static mean crushing stress (Figure 2.5(a)), while no stress 

enchantment was detected in the samples tested in the in-plane-direction within the 

studied velocity range (Figure 2.5(b)). The densification strain was found to be 

independent of velocity at directions both out-of-plane and in-plane. 

 
(a) 

 
(b) 

Figure 2.4. (a) the areal crushing strength of the tested 6 honeycombs under quasi-tatic 
and impact loads and (b) the variation of crushing strength with the initial 
impactor velocity [49] 
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(a) (b) 

Figure 2.5. (a) stress-strain curve in out-of-plane direction and (b) stress-velocity graph 
of out-of-plane (x3) and in-plane (x2 and x1) of an aluminum honeycomb 

 

Harrigan et. al. [50] direct impact tested (up to ~300 m s-1) a 5050 Al 

honeycomb with and without aluminum backing mass and with and without lateral 

confinement in the out-of-plane direction. The initial crushing and plateau stresses were 

shown to increase with increasing impact velocity (Figures 2.6(a) and (b)). The increase 

in the initial peak stress (initial crushing stress) was reported to be governed by uniaxial 

plastic wave effect, while the increase in the plateau stress was well-predicted by rigid 

perfectly plastic locking (r-p-p-l) model developed by Reid and Peng in 1997  [7] 

(Figures 2.7(a) and (b)). It was also noted that full-confinement had no effect on the 

stress enhancement, while the samples tested with backing was showed slightly higher 

stresses than the samples tested without backing disc due to the inertial effects. The 

presence of initial stress pike in the dynamic loading of the pre-crushed samples tended 

to conclude that the initial stress pike was due to inertia. 

  
(a) (b) 

Figure 2.6. Force vs. time graphs of pre-crushed honeycomb specimens: (a) laterally 
free specimens without backing masses and (b) laterally free specimens with 
backing masses [50] 
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(a) (b) 

Figure 2.7. Comparisons between the shock theory (r-p-p-l model) and the experiments 
(a) initial peak stress ratios of uncrushed honeycombs and (b) plateau stress 
ratios of uncrushed honeycomb [50] 
 

The high strain rate compression  behavior of cellular aluminum alloys (Alulight 

and Duocel) were investigated by Deshpande and Fleck in 2000 [23] between 10-3 and 

5000 s-1. The dynamic stress was determined by the SHPB compression and direct 

impact tests. The direct impact tests were performed at the velocities less than 50 m s-1 

(Figure 2.8(a)). Almost no increase in the plateau stress was observed within the 

investigated strain rate interval (Figure 2.8(b)). In the direct impact tests, the measured 

impact and distal end stresses were nearly equal to each other, showing that shock wave 

did not form in these tests.  The deformation was found to procced as weak bands in the 

Alulight foam but it was spatially uniform in the Duocel foam.  

  
(a) (b) 

Figure 2.8. (a) stress-strain responses of Alulight foam from quasi-static to high strain 
rates (30 m s-1 corresponds to an average strain rate of 3000 s-1 and (b) the 
variation of plateau stress with strain rate for Alulight and Duocel foams 
[23] 
 

Hall et. al. [51] performed quasi-static (10-3 s-1)  and high strain rate (up to 2000  

s-1) SHPB compression tests on a closed cell 6061-Al alloy foam processed by a powder 
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metallurgical method. No effect of strain rate on the compression stress of the foam was 

detected within the studied strain rate regime (Figure 2.9(a)). Metallographic 

observations confirmed that the deformation proceeded with progressive cell wall 

collapse, including cell wall buckling and tearing modes (Figure 2.9(b)).  

 

 
(a)  

(b) 

Figure 2.9. (a) stress-strain responses of 6061 Al foam from quasi-static to high strain 
rates (2000 s-1) and (b) the cell wall failure A: bending and B tearing [51] 
 

Honig and Stronge [52] conducted  FE analysis on the crush band initiation and 

wave trapping in the impact of an aluminum honeycomb in in-plane direction. The 

determined stress enhancement with increasing impact speed was shown mainly due to 

the translational micro-inertia and not due to the micro-rotational inertia. The stress 

enhancement for a uniaxial stress state was found to start at about 10 m s-1. At the 

velocities above this critical velocity,  crush bands initiated at the impact surface, while 

at lower speeds the location of the initial crush band was determined by the distribution 

and extent of initial imperfections. Using the theory of wave trapping, the critical 

impact speed was determined greater than 7.6 m s-1 which was close to the critical speed 

calculated in the finite element simulations.  

Radford et. al. [10] direct impact tested Alporas aluminum foam with a relative 

density of 0.11 between quasi-static velocity and 500 m s-1. The velocity dependent 

peak and mean stresses values were well-fitted with following relation (Figure 2.10(a)), 

                                                        

 (2.1) 

                                               

where  is the peak stresses and   is the initial density. The mean stress 

( however showed a well agreement with the following relation (Figure 2.10(a)),  



11 
 

                                                      

 
(2.2) 

 

The arrest time ( ) was shown to be well-fitted with the following relation. (Figure 

2.10(b)). 

                                                       

 
(2.3) 

 

where,  is the initial length of the specimen.                                                

  

(a) (b) 

Figure 2.10. (a) the measured peak and mean pressures of 0.11 relative density Alporas 
metal foam as a function of the impact velocity and (b) the measured pulse 
duration as a function of the impact velocity [10] 
 

Tan et. al. [6, 12] direct impact tested (between 10 and 210 m s-1) small and  

large size Hydro/Cymat aluminum closed cell foams and fitted the resultant increase in 

the crushing strength with the r-p-p-l model. Furthermore, a method for the 

determination of the densification strain was proposed in the same study based on the 

maximum energy absorption efficiency.  The dynamic deformation was similar to that 

of the quasi-static at subcritical velocities; the collapse started from the weakest band of 

cells, usually in interior of the samples, while the cell collapse always started from the 

impact end and sequentially propagated to the uncrushed sections in a planner manner 

above the supercritical velocities.  A critical velocity for shock deformation ( ) was 

proposed based on the thermo-mechanical approach as 
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 (2.4) 

 

 

where,  is the plastic wave speed,  is the yield strength of cell wall material and  

 is the density of cell wall material. The calculated critical velocities for the small and 

large cell foams, 108 and 41 m s-1, were found to be well agreed with the 

experimentally determined critical velocities. It was shown that both the crushing 

strength and plateau stress variations with impact velocity were well agreed with the r-

p-p-l model (Figures 2.11(a) and (b)), except at 200 m s-1. It was proposed that inertial 

effects associated with the dynamic localization of the crushing were responsible for the 

enhancement of the dynamic strength properties in the supercritical velocity regime.  

 

(a) (b) 

Figure 2.11. The comparison between theory and experimental data for the normalized 
plastic collapse stress of small size foam (a) crushing stress and (b) plateau 
stress [12] 
 

Zhao et. al. [53] experimentally investigated the impact responses of aluminum 

honeycombs, IFAM and Cymat aluminum foams and nickel and iron hollow sphere 

agglomerates. The honeycombs, foams and hollow spheres showed velocity dependent 

stresses, as sequentially shown in Figures 2.12(a-c). Rate insensitive aluminum alloys of 

honeycombs and IFAM and Cymat foams exhibited a strength enhancement of about 

15% (Figures 2.12(d) and (e)) under impact loading.  It was further shown that the stress 

enhancement due to the shock front in the tested cellular materials was experimentally 

proven to be negligible for impact velocities below 45 m s-1. The stress enhancement 

was therefore attributed to the micro-inertia effect of the successive folding process.  
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 2.12. The stress-strain curves of (a) 5056 Al honeycomb, (b) IAM foam and (c) 
iron hollow sphere agglomerates at different velocities and  the strength 
enhancement in (d) Al honeycomb, (e) Al foams and (f) nickel and iron 
hollow sphere agglomerates [53] 
 

Zheng et. al. [2] investigated the dynamic crushing behavior of 2D cellular 

structures by FE method  including the effect of cell irregularity and impact velocity on 

the deformation mode and the plateau stress.  Three deformation modes depending on 

the impact velocity were demonstrated in the regular and irregular honeycombs shown 

in Figures 2.13(a) and (b). These were as follows: 1) at a low impact velocity, the quasi-

static mode with the random collapse of weak shear bands, 2) at an intermediate impact 
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velocity, a transition mode with localized shear bands and transverse bands and 3) at a 

high impact velocity (where the inertial effects dominated the deformation), a dynamic 

mode or shock mode with layer-wise collapse of transverse bands. 

 

  
(a) (b) 

Figure 2.13. Three patterns of a regular honeycomb crushed in the in-plane direction 
sequentially in the picture at 5, 20 and 80 m s-1; (a) ordered and (b) 
disordered honeycomb structure 
 

Zhao et. al. [54] investigated the strengthening mechanisms of 5056 and 5052 

aluminum honeycombs (out-of-plane) and IFAM and Cymat foams in SHPB up to 14 m 

s-1. Although a strengthening of 15% was found in the impact testing of honeycombs 

and IFAM foam, no strengthening was found in Cymat foam. The strengthening of 

honeycombs and IFAM foam was attributed to the micro-inertia effect of the successive 

folding (Figure 2.14(a)). The rate insensitivity of Cymat foam was ascribed to the cell 

wall fracture in the compression test (Figure 2.14(b)). 

 

  
(a) (b) 

Figure 2.14. (a) progressive cell wall bending in IFAM foam and (b) cell fracture in 
Cymat foam [54] 
 

Elnasri et. al.  [25] and Pattofatto et. al. [55] experimentally and numerically 

investigated the dynamic strengthening in Alporas aluminum foam, nickel hollow 

sphere agglomerates and aluminum honeycomb and Cymat foam up to 55 m s-1. In the 

first test configuration, the sample was inserted in front of incident bar of a SHPB and a 

projectile impinged the sample (direct impact test) and in the second configuration 
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the sample with a mass fired to the end of the incident bar (Taylor-like impact test). It 

was reported that the rate sensitivity of Alporas foam and honeycomb was due to the 

micro-inertia effects of the successive buckling of the cell walls. The rate sensitivity of 

Nickel hollow spheres was ascribed to the rate sensitivity of the cell wall material. 

There was no clear rate sensitivity in Cymat foam. 

Liu et al. [3] and Zou et al. [4] performed numerical modelling on the direct 

impact crushing of 2D Voronoi honeycomb and in-plane dynamic crushing of 

honeycomb. Three deformation modes were numerically identified at varying crushing 

speeds. These were (a) homogeneous mode, (b) transition mode and (c) shock mode 

(Figure 2.16).  The effect of micro-inertia was shown to be weak for Voronoi structure 

at high velocities and the strain rate sensitivity of the cell wall material contributed little 

to the increased plateau stress at increasing velocities [3]. It was shown that the 

increased compressive stress in the in-plane direction of honeycomb at increasing 

impact velocities induced higher densification strains and longer plateau stresses   [4]. 

The densification strain increased as the velocity increased and reached a limit which 

was 15% higher than that of the quasi-static value when a steady-shock front formed 

(Figure 2.17(a)). It was also shown that the r-p-p-l model overestimated the crushing 

stresses (Figure 2.17(b)) [4]. 

 
Figure 2.15. Three deformation modes of Voronoi honeycomb (a) 

homogeneous mode (low velocity), (b) transition mode 
(medium velocity) and (c) shock mode (high velocity) [3] 
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(a) (b) 

Figure 2.16. (a) densification strain vs. velocity and (b) comparison of plateau stress 
with r-p-p-l model (Equation 2.1) in Voronoi honeycomb [4] 
 

Karagiozova et. al. [56] investigated the compaction behavior of cellular 

materials showing strain hardening under decreasing impact velocities.  The numerical 

results were then verified with the experimental results of Alporas and Cymat Al foams. 

It was shown that the r-p-p-l model overestimated the energy absorption capacity for the 

observed stroke. This was due to the non-uniform strains along the compacted zone of 

the actual material as the r-p-p-l model used a constant densification strain. The 

assumption of a constant densification strain resulted in an overestimation of the 

maximum stress. 

Zheng et. al. [57] developed continuum based models for the transitional and 

shock modes in cellular materials. The results showed that for a shock mode the initial 

strain remained constant and the initial stress varied proportionally with the square of 

the impact velocity. However, the initial strain and stress behind the front decreased 

linearly with the reduction of velocity for the transitional mode. The critical impact 

velocities for transitional and shock modes were determined using rigid-linearly 

hardening plastic locking model as 

 

 (2.5) 

 

and 

                                                      

 (2.6) 
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where  is the velocity to the passage to the transitional mode,  is the velocity for 

shock mode and E1 is the hardening modulus.  

Liao et. al. [31]  developed a method to calculate the local strain field of a 

deformed cellular structure based on the optimal local deformation gradient using a cell-

based finite element model. A comparison between the cell-based finite element model 

and continuum-based shock model indicated that the shock model based on the post-

locking behavior was found more accurate in predicting the shock wave velocity.  

Barnes et. al. [15] studied the crushing behavior of open-cell 6061 Al foams in 

direct and Taylor-like impact tests in the range of 20-160 m s-1. The strain behind the 

shock, densification strain, extracted directly from the high-speed images increased with 

increasing impact velocity (Figure 2.17(a)).  The specimens impacted at 60 m s-1 and 

above showed shock deformation, while the specimens impacted below 40 m s-1 showed 

very similar crushing mode with the specimens tested at quasi-static velocity shown in 

Figure 2.17(b).   

 

  
(a) (b) 

Figure 2.17. The variations of (a) the strain behind shock wave and (b) the stress behind 
and front of the shock wave front with the impact velocity [15] 
 

Tao et. al. [30] investigated out of plane quasi-static and dynamic compression 

behavior of an Al3003 H18 honeycomb up to 19 m s-1. Within the investigated velocity 

range, the plateau stress increased by 38 to 57%. A strain rate dependent r-p-p-l model 

was shown to well-fitted with the dynamic plateau stress within the investigated strain 

rate regime. The dynamic plateau stress was divided in three parts; static, inertia and 

strain rate sensitivity of the cell wall material. It was concluded that the strain rate effect 

played an important role in the dynamic enchantment of metallic honeycomb at 

relatively low velocity regime. The lower plateau stress prediction by r-p-p-l model was 

attributed to the lack of strain rate sensitivity of the cell wall material in the model. 
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Wang et. al. [58] investigated the dynamic behavior of an aluminum foam at 16, 

63 and 113 m s-1. The front and distal end stresses of the samples were measured. Three 

different deformation regions were identified. At 16 m s-1, the sample’s back and font 

surface stresses were found to be equal corresponding to the homogeneous mode and at 

113 m s-1, the front surface stress was higher than that of the back surface showing the 

inertial effect or shock deformation mode. At the intermediate velocity the transition 

mode was detected. 

 

2.4. Strain Rate Sensitivity of Cellular Metals 
 

The strain rate sensitivity of cellular materials may be due to (1) strain rate 

sensitivity of cell wall material, (2) entrapped gas pressure, (3) micro-inertia and (4) 

inertia or shock wave [3, 54]. The rate sensitivity of the cell wall material affects the 

dynamic crushing stress of the cellular materials at increasing velocities [59-61]. It was 

shown that the initial peak stress of an Al foam increased with strain rate up to 500 s-1 

due to micro-inertia, while the plateau stress remained almost constant at increasing 

strain rates. On the other side, both initial peak stress and plateau stress of a Ni/Al foam 

increased with strain rate; the latter was attributed to the cell wall material strain rate 

sensitivity [60].  It was also shown numerically that the effect of strain rate sensitivity 

of the cell wall material on the dynamic crushing stress diminished as the porosity 

increased and for practical purpose the effect of rate sensitivity of the cell wall on the 

crushing stress might be taken negligible for high porosity foams [61, 62].   

For Al foams there existed confusing results on the strain rate effect as reported 

in ref. [3]. The reason is the lack of or very low strain rate sensitivity of Al and Al 

alloys [63].   Since the cellular structures deform through forming crush bands, it is also 

difficult to correlate the nominal strain rate with the local strain rate. The local strain 

rate may be far excess of the nominal strain rate. In the present thesis, the effect of 

strain rate sensitivity of the cell wall material was not taken into account as the cell wall 

material was made of 1050 Al and the tested corrugated samples had a low relative 

density (0.12) as similar with low density Al foams. 

The entrapped gas pressure may increase the stress when the loading rate is high 

due to the limited time for the gas to escape. The upper limit for the increase of the 

strength with the entrapped gas pressure in an Al foam with a 0.1 relative density was 
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calculated 0.2 MPa which may be neglected particularly at high velocities [23]. A recent 

study has however shown that the effect of entrapped gas pressure may contribute to the 

dynamic strength of a low relative density Al foam (4%) as much as 50% [64]. The use 

small size and higher relative density foam test samples tends to decrease the entrapped 

gas pressure effect.  

The increased crushing strengths of the cellular structures at increasingly high 

deformation rates are ascribed to the micro-inertia effects. Calladine and English [65] 

classified the energy absorbing structures as Type I and Type II. Type I structures show 

a flat-topped load-displacement curve, while Type II structures shows an initial peak 

following a softening behavior (Figure 2.19). Tubes deforming along the long axis by 

forming folding are typical examples to the Type II structures. Figure 2.20 shows the 

force-displacement and strain rate-displacement of a thin walled (0.3 mm) Al tube 40 

mm in length and 20 mm in diameter. The tube is deformed at a lower strain rate (~10-3 

s-1) until about 15 mm displacement; thereafter, the strain rate increases 100 times 

(approximately 10-1 s-1). A magnification of the force axis clearly shows the micro-

inertia effect within the quasi-static strain rate range (shown by arrow shown in Figure 

2.19). The Type II structures are found to be more sensitive to impact velocity than 

Type I structures [65]. The increased deformation forces at increasing deformation rates 

in the compression of aluminum honeycomb structures through out of plane [53], 

metallic columnar structures [66], aluminum foams [67] and balsa wood in the axial 

direction [7, 68] were reported to be resulted from the micro-inertia effects. V-frame 

corrugated structures were shown to be more inertia sensitive than Y-frame, as the 

deformation in V-frame structure is the stretching-governed buckling, while in Y-frame 

core it proceeds with the bending of one of the legs [69]. It was also shown that U-, X- 

and V-frame cores exhibiting buckling mode of deformation showed higher crushing 

strengths and energy absorptions than Y-frame cores exhibiting the bending mode of 

deformation [70]. Tam and Calladine [71] analyzed the deformation of Type II 

structures based on a rigid-plastic analysis in two phases. The first phase involves the 

plastic compression of the structure, while the second phase involves the rotations of 

plastic hinges. It was reported that the inertia was the dominant in the first phase and the 

strain rate sensitivity was dominant in the second phase. Su et al. [72, 73] proposed an 

elastic plastic model for the compression of Type II structures and concluded that inertia 

and strain rate sensitivity were dominant in the entire deformation processes. It was also 

reported in the same studies that an elastic analysis was necessary in order to determine 
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the magnitude of the peak load. The corrugated structures tested in the present study 

also showed inertia-sensitive Type II behavior. The propagation of the plastic wave at 

high strain rates delays the overall buckling of the member and the member needs to 

form kinks [74].  

 

 
Figure 2.18. Load-displacement curve of type I and type II structures 

and the schematic deformation modes [65] 
 

 
Figure 2.19. The effect of micro-inertia in an Al tube 

 

           At relatively high impact velocities, a shock mode occurs. A well-known 

characteristic of metallic ductile cellular structures is the concave-up rise of the 

compressive stress after the densification strain.  Due to this, the direct and Taylor-like 

impact tests with and without backing mass result in shock wave initiation and 

propagation after a critical velocity from the impact end.  The shock stresses induces 

crushing stresses higher than quasi-static crushing stress and the crushing stress 

increases with increasing velocity above the critical velocity.  
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     The shock wave propagation in cellular materials was initially analyzed by Reid 

and Peng in 1997 using the r-p-p-l idealization model. The r-p-p-l model assumes a 

constant plateau stress and a well-defined densification strain.  Later, various material 

models including elastic-perfectly-plastic-rigid [24], elastic and rigid softening 

hardening [8] and strain hardening models [56] were developed to elaborate the shock 

wave propagation in cellular materials. The r-p-p-l shock model was previously applied 

to cellular material including wood (e.g. [8]), aluminum foam (e.g. [6, 10]) and 

honeycomb (e.g. [4, 50 ]).  The model details can be found in refs. [7, 10] and is also 

given in the next section. 

 

2.5. Perfectly Plastic Locking Model for Shock Deformation 
 

The shock deformation starts from the impacted end and progresses sequentially. 

In the shock loading the crushed and densified region attains a stress of  and the 

elastically deformed region attains a stress of  as shown in Figure 2.20. In figure 2.20 

u is the displacement, h is the length of the densified region, x is the uncrushed length, 

is the initial length of the crushed region,  is the density of the crushed region 

and  is the initial density and is the initial length.   

 

 
Figure 2.20. The schematic of r-p-p-l model stress-strain behavior and the 

deformed and undeformed part of foam sample 
 

The initial length is therefore  

 (2.7) 
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and is 

 (2.8) 

       

Then, and  are  

   (2.9) 

  

and 

 

 (2.10) 

      

From the unit mass ratio of the initial uncrushed and crushed regions, the following 

relation is written 

 

 (2.11) 

 

The relation between initial density and crushed region density is therefore  

 

 (2.12) 

 

Consider a cellular projectile with a backing mass of M is fired to a fixed wall at an 

initial velocity of  as shown in Figure 2.21 schematically. Applying mass and 

momentum conservations between crushed and uncrushed regions and the Newton’s 

second rule to the uncrushed section the following relations are obtained 

 

Mass conservation: Mass in=Mass out 

Mass in:  

       Mass out:  
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 (2.13) 

 

      

 Momentum conservation:  

 

 

 

 

 

 (2.14) 

 

Applying Newton’s second rule to the uncrushed section 

 

 

 

 

 

 (2.15) 

 

Inserting Equation 2.15 into Equation 2.14 gives, 

 

 (2.16) 
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The material completely densifies when  and   and . Then, using 

Equations 2.7 and 2.8, the critical velocity for densification is determined as 

 

 

 

 

 

 

 

 (2.17) 

 

where,  is the mass of the cellular material and M is the backing mass. When M=0, 

is infinity, implying that the cellular test specimen will not densify without backing 

mass in a Taylor-like impact test. The critical mass for the complete densification ( ) 

is calculated using and modifying Equation. 2.17 as 

  

 
(2.18) 

 

The time of the deformation (t) is calculated as 

 

 
(2.19) 

 

The final displacement or arrest distance ( ) of the sample is   

 



25 
 

 (2.20) 

 

 The arrest distance varies between 0 and . Note that inserting the full 

compaction of the sample,  , into Equation 2.20 results in an infinite time. 

This shows that the shock generated is arrested before it reaches the end of the sample.   

The arrest time ( ) is given as 

 

 (2.21) 
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 Consider a cellular projectile standing in front of a rigid wall is impacted with a 

projectile with a mass of M and an initial velocity of  as shown in Figure 2.22 

schematically. Applying mass and momentum conservations between crushed and 

uncrushed regions and the Newton’s second rule to the crushed section following 

relations are obtained. 

 

 

 

Mass conservation: Mass in=Mass out 

Mass in:  

Mass out:  

 

 

 

 (2.22) 

 

Momentum conservation:  

 

 

 

 

 (2.23) 

 

Applying Newton’s second rule to the crushed section 
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 (2.24) 

 

Inserting Equation 2.15 into Equation. 2.23 gives, 

 

 (2.25) 

  

The material completely densifies when  and   . Then, using Equations 

2.1 and 2.2, the critical velocity for densification is determined as, 

 

 (2.26) 

 

 (2.27) 

 

when M=0, is infinity gain.
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CHAPTER 3 

 

MATERIALS AND EXPERIMENTS 

 

3.1. Multi-Layered Corrugated Trapezoidal Zig-Zag Core Structure 

 
      The investigated multi-layered sandwich core structure was made of 1050 H14 

Al trapezoidal zig-zag corrugated layers (fins) as seen in Figure 3.1(a) and constructed 

using 15 zig-zag fin layers. The height, width, length and thickness of a fin are 

sequentially 3.20, 1.6, 2.4 and 0.170 mm (Figure 3.1(b)). The corrugated Al fin layers 

were produced by a local factory using a sheet-forming process in which the sheet metal 

is formed by the help of a press into a regular trapezoidal shape. Later, the fin layers 

were assembled by a brazing process. The brazing was performed in a furnace at 600 oC 

(10 min) using a 4343 Al filler (~7 wt%). The zig-zag form enhances the heat 

conduction between the fin layers in a multi-layered construction. The brazed multi-

layered corrugated sandwich panel shown in Figure 3.1(a) is 500x500x50 mm in size 

and assembled in 0/90 fin layer configuration. The face sheets, 1 mm thick 1050 H14 

sheet, prevent the mechanical damaging of the layers in brazing and subsequent 

machining operations.  

A cylindrical compression test sample 19.40 mm in diameter is shown in Figure 

3.2(a). These tests samples were extracted from the sandwich plate by means of an 

electro-discharge machine. The test samples had a height of 48 mm and a density of 326 

kg m-3 without face sheets. In the SHPB tests, the samples were tested without face 

sheets. In the direct impact tests in order to make a full contact between the sample and 

the bar, the samples had a face sheet on the incident bar side, while in the Taylor impact 

tests, the samples had a face sheet at the rear/back end.  The test sample shown in 

Figure 3.2(a) contains typical fin wall imperfections induced during brazing and cutting 

processes. The fin walls are slightly bent in as-received sandwich (white arrows in 

Figure 3.2(b)). During sample cutting, the fin walls at the outer surface are significantly 

bent (Figure 3.2(c)). These imperfections are likely to change the location of the layer 

collapse and crushing stress values. In order to simulate the effect of fin wall 

imperfection, as will be explained in the modelling section, a bending type imperfection 

was introduced to the fin layers. Second, the fin walls are thicker at the fin contact 



31 
 

points which were attributed to the filler accumulation at these sites (black arrows 

shown in Figures 3.2(b) and (c)). The thick contact points may affect the densification 

strain and also crushing stress values.  

 

 
Figure 3.1. (a) the multi-layered corrugated layer and core sandwich plate cross-section 

and (b) fin geometrical sizes 
 

 

Figure 3.2. (a) test sample 19.40 mm in diameter and 48 mm in length and (b) slightly    
bent fin walls (white arrows) and increased thickness near the 
contact/brazing region (black arrows) of the as-received sandwich and (c) 
the surface of core-drilled sample 
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3.2. Static and Dynamic Tests 
 

The quasi-static compression tests were performed at nominal strain rate of 10-1   

s-1. The tests at lower quasi-static strain rates however increased the simulation solution 

time substantially. A video extensometer synchronized with the Shimadzu Universal 

test machine was used to record the displacement of the sample. The compression test 

plates were lubricated using a thin layer of grease before each test. The sample 

deformation during a test was recorded with a video camera in order to determine the 

start and sequences of the layer crushing. 

 Three different dynamic tests were conducted. In the first test, the sample was 

directly compressed in a conventional compression SHPB between incident and 

transmitter bars. These tests are called SHPB tests. In the second type of dynamic test, 

the sample was inserted in front of the incident bar and the striker bar is directly 

impinged the corrugated test sample with an initial velocity. These tests are referred to 

as the direct impact tests. In the last group, the corrugated sample was directly impacted 

with an initial velocity to the end of the incident bar. These tests are called Taylor-like 

impact tests as they are very much similar to the Taylor impact tests. 

 

3.2.1. SHPB Tests 
 

The SHPB testing method was developed by Kolsky in 1948 to determine the 

high strain rate deformation behavior of metals [75]. The test is also known as the 

Kolsky’s Bar. Before Kolsky, Bertham Hopkinson [76] used a similar testing 

configuration in 1914 to measure the momentum trapped by the samples attached to a 

long bar, while Kolsky divided this long bar in two and inserted a cylindrical test 

sample in between the split bars, later known as incident and transmitter bars. This 

allowed him to directly measure stress, strain, and strain rate developed in the test 

sample. Although originally developed for metals, SHPB testing method has been 

determined one of the most convenient and easiest techniques of testing of metals, 

polymers, ceramics and composites at increasingly high strain rates between broadly 

500-5000 s-1. The strain rate may vary depending of the test material type. The 

principles of SHPB testing are based on uniaxial elastic wave propagation in long bars.  
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The schematic of SHPB testing, composing of three bars (striker, incident and 

transmitter), is shown in Figure 3.3. The specimen is sandwiched between the incident 

and transmitter bar. When the striker bar having an initial velocity of vo strikes another 

standing long bar (incident bar) having the same elastic modulus and diameter as the 

striker bar, a rectangular elastic compressive stress pulse is produced on the incident 

bar. The developed stress wave on the incident bar propagates along the bar; when it 

comes cross with the specimen interfaces, part of the wave is reflected as tensile wave 

into the incident bar and the rest is transmitted to the transmitter bar as a compressive 

wave.   The relative amounts of the reflected and transmitted stress waves are function 

of the mechanical impedance difference between the bars and the sample tested. The 

incident and reflected waves are measured by means of a same strain gage mounted on 

the incident bar, while the transmitted wave is measured with a separate strain gage 

mounted on the transmitter bar. Since the distance between the specimen and strain 

gage locations on the bars are the same (  in Figure 3.3), the starting points of the 

reflected and transmitted waves on the time axis are the same. This makes the data 

analysis for stress, strain and strain rate easy.  

 

 
Figure 3.3. The schematic of SHPB test 
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 The relative magnitude of the incident stress and strain is direct function of the 

striking bar velocity and the incident bar modulus ( ) and bar’s elastic wave velocity 

(c). The maximum stress ( ) and the maximum strain ( ) on the incident bar are  

                        

 

 (3.1) 

 

and 

 (3.2) 

 

 

As opposite to the theory, the experimental incident wave is not perfect rectangular in 

shape. The wave reaches the maximum stress/strain after a certain time called the rise 

time. The rise time is important in the testing brittle materials such as ceramics. The 

brittle materials fail during the rise time leading to the stress in-equilibrium (the sum of 

the incident and reflected waves is not equal to the transmitted wave) in the specimen. 

The increased rise time; however, results in a gradual loading of the test specimen and 

allows the specimen to establish stress equilibrium.  The stress on the incident bar also 

should not exceed the yield strength of the bar material, otherwise the stress propagation 

occurs plastically invalidating both the stress and strain calculations based on elastic 

wave propagation. Therefore, the selection of the bar material is of critical importance 

in order not to go beyond the yield strength of the bar material. The typical velocities of 

the striker bar in SHPB testing range 2-20 m s-1 and the specimen sizes 5-10 mm, 

corresponding to the strain rates ranging 200-4000 s-1. 

The displacements of the incident and transmitter bars u1 and u2 shown in 

Figure 3.3 is calculated using the following equations 

 

 (3.3) 

 

 

and 
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where  I, R and T refer to the incident, reflected and transmitted bars, respectively. The 

strain ( ) in the specimen is  

 

 (3.5) 

 

where, Ls  is the specimen length. The loads (P) on each interface, incident 

bar/specimen (1) and specimen/transmitter bar (2) are 

  

 (3.6) 

 

 (3.7) 

 

where, Ab  in the cross-section area of the bar. It is assumed that the wave propagation in 

a short sample may be neglected, so that P1=P2 .Therefore, Equation 3.5 is written as  

 

 (3.8) 

 

        Accordingly, the stress ) in the test specimen is  

 

 (3.9) 

 

where, As is the specimen area. In Equation 3.9, the first, second and third formulations 

are sequentially one, two and three-wave methods of specimen stress calculation. The 

specimen strain rate is calculated using the following relation 

 

 (3.10) 

 

 (3.4) 
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Before each test, the specimen size, length and diameter should be measured to 

calculate strain, strain rate and stress. In the experiments, the strain in the bars is 

calculated using the following relation 

 

 (3.11) 

 

where G, K, V and v were the strain gage conditioner gain, strain gage factor, excitation 

voltage of the strain gage bridge and Poisson’s ratio of the bar material, respectively. 

The above formulation is only valid for a ‘’Full-Bridge’’ strain gage circuit. Similarly 

the stress in the specimen is calculated using 

 

 (3.12) 

 

The SHPB apparatus used in the tests consisted of a 19.40 mm diameter Inconel 718 

bar; 3110 mm long incident bar, 2050 mm long-transmitter bar and 500 and 750 mm 

long striker bars (Figure 3.4).  The values G, K and V in a typical test were 20, 2.09 and 

10 V, respectively. The striker bar velocity in testing corrugated samples in the SHPB 

tests ranged between 6 and 10 m s-1. The sample deformation was captured by a 

Fastcam Photron high speed camera at 20,000 fps. 

 

 
Figure 3.4. The used SHPB apparatus
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3.2.2. Direct Impact Tests 
 

In the SHPB direct impact test, the test specimen is placed in front of incident 

bar and striker bar with an initial velocity impinge the specimen, deforming it until 

about large strains (Figures 3.5(a) and (b)).  The stress and strain analyses of the test in 

the direct impact test are based on the assumption of the stress equilibrium between 

incident-specimen and striker bar-specimen interfaces as the areas of the incident and 

striker bars are the same; σ2=σ1 (Figure 3.5(a)) [77]. Then, the strains on the bars, 

striker and incident bars, are equal to each other ε2=ε1, if the striker and incident bars 

are made of the same material. The strain in the specimen is 

 

 (3.13) 

 

where u2 and u1 was the displacement of the striker and incident bars, respectively. The 

strain in the incident bar is given as  

 (3.14) 

 

where . The displacement of the incident bar is 

 

 (3.15) 

 

Similarly, the displacement of the striker bar is 

 

 (3.16) 

 

Inserting Equation 3.15 and 3.16 into Equation 3.13 gives the specimen strain as  

 

 (3.17) 
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 Due to the stress equilibrium, Equation 3.17 can be written as  

 

 (3.18) 

 

By measuring the strain on the incident bar, the specimen’s strain as function of time 

can be calculated using Equation 3.18. The stress on the specimen is directly calculated 

using the strain on the incident bar.  In this case, the specimen stress is 

 

 (3.19) 

 

The strain rate is 

 

 (3.20) 

 

        The test specimen in the experiments was attached to the center of the incident bar using 

a lubricant which was strong enough to hold the specimen in front of the incident bar as 

seen in Figure 3.5(b). During the test, the stress on the incident bar was measured using 

two full-bridge strain-gage circuits; one was 300 mm and the other was 1110 mm away 

from impact end.   The former gage is coded as the front strain gage and the latter as the 

back strain gage (Figure 3.5(a)). The striker bar velocity was measured just before the 

impact of the striker bar to the test sample using two laser diodes placed at the exist of 

the gas gun barrel (Figure 3.5(b)). The velocity of the striker bar was altered by 

changing the SHPB gas gun pressure. At higher gas gun pressures, the velocity of the 

striker bar will be higher and vice versa. In the direct impact tests, the velocity of the 

striker bar ranged between 9 and 90 m s-1. The striker bars were made of different 

materials and lengths, while all the striker bars had the same diameter of 19.40 mm with 

the incident bar. The Inconel striker bar 250 mm-long was used for 9 m s-1 and 22 m s-1 

tests, aluminum striker bars of 200 and 100 mm long for 40 m s-1 and 60 m s-1 tests 

respectively. And a wood striker bar of 200 mm-long was used for 90 m s-1 test.  
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(a) 

 
(b) 

Figure 3.5. (a) the schematic of direct impact test and (b) the picture of experimental 
direct impact set-up 

 
3.2.3. SHPB Taylor-like Impact Tests 

 

In the Taylor-like impact tests, the corrugated sample was directly fired to end of 

the incident bar with a velocity as depicted in Figure 3.6. In this case, the stress in the 

specimen is 

 (3.21) 

 

and the strain of the specimen is 
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 (3.22) 

 

In the Taylor-like impact tests, the velocity of the specimen varied between 135 to 200 

m s-1. Similar to direct impact tests, the stress in the Taylor impact tests was measured 

by means of full-bridge strain gages mounted 300 and 1110 mm away from the impact 

end.  

 

 
Figure 3.6. Schematic of Taylor-like impact test 
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CHAPTER 4 

 

MODELLING 

 
4.1. Methodology 

 

The numerical model of quasi-static and dynamic testing of the layered 

corrugated core structure was composed of solid structure modeling, meshing, pre-

processing, and solution and verification of numerical results. Three dimensional tests 

models were developed in Solidworks CAD Software. The unit fin of the corrugated 

layer was created in CAD software and meshed with predefined finite elements. Then, 

the generated unit cell was transformed into the Hypermesh software. The meshed unit 

cell was duplicated to form a long chain of the cells in the long axis (x-axis). After that, 

the structure was duplicated in the transverse direction (y-axis) and moved in the 

direction of x-axis simultaneously to create zig-zag form. The full geometrical 

numerical models of the tests were developed in non-linear explicit FE code of LS-

Dyna. These models were then meshed and then exported to LS-PrePost software to 

define material properties, boundary conditions, contacts, test conditions, termination 

time and mass scaling for quasi-static loading. The solution was implemented in LS-

Dyna Solver.  

 

4.2. Numerical Models of Multi-layer Corrugated Sandwiches 
 

As stated earlier, the handling of the fin layers during brazing and then later in 

cutting with electro discharge machine unavoidably induced imperfections on the fin 

walls. Since the layers accommodated varying intensities of the imperfections, in the 

quasi-static compression testing of the corrugated samples, the crushing was observed 

to start in the weakest core layer and then proceeded non-sequentially. In order to 

simulate, the effect of fin wall imperfection on the crushing behavior and also on the 

crushing stress, a bending type imperfection 3.2 mm in length and 1.6 mm in radius 

determined from the micrographs of a machined sample (Figure 4.1(b)) was inserted 

into the fin layers. Four numerical models of the corrugated core samples were then 
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investigated. These are (1) perfect model I, (2) perfect model II, (3) one-layer imperfect 

model and (4) two layer imperfect model (Figure 4.2). In the perfect model I, all layers 

were constructed using the perfect unit cell fin (Figures 4.1(a) and 4.2(a)). In perfect 

model II, all fin layers were constructed using the bent unit cell as shown in Figures 

4.1(b) and 4.2(b)). In one layer imperfect model, only layer 10 (from top to bottom there 

are 15 layers) was constructed using the bent unit cells (black arrow in Figure 4.2(c)) 

and in two layer imperfect model, layer 2 and layer 10 were constructed using the bent 

unit cell (black arrows in Figure 4.2(d)). The perfect I, perfect II, one layer imperfect 

and two layer imperfect models consisted of 34942, 41921, 35116 and 33570 shell 

elements, respectively.  

 

 
Figure 4.1. Perfect and imperfect unit fin geometry 

 

 
Figure 4.2. (a) perfect model I, (b) perfect model II,  (c) one layer imperfect model and 

(d) two layer imperfect model 
 

The trapezoidal corrugated fin layers were meshed using Belytschko-Tsay shell 

elements (0.25x0.25 mm) with five integration points and 1050 Al face sheets were 
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modeled using the constant stress solid elements. The increased number of integration 

points in shell elements generally led to prolonged CPU calculation times. On the other 

side, in order to increase the accuracy of the models, the number of integration points 

should be higher than two when the buckling is the dominant deformation mode [78]. In 

addition, the FE meshes of the corrugated fin layers and face sheets had to coincide with 

each other in order to be able to define contacts. These naturally limit the use of 

arbitrary-defined mesh distribution and elements size.  

The 1050 Al aluminum alloy was modeled with MAT_RIGID and 

MAT_SIMPLIFIED_JOHNSON_COOK (Material type 98) material models, 

respectively.  The equivalent stress  in the Johnson and Cook (JC) flow stress 

model [79] is given as  

 

 (5.1) 

 

where  is the equivalent plastic strain, is the strain rate ratio given as  , where  

is the equivalent plastic strain rate, is the reference equivalent plastic strain rate, 

and  is the normalized temperature expressed as ; where T, Tr and Tm are 

the temperature, room temperature and melting temperature, respectively. Material type 

98 does not take into account temperature effect and further aluminum alloys have no or 

negligible strain rate dependent flow stress; therefore, only first bracket of Equation 5.1 

is taken into account. The material model parameters of 1050 H14 Al were determined 

previously as A=102 MPa, B=98 MPa and n=0.18 [80]. 

Figures 4.3(a) and (b) show the front and 3D view of the numerical model of 

quasi-static compression test set-up, respectively. The model consisted of the top and 

bottom compression test steel platen and sample. Each compression test platen was 

modeled using 38400 constant stress solid elements (Figure 4.3(b)).  The compression 

steel platens were modeled with MAT20_RIGID material model (E=210 GPa and

). In the model, the rotations and the movement of the compression platens were 

fully constrained, except the axial motion of the top platen in the z-direction. The axial 

velocity (z-direction) of the top platen was kept constant, the same as the experiments 

and defined by PRESCRIBED_MOTION_RIGID card. The contact between 

compression test platens and specimen was defined by AUTOMATIC_SURFACE_TO 

SURFACE contact. Since the total CPU time for the quasi-static test solutions were 



44 
 

relatively long [81], the mass scaling was applied in the quasi static simulations by 

defining a positive time step value in CONTROL_TIMESTEP card. The mass was 

added or removed from elements so that the time step of the elements was the same. In 

order to determine the mass scaling factor, the simulation was initially run without mass 

scaling and the determined time step without mass scaling was multiplied by 10, 100 

and 1000. It was found numerically that the kinetic energy change was substantially 

lower than the internal energy change when the mass scaling factor was 1000.   For 

quasi-static models, the contacts between core layers were 

ERODING_SINGLE_SURFACE contact algorithm. 

 

 
Figure 4.3. The numerical model of quasi-static compression test set-up 

 

The full numerical model of the SHPB test and the specimen bar interfaces are 

shown in Figures 4.4(a) and (b), respectively. The lengths of incident and transmitter 

bars were 3110 mm and 2050 mm, respectively. The Inconel 718 striker, incident and 

transmitter bars were modeled using 15 mm size elements. The incident and transmitter 

bar consisted of 28980 and 19180 constant stress solid elements, respectively. The 

number of constant stress elements of the striker bar varied with the length of the striker 

bar. The impact velocities in the SHPB models were 6 and 10 m s-1 as with the 

experiments. 

The full model direct impact test model and the specimen bar interfaces are 

shown in Figures 4.5(a) and (b), respectively. The Inconel incident bar was modeled 

using 15 mm size elements, while the striker bar was modeled using 5 mm size 

elements. The Inconel 250 mm-long striker bar model consisted of 12000 constant 

stress solid elements, while the aluminum striker bars of 100 mm-long consisted of 
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4800 and aluminum and wood striker bar of 200 mm-long consisted of 10080 constant 

stress solid elements. The impact velocities in direct impact test models were 9, 22, 40, 

60 and 90 m s-1 as with the experiments. 

The full Taylor impact test model and the specimen bar interfaces are shown in 

Figures 4.6(a) and (b), respectively.  The impact velocity was defined to the mass by 

VELOCITY_GENERATION card in LS-Dyna. The impact velocities in the numerical 

models varied between 135 to 200 m s-1. The contact between the bar and specimen was 

defined by AUTOMATIC_SURFACE_TO SURFACE contact. The contact between 

the layers of the corrugated sample and face sheets was defined by 

AUTOMATIC_SINGLE_SURFACE contact algorithm.  

 

 
Figure 4.4. (a) SHPB test model and (b) specimen bar interfaces 

 
Figure 4.5. (a) direct impact test model and (b) specimen bar interfaces 
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Figure 4.6. (a) Taylor impact test model and (b) specimen bar interfaces 

 

The Inconel 718 incident, transmitter and striker bars were modeled using 

MAT01_ELASTIC material model with E=207 GPa, =0.33 and =7850 kg m-3. The 

aluminum and wood striker bars were modeled using MAT01_ELASTIC material 

model; E=71.7 GPa, = 0.33, =2810 kg m-3 for aluminum and E=2.2 GPa, =0.33, 

=725 kg m-3 for wood [7]. The static and dynamic friction coefficients were set 

sequentially to 0.3 and 0.2 in all contact definitions, except SHPB impact testing. As the 

surfaces of the bars were lubricated with grease in the SHPB test, the static and dynamic 

friction coefficients were taken 0.2 and 0.1, respectively. The stresses on the transmitter 

and incident bar were calculated in the models at the same location with the strain gages 

in the experimental set-up. 



47 
 

CHAPTER 5 

 

RESULTS 
 

5.1. Quasi-Static Tests and Models 
 

The quasi-static stress-strain curves of the tested corrugated samples at 4.8x10-3 

m s-1 corresponding to the strain rate of 10-1 s-1 are shown in Figure 5.1. As similar with 

cellular metal structures such as aluminum foams and aluminum honeycombs, the tested 

1050 Al multi-layer corrugated structure shows three distinct deformation regions under 

compression. These are (i) elastic, (ii) plateau and (iii) densification region. At very low 

strains, the sample deforms elastically till about an initial peak or crushing stress in the 

elastic region. In the post-initial peak stress region, the stress oscillates between the 

peak and valley stresses, resulting from the collapse of layers individually or 

collectively until about a densification strain.  In the densification region, the stress 

values increase sharply as all-collapsed layers are compressed together. The initial peak 

stress at 4.8x10-3 m s-1 varies between 1.2 and 1.30 MPa with an average of 1.25 MPa 

(Figure 5.1). The means stress, ,  is determined at 0.4 strain and varies 

between 0.96 and 1 MPa with an average of 0.98 MPa. The densification strain at quasi-

static velocity is determined by the intercept method [40].  A tangent line is drawn to 

the densification part of the stress-strain curve and the intercept of this line with the 

mean crushing stress is taken as the densification strain. The densification strain by this 

method is found 0.67 as seen in Figure 5.1. The experimental densification strain is 

lower than the theoretically calculated densification strain based on an S-shape folding 

of fin walls. The complete compression of a S-shape folding of a fin layer having a 

height of 3.2 mm results in a final thickness of 0.7 mm, which will induce a final layer 

strain of 0.78 (3.2-0.7/3.2). Note that in this calculation it is assumed that all layers are 

folded through S-shape and fully compacted.  

Figures 5.2(a-d) show the stress-strain and mean stress-strain curves and the 

densification strain of the perfect model I, perfect model II, one layer imperfect model 

and two layer imperfect model, respectively. All models result in initial peak stresses 

higher than the tests; while, the perfect model exhibits the highest initial peak stress 
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(2.26 MPa) which is 1.8 times that of the test. The lowest initial peak stress is found in 

the two layer imperfect model as seen in Figure 5.2(d). The insertion of an imperfect 

layer reduces the initial peak stress, but the perfect model II which is made up all bent 

layers shows both reduced initial peak stress and mean stress (Figure 5.2(b)). As seen in 

Figures 5.2(a-d), all models show the same densification strain, 0.76, which is higher 

than that of the tests but near the theoretically calculated densification strain. Above 

results show that the perfect model II and imperfect models well approach the 

experimental initial peak stress, while the perfect model I shows well agreements with 

experimental mean stress. 

 

 
Figure 5.1. Quasi-static stress-strain and mean stress-strain curves and 

densification strain of 19.40 mm diameter sample at 4.8x10-3 m s-1 
 

The experimental and numerical pictures of the samples deformed until about 0, 

0.2, 0.4, 0.6 and 0.8 strains are shown in Figures 5.3(a-d), respectively.  The collapse in 

the test starts from one of the mid-section layers (shown by arrows in Figure 5.3(a)).The 

collapse then proceeds discretely by the crush of layers near the bottom and top sections 

(Figure 5.3(a)). As the layers continuously crush, the specimen starts to bend as early as 

0.2 strain as seen in Figure 5.3(a). In the perfect model I and perfect model II, following 

the elastic loading, the plastic collapse starts from the bottom and top section layers and 

continues progressively to the mid-section layers (Figures 5.3(b) and (c)). In the perfect 

model II (Figure 5.3(c)), the layers are inclined to the loading axis at 0.2 strain, resulting 

in specimen bending.  In the one layer imperfect model, the initial collapse starts at the 

10th layer (imperfect layer), then continues with the crush of upper layers.
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The deformation proceeds progressively but not sequentially to the mid-section 

layers. It is noted that the mid-section layers deform at the final stage of the deformation 

near the densification strain. Although layers are sheared in this model, no global 

bending of the specimen is observed. In the two layer imperfect model, the collapse 

starts again from the imperfect 10th and 2nd layers (Figure 5.3(d)). The further collapse 

occurs at the mid and top section layers.  The bottom section layers deform again at the 

later stages of the deformation. The bending of the specimen is seen at a strain of 0.4. 

The corrugated layers are also inclined to the loading axis caused by the bending of the 

specimen. The initial crushing stress, mean stress, densification strain and the layer 

crushing sequence of the tests and models are listed together in Table 5.1. 

 

Figure 5.2. The comparison of test and model stress-strain, mean stress-strain curves 
and densification strains: (a) perfect model I, (b) perfect model II, (c) one 
layer imperfect model and (d) two layer imperfect model 
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e 

     
 0 0.2 0.4 0.6 0.8 

Figure 5.3. Deformed pictures of 19.40 mm corrugated sample at various strains at 
4.8x10-3 s-1 (a) test, (b) perfect model I, (c) perfect model II and (c) 10th 
layer and (e) 2nd and 10th layer imperfect models (cont.) 

 

Table 5.1. The experimental and numerical initial crushing stress, mean stress, 
densification strain and the layer crushing sequence of the corrugated core at 
4.8x10-3 m s-1 

 

Property 
  

(MPa) 
   

(MPa) 

at 0.4 strain 

 Layer crushing 

sequence 

Test  1.25 0.98 0.67 9, 5,6 5, 11, 7,11,3-9 

Perfect model I 2.26 0.90 0.76 13,2,11,14,1,3,15,3,5,6 

Perfect model II 1.52 0.83 0.76 14,3,2,15,4 

One layer imperfect 

model 

1.61 0.86 0.76 10,2,8,12,14,4,6,9 

Two-layer imperfect 

model 

1.45 0.88 0.76 10,8,2,4,12,6,14 

 

5.2. Split Hopkinson Pressure Bar Tests and Models 
 

Split Hopkinson Pressure Bar tests were performed at two different velocities 

using 75 and 50 cm long Inconel striker bars. The velocity of the striker bar is 6 m s-1 

for 75 cm and 10 m s-1 for 50 cm long striker bar. The final attained strain and hence 

displacement of the specimen in a SHPB test is limited by the incident and transmitter 

bar lengths. The final attained strain in a single loading of the investigated corrugated 

core is very small, ~0.03. To induce larger strains in a single shut, the bar lengths should 

be very long. Anyway, the tests are able to show the initial crushing stresses. 
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Figures 5.4(a) and (b) show the representative experimental and model (two 

layer imperfect model) incident and transmitted stresses at 6 and 10 m s-1 as function of 

time, respectively.  The oscillations in the transmitted stress in the same figures are due 

to the noise of the data acquisition system measuring relatively small strains. 

Nevertheless, the stress variations are detectable during the course of deformation and 

the experimental stresses are also comparable with the model stresses. The model and 

experimental incident wave stresses are also very much similar despite the small 

differences between them, both reaching a maximum stress of 113 MPa at 6 m s-1 and 

197 MPa at 10 m s-1. The intricate stress profiles seen in Figures 5.4(a) and (b) are 

because of the stress wave reflections from the bar’s free ends, as well as the stress 

transmissions and reflections at/from the specimen-bar interfaces. The length of the 

incident bar is 3110 mm and the transmitter bar is 2050 mm. The strain gage location is 

1000 mm away from the incident bar-transmitter interface. Taking the wave velocity of 

the bar material 4930 m s-1 gives a time duration of 427 μs for the wave to reach the 

strain gage location. The stress of incident bar is seen starting nearly at 400 μs in 

Figures 5.4(a) and (b).   

 

 
(a) (b) 

Figure 5.4. The representative experimental and model (two layer impact model) SHPB 
incident and transmitted stresses as function of time at (a) 6 and (b) 10 m s-1 

 

In order to see wave propagation in the test duration, t-x diagram is drawn and 

shown in Figure 5.9. The locations of the strain gages are marked with the lines in the 

same graph. The full lines in the same graph are compressive, while dotted lines are the 

tensile stress waves. The numbered waves in Figure 5.5 correspond to the numbered 

waves in Figures 5.4(a) and (b). The first wave in Figure 5.5 is the incoming incident 
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compressive wave, which is reflected as tensile wave to the incident bar, number 2, and 

transmitted as compressive wave to the transmitter bar, number 3. The transmitted 

compressive wave returns back as tensile wave to the incident-transmitter bar interface, 

number 4. Since the tensile wave is a separating wave, it returns back from the 

specimen bar interface as a compressive wave, number 6 in Figure 5.9. Approximately 

at the same time, the tensile wave (number 2) on the incident bar returns back as 

compression wave to the incident bar, number 5, in the same figure. Since the specimen 

is not completely separated from the incident bar, this returned wave reloads the 

specimen transmitting a compressive wave (number 8) to transmitter bar and reflecting 

a tensile wave to the incident bar (number 7). This sequence of loading continues during 

a testing at least 30 times determined from the high speed camera records. Every ~1200 

μs the sample is compressed repeatedly with a duration of 325 μs following an elastic 

relaxation after each repeating loading (the difference between the starting times of first 

and second incident waves gives 1200 μs).  In Figure 5.4(a), each dotted rectangle 

shows the region of the specimen loading within recorded time domain of the 

deformation. The specimen is therefore two times loaded in Figure 5.4(a) and only one 

time is loaded in Figure 5.4(b). As the strain gages measure both incoming and going 

waves, the separation of these waves on the specimen is rather difficult; therefore, only 

the first loading will be used to determine stress-strain and stress-time profile of the 

tested specimens. There is also a time shift between the test and model waves as seen in 

Figures 5.4(a) and (b). The model stress values are extracted from an element at a 

distance from the incident-specimen/specimen-transmitter bar interfaces, nearly the 

same as the experiments. Since the size of the element used to collect the stress data in 

the model and strain gage in the tests is different, a small time shift unavoidably occurs 

between them. Furthermore, the specimen geometry and surface flatness in the model 

are perfect, while these are not perfect in the test specimen.  
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Figure 5.5. t-x diagram of the SHPB dynamic test 

 

The stress-strain and strain rate-strain curves of the tests at 6 and 10 m s-1 are 

shown sequentially in Figures 5.6(a) and (b) together with the quasi-static stress-strain 

curve. The stress, strain and strain rate in these curves, both in the tests and models, 

were calculated using the SHPB data reduction equations given in Chapter 3. The final 

strains attained in the first loading of the tests are relatively small, corresponding nearly 

to the initial peak stress strain values, ~0.03. But the SHPB stresses at both velocities 

are greater than that of quasi-static. The average initial peak stress (3 tests) is 1.49 MPa 

at 6 m s-1 and 1.65 for 10 m s-1. The strain rate at both velocities is also nearly constant 

and 115 and 185 s-1 at 6 and 10 m s-1 respectively. Figures 5.6(c) and (d) show the 

numerical stress-strain and strain rate-strain curves at 6 and 10 m s-1, respectively. The 

numerical stress-strain and strain rate-strain curves in Figures 5.6(c) and (d) were 

determined again using the SHPB data reduction equations. In the same figures, the 

experimental SHPB and quasi-static stress-strain curves are also shown for comparison. 

The used numerical models show almost the same strain rate-strain profiles at both 

velocities, while numerical strain rates are slightly higher than that of the test at 10 m s-1 

(Figure 5.6(d)). The numerical final attained strains are also slightly higher at both 

velocities. The maximum stress for each model is also shown in Figures 5.6(c) and (d). 

The maximum stresses are sequentially 2.35, 1.67, 1.80 and 1.66 MPa at 6 m s-1 and 

2.52, 1.88, 1.72 and 1.72 MPa at 10 m s-1 for perfect model I, perfect model II, one 

layer imperfect model and two layer impact model, respectively. It is noted that 

although the perfect models show increasing and flat stress-strain behavior, the 

imperfect models show decreasing stress values after the initial peak stress showing the 
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early strain localization in these models. The perfect model II and imperfect models also 

show comparable peak stress values with the tests, 1.49 and 1.65 MPa at 6 and 10 m s-1, 

respectively. The initial peak stress values are also seen to increase with increasing 

velocity from 6 to 10 m s-1.  The experimental and numerical deformation pictures of 

the corrugated sample at the end of first and second loadings are shown in Figures 

5.7(a) and (b) for 6 and 10 m s-1, respectively. In 6 m s-1 test, the strain localization in 

the tests just starts in layer 10 in the first loading and the localization in this layer 

continues in the second loading (Figure 5.7(a)). In the fourth loading, the strain 

localization is also seen in layer 7. The layer collapse in the SHPB tests is therefore not 

sequential as in the case of quasi-static test. 

In the first and second loading of the perfect models, sequentially layer 14 and 2 

for perfect model I and layer 13 and 3 for perfect model II (the layers near the incident 

and transmitter bar interfaces) rotate by shearing (Figure 5.7(a)). The shear induced 

rotations are more clearly seen in the second loading. In the imperfect models at 6 m s-1, 

the imperfect layer 10 collapses in the first loading, while layer 2 starts to collapse in 

the two layer imperfect model in the second loading. The layer collapse starts in layer 

12 in the first loading and continuous in the second loading at 10 m s-1 (Figure 5.7(b)). 

The collapse of layer 10 also starts in the second loading and well develops in the fourth 

loading. As similar with the test at 6 m s-1, the layer collapse is not sequential at this 

velocity. In the perfect models, the layer collapse proceeds with the rotation and 

shearing of the layers. In the perfect model I, collapse occurs in layer 12 and 3 and in 

the perfect model II in layer 14 and 2. Again, layer 10 and layer 2 collapse in the first 

and second loading of the imperfect models (Figure 5.7(b)). The models show clearly 

discrete stain localizations in the layers as similar with the tests. 
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0

1

2

3

4

5

0

40

80

120

160

200

0 0.01 0.02 0.03 0.04 0.05 0.06

test-1
test-2
quasi-static

St
re

ss
 (M

Pa
)

St
ra

in
 ra

te
 (s

-1
)

Strain

1.49 MPa (1.46, 1.47, 1.54)

115 s-1

6 m s-1

strain rate

stress

0

1

2

3

4

5

0

60

120

180

240

300

0 0.01 0.02 0.03 0.04 0.05 0.06

test-1
test-2
quasi-static

St
re

ss
 (M

Pa
)

St
ra

in
 ra

te
 (s

-1
)

Strain

stress

185 s-1

10 m s-1

1.65 MPa (1.72, 1.60, 1.64)

strain rate



56 
 

  
(c) (d) 

Figure 5.6. The experimental stress-strain and strain rate-strain curves of the SHPB tests 
at (a) 6 and (b) 10 m s-1 and the stress-strain and strain rate–strain curves of 
the SHPB models calculated using the SHPB data reduction equations (c) 6 
and (d) 10 m s-1 (cont.) 

 

 
(a) 

(b) 

Figure 5.7. Test and numerical deformation pictures of the corrugated sample at the end 
of first, second and third loading at (a) 6 and (b) 10 m s-1 
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Figures 5.8(a) and (b) show sequentially the perfect model I incident and 

transmitter bar stress profiles measured from the specimen interfaces and the ratio of 

incident bar stress to the transmitter bars stress as function of time at 6 and 10 m s-1. The 

time difference between the starting points of the incident bar interface and transmitter 

bar interface stress, 40 μs, shows simply the transit time of the sample. The ratio of 

incident bar stress to the transmitter bar stress is initially high then it reaches one at 780 

and 670 μs in 6 and 10 m s-1 test, respectively. The ratio near one shows essentially the 

stress equilibrium; the incident and transmitted stresses become nearly equal to each 

other. The similar stress equilibrium was also found in the perfect model II and in the 

imperfect models. The stress-strain curves of models determined from the specimen-bar 

interfaces at 6 and 10 m s-1 are shown in Figures 5.8(c) and (d), respectively. The 

stresses at the contacts were averaged and the strains were determined by the incident 

and transmitter bar displacements. This allowed to determine the stress and strain in the 

second and third loadings in the SHPB. The experimental stress-strain curves are also 

shown in the same figures. As is seen in Figures 5.8(c) and (d), the initial peak stress is 

reached in the first loading in all models. 
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(c) (d) 

 

Figure 5.8. The bar specimen interface incident and transmitted stresses and the stress 
ratio as function of time  at (a) 6 and (b) 10 m s-1 and the stress-strain 
curves of models determined from the specimen-bar interfaces at (c) 6 and 
(d) 10 m s-1 (cont.) 

 

5.3. Direct Impact Tests and Models 
  

 Direct impact tests were performed at 9, 22, 40, 60 and 90 m s-1 using Inconel, 

aluminum and wood striker bars. Figure 5.9(a) shows the front and back gage stress-

time curves of a single test at 9 m s-1 using Inconel striker bar. Since the front gage is 

300 mm and the back strain gage is 1810 mm away from the sample-incident bar 

interface, the front stress is shifted 60.8 μs (c= 4930 m s-1) and the back stress is shifted 

367 μs on the time axis to start the front and back strain gage stresses at the same time 

(0 μs). The distances between the end of the incident bar and strain gage locations are 

1000 and 2810 mm for the back and front gage, respectively. The back gage stress, by a 

simple calculation using the wave speed of Inconel bar, 4930 m s-1, starts to decrease 

and become tensile at 405.6 μs and the front gage stress starts to decrease at 1140 μs as 

the compressive stress wave is reflected from the free end of the incident bar. Because 

of the relatively low impedance of the corrugated sample, the reflected tensile wave 

returns back largely as the compressive wave to the incident bar at 1261 μs and the 

stress becomes again compressive. These calculated times based on Inconel bar wave 

velocity and distances between strain gage and bar ends perfectly match with the 
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front gage stress-time curves of three tests conducted at 9 m s-1. The stress-time profiles 

of three tests are very much similar and show the stress reductions due to the reflected 

wave from the incident bar end at 1140 μs as shown in the same figure. An average 

initial peak stress is determined to be 1.7 MPa (Figure 5.9(b)). The average initial peak 

stress determined in the direct impact test at 9 m s-1 is also very similar with the SHPB 

bar test at 10 m s-1, 1.65 MPa. Figure 5.9(c) shows the deformation pictures of the 

corrugated sample at the time intervals of 300 μs (the time at which striker bar hits the 

sample is taken zero). The layer crushing although starts from the impacted end as 

marked by an arrow at 300 μs, the crushing is not sequential and it switches to the 

layers near the impact and distal ends as marked with arrows at 900 and 1200 μs. At the 

later stages of the deformation the sample bends because of the crushing of near and far 

layers, as similar with the quasi-statically and dynamically (SHPB) tested samples.    

Figures 5.10(a), (b) and (c) show sequentially front gage stress-time graphs of 

three tests at 22, 40 and 60 m s-1. On the same graphs, the average initial peak stresses 

are also shown. The average initial peak stresses are 1.83, 1.95 and 2.23 for 22, 40 and 

60 m s-1 tests, respectively. The initial peak stress at 90 m s-1 is 2.17 MPa and shown in 

Figure 5.10(c). As is seen in Figures 5.10(a), (b) and (c), the tests are repeatable at all 

velocities; each test gives almost the same stress-time profile expect small variations 

between the stress values.  The sharply increased stress part of the curves corresponds to 

the complete crushing of layers and subsequent compaction of the crushed layers. As 

the velocity increases the compaction becomes faster, giving rise to early rise of the 

stress values.  Since the reflected wave from the end of the incident bar reaches the front 

strain gage at 1140 μs, the measured stress values, except 22 m s-1, are not affected by 

the reflected waves.  However, the effect of reflected wave is only effective at the later 

stages of the deformation near the compaction stage or rising part of the stress-time 

curve at 22 m s-1. Figure 5.10(d) shows the representative stress-time profiles at quasi-

static, 6, 22, 40, 60 and 90 m s-1. The time scale for the quasi-static test is shown in 

Figure 5.10(d) is taken as millisecond instead of microsecond to make comparison with 

the dynamic tests. The initial peak stress increases from 1.25 MPa at quasi-static to 2.23 

MPa at 60 m s-1, while the initial peak stress almost remains constant at 90 m s-1. 
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(a) (b) 

 
(c) 

Figure 5.9. (a) front and back gage stress-time curves of single test, (b) front gage 
stress-strain curves of three tests and (c) the deformed pictures of the 
corrugated sample tested at 9 m s-1 in the direct impact test (the numbers in 
the picture are in the time 
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(a) (b) 

(c) (d) 

Figure 5.10. Stress-time histories of the direct impact tests at (a) 22, (b) 40 and (c) 60 m 
s-1 and (d) stress-time histories from quasi-static to 80 m s-1 

        

Figures 5.11(a) and (b) show the experimental and the perfect model II and the 

two layer imperfect model front and back strain gage stresses at 22 m s-1, respectively. 

Although, the back strain gage stresses of the experiment and perfect model II are very 

much similar, the perfect model II front gage stress deviates from the experiment after 

600 μs and the numerical stress becomes tensile (Figure 5.11(a)). On the other side, 

both front and back strain gage stresses of the experiment and the two layer imperfect 

model show very similar trends at the same impact velocity shown in Figure 5.11(b). 
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The perfect model II and the two layer imperfect model numerical striker bar-sample 

and incident bar-sample contact stresses with the experimental front strain gage stress 

are shown sequentially in Figures 5.11(c) and (d). The time difference between the 

striker bar- and incident bar-sample contact stresses seen in Figures 5.11(c) and (d) 

corresponds to the wave transit time, 48 μs, for both models. Both models also show 

similar contact stresses, but the number of peak stress increase in the two layer impact 

model.  The contact stresses between the striker bar-sample and the incident bar-sample 

are also very much similar, showing almost no effect of inertia.  The experimental and 

perfect model II and two layer imperfect model deformed pictures of the corrugated 

sample at 22 m s-1 direct impact test are shown in Figure 5.12. Experimentally, the layer 

crushing starts from the impact end, then layer crushing switches into mid-sections and 

rear ends.  The layer crushing is progressive, but not sequential. This indicates that the 

deformation behavior is very much similar to that of the quasi-static deformation. The 

layer crushing in the perfect model II starts from the impact end, while the layers are 

crushed progressively.  The layer crushing in the two layer impact model starts from the 

imperfect layers and proceeds with non-sequential manner.  The numbers in Figure 5.12 

show the time in microsecond. The time at which the striker bar hits the corrugated 

sample is taken as zero. Therefore; there may be same delay between the experimental 

and numerical times as the numerical starting time was determined exactly while the 

experimental starting time was determined from the picture frames (     
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(c) (d) 

Figure 5.11. The experimental and numerical front and back strain gage stresses (a) 
perfect model II and (b) two layer imperfect model, and the experimental 
front gage stress and striker and incident bar contact stresses (c) perfect 
model II and (d) two layer imperfect model (cont.) 

 

 
Figure 5.12. Experimental and perfect model II and two layer imperfect model 

deformed pictures of the corrugated sample at 22 m s-1 direct impact 
test 
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Figures 5.13(a) and (b) show the experimental perfect model II and two layer 

imperfect model front and back strain gage stresses at 40 m s-1, respectively. Although 

the perfect model II shows similar stress-time profile with the test, the front gage stress 

values become tensile after 600 μs (Figure 5.13(a)).  The front and back strain gage 

stresses of two layer imperfect model are also very similar to those of the test (Figure 

5.13(b)). The perfect model II striker bar-sample contact stress is slightly higher than 

that of the incident bar-sample at the beginning of the deformation. The incident bar 

contact stress shows no stress oscillation as opposed to striker bar contact stress (Figure 

5.13(c)). The striker bar contact stress of two layer imperfect model is higher and shows 

larger magnitude of stress peaks than the incident bar contact stress as depicted in 

Figure 5.13(d). Although initially the layer crushing starts from the impacted end in the 

test, later the layer crushing switches to rear end and mid-sections, as similar with 22 m 

s-1 test. Again, the layer crushing in perfect model II starts from the impacted end in a 

sequential manner, while the layer crushing in two layer impact model starts from the 

impacted end and imperfect layers and proceeds with non-sequential manner.   

Figures 5.15(a-d) show the experimental, the perfect model I, perfect model II, 

one layer imperfect model and two layer imperfect model numerical front and back 

strain gage stresses at 60 m s-1, respectively.  It is noted in the same figures that the 

front and back strain gage experimental and numerical stresses are almost the same for 

all models, showing no effect of wave dispersion on the bars.   The perfect model I and 

the one layer imperfect model predict initial peak stresses higher than that of the 

experiment (Figures 5.15(a) and (c)), while the perfect model II and the two layer 

imperfect model approach the experimental initial peak stress. Figures 5.16(a-d) show  

the perfect model I, perfect model II, one layer imperfect model and two layer imperfect 

model numerical striker bar-sample and incident bar-sample contact stresses together 

with the experimental front strain gage stress, respectively. The striker bar contact 

stresses are higher than the incident bar contact stresses in all models, while both 

contact stresses approach to each other near the end of the deformation. The higher 

striker contact stress is however more pronounced in the perfect model II as seen in 

Figure 5.16(b). The experimental layer crushing as shown in Figure 5.17 starts from the 

impact end and proceeds almost sequentially until about 300 μs; then it switches to non-

sequential or diffusive mode. Numerically, the layer crushing also starts from the 

impact end as seen in Figure 5.17, while the deformation becomes non-sequential after 

300 μs in the perfect model I and after 100 μs in the one and two layer imperfect 
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models. The layer crushing is however sequential during the course of deformation in 

the perfect model II. 

 

(a) (b) 

 
(c) (d) 

Figure 5.13. The experimental and numerical front and back strain gage stresses (a) 
perfect model II and (b) two layer imperfect model, and the experimental 
front gage stress and striker and incident bar contact stresses (c) perfect 
model II and (d) two layer imperfect model 
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Figure 5.14. Experimental and perfect model II and two layer imperfect model 

deformed pictures of the corrugated sample at 40 m s-1 direct impact test 
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(c) (d) 

Figure 5.15. The experimentally and numerically measured front and back strain gage 
stresses and the  numerical front and back strain gage stresses  (a) perfect 
model I, (b) perfect model II, (c) one layer imperfect model and (d) two 
layer imperfect model (cont.) 
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(c) (d) 

Figure 5.16. The numerical stress-time profiles at the contacts between striker bar-
sample and sample-incident bar; (a) perfect model I, (b) perfect model II, 
(c) one layer imperfect model and (d) two layer imperfect model. (cont.) 
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the incident bar-sample contact stress (Figures 5.18(c) and (d)). Again, larger stress 

drops seen in Figure 5.18(d) is resulted from the collapse of imperfect layers. The 

experimental deformation of the corrugated sample at 90 m s-1 starts from the impact 

end and proceeds sequentially, showing shock formation as seen in Figure 5.19. The 

imperfect model deformation sequence shown in the same figure is very much similar 

with the experiment; layer crushing starts from the impact end and proceeds 

sequentially to the rear end of the specimen. While, the layer crushing in the two layer 

impact model starts from the impact end and it proceeds non-sequentially but in a 

diffusive mode as seen in Figure 5.19 

 

Figure 5.18. The experimental and numerical front and back strain gage stresses (a) 
perfect model II and (b) two layer imperfect model, and the experimental 
front gage stress and striker and incident bar contact stresses (c) perfect 
model II and (d) two layer imperfect model at 90 m s-1 direct impact test 
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Figure 5.19. Experimental and perfect model II and two layer imperfect model 
deformed pictures of the corrugated sample at 90 m s-1 direct impact test. 

 

5.4. Taylor Impact Tests and Models  
      

The Taylor-like impact tests were performed at 135, 150 and 200 m s-1. The 

stress was calculated using the SHPB equations in Chapter 3. The strain in the incident 

bar was measured from both front and back strain gages. In the simulations, the stress 

was determined from the element whose location was the same with the strain gages in 

the incident bar. The corrugated samples were impacted with a 1 mm thick Al backing 

face sheet at the rear end (distal end). 

 Figure 5.20(a) shows the back gage stress-time profile of two samples tested at 

135 m s-1. The tests show very similar stress-time profiles as seen in the same figure, 

drawing the repeatability of the tests. Figure 5.20(b) shows the stress-time profiles 

measured by the front and back gages. The stress-time profiles measured by front and 

back gages are also very similar at this velocity. Similarly, the tests performed at 150 m 

s-1 also show repeatable test results (Figure 5.20(c)) and similar front and back gage 

stresses (Figure 5.20(e)), while the front gage stress exhibits larger stress oscillations 

than the back gage stress (Figure 5.20(f)). The increased stress oscillations in the front 

gage stress are attributed to the release of the shear waves near the impact end, showing 
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3D stress wave propagation. Therefore, the stress-time profiles of the tests are compared 

with the numerical simulations using the back gage stress measurements.    

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5.20. The stress-time profiles at 135 m s-1 (a) two tests from back gages and (b) 
single test from front and back gages; 150 m s-1 (c) two tests from back 
gages and (d) single test from front and back gages; and 200 m s-1 (e) two 
tests from back gages and (f) single test from front and back gages 
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Figures 5.21(a) and (b) show the stress-time profiles at 3 different velocities 

measured from the back and front gages, respectively. As noted in the same figures, as 

the velocity increases the stress values increases. The stress waves reflected from the 

free end of the incident bar are also presented in the same figures. Figure 5.22 shows the 

deformation high speed camera pictures of the corrugated sample at a time interval of 

50 μs at 150 m s-1. The crushing of the sample in this figure starts from the impacted 

end and proceeds in a planar manner to the distal end of the sample, showing a shock 

wave formation. Similar shock wave progression at the impact end was recorded, for the 

tests performed at 135 and 200 m s-1 

 

  
(a) (b) 

Figure 5.21. The stress-time profiles of corrugated samples measured from (a) back and 
(b) front gages at different velocities 
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and numerical sample’s final deformed pictures are also shown for comparison. All 
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and half undeformed layer (Figure 5.24(a)).  The one layer imperfect model almost 

results in complete compaction of all layers (Figure 5.24(c)) and also large stress 

variations in the mid sections of stress-time profile.  The two layer imperfect model 

results in one undeformed layer, the last layer (Figure 5.24(d)). The perfect model I also 

results in only one undeformed layer, the last layer, same as the experiment. 

 
Figure 5.22. The deformation pictures of the corrugated sample tested at 150 m s-1 

showing shock deformation (time interval is 50 μs) 
 

Figures 5.25(a) and (b) show the perfect model I and perfect model II stress-time 

profiles of 150 m s-1, respectively.  In the same figures, the experimental and numerical 

final deformed pictures are also shown for comparison. Experimentally, all layers are 

almost completely crushed at 150 m s-1. The perfect model I results in one undeformed 

layer, while the perfect model two show almost complete layer crushing at the end of 

the deformation. Although at 200 m s-1 both models result in complete layer crushing, 

the perfect model I cannot predict the final densified region in the stress-time profile 

shown in Figure 5.25(c), while the perfect model II predicts the increase in the stress 

values near the end of the deformation as seen in Figure 5.25(d). The experimental and 

numerical final thicknesses of the tests are listed in Table 5.2. It is seen in this table, the 

experimental final thicknesses of the test samples are nearly approached by the perfect 

model II. 
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(a) (b) 

  
(c) (d) 

Figure 5.23. The stress vs time profiles corrugated samples tested at 135 m s-1 (a) 
perfect model I and (b) perfect model II, (c) one layer imperfect model 
and (d) two layer imperfect model 

 
Figure 5.24. The deformed pictures of the corrugated sample at 135 m s-1 (a) Perfect 

model I and (b) Perfect model II (c) one layer imperfect model and (d) 
two layer imperfect model (time interval is 100 μs) 
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(a) (b) 

  
(c) (d) 

Figure 5.25. The stress vs time profiles corrugated samples tested at 135 m s-1 (a) 
perfect model I and (b) perfect model II and at 200 m s-1 (c) perfect model 
I and (d) perfect model II 

 

 
Figure 5.26. The deformed pictures of the corrugated sample at 150 m s-1 (a) 

Perfect model I and (b) Perfect model II and at  200 m s-1 (c) Perfect 
model I and (d) Perfect model II (time interval is 100 μs) 
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Table 5.2. The experimental and numerical final thickness of the tested corrugated 
sample at different velocities 

Velocity 135 m s-1 150 m s-1 200 m s-1 

Experimental 

thickness (mm) 
14.78 11.16 8.97 

Perfect model I 

thickness (mm) 
16.20 14.9 9.0 

Perfect model II 

thickness (mm) 
13.7 11.5 8.8 
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CHAPTER 6 

 

DISCUSSION 

 
6.1. The Effect of Velocity on Crushing Behavior  

 
All quasi-static models exhibit higher initial peak stresses and densification 

strains, but lower valley and mean stresses than tests (Figures 5.2(a-d)).  The highest 

initial peak and mean stress are found in the perfect model I as it has geometrically the 

strongest structure. The insertion of imperfect layer(s) tends to decrease both initial 

peak and mean stress at the quasi-static velocity. Similar results of the reduced initial 

peak and post stress values with the insertion of imperfections were reported previously 

in testing metallic pyramidal truss and Nomex honeycomb core at quasi-static velocities 

[5, 32].  

The quasi-static layer strains and nominal strain and stress histories of the two 

layer imperfect model and perfect model II, representing perfect and imperfect models,  

are shown sequentially in Figures 5.2(a) and (b). The specimen’s top layer at which the 

cross-head compresses the specimen is numbered layer 1 and the bottom layer 15. The 

differences in the layer deformation behavior between the imperfect and perfect models 

are clearly seen in these graphs and the deformation sequence pictures shown in Figure 

5.3. The localized deformation in imperfect model starts earlier from one of the 

imperfect layers: in two layer imperfect model the crushing starts from layer 10 and/or 

layer 9 as seen in Figure 6.1(a) and Figure 5.3(e).  So-called two-stage layer crushing is 

also seen Figure 6.1(a). Initially layers are compressed until about 0.4 strain, then these 

crushed layers are further compressed until about the densification strain gradually. The 

layers crushing later stages of the deformation are directly compressed to near or above 

the densification strain. The concurrent crushing of two or more layers, which was also 

observed in the experiments, is clearly seen in Figure 6.1(a).  Initially all layers deform 

elastically and plastically in the perfect model II (see arrow in Figure 6.1(b)) until the 

strain localization occurs, likely due to the misalignments of the layers near the top and 

bottom of the specimen (Figure 5.3(c)). The initial crushing layers in perfect model II 

are localized at and near the specimen’s ends, layer 14, 3, 2 and 15. The layers crush 
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individually and more or less sequentially/gradually starting both from the top and 

bottom layers until about or slightly below the densification strain. The two-stage layer 

compression is also seen in the perfect models but only for few layers, while it is a 

dominant deformation mode in the imperfect models. As shown by arrows in Figures 

6.1(a) and (b), both imperfect and perfect models show increased stress values after 

0.76 strain, while the individual layer’s strains show great variability between each 

other at this nominal strain value. Since the layer crushing in quasi-static experiments 

starts from the mid-sections as seen in (Figure 5.3(a)), the quasi-static crushing response 

of test specimens are best represented by the imperfect models.   

 

(a) (b) 

Figure 6.1. Layer strain-time, strain-time and stress-time graphs of (a) two layer 
imperfect model and (b) perfect model II 

 

In order to determine whether the quasi-static compression properties of the 

tested structure are size dependent, the test specimens in 40 mm diameter having the 

same height with 19.40 mm diameter specimens were compression tested quasi-

statically at 0.0048 m s-1. The representative quasi-static velocity stress-strain curves of 

40 mm and 19.40 mm diameter specimens are shown together in Figure 6.2(a). 

Increasing specimen diameter as seen in the same graphs increases both the initial peak 

(from 1.25 MPa to 1.5 MPa) and the post-peak stress values without significantly 

affecting the valley stress values. At both diameters, the specimens show increasing 

post-peak and valley stresses as the strain increases, shown by the dotted lines in Figure 

6.2(a). This is likely due to the bending of the specimen during the course of 

deformation, resulted from the constraint of the compression test platens to the lateral 
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motion of specimen’s ends. In order to assess the effect of friction, 40 mm diameter 

samples were tested with a thick layer of lubricant (grease) deposited on the both 

bottom and top compression test platen’s surfaces. The surfaces of the platens were 

completely lubricated in way that the test specimen ends freely moved in lateral 

direction as the individual layers were compressed progressively. This provided a near-

axial loading of the specimen without inducing lateral constraint to the specimen.  With 

the use of excessive lubricant, the layers were observed to crush in a progressive mode 

(individual layers were crushed progressively but not necessarily sequentially). Figure 

5.2(b) shows the stress-strain curves of a 40 mm diameter specimen tested using 

excessive lubricant together with that 19.40 mm diameter specimen. In the stress-strain 

curve of the specimen tested with excessive lubrication, each stress peak following the 

initial stress peak corresponds to the completion of the crushing of individual layers. As 

seen in the same figure, total 13 layers crush in the test before the densification and the 

last two layers collapse in the densification region when all-crushed layers are 

compressed together. This observation was further confirmed by the camera records. 

Without end-constraint, the peak and valley stresses become almost equal to each other 

during the course of the deformation till densification as shown by the dotted lines in 

Figure 6.2(b). The average initial peak stress without end-constraint is 1.35 MPa and the 

mean stress is 0.96 MPa. The mean stress is found to be similar to that of 19.40 mm 

diameter sample, 0.96 MPa, as tabulated in Table 5.1. As the compression of the last 

two layers occurs in the densification region, a densification strain is calculated before 

the densification until about the completion of 9 layers as shown by an arrow in Figure 

6.2(b). The nominal strain at the completion of 9-layer crushing is 0.43, resulting a 

displacement of 20.7 mm and per layer displacement of 2.3 mm. The division of layer 

displacement with the height of the layer, 3.2 mm, gives an average densification strain 

of 0.72. This value of densification strain is lower than the numerical densification 

strain, 0.76, while it is higher than the experimentally determined densification strain, 

0.67. The differences in the crushing stress and densification strain between the test and 

numerical models at quasi-static velocity are simply attributed to the presence of 

imperfections in the test specimen.  Note that the filler material used in the brazing 

process is excluded in the model. The filler naturally increases the thickness of the fin 

sheet at the bottom and top shown by arrows in Figure 6.3(a). This may end up with an 

increased plateau stress and a reduced densification strain in the test specimen. The test 

specimens of tested corrugated structure actually contained 7wt% filler material and the 
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effect of filler material on the crushing will be investigated in another study. The 

machining as stated earlier induces damages/imperfections on the specimen’s outer 

surfaces as depicted in Figure 6.3(b).  While, as opposed to this, the imperfections are 

included as a specific layer or layers in the models. Also, note that the effect of 

machining induced surface imperfections on the stress is expected to be less in larger 

size specimens than in small size specimens due to lower surface area to volume ratio in 

larger size specimens. The higher initial peak and post-peak stress values in 40 mm 

diameter specimen are attributed to the reduced surface area to volume ratio.  

  
(a) (b) 

Figure 6.2. Layer strain-time, strain-time and stress-time graphs of (a) perfect model II 
and (b) two layer imperfect model 

 

  
(a) (b) 

Figure 6.3. (a) the side view picture of corrugate plate shown increased thickness at the 
brazing sections and (b) the pictures of 19.40 and 40 mm test specimens 
showing machining induced imperfection on the surface 
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6.2. Dynamic tests and models  
 

The experimental and numerical deformation sequences of the SHPB, direct 

impact and Taylor impact tested specimens at different velocities were given in detail in 

Chapter 5.   Based on these records of the deformation sequences, the tested corrugated 

structure is considered to exhibit three distinct, sequential deformation modes, both 

experimentally and numerically, at increasing velocities, as will be elaborated below.  

At relatively low velocities, between 0.0048 m s-1 and 22 m s-1, the crush bands 

(localized deformation) form randomly. At this velocity range, the layer crushing starts 

most likely from the weakest fin layer and progresses non-sequentially to the uncrushed 

layers/parts. Above deformation mode is seen at quasi-static velocity tests (Figure 5.3), 

in the SHPB tests at 6 and 10 m s-1 (Figure 5.7) and in the direct impact tests at 9 m s-1 

(Figure 5.9). The numerically calculated stresses at the impact and distal ends are 

almost the same and in equilibrium (Figure 5.8). This deformation mode is therefore 

referred as to “quasi-static homogenous mode” [57]. Similar homogenous deformation 

modes were previously identified in regular and irregular honeycomb structures as X-

shape shear bands [2], in Voronoi honeycombs [3], and in corrugated layered Al 

structure [11]. In the homogenous deformation mode as the layer crushing localizes in 

the mid-sections of the cylindrical test sample, the specimen bends during a test (Figure 

5.3(a)). The bending causes a non-axial loading of the specimen. Although specimen 

bending does not significantly affects the initial peak stress, it increases the peak 

stresses as the strain increases as explained before in this chapter. Similar specimen 

bending is also observed in the models.  The deformation mode between 22 and 60 m s-1 

is considered as the “transition mode” as the layer crushing is more concentrated at the 

impact end than at the distal end (Figures 5.12,  5.14 and 5.17).  The strain distribution 

in the crush band is wider or diffusive rather than confined in a narrow region. The 

strain in the crushed layers does not reach the densification strain [57]. At high 

velocities, at and above 90 m s-1, a shock mode occurs. In this mode, the sample crushes 

sequentially layer by layer starting from the impact end (Figures 5.19 and 5.22). The 

crushed layer strain in this mode reaches the densification strain.    

Alternative to the above analysis based on the camera records, the deformation 

modes are also investigated numerically by determining the layer strain histories of 

direct and Taylor impact test models.  Figures 6.4(a-d) show the layer strain, nominal 

strain, velocity and stress-time profiles of the two layer imperfect model at 22, 40, 60 
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and 90 m s-1, respectively. Although at the quasi-static velocity, the crushing starts from 

layer 10 and/or layer 9 (Figure 6.1(b)), the imperfect layer 2 near the impact end crushes 

simultaneously with layer 1, while the imperfect layer 10 crushes afterwards seen in 

Figure 6.4(a) at 22 m s-1. This shows the effect of inertia starting as early as 22 m s-1 

without significantly altering the deformation mode. However, as the velocity increases 

to 40 and 60 m s-1, the impact end layer 1 crushes before the imperfect layer 2 as seen in 

Figures 6.4(b) and (c). As compared with quasi-static layer strain profiles also seen in 

Figure 6.1(a), at these velocities, more and more layers collapse until the densification 

strain sharply rather than collapsing gradually until the densification strain. A near 

sequential layer crushing is found at 90 m s-1 as seen in Figure 6.4(d), except the 

imperfect layer 10 and layers near it crushes  non-sequentially.  As opposite, the layer 

crushing in the perfect model II becomes almost sequential at 60 m s-1, Figure 6.5(c), 

and completely sequential at 90 m s-1, Figure 6.5(d). This is well accord with the 

experimental observation; the sequential crushing starts nearly at 90 m s-1 (Figure 5.19). 

A layer densification strain is determined by measuring peak strain values of the first 

three crushed layers. As shown in Figures 6.5(c) and (d), the densification strains for the 

perfect model II are 0.67 and 0.72 at 60 and 90 m s-1 respectively. 

       At 135 and 150 m s-1 velocity, the layer crushing becomes sequential in the two 

layer imperfect model, except layer 10 and layer 9 crush together until strains higher 

than the densification strains (Figures 6.6(a-b)). But, the layer crushing becomes 

perfectly sequential at 200 m s-1 in the two layer imperfect model (Figures 6.6(c)) and at 

all velocities in the perfect model II (Figures 6.7(a-c)). As seen in Figures 6.6(a-c) and 

Figures 6.7(a-c), the final deformed shapes of both models are similar except in two 

layer impact model the sides of deformed sample is not planar at 135 and 150 m s-1. 

Both models however end up with the same densification strains (as written in the 

figures and determined from crushed first 3 layers since the velocity decreases with 

time). The numerical densification strains are 0.81 at 135 m s-1 (Figures 6.6(a) and 

6.7(a)), 0.84 at 150 m s-1 (Figures 6.6(b) and 6.7(b)) and 0.88 at 200 m s-1 shown in 

Figure 6.6(c) and Figure 6.7(c). The numerical densification strain increases with 

increasing impact velocity from 0.72 at 90 m s-1 to 0.88 at 200 m s-1.   It is noted in the 

same graphs, the layer peak strains decrease as the time increases. This is due to the 

reduced velocity of the crushing corrugated sample with time. Although, imperfect and 

perfect models exhibit the same densification strain, the perfect model II results in 

higher final deformation strains than the two layer imperfect model.
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       Sequentially, the final strains are 0.73, 0.76 and 0.85 for the two layer impact 

model and 0.75, 0.79 and 0.88 for the perfect model II at 135, 150 and 200 m s-1, 

respectively. Since the perfect model II is a geometrically soft model caused by the bent 

walls, it naturally deforms until about larger strains. 

 

 

  
(a) (b) 

(c) (d) 

Figure 6.4. Layer strain-time, strain-time and stress-time graphs of two layer imperfect 
model at (a) 22, (b) 40, (c) 60 and (d) 90 m s-1 
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(a) (b) 

(c) (d) 

Figure 6.5. Layer strain-time, strain-time and stress-time graphs of perfect model II at 
(a) 22, (b) 40, (c) 60 and (d) 90 m s-1 
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(c)  

Figure 6.6. Layer strain-time, strain-time and stress-time graphs of two layer imperfect 
model at (a) 135, (b) 150 and (c) 200  m s-1 (cont.)  
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(c)  

Figure 6.7. Layer strain-time, strain-time and stress-time graphs of perfect model II at 
(a) 135, (b) 150 and (c) 200 m s-1 
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6.3. Critical Velocity for Shock 
 

The following equation was proposed to calculate the critical velocity for the 

shock formation by considering all the internal energy was due to the loss of the kinetic 

energy [12] 

 

 (6.1) 

 

       Taking  as the mean stress, 0.96 MPa, 326 kg m-3 and 0.72, the critical 

velocity is calculated ~65 m s-1. When  is taken as 0.84 MPa for the perfect model II, 

the critical velocity approaches 60 m s-1. These velocities are well accord with the 

experimentally and numerically determined critical velocities for shock formation. 

Experimentally, it is seen a complete sequential crushing at 90 m s-1 and the perfect 

model II results in near sequential and complete sequential crushing at 60 and 90 m s-1, 

respectively. 

 

6.4. The Effect of Imperfect Layer on the Shock Stresses  
 

The effect of the insertion of imperfect layer at the quasi-static velocity is seen 

in Figures 5.2(a, c and d) and in Table 5.1. The imperfect layers change the location of 

initial crushing layer. As tabulated in Table 5.1, the initial layer crushing starts from 

layer 9 in the perfect model I, while it switches to imperfect layer 10 in the one and two 

layer imperfect model. The imperfect layers; however, do not affect the densification 

strain. Since the crushing initiates from the imperfect layer, the initial peak stress 

decreases in the imperfect models.  The mean crushing stress also declines with the 

insertion of the imperfect layer since the imperfect layers also alters the stress 

distribution on the neighboring layers.  It is noted in Table 5.1 that the perfect model II 

and the two layer imperfect model result in similar initial crushing stress (1.52 and 1.48 

MPa) and mean stress (0.83 and 0.84 MPa). The perfect model II can also be considered 

as the full imperfect model. This implies that the stress of the imperfect model 

approaches to the perfect model II (full imperfect layer model) after inserting two 

imperfect layers. The similar effect is also seen in the SHPB test models. For example at 

6 m s-1, the perfect model I gives an initial peak stress of 2.35 MPa, the one layer 
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imperfect model 1.80 MPa and the two layer  imperfect model 1.66 MPa. Again, the 

perfect model II and two layer imperfect model result in similar crushing stress, 1.66 

and 1.67 MPa. 

           In the transition regime between 22 and 60 m s-1, the effect of imperfect layer is 

shown in Figure 5.17. In this figure, the layer crushing sequences of four models are 

shown at various deformation times. For the perfect model I and the imperfect models; 

although, the deformation initially localizes near the impact end till 200 μs and although 

the layer crushing is still localized near the impact end in the perfect model I at 300 μs, 

the layer crushing in the imperfect models at 300 μs switches to homogeneous mode 

near the initially crushed impact end layers. Figures 6.8(a-d) show the striker bar-

specimen and specimen-incident bar contact stress for the perfect model I,  perfect 

model II, one layer imperfect model and two layer imperfect model, respectively. In the 

same graphs, the ratio of specimen-incident contact stress to the striker bar-specimen 

contact stress is also shown. When this ratio equals to 1, the deformation is considered 

to be homogenous. When, it is greater than 1, then the incident bar contact stress is 

greater than the striker bar contact stress and when it is less than 1, then vice versa. It is 

noted in Figures 6.8(a-d), as the ratio is less than 1 throughout the deformation before 

densification, the perfect model II clearly displays an inertia effect, while in the other 

models, the ratio fluctuates around 1. The deformation is therefore at this velocity 

somewhat in the transition stage for the perfect model I and imperfect models, while it 

switches to a shock mode in the perfect model II. When the velocity increases to 90 m  

s-1 , all models show inertia effect and the stress ratio is less than 1 (Figure 5.18).  
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(c) (d) 

Figure 6.8. Striker-sample and sample-incident bar contact stresses –time and incident 
bar striker bar constant stress ratio at 60 m s-1 for (a) perfect model I, (b) 
perfect model II, (c) one layer imperfect model and (d) two layer imperfect 
model (cont.) 

        

In the shock mode velocity range, the effect of imperfect layer on the shock 

stress is shown in Figure 6.9(a). The insertion of imperfect layer does not affect the 

initial peak stress until about the imperfect layer starts to crush. Note that the imperfect 

layer crushing is marked by the circles in Figure 6.9(a) for the one and two layer 

imperfect models. The circle A corresponds to layer 2 crushing and the circle B to the 

layer 10 crushing. As is seen in the same figure, in the event of the imperfect layer 
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Figures 6.9(b), (c) and (d) at 135, 150 and 200 m s-1, respectively. The perfect model I 
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these crushed layers are compressed together in the densification region. As stated in 

Chapter 2, when the backing mass equals to 0, the critical velocity for the densification 

is infinity. Since the test samples in the present study were fired with a thin face sheet 
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was calculated using Equation 2.17, with the following material parameters: =0.96 

and 2 MPa and =0.88 and 0.77. The critical velocity is found between 100 m s-1 and 

165 m s-1. The absence of a densification region at the end of the deformation at 135 

and 150 m s-1 is simply due to the reduction of the velocity of the impacted specimen as 

it consumes its kinetic energy. While at 200 m s-1, the velocity of the specimen is 

sufficient for all layers completely crushed and for the densification. 

(a) (b) 

 

(c) (d) 

Figure 6.9. Stress-time curves (a) Perfect model I and imperfect models and (b) Perfect 
model I and II at 135 m s-1 and stress time curves of perfect model I and II at 
(c) 150 m s-1 and (d) 200 m s-1 
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6.5. The Effect of Velocity on the Crushing Stress and R-P-P-L Model 
Prediction   

 

Figure 6.10(a) shows the experimental distal end stress-strain curves of quasi-

static and direct impact tests until 90 m s-1. As seen in the same figure, the initial peak 

stress increases as the velocity increases. This is a clear indication of the micro-inertia 

effect and the tested corrugated structure shows a Type II behavior [65, 71]. The 

variations of experimental and perfect model distal end peak stress with velocity and the 

perfect model’s densification strain with velocity are shown in Figure 6.10(b). For the 

model and experiments, the distal end stress increases until about 60 m s-1 from 1.35 

MPa at quasi-static velocity to 2 MPa at 60 m s-1 , then it saturates at 2.15 MPa 

experimentally and ~2 MPa numerically. Figures 6.10(c) and (d) show the perfect 

model II contact stresses of striker-specimen and specimen-incident bar interface at 60 

and 90 m s-1, respectively. At both velocities, the specimen-bar contact stress is about 2 

MPa and as time passes it decreases to a plateau stress of 1.5 MPa and 1.8 MPa for 60 

and 90 m s-1, respectively.  The densification strain in Figure 6.10(b) is fitted with a 

power-law relation  

 (6.2) 

           

 In Figures 6.10(c) and (d), the r-p-p-l predicted stress-time profiles using Equation 2.16 

and quasi-static plateau stress  (0.96 MPa) and densification strain (0.72) are also shown 

for 60 and 90 m s-1, respectively. Using the quasi-static plateau stress, the r-p-p-l model 

predicts lower crushing stress at both velocities than the perfect model II as depicted in 

Figures 6.10(c) and (d). On the other side, the use of dynamic plateau stress of 1.65 and 

1.8 MPa at 60 and 90 m s-1 results in r-p-p-l model stresses which are very similar with 

those of the perfect model II. The r-p-p-l model based on the dynamic plateau stress 

also gives very similar velocity-time profiles with the model as seen in Figure 6.10(d).   
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(a) (b) 

  
(c) (d) 

Figure 6.10. The experimental front gage stress-time histories of direct impact test, (b) 
the variation of perfect model II and experimental distal end peak stress 
with time and perfect model densification strain with time and (c) the r-p-
p-l model fitting with quasi-static and varying parameters at 60 m s-1 

 

 The dynamic plateau stresses, , at 135, 150 and 200 m s-1 is determined ~2 

MPa from above analysis. Inserting Equation 6.2 and dynamic crushing stress into 

Equation 2.10 gives the variation of r-p-p-l model stress with time in the Taylor impact 

tests as 

 (6.3) 

 

       Figures 6.11(a), (b) and (c) show the r-p-p-l model stress–strain and velocity-

strain profile prediction for 135, 150 and 200 m s-1, respectively. In the same figures, 
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the r-p-p-l model stress–strain and velocity-strain prediction using quasi-static plateau 

stress and densification strain and quasi-static plateau stress and numerically determined 

densification strain at that specific velocity are also shown. The resultant curves are also 

compared with the perfect model II stress-time and velocity-time graphs in the same 

graphs. As seen in Figures 6.11(a) and (b), the use of quasi-static plateau stress and 

densification strain and the quasi-static plateau stress and numerical densification strain 

in the r-p-p-l model results in higher velocities than the perfect model at 135 and 150 m 

s-1 and a full densification case (velocity is higher than zero).  While, in the r-p-p-l 

model based Equation 6.3, the modified model, the velocity attains to zero at the end of 

the deformation at both 135 and 150 m s-1, agreeing with the perfect model II and the 

experiments (Figures 5.23(b) and 5.25(b)). When the velocity increases to 200 m s-1, all 

r-p-p-l model predictions result in full densification (velocity does not attain to zero).  

However, the modified r-p-p-l model shows a velocity-strain profile that perfectly 

matches with the perfect model II until about large strains.  Furthermore, the r-p-p-l 

modified r-p-p-l model gives a stress-time profile which nearly predicts the reduction of 

the stress near end of the deformation as seen in Figures 6.11(a-c). Both, the perfect 

model and the r-p-p-l model exhibit the increase in crushing stress with the velocity and 

also increased densification strain as seen in Figure 6.11(d).  
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(c) (d) 

Figure 6.11. (a) The perfect model II distal end stress-strain curves of direct impact tests 
until 90 m s-1 and r-p-p-l prediction of stress-time profiles at (b) 90 and (c) 
60 m s-1 and (c) comparison r-p-p-l velocity-time profile with simulation 
velocity-time profile with simulation velocity-time profiles. (cont.) 

 

In order to compare the peak pressures predicted by the r-p-p-l model, 

experiments and the perfect and imperfect models, the mean crushing stresses (plateau 

stress) of the experiments and models were determined.  Since the impacted end layer is 

a free layer, the first initial peak stress is excluded in the determination of initial peak 

stress and plateau stress. Figure 6.12(a) shows the experimental stress-time graph at 150 

m s-1 together with the plateau stress, initial peak stress and valley stress. As seen in the 

same figure the second peak is taken as the initial peak stress and the following stress-

drop as the initial valley stress. The plateau stress is determined at the flat part of the 

mean stress corresponding to the collapse of three layers after the first layer. The 

variation of the experimental impact end initial peak and valley and plateau stress and 

distal end stress with the impact velocity are seen in Figure 6.12(b).  In the same figure, 

the classical r-p-p-l (quasi-static plateau stress and densification strain) and modified 

(dynamic plateau stress and densification strain) model predictions of the impact stress 

are shown. Although, both classical and modified model stress predictions are higher 

than experimental plateau stress, both model predict very much similar crushing stress 

at relatively low velocities, while the classical model predicts a crushing stress very 

much higher than the experimental and modified model crushing stress at 200 m s-1. The 

modified model crushing stress however shows perfect agreement with the perfect 

model II and two layer imperfect model crushing stress as depicted in Figure 6.12(c).  
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(a) (b) 

 
(c)  

Figure 6.12. (a) the experimental stress-time graph at 150 m s-1 (b) the classical r-p-p-l 
and modified model predictions of the impact stress for experimental 
results and (c)  the classical r-p-p-l and modified model predictions of the 
impact stress for numerical results 
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CHAPTER 7 

CONCLUSIONS 

The compression impact deformation of a layered 1050 H14 aluminum 

corrugated sandwich structure were determined both experimentally and under low, 

intermediate and high velocities to investigate the validity of the perfect and imperfect 

models as function velocity and layer crushing profiles of the samples. The investigated 

sandwich corrugate core structure was made of multilayer corrugated layers (fins).  The 

quasi-static compression test was performed at ~5x10-3 s-1, the Split Hopkinson Pressure 

Bar (SHPB) tests between 6 and 10 m s-1, direct impact tests between 9 and 90 m s-1 and 

Taylor-like impact tests at 135, 150 and 200 m s-1. Three-dimensional finite element 

model of the tested specimens were developed using the LS-DYNA. The stress-time 

histories of the tests were verified by the simulations in the explicit finite element code 

of LS-DYNA. The perfect geometry model was coded as the perfect model I, fully bent 

fin wall model coded as the perfect model II, the model with the one layer bent fin 

coded as one layer imperfect model and the model with two layers of ben fin layers 

coded as the two layer imperfect model.  

The localized deformation in quasi-static imperfect models started earlier from 

one of the imperfect layers and the layers initially compressed until about 0.4 strain 

were then compressed until about the densification strain gradually. The concurrent 

crushing of two or more layers observed in the experiments was also detected in the 

imperfect models. The localized deformation in the quasi-static perfect models; 

however, started at and near the specimen ends layers with the misalignments of the 

layers near the top and bottom of the specimen.  Since the layer crushing in quasi-static 

experiments started from the mid-section layers of the weakest, the quasi-static crushing 

response of the tested structure was best approached by the imperfect models.   

At increasing velocities from quasi-static velocity to 200 m s-1, the tested 

corrugated structure showed three deformation modes. Between 0.0048 and 22 m s-1 the 

deformation was quasi-static homogenous mode featured by the crushing bands formed 

randomly starting from the weakest fin layer and proceeded non-sequentially to 

uncrushed layers. The deformation mode between 22 and 60 m s-1 was a transition mode 
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in which the layer crushing was concentrated at the impact end and the strain in the 

crushed layer was wider and did not reach the densification strain. Above 90 m s-1, the 

deformation mode was a shock mode and the sample crushed sequentially layer by layer 

starting from the impact end and the crushed layer strain reached the densification 

strain.  These observations were made based on the high speed camera records and 

model layer strain profiles.  

The critical velocity for the shock formation calculated based on all the internal 

energy due to the loss of the kinetic energy, ~65 m s-1, was well accord with the 

experimentally and numerically determined critical velocity for the shock formation. 

Experimentally a complete sequential crushing occurred at 90 m s-1 and perfect model II 

resulted in near sequential and complete sequential crushing at 60 and 90 m s-1, 

respectively.  

The imperfect models one and two layer imperfect models, predicted the stress-

time profile and layer deformation of the homogeneous and transition modes, while the 

imperfect and perfect models both approximated the stress-time profile and layer 

deformation of the shock mode. At high velocities, the layer crushing started from the 

impact end regardless the perfect of imperfect model used.   Therefore, perfect and 

imperfect models resulted in similar initial stresses when the imperfect layer was 

located not at the front.  

Layer strain profiles showed that as the velocity increased, the crushed layer 

densification strain increased. The numerical models of direct impact and direct impact 

experiments clearly showed that distal end crushing stress increased with increasing 

velocity. The increase of the stress within the homogeneous and transient mode 

velocities was ascribed to the micro-inertia effect and the tested corrugated structure 

showed a Type II behavior. 

The critical velocity for the densification was calculated based on the varying 

plateau and densification strain. The critical velocity for the densification velocity was 

found between 100 m s-1 and 165 m s-1, which was well accord with the experiments.  

The r-p-p-l model stress–strain and velocity-strain prediction using quasi-static 

plateau stress and densification strain and quasi-static plateau stress and numerically 

determined densification strain at that specific velocity resulted higher velocities and 

full densification, while the r-p-p-l model based on varying plateau stress and 

densification strain well predicted stress-strain and velocity strain profiles in the shock 

mode.
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