
A SYSTEMATIC EVALUATION OF SEMANTIC
REPRESENTATIONS IN NATURAL LANGUAGE

PROCESSING

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Özge SEVGİLİ ERGÜVEN

July 2018
İZMİR

We approve the thesis of Özge SEVGİLİ ERGÜVEN

Examining Committee Members:

Dr. Mutlu BEYAZIT
Department of Computer Engineering, Yaşar University

Dr. Nesli ERDOĞMUŞ
Department of Computer Engineering, İzmir Institute of Technology

Dr. Selma TEKİR
Department of Computer Engineering, İzmir Institute of Technology

5 July 2018

Dr. Selma TEKİR
Department of Computer Engineering
İzmir Institute of Technology

Assoc. Prof. Dr. Yusuf Murat ERTEN Prof. Dr. Aysun SOFUOĞLU
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

ACKNOWLEDGMENTS

I would like to express sincere appreciation to my supervisor, Selma TEKİR who

has encouraged me since my undergraduate studies. I am grateful for her respect for my

individual opinions, her motivation, continuous support, and patience during this thesis.

I would like to express my infinite gratitude to my parents and brother for their un-

conditional love, unlimited patience, understanding and support without any expectations

during this thesis and all my life.

Finally, I would like to state my special thanks to my husband for his endless

support mentally and technically, love, motivation, patience, and especially for his under-

standing.

I dedicated this thesis work to my beloved family and husband.

ABSTRACT

A SYSTEMATIC EVALUATION OF SEMANTIC REPRESENTATIONS IN
NATURAL LANGUAGE PROCESSING

In the studies of semantics, the main aim is to address meaning. In a computa-

tional manner, this goal is accomplished through the encoding of language constructs.

These encodings are in the form of information-theoretic measures and vector represen-

tations. We have focused on the representation of words. In word representations, the

earlier approaches depend on counting the statistics between word and its accompanied

words, whereas the current methods are based on learning approaches. At this point, we

have investigated the relation between these two approaches. We have realized that both

approaches use context as the normalization factor. We support our idea by evaluating

word representations on some Natural Language Processing (NLP) tasks. Furthermore,

we have studied the polysemous words which carry more than one meaning. The word

representation of the polysemous word provides a representation that covers more than

one meaning. To overcome this issue, we provide a method to create a representation for

each sense of polysemous word.

iv

ÖZET

DOĞAL DİL İŞLEMEDE SEMANTİK GÖSTERİMLERİN SİSTEMATİK
DEĞERLENDİRİLMESİ

Semantik çalışmalarında, temel amaç anlamı ele almaktır. Hesaplamalı yöntemlerde,

bu hedef dil yapılarının kodlanması ile gerçekleştirilir. Bu kodlamalar istatistiksel ölçütler

ve vektör gösterimleri şeklindedir. Çalışmada kelime gösterimleri üzerine odaklanılmıştır.

Kelime gösterimlerinde, önceki çalışmalar kelime ve onun eşlik ettiği kelimeler arasındaki

istatistiklerin sayılmasına dayanırken, mevcut yöntemler öğrenme tabanlıdır. Tezde bu iki

yaklaşım arasındaki ilişki araştırılmıştır. Her iki yaklaşımın da bağlamı normalleştirme

faktörü olarak kullandığı görülmüştür. Bu fikir, kelime gösterimlerinin bazı Doğal Dil

İşleme problemlerinde değerlendirilmesi ile desteklenmiştir. Ayrıca, birden fazla anlam

taşıyan çok-anlamlı kelimeler üzerine çalışılmıştır. Çok-anlamlı bir kelimenin kelime

gösterimi, birden fazla anlamını kapsamaktadır. Bu sorunu aşmak için, çok-anlamlı keli-

menin her bir anlamı için ayrı bir gösterim sağlayan bir yöntem geliştirilmiştir.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xii

CHAPTER 1. INTRODUCTION . 1

1.1. Contributions of Thesis . 2

1.2. Organization of Thesis . 3

CHAPTER 2. SEMANTIC REPRESENTATIONS . 4

2.1. Word Representations . 4

2.1.1. Information-Theoretic Approaches . 5

2.1.1.1. Co-occurrence values . 5

2.1.1.2. Pointwise Mutual Information (PMI) values 6

2.1.2. Word Embeddings . 7

2.1.2.1. One Hot Vectors . 7

2.1.2.2. Co-occurrence Vectors . 8

2.1.2.3. PMI Vectors . 9

2.1.2.4. Singular Value Decomposition Based Vectors 9

2.1.2.5. Learning Based Approaches . 10

2.2. Sense Representations . 16

2.2.1. Word Sense Disambiguation . 16

2.2.1.1. Formalization of WSD . 17

2.2.1.2. Solution Approaches . 18

2.2.2. Sense Embeddings . 20

CHAPTER 3. RELATED WORK . 22

3.1. Semantic Interpretations of Word Representations 22

3.2. Sense Embeddings . 26

vi

CHAPTER 4. EVALUATIONS OF WORD REPRESENTATIONS 33

4.1. Theoretical Explanation . 33

4.2. A Case Study . 34

4.2.1. Introduction . 34

4.2.2. Experimental Setup . 35

4.2.2.1. Data . 35

4.2.2.2. Implementation of Word Representations 36

4.2.3. Tasks . 38

4.2.3.1. Similarity and Relatedness Task . 38

4.2.3.2. Most Similars Task . 39

4.2.3.3. Analogy Task . 40

4.2.3.4. Association Task . 41

4.2.3.5. Pun Task . 41

4.2.3.6. Asymmetry Task . 43

4.2.4. Results . 44

4.2.4.1. Similarity and Relatedness Task Results 44

4.2.4.2. Pun Task Results . 46

4.2.4.3. Most Similars Task Results . 48

4.2.4.4. Analogy Task Results . 50

4.2.4.5. Association Task Results . 51

4.2.4.6. Asymmetry Task Results . 53

4.2.5. Conclusion . 54

CHAPTER 5. A CASE STUDY: A KNOWLEDGE BASED DEEP LEARNING

APPROACH TO SENSE EMBEDDINGS . 56

5.1. Introduction . 56

5.2. Experimental Setup . 57

5.2.1. Data . 58

5.2.2. Implementation of Sense Embeddings . 58

5.2.3. Tasks . 58

5.3. Results . 60

5.4. Conclusion . 63

vii

CHAPTER 6. CONCLUSION AND FUTURE WORK . 64

6.1. Conclusion . 64

6.2. Future Work . 65

REFERENCES . 67

viii

LIST OF FIGURES

Figure Page

Figure 2.1. CBOW architecture . 11

Figure 2.2. CBOW architecture in detail . 12

Figure 2.3. Skip-Gram Architecture . 13

Figure 2.4. Skip-Gram Architecture in detail . 14

Figure 2.5. DM Architecture . 16

Figure 2.6. DBOW Achitecture . 16

Figure 3.1. The Generative Approach Model . 22

Figure 3.2. The model utilizes both local and global information . 27

ix

LIST OF TABLES

Table Page

Table 2.1. Some synsets of a word bank from WordNet . 20

Table 4.1. The details of the datasets . 36

Table 4.2. The first few lines of wordsim353 similarity dataset . 38

Table 4.3. A few lines from the dataset . 40

Table 4.4. Wikipedia-Similarity and Relatedness Spearman Correlation Results

on WordSim353 dataset . 44

Table 4.5. Wikipedia-Similarity and Relatedness Spearman Correlation Results

on rg and mc datasets . 45

Table 4.6. Reuters-Similarity and Relatedness Tasks Spearman Correlation Re-

sults on WordSim353 dataset . 46

Table 4.7. Reuters-Similarity and Relatedness Tasks Spearman Correlation Re-

sults on rg and mc datasets . 46

Table 4.8. Wikipedia-The Accuracy Values of Pun Location . 47

Table 4.9. Reuters-The Accuracy Values of Pun Location . 47

Table 4.10. Wikipedia-The Accuracy Values of Pun Location V2 . 48

Table 4.11. Reuters-The Accuracy Values of Pun Location V2 . 48

Table 4.12. Wikipedia-Most Similar Words and Values . 49

Table 4.13. Reuters-Most Similar Words and Values . 50

Table 4.14. Wikipedia-The Accuracy Values of Analogy Task . 50

Table 4.15. Reuters-The Accuracy Values of Analogy Task . 51

Table 4.16. Wikipedia-The Spearman Correlation Results of Association Task 51

Table 4.17. Reuters-The Spearman Correlation Results of Association Task 52

Table 4.18. Wikipedia-The Spearman Correlation Results of Association Task V2 . . 52

Table 4.19. Reuters-The Spearman Correlation Results of Association Task V2 53

Table 4.20. Wikipedia-The Spearman Correlation Values of Asymmetry Task 53

Table 4.21. Reuters-The Spearman Correlation Values of Asymmetry Task 54

Table 5.1. The first three senses of a word key from WordNet . 57

Table 5.2. The first few lines of SCWS benchmark . 60

Table 5.3. Similarity and Relatedness Spearman Correlation Results on Word-

Sim353 dataset . 61

x

Table 5.4. Similarity and Relatedness Spearman Correlation Results on rg and mc

datasets . 61

Table 5.5. Similarity and Relatedness Spearman Correlation Results on MEN

dataset . 61

Table 5.6. Similarity and Relatedness Spearman Correlation Results on Word-

Sim353 and MEN dataset . 62

Table 5.7. Similarity and Relatedness Spearman Correlation Results on Word-

Sim353 . 62

Table 5.8. Similarity and Relatedness Spearman Correlation Results 62

Table 5.9. Similarity Spearman Correlation Results on SCWS . 63

xi

LIST OF ABBREVIATIONS

NLP . Natural Language Processing

PMI . Pointwise Mutual Information

SVD . Singular Value Decomposition

CBOW . Continuous Bag-of-Words Model

SGNS . Continuous Skip-gram Model with Negative Sampling

DM . Distributed Memory Model of Paragraph Vectors

DBOW . Distributed Bag-of-Words Model of Paragraph Vectors

WSD . Word Sense Disambiguation

POS . Part of Speech Tag

CNN . Convolutional Neural Network

RNN . Recurrent Neural Network

LSTM . Long Short Term Memory

xii

CHAPTER 1

INTRODUCTION

There have always been studies based on handling semantics in different fields,

such as linguistics, psychology. The representations of language constructs are required

to address the semantics in a computational manner. In this perspective, the main focus is

on the computational representations of language constructs, specifically word and sense

representations, in this dissertation.

In word representations, the main goal is to model the behavior of the word. Con-

texts, where the words occur, are informative to address this behavior. With this idea,

earlier work depends on counting the statistics of the word and accompanied words, e.g.

co-occurrence counts. However, the increasing number of data causes an obstacle in

utilizing those approaches. Neural network approaches appear to tackle with the huge

amount of data. As a result of this development, the underlying difference between these

approaches becomes a question. In this direction, our work aims to find out the main

factor governing word representations, which we propose as context. We are motivated

from the study of Huang et al. (2012) in which they propose a generative model based on

discourse (context) vectors and show that this model performs similarly to a count based

approach, Pointwise Mutual Information (PMI). Distinctively, we point out that models

involving context show the same behavior.

In sense representations, modeling the behavior of sense is more complicated as

senses are embedded into words. The crucial influence of sense representations is that

word representations for polysemous words refer to more than one meaning although the

main aim of the word representation is to address the semantics of the word. Unfortu-

nately, one representation is not enough to accomplish this aim for the polysemous word.

Therefore, sense representations have the potential to solve this problem by creating a

distinctive representation for each sense of the polysemous word. A disambiguation of

words’ sense is required to create a sense representation to extract the embedded mean-

ings of the polysemous words. In Word Sense Disambiguation (WSD) studies, which

sense of the polysemous word is utilized in a given context is attempted to be found. The

solution approaches of WSD contain supervised, unsupervised, and knowledge/dictionary

1

based methodologies. While creating sense representations, the WSD methodologies are

used to be able to disambiguate the polysemous words. Here, we propose an approach

which brings into together the knowledge-based method of WSD and neural networks.

Polysemous words are sense-labeled using the knowledge-based method and then, repre-

sentations are created by neural networks using the sense-labeled data as the corpus. A

similar approach is implemented by Iacobacci et al. (2015), distinctively they use another

method to disambiguate and label senses of polysemous words.

Word representations are the most important component among semantic repre-

sentations (e.g. phrase, paragraph, context, etc.), because other representations have been

created utilizing word representations/information. In this perspective, determining the

crucial factor of word representations has a direct influence on other semantic represen-

tations/semantics. Sense representations improve the word representations in which the

representation of the polysemous words problem is handled. Thus, its impact on seman-

tics is undeniable, also.

1.1. Contributions of Thesis

The contributions of our study is underlined in this section. The contributions of

our work based on word embeddings can be listed as below:

• Context is the main factor governing word embeddings.

• The computational models based on context perform better on association tasks.

• The vector representations of words are improved on association tasks whenever

the word-word relation is evaluated by conditional probability rather than cosine

similarity.

The contributions of our study related to sense representations are explained in the

following items:

• A sense embedding’ method depending on the knowledge-based algorithm and neu-

ral networks is proposed.

• The sense-labeling algorithm has a crucial effect on the resultant sense representa-

tions. If the WSD algorithm can label the senses, correctly, the sense embeddings

will perform at least as good as word embeddings.

2

1.2. Organization of Thesis

The dissertation is outlined as follows. Chapter 2 represents the background in-

formation about semantic representations. Chapter 3 covers related work in word repre-

sentations and sense representations. Chapters 4 and 5 represent our approaches in detail.

Chapter 6 contains the conclusion information about our studies with future work.

3

CHAPTER 2

SEMANTIC REPRESENTATIONS

Basically, semantics is the study of meaning in natural language. It is difficult

to model semantics as language has ambiguity in its natural form. The challenge in-

creases when considering incompleteness, imprecision, and temporal characteristics of a

language. On the other hand, the encouraging idea is meaning is embedded in the lan-

guage constructs. Therefore, semantics can be extracted from the usage of language (For

more detail, please see (Sahlgren, 2006)).

The relation between various language elements (words-concepts-percepts-actions)

builds up the semantic knowledge (Griffiths et al., 2007). Words-words relation analysis

is popular among computational models as it is supported by the distributional hypoth-

esis: ”words with the similar distributions have similar meanings” (Harris, 1954) where

the distribution means the neighbourhood of a word which is specified as a fixed size

surrounding window.

The main idea in the distributional hypothesis is that similar words tend to have

similar distributional properties. To illustrate, if two words, w1 and w2, frequently co-

occur with the same word, w3, then, the word, w1, and the other word, w2, carry a similar

meaning, at least in one sense. Practically, this co-occurrence value is calculated using a

sliding window in order to represent a context. The sliding window is assumed to capture

the statistical properties of words. Then, the distribution of each word is extracted from

the statistics of the neighbouring words.

Addressing the semantics in a computational manner requires the encoding of

language constructs which can be called as a representation. Although there are various

methodologies in order to extract representations, they are mainly derived from the use

of language by applying the distributional hypothesis. These representations can refer to

any level of the meaning. In natural language processing, these levels can be document,

sentence, phrase, word, sense, etc. In this dissertation, the focus is on word represen-

tations and sense representations. We have taken into account a document or sentence

information, while deriving word representations, only to be able to observe its effect on

word representations.

4

2.1. Word Representations

Word representations can be categorized into two classes: Information-Theoretic

Approaches and Word Embeddings. Although both categorizations inherently use statis-

tical information, the interpretations of them make an essential difference.

2.1.1. Information-Theoretic Approaches

The critical issue on the information-theoretic approaches is a calculated statistical

value corresponds to the two or more relevant words, e.g. a word and its neighbouring

words in a context. Therefore, the resultant representations imply the association of the

corresponding words. The representations may be interpreted as the representations of

word-word relations/associations instead of a word representation. Co-occurrence counts

and PMI values are such common metrics in computing associations between words.

2.1.1.1. Co-occurrence values

As the name suggests, the statistical information of co-occurrence values is the

occurrence count of the word with the other. To find out the co-occurrence value between

w1 and w2, the computation starts with the trace of the language corpus until w1 is en-

countered. Then, w1 is centralized in the sliding window according to window size and

whether w2 is in the window is investigated. If it is, the co-occurrence value is increased

by 1. This process continues until there is no word remaining in the corpus. A computa-

tional load is dependent on the corpus size. The problematic issue is when the corpus size

is increased, although the semantics met is increased, the computational load is increased,

also.

Consider the following example (sentence from Samuel Beckett, (Turney and Pan-

tel, 2010)):

”ever tried ever failed no matter try again fail again fail better”

window size: 2 and w1 = again, w2 = fail

[ever tried ever] failed no matter try again fail again fail better

[ever tried ever failed] no matter try again fail again fail better

5

[ever tried ever failed no] matter try again fail again fail better

ever [tried ever failed no matter] try again fail again fail better

ever tried [ever failed no matter try] again fail again fail better

ever tried ever [failed no matter try again] fail again fail better

ever tried ever failed [no matter try again fail] again fail better

ever tried ever failed no [matter try again fail again] fail better

ever tried ever failed no matter [try again fail again fail] better

ever tried ever failed no matter try [again fail again fail better]

ever tried ever failed no matter try again [fail again fail better]

ever tried ever failed no matter try again fail [again fail better]

(again, fail) = 3

In this example, the window size is 2 and the co-occurrence values of the two

words, again and fail are counted. The process starts with the first word in the corpus,

ever, by taking its accompanied words in a given window size. Then, whether the taken

word is the searched word is decided. If it is not, the window slides by centralizing the

next word until the wanted word is found. At the eighth step, the word is found, again,

and the second word, fail, is in the accompanied words, so the count is increased by 1 (at

first, the count is initialized by 0). Additionally, at the tenth step, the word is encountered.

In this time, there are two times of the second word, so the count is increased by 2. At the

end, the count becomes 3.

2.1.1.2. Pointwise Mutual Information (PMI) values

The co-occurrence values of the frequent words tend to be high regardless of the

company words. Undoubtedly, the two most frequent words co-occurrence value is higher

although their semantic association could be lower. Therefore, frequency has a critical

role in influencing semantic association/relation between words.

PMI (Church and Hanks, 1990) is a metric to quantify an association between

words. PMI adjusts the effect of frequency in relating words. The general formula of PMI

is as below:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(2.1)

where, P (x, y) is the joint probability, P (x) and P (y) are the marginal probabilities. The

joint probability measures x and y happen at the same time while marginal probabilities

6

measure the individual occurrence. Therefore, the probability of co-occurrences is nor-

malized by the individual probabilities of occurrences. In word representations, the counts

are utilized rather than the probability values, as in formula 2.2, where #(w1, w2) means

a co-occurrence counts of w1 and w2, #(w1) or #(w2) represents a frequency counts of

the relevant word and |D| is the vocabulary size.

PMI(w1, w2) = log
#(w1, w2).|D|
#(w1).#(w2)

(2.2)

Therefore, the domination of the frequency can be faded away by normalizing

co-occurrence values by the frequencies of the words.

2.1.2. Word Embeddings

Word embedding or word vector is, self-evidently, a computational model that

represents a word as a vector. The underlying idea behind it depends on the geometrical

interpretation of semantics. In this interpretation, each word is represented as a point in

a semantic space. In this semantic space, similarities are evaluated based on the spatial

proximity between words. This has an influence on conceptualizing similarities. In a well

constructed semantic space, closer words correspond to similar words (Sahlgren, 2006).

2.1.2.1. One Hot Vectors

One hot word vectors are a kind of discrete representation. This vector model is

one of the first attempts at a vector representation of a word in history. The derivation of

vectors starts with sorting out all words in a vocabulary. Then each word is assigned a

vector consisting of all 0s except for a 1 at its individual index. Therefore, vector size,

R|V |∗1, depends on the vocabulary size.

To illustrate: If the first word is a and the last word is zebra in the English vo-

cabulary containing the word language in the middle, the representations should be as

below.

Although there is no computational load to have one-hot vectors, the vectors are

high-dimensional and sparse preventing it to be used in various NLP tasks. This is not

enough to be able to use them in the semantic tasks, obviously, vectors do not carry any

semantic knowledge.

7

wa =

1

0

0

.

.

0

, . . . , wlanguage =

0

.

1

.

0

0

, . . . , wzebra =

0

0

.

.

0

1

2.1.2.2. Co-occurrence Vectors

The co-occurrence vector model concentrates directly on word-word co-occurrences.

In a specified window, the co-occurrence values between a center word and the neighbour-

ing words are calculated and then stored in a global matrix where rows denote vocabulary

words, columns represent context words, and cells are their co-occurrence values. In this

system, row vectors are interpreted as word vectors.

As an example;

”ever tried ever failed no matter try again fail again fail better”

Window Size: 2

ever tried failed no matter try again fail better

ever 1 2 1 1 0 0 0 0 0

tried 2 0 1 0 0 0 0 0 0

failed 1 1 0 1 1 0 0 0 0

no 1 0 1 0 1 1 0 0 0

matter 0 0 1 1 0 1 1 0 0

try 0 0 0 1 1 0 1 1 0

again 0 0 0 0 1 1 2 3 1

fail 0 0 0 0 0 1 3 2 1

better 0 0 0 0 0 0 1 1 0

”ever” = [1 2 1 1 0 0 0 0 0]

”no” = [1 0 1 0 1 1 0 0 0]

In this example, for each word, the accompanied words are counted and stored in

a matrix whose rows and columns are the vocabulary words. The accompanied words are

limited by the window size, so the co-occurrence are calculated with this size, i.e. the

8

window size before and after words are taken into account as accompanied/neigbouring

words. After all words’ co-occurrence values are calculated, the row is taken as the word

vector corresponding to a word.

While working with the real data, data size become an issue. A better model

meeting semantics is the one that requires more data to construct. Furthermore, the con-

struction and storage of a global matrix from real data add an extra computational load.

Even so, the actual problem with the model is the sparsity of the resultant matrix

as one-hot vectors. Words tend to highly co-occur in some contexts, with some specific

neighbouring words. Also, the resultant word vectors are so high dimensional that it

influences their utility in NLP tasks, as one-hot vectors.

2.1.2.3. PMI Vectors

The PMI vectors are the same as co-occurrence vectors except that their cells

contain PMI values rather than co-occurrence values. In the calculation of PMI matrix

cells, as many word pairs’ co-occurrence value is 0, taking the logarithm yields −∞,

(formula 2.2):

PMI(w1, w2) = log0 = −∞

An alternative solution to this problem is to take 0 when #(w1, w2) = 0. However,

this results in a conflict with negative PMI values where some pairs of words could have

small co-occurrence values although they have high frequency in a corpus (Levy and

Goldberg, 2014). A Positive PMI values are used to solve this issue:

PPMI(w1, w2) = max(PMI(w1, w2), 0) (2.3)

PPMI usage is stated intuitive in that humans can discriminate a positive associa-

tion more easily than a negative one (Levy and Goldberg, 2014). Therefore, concentrating

on only positive associations is in accordance with the human perception.

2.1.2.4. Singular Value Decomposition Based Vectors

Singular Value Decomposition (SVD) is a dimensionality reduction technique.

SVD is used to solve the sparsity problem of embeddings derived from a global matrix.

9

Additionally, the resultant vectors will not be high-dimensional, anymore.

SVD factorizes a matrix M into three matrices: M = UDV where U and V are

orthonormal matrices (orthonormal matrix is a matrix whose rows are unit length and

orthogonal to each other (Goldberg, 2017)) and D is a diagonal matrix where diagonal

elements contain singular values in a decreasing order. To reduce dimensionality, the first

d diagonal values of the matrix D are preserved and other diagonal values are replaced

by 0. Similarly, all values of matrix U and V are replaced by 0 except for the first d rows

of matrix U and d columns of the matrix V . Multiplying these reformed three matrices

results in a reduced version of M (Goldberg, 2017), (Levy and Goldberg, 2014).

2.1.2.5. Learning Based Approaches

Although applying dimensionality reduction diminishes the problems related to

the high-dimensionality of word embeddings, calculating and storing a huge global matrix

stay as a concern. The underlying idea of using learning techniques in word embeddings

is to eliminate the global matrix and learn the representations iteratively.

The real challenge of learning word representations comes from the difficulty

of catching various features of each word. When using a global matrix, these features

are represented by the context words and feature weights are calculated based on co-

occurrence or PMI values. However, the majority of machine learning techniques is de-

signed to make a prediction with the given features as input. Features are generally over-

specified and incomplete so the specification of all features is not easy (Socher, 2014).

Deep learning, a branch of machine learning, has a crucial impact on this point as it

can tackle to learn good features and give a final prediction. It is a kind of neural network

whose computation is motivated by the human brain functionality. In general, the system

attempts to manage both prediction and learning. A prediction is achieved through the

transformation from input to the output. The neural network consists of nodes and edges

building up layers which transform the input to the output. Learning is accomplished on

edges, called as weights. In each iteration, the system learns more by taking into account

the difference between the prediction and actual output.

The only difference of deep learning from a neural network is it has more lay-

ers. Conceptually, it is assumed that layers are able to meet complexity and abstraction,

with its non-linear operations. Therefore, deep learning is more convenient than neural

10

networks for the NLP tasks as language is naturally complex and abstract.

Many deep learning architectures have been developed by modifying input-output

transformation logic. In this thesis, Word2Vec and Doc2Vec architectures are analyzed,

respectively.

Word2Vec (Mikolov et al., 2013), In this work, the main aim is to feed a huge dataset to

the system, efficiently. Before this work, developed systems were able to work with a big

data using deep learning however their complexity is arguable. Word2Vec depends on the

observation that computational complexity results from the hidden layer in the model and

proposes two architectures where the hidden layer is removed. In this time, the models

may not be capable to present data as precisely as before, whereas they can be trained

using much more data, efficiently.

• CBOW: The system takes the context words as an input and attempts to predict

the middle word in the given context as an output, as seen in Figure 2.1. Here, all

the context words share the projection/hidden layer, so all words in the context are

projected into the same position by taking the average of context words’ vectors.

As the words’ order does not affect the projection, architecture name was given

continuous bag-of-words. The resultant word vectors are derived from the trained

weights.

Figure 2.1. CBOW architecture

In Figure 2.1, each w(t ± n) denotes a context word and w(t) denotes the middle

word in a context. The input words and the output word are represented as one-hot

vectors.

More detailed architecture is represented by Richard Socher (The detailed architec-

ture is summarized from the Course Lecture (CS 224D: Deep Learning for NLP)

11

of Richard Socher, in Spring 2015.) in Figure 2.2. Before the training starts, the

weight vectors are created, W 1 ∈ Rn×|V | and W 2 ∈ R|V |×n, where n is the dimen-

sionality of produced word vectors and |V | is the vocabulary size.

Figure 2.2. CBOW architecture in detail

In Figure 2.2, each xs denotes a context word and y denotes the middle word in a

context. The input words and the output word are represented as one-hot vectors.

The main goal is to learn the two matrices and they are used as word embeddings,

at the end. Each column in W 1 represents one word as each row in W 2 with the

dimensionality n × 1. Then, the architecture pursues the following steps while

training.

– First, one-hot vectors are derived for the words in a context and multiplied by

the weight matrix, uk−C = W 1wk−C , .., uk = W 1wk, .., uk+C = W 1wk+C .

– Average of these one-hot vectors are calculated in projection/hidden layer,

h =
∑k+C

k−C

2C
uk.

– Then, the score vector is created by computing z = W 2h.

– The score should be turned into probability, y′ = softmax(z).

Softmax function is used in categorical distribution. Its formula is described as

softmax(z) = ez

K∑
k=1

ezk

.

The system prediction is y′. To be able to train the system, the difference between

the prediction and actual output, named as a loss function, is necessary. Cross-

12

entropy is used as the loss function in this architecture. The formula of the cross-

entropy is as follows:

H(y′, y) = −
|V |∑
j=1

yjlog(y
′
j) (2.4)

When taking one instance into consideration, as −yjlog(y′j), yj is 1 coming from

one-hot vectors and if the system’s prediction is completely true, then y′j becomes

1. So, the loss becomes 0, −1log(1) = 0. If the prediction is not perfect, say 0.4,

then the loss becomes 0.3979, −1log(0.4) = −1(−0.3979) = 0.3979. Therefore, it

is appropriate to evaluate the loss.

Lastly, for training, log-likelihood is used as an objective function.

= −logP (wi|wi−C , ..., wi−1, wi+1, ..., wi+C)

= −logP (vi|h)

= −log exp(vTi h)
|V |∑
j=1

exp(vTi uj)

= −vTi h+ log
|V |∑
j=1

exp(vTi uj)

• Skip-gram: The system is similar to CBOW except this one takes the middle word

as an input and tries to predict or create context words as an output. Again, the

resultant word embeddings are the weights of the architecture, Figure 2.3.

In Figure 2.3, each w(t) denotes the middle word and w(t ± n) denote the context

words in a sentence. The input word and output words are represented as one-hot

vectors.

Figure 2.3. Skip-Gram Architecture

13

Again, the more detailed figure is represented by Richard Socher, Figure 2.4. The

weights creation step is the same as CBOW.

Figure 2.4. Skip-Gram Architecture in detail

In Figure 2.4, each x denotes the middle word and ys denotes the context words in

a sentence. The input word and output words are represented as one-hot vectors.

The architecture accomplishes the following steps while training.

– First, the one-hot vector is derived for the middle word in a context and the

input word vector is multiplied by weight matrix, u = W 1w.

– In this time, no averaging process in projection/hidden layer so the output is

given as the input, h = u.

– Then, 2C items score vectors are created by computing z = W 2h

– Next, the score should be turned into probability, y′ = softmax(z).

The system prediction is y′, however, in this time, the prediction holds 2C items y′

in terms of each context word. The loss function is cross-entropy, for this system,

also. Again, log-likelihood is used as an objective function.

= −logP (wi−C , ..., wi−1, wi+1, ..., wi+C |wi)

= −log
2C∏

j=0,j 6=C

P (wi−C+j|wi)

= −log
2C∏

j=0,j 6=C

P (vi−C+j|ui)

14

= −log
2C∏

j=0,j 6=C

exp(vTi−C+jh)

|V |∑
j=1

exp(vTk h)

= −
2C∑

j=0,j 6=C

vTi−C+jh+ 2C
|V |∑
k=1

exp(vTk h)

• Skip-gram with Negative Sampling (SGNS): (Mikolov et al., 2013) This model

is the same as Skip-gram except for the objective function. The main aim of this

model is to optimize the objective function because the summarization over |V |
takes a lot of computational time.

The new objective function depends on maximizing P (D = 1|w, c) where w, c is

the word-context pair. This probability denotes the probability of (w, c) came from

the corpus data. Additionally, P (D = 0|w, c) should be maximized if (w,c) pair is

not included in the corpus data. In this condition, (w, c) pair is randomly sampled,

as the name suggests negative sampled.

Firstly, the distribution is accomplished by the sigmoid function:

P (D = 1|w, c) = 1

1+ev
T
c vw

The objective function is modeled as:

−logσ(vi−C+jh) +
K∑
k=1

−logσ(v′kh)

Doc2Vec (Le and Mikolov, 2014) Their main goal is to create a representation for dif-

ferent levels: sentences, paragraphs or documents as well as words. Their architecture is

quite similar to the Word2Vec except for the extension with a paragraph vector. They pro-

pose two architectures that are known as Distributed Memory Model of Paragraph Vectors

(DM) and Distributed Bag-of-Words Model of Paragraph Vectors (DBOW).

• DM - Paragraph Vectors In this architecture, inputs are the words in a context

except for the last word and a paragraph (sentence or document) containing this

context, the output is the last word of the context. The word vectors and paragraph

vector are concatenated while they are fed into the system. The paragraph vector

can be interpreted as another word in a context.

In Figure 2.5, a paragraph vector and the context word vectors are fed into the sys-

tem. The last word is predicted by the architecture. Here, instead of the paragraph

another level of context can be used, e.g. document. In this case, the context words

are words in the document.

15

Figure 2.5. DM Architecture

• DBOW - Paragraph Vectors The input of the architecture is a paragraph vector.

The model predicts the words randomly sampled from the given paragraph.

Figure 2.6. DBOW Achitecture

In Figure 2.6, a paragraph vector is fed into the system. The random context words

are predicted by the architecture. The order of the predicted words are not important

in this architecture. Again, instead of the paragraph another level of context can be

used.

2.2. Sense Representations

In this section, the detailed information about sense representations is introduced.

First of all, Word Sense Disambiguation is represented, and then, Sense Representations

are analyzed.

16

2.2.1. Word Sense Disambiguation

There are words carrying more than one meaning/sense, known as polysemous

words, in natural language. To illustrate, a word, bank, has various meanings as a noun

or a verb, and some of them can be seen in the following sample sentences (from Miller

(1995)):

”He cashed a check at the bank.”

”He sat on the bank of the river.”

”The pilot had to bank the aircraft.”

For three sentences above, the meanings of bank are ”a financial institution”, ”a

sloping land”, and ”tip laterally”, respectively. It is impossible to distinguish the senses

without the accompanied words of the polysemous word. When the first sentence is taken

into consideration, without the accompanied word, especially, cashed or check, a human

being cannot give a prediction about a meaning of a word, bank, because the bank is a

multi-sense word. However, the situation is not the same for monosemic words in which

human being can easily predict the meaning of a word without any further information.

Therefore, there is a strong relation between the sentence/context and senses of the poly-

semous words.

Word Sense Disambiguation (WSD) is the study of the senses of polysemous

words, in a computational manner. By the definition, word sense disambiguation is a

computational ability to identify the sense of a word in a context. As explained before,

while fitting a model to word representations, the computational algorithms get help from

accompanied words of the corresponding words, similar to senses. However, the chal-

lenging issue is that the senses are embedded into word although the word is apparent in

a context. Therefore, the relation of senses cannot be seen as clearly as the relation of

words.

As explained before, in section 2, the utilization of the word in a context is focused

to address the semantics. On the other hand, when polysemous words are taken into

account, one word can frequently occur in different contexts in terms of each sense. In

this perspective, to be able to catch the context semantics, clearly, the identification of

the senses of polysemous words has a crucial influence. Therefore, it can be said that

the context and sense have a dual influence, in which the disambiguation of a word is

necessary to address contextual semantics as the context is required to detect senses of a

word.

17

2.2.1.1. Formalization of WSD

WSD can be interpreted as a classification task where the senses are the classes.

The classical classification task contains classes which can be pre-determined and con-

stant for every instance. For example, Part-of-Speech (POS) tagging can be considered as

a classification task. POS tagging mainly attempts to discriminate the words in a context

in terms of their part-of-speech, i.e. noun, verb, adjective, etc. The word’s POS tag is

defined in a consideration of its context, like WSD. However, the part-of-speeches are

definite, not changing according to the word. However, in WSD, the classes (senses)

change according to an instance (word) where for every word there are a different set of

senses. Therefore, it cannot be interpreted as a classical classification task although ir is

similar.

Another issue related to the WSD is that every time the disambiguation scenario

can be changed due to the change of the usage of a specific word. Some words may

start to carry more senses, whereas others may lose some senses or carry the same senses

as before. The reason for this is because language lives with humans and its usage are

changed, accordingly. As Wittgenstein said, “Language derives its meaning through use”.

Therefore, the senses of a word cannot always stay the same and cannot be determined to

be used for every time.

Relating with the argument introduced above, the senses of a word cannot always

be easily discretized in which each sense holds different meaning (Navigli, 2009). There

may not be a clear edge where the usage of one sense is finished whereas the new sense

usage is started. Also, the granularity of the meaning which the sense should hold can

be changed according to the interpretation of a language. To illustrate (from (Navigli,

2009)),

”She chopped the vegetables with a chef’s knife”

”A man was beaten and cut with a knife”

Both of the sentences above utilize the word, knife. In the first sentence the

meaning of the word, knife, is a tool whereas, in the second sentence, the meaning

refers to a weapon for the word, knife. Although they point to the same object, the

usage of the object may cause the different senses. Whether these two meanings of the

word, knife, should be discretized or not is arguable. The problem has not a clear answer.

Actually, this problem is related to an ambiguity of a language. This ambiguity prevents

the automatization of the discretization of the senses.

18

2.2.1.2. Solution Approaches

The various solutions have been developed to address the WSD problem. There is

no dominated solution scheme, like word2vec, instead, all solution categories have some

drawbacks and benefits. Mainly, the solution approaches can be categorized into three

pieces, supervised, unsupervised, and dictionary/knowledge-based algorithm. Although

a majority of studies fall into one of these approaches, some work combined them in a

different way.

Supervised approaches need to have a training set, as always. The training set

consists of labeled data which can change according to the problem. In WSD, the la-

beled data contains the polysemous word with its context where the polysemous word’s

intended sense is labeled. Here, various machine learning methodologies are tried. Their

results are more successful than other types of solutions. However, the main problem with

this approach is that the creation and maintenance of such a data creates a crucial obstacle

regarding disambiguation scenario changes. Therefore, the data labeling is challenging in

WSD, known as knowledge bottleneck.

In this point, unsupervised methods have a potentiality, because it only needs a

raw data. In general, the solutions of these approaches are based on the clustering of

words’ contexts (cite). Although they can solve the data labeling problem, unsupervised

methods cause to fall into a different problem, called Word Sense Discrimination.

In this manner, Word Sense Discrimination is the ability to identify word sense

clusters. The main problem related to it is that the resultant clusters are required to be

associated with the senses. Therefore, it can be interpreted as a subproblem in Word

Sense Disambiguation like labeling the word senses.

There are some knowledge resources containing the information related with the

senses, known as knowledge/dictionary resources. The most common resources are Word-

Net and BabelNet (Navigli and Ponzetto, 2012). WordNet consists of sets of synonyms,

known as synsets, for each word. These synsets are interpreted as the set of word senses

which hold the same meaning. For each synset, WordNet provides a gloss which contains

the definition of the synset and sample sentences. Furthermore, WordNet provides a POS

tag for each synset. For example, for a word, bank, some of the synsets are as in Table

2.1.

BabelNet utilizes some knowledge bases (WordNet, OmegaWiki, the English Wik-

tionary, Wikidata, FrameNet, VerbNet) and Wikipedia data and automatically link the

19

Wikipedia data with the knowledge resources. At the end, it provides sense-annotated

data.

Table 2.1. Some synsets of a word bank from WordNet

Sense Definition and Samples

bank1
(n) sloping land (especially the slope beside a body of water)

”they pulled the canoe up on the bank”;
”he sat on the bank of the river and watched the currents”

bank2

(n) depository financial institution, banking concern,
banking company (a financial institution that accepts

deposits and channels the money into lending activities) ”he cashed a
check at the bank”; ”that bank holds the mortgage on my home”

... ...
bank11 (v) bank (tip laterally) ”the pilot had to bank the aircraft”

2.2.2. Sense Embeddings

Various word embedding models have been developed to represent words in a

computational manner. In these representations, the main assumption is that a word vec-

tor should refer to a word’s meaning. However, the condition changes when polysemous

words are taken into account where a word has more than one meaning. In this condition,

the polysemous word vectors contain the representations of multiple word senses. There-

fore, there exist studies based on sense embeddings to have one vector per meaning/sense.

When compared with other semantic representations (e.g. word, phrase, context),

sense representations have a distinctive challenge in which sense is not apparently ob-

servable in a text instead it should be derived from the word usage. Other semantic repre-

sentations can easily be taken from the text, i.e. paragraph can be taken from the corpus

without any extra effort.

The studies on sense embeddings have been increases after the word embeddings

successfully captured word meanings with the huge amount of data using deep learning,

i.e. word2vec. Because the senses are embedded into words, extracting sense vectors

are challenging. Therefore, the tendency for the solution is to combine WSD and Deep

Learning. However, some studies analyze the relation between word and senses where

sense embeddings are derived from the word. The approaches are summarized in a detail

in the following chapter.

20

Undoubtedly, polysemous word vectors cannot represent the meaning of a word

properly as the most used sense is dominated no matter which methodology is used to

derive the word embeddings. To address the semantics, different representation for each

meaning is required. The sense embeddings have a crucial effect in this manner.

21

CHAPTER 3

RELATED WORK

This section covers the related work about our studies related to word representa-

tions and sense representations, respectively.

3.1. Semantic Interpretations of Word Representations

It has always been a controversial issue whether word representations are able

to meet semantics or not. Increasing number of developed word representations leads

to a new question: what is the difference between various representations in a semantic

manner. In other words, which semantic features can be fulfilled by a specific represen-

tation. There has been some work in this direction, which is analyzed in the following

paragraphs.

Some studies depend on the comparisons word representations on the association

tasks (described below). First, Griffiths et al. (2007) propose a generative approach to find

the probability distribution of word given context (they called context as a gist). In this

method, they give importance on disambiguation and context of a word. First of all, topic

distributions with a given document are found P (z|g). Word distributions are extracted

from these topic distributions P (w|z), this step can be considered as a disambiguation

step, as seen in Figure 3.1.

Figure 3.1. The Generative Approach Model

P (w|g) = P (w|z)P (z|g)

In Figure 3.1, g in the figure represents a gist/context, z denotes the topic distri-

bution, and w is a word.

22

Then, they utilize their word representation to compare it with the vector repre-

sentations in association tasks. Vector representations use cosine similarity, defined with

the Formula 4.1, to estimate the association between two words when proposed method

already provides two words’ association score with the conditional probability value (i.e.

p(w|g)). The main point underlined in the paper is that vector representations fall into ge-

ometric constraints when cosine similarity is used as a metric. This statement is grounded

on two phenomena; triangle inequality and asymmetry:

• Triangle inequality is a metric axiom evaluating whether three points, x, y, z, in a

space can create a triangle or not: for a triangle, any metric, d d(x, z) ≤ d(x, y) +

d(y, z) should hold. The relation of this metric with NLP is whether three words

create a triangle or not. Considering x, y, z as words, if x is similar to y and y

is similar to z, then x must be similar to z. However, when words are taken into

consideration, triangle inequality does not hold for words, where, asteroid is asso-

ciated with belt and belt is associated with buckle, but asteroid is not associated

with buckle. However, vector representations obey the triangle inequality by na-

ture, where the association between two words are calculated by a cosine similarity

between words, so this implies a high similarity value between asteroid and buckle.

• Asymmetry is another metric axiom and according to the definition (Tversky and

Gati, 1982), any metric should be symmetric. However, again, it is not true for

words, e.g. North Korea is more similar to China than China is to North Korea.

Cosine similarity satisfies the symmetry, although it should not.

This paper is written in 2007 when the idea of neural network utilization appeared

newly. Therefore, the only evaluation of the word vectors depends on cosine similarity.

Similarly, Nematzadeh et al. (2017) focus on the comparisons of word represen-

tations on association tasks, however, they include also word2vec and Glove (Pennington

et al., 2014) word vectors to assess whether they fall into the geometric constraint or not

(Glove is a neural network approach to represent words where the optimization function

depends on the conditional probability of a word given context). They evaluate vectors

on the association, triangle inequality, and asymmetry tasks. As a result, word2vec and

GLove suffer from the difficulty of capturing the human judgments, like others. The

only important observation is that GLove performs better compared to other models on

asymmetry. The reason can be that GLove uses probability as an objective function.

23

The important point in this work is that asymmetry is evaluated using p(w1|w2)

and p(w2|w1). For the calculation of these probabilities for vector representations, they

use a reformulation of probability defined by Pennington et al. (2014) as:

p(w2|w1) =
exp(w2.w1)∑

wj

exp(wj.w1)

Unlike the previous studies, the work Marco Baroni, Georgiana Dinu (2014) in-

vestigates word representations by separating them into two classes: count models (co-

occurrence matrix, PMI matrix, SVD reduced matrices, etc.) and predictive models

(learning based approaches). The literature consists of little work on the experimental

comparison between count and predictive models. Therefore, their main aim is to provide

many comparisons of models on various linguistic tasks.

They evaluate various models (PMI matrix, co-occurrence matrix, CBOW, SGNS,

etc.) in different linguistic tasks (similarity, synonym, analogy, etc.) and report the best

model for each task. Although they provide extensive experimental work, the theoretical

reasoning behind the results is not comprehensive.

Other studies directly target the explanation of the relation between PMI and the

neural approaches, especially SGNS. Firstly, Levy and Goldberg (2014) mainly advocate

that SGNS is implicitly factorizing a global matrix in which each cell contains the PMI

value. As seen before, SGNS trains the weights based on whether the word-context pair,

(w, c), is included in a corpus or not. The weights of SGNS architecture hold two kinds

of matrix information, words and contexts, W and C. In general, word matrix is used,

however, when both matrices are taken into consideration, it could be seen, W.CT = M

where each row represents a word w ∈ Vw, each column corresponds to a context c ∈ Vc
and each cell consists of f(w, c) value. In this perspective, it is plausible to say that SGNS

is able to factorize a matrix M as |Vw| and |Vc|.
In addition to factorization, they present that if the objective function of SGNS is

optimized, a matrixM will be the same as a global matrix whose cells contain a PMI value

shifted by a constant log(k), f(w, c) = PMI(w, c) − log(k). They have two different

experiments, first, they evaluate how well each method optimizes the objective. Second,

they evaluate the performance of each algorithm on two linguistic tasks (similarity and

analogy, described in the Section 4).

Although the experiment part cannot clearly support their ideas, the relation be-

tween SGNS and PMI matrix has a crucial effect on the analysis of word representations.

24

The huge data can be fed to the SGNS and it can converge in a relatively small computa-

tional time whereas creating a PMI matrix requires a high computational load. Therefore,

in this perspective, the benefits of PMI matrix can be met by SGNS with a smaller com-

putational load.

Melamud et al. (2017) are based on the previous study. They propose a new neural

model depending on PMI matrix factorization. The proposed model is trained with the

same way as SGNS except the prediction of the architecture is the PMI value rather than

word-context presence. Their motivation comes from Levy and Goldberg (2014) where

they formulate (w, c) as:

f(w, c) = pmi(w, c)− log(k) = log
p(w|c)
p(w)

− log(k) = log
p(w|c)
kp(w)

They reformulate this as p(w|c) ∝ exp(−→w .−→c).p(w) and use this function as an

objective function. In the adaptation of this formula to SGNS, c is taken as the context

and w is the predicted word.

They do not directly analyze the word representations instead they combine two

different techniques.

Arora et al. (2016a) mainly attempt to find the reason of the formula below:

f(w, c) ≈ PMI(w, c)− log(k)

They found some missing points in the Levy and Goldberg (2014) explanation in

which they use high-dimensional word embeddings besides that SGNS is a discriminative

model rather than a generative one. However, in this paper, their explanation depends on

the low dimensionality of word vectors.

They propose a generative model to explain the formula. The model consists of

discourse vectors and word vectors (time-invariant). The model depends on the random

walk over a discourse vector (ct) as:

Pr[w emitted time t|ct] ∝ exp(ct, vw)

The crucial issue in this probability function is to take a discourse vector as a

prior. They relate this prior to a Bayesian prior, by taking the partition function as Z =∑
w

exp(vw, c). This function is interpreted as the normalization.

In this manner, our motivation comes from the last paper in which they present the

importance of discourse vectors. These vectors can be considered as the context vectors.

We specifically concentrate on whether context can be the main factor on every model.

25

Particularly, in neural approaches, including the context as a vector can create the same

effect as the model presented in the last paper.

3.2. Sense Embeddings

Word representations are utilized to provide semantic representation for words. In

these representations, the polysemous words lead to an obstacle; although they carry more

than one meaning, each polysemous word is represented by one vector. Sense embeddings

attempt to tackle this problem by providing distinct vector representation for each sense

of polysemous word. The methodologies to derive sense embeddings are discussed in this

section.

Some studies depend on the clustering of the polysemous words’ contexts to de-

rive sense embeddings. The work of Reisinger and Mooney (2010) is one of the first

attempts in this fashion. Their motivation is based on the idea that sense representations

have a potential to solve the triangle inequality problem, introduced in Section 3.1, where

words’ similarities violate the triangle inequality whereas senses’ similarities can obey as

it includes the context information. Their method pursues the following steps:

• Occurrences of the polysemous word in a corpus are collected.

• For each occurrence, feature vectors (e.g. vectors from tf-idf matrix (Tf-idf matrix

is the same as co-occurrence matrix except for the columns of tf-idf matrix represent

context words and rows contain vocabulary words.)) are extracted.

• These feature vectors are clustered.

The cluster centroids are represented by prototype vectors (the average of the

word vectors in the cluster). Clustering is accomplished according to similarities between

these prototype vectors and feature vectors. To evaluate this similarity, they propose two

context-included similarity measurements.

AvgSimC(w,w′) =
1

K2

K∑
j=1

K∑
k=1

dc,w,kdc′,w′d(πk(w), πj(w
′)) (3.1)

MaxSimC(w,w′) = d(π′(w), π′(w′)) (3.2)

Both measurements are used for cluster assignments. In the equation 3.1, dc,w,k =

d(v(c), πk(w)) is distance between feature vector of context, v(c) and cluster centroid

26

πk(w); this distance evaluates the likelihood of context c belonging to cluster πk(w). Ad-

ditionally,K denotes the number of cluster. In equation 3.2, π′(w) = πargmax1≤k≤Kdc,w,k
(w)

is the maximum likelihood cluster for w in context c. Here, each distance is evaluated by

the cosine similarity between vectors.

Instead of using the feature vector, Huang et al. (2012) propose a neural network

architecture to produce word vectors and context is represented according to these word

vectors. In this architecture, local and global information is combined when the idea of

word2vec newly appeared. The main goal of the model in Figure 3.2, is to predict the

next word from the given sequence (referring local information) and document (referring

global information) in which the sequence exists.

Figure 3.2. The model utilizes both local and global information

The objective function is in 3.3 where g(s, d) and g(sw, d) are scoring functions in

which sw is a sequence swith the last word is replaced by the predicted wordw. The main

goal of the objective function is to minimize the difference between the actual sequence

and the sequence whose last word is predicted by the model.

Cs,d =
∑
w∈V

max(0, 1− g(s, d) + g(sw, d)) (3.3)

The sense embeddings are captured utilizing the learned word representations like

the method of Reisinger and Mooney (2010). This approach depends on the clustering of

context-dependent feature vectors. As Reisinger and Mooney (2010), all occurrences of

the polysemous words are collected and other steps are followed, however, in this time,

word vectors from neural network are used, rather than feature vectors. For clustering,

the spherical k-means is used. Furthermore, they propose a new dataset, SCWS, where

two words are assessed in a sentential context by a human.

Chen et al. (2015) utilize the clustering approach in a different perspective. They

propose an approach based on Convolutional Neural Network (CNN) (CNN is a kind

27

of Deep Neural Networks used for mostly classification tasks) architecture in which the

input is the gloss sentence from the WordNet and the output is the predicted sense vector.

The gloss sentence is represented by the concatenated word vectors which are trained by

CBOW. The objective function of CNN is as below:

Gs =
∑
s∈P

max{0, 1− f(s) + f(s′)}

Here, s denotes the gloss sentence and s′ represents the constructed negative training

sample sentence where some words in the gloss sentence s are randomly replaced. f(.)

is the scoring function representing the neural network without the last layer (softmax

layer). They use the resultant sense embeddings to initialize the clustering algorithm. As

a clustering method, they improved the model proposed by Neelakantan et al. (2015) in

which the Skip-Gram model is extended by clustering word embeddings according to the

contexts of the words. In this algorithm, the sense embeddings are initialized randomly

and for all words, there are k senses/clusters. Instead, the current method uses the sense

embeddings derived from CNN and the number of clusters, k, changes according to the

word.

It can be said that in clustering based methods, sense embeddings are derived from

the words. Arora et al. (2016b) utilize words again to have sense embeddings. However,

in this time, the relation between words and senses is focused and they represent word

by senses to lie in a linear superposition of the word embeddings. They are inspired

from the analogy task in which the linear algebra can solve the problem. Firstly, they

carry out an experiment to check whether the linear superposition idea works or not. In

this experiment, they choose two random words (here, w1 is more frequent than w2), w1

and w2, and they attempt to create an artificial word wnew from the randomly selected

words. Every occurrence of w1 or w2 are counted as the occurrence of the wnew. The

embedding for wnew is derived using the same embedding method for w1 and w2. The

result of repeating this experiment with many randomly selected word pairs is that the new

embedding wnew is close to the subspace spanned by w1 and w2. After this experiment,

they observe that the senses of the polysemous word reside in a linear superposition of

word embeddings. For this reason, they attempt to solve the linear superposition problem

in which the coefficients and sense vectors are unknown:

vw =
m∑
j=1

αw,jAj + nw

28

where αw,1 ...αw,m are coefficients, vw is a polysemous word vector and Aj is the

sense vectors while nw is used as a noise vector. In this equation, there are two unknowns,

coefficients and sense embeddings, αw,j andAj . k-SVD algorithm (Damnjanovic, Davies,

and Plumbley, Damnjanovic et al.) is used to solve this optimization. The word vectors

derived from the model based random-walk of Arora et al. (2016a) are used.

Sun et al. (2017) extract sense embeddings based on the idea of Arora et al.

(2016b) in which the word embedding can be represented as a linear combination of

its contexts. Here, the coefficient of the contexts is calculated by the normalized co-

occurrence value as below:

Wij =
#(wi, wj)

#(wi)#(wj)

The sense vector is calculated by the following formula:

u =
1

|S|
∑
wj∈S

WijCj

Here, S is the context and Cj is the word embedding (from word2vec) of the context

word. For example, a sentence, S, is I must stop by the bank for a quick withdrawal.

The sense vector of the word bank, u, is calculated by taking the weighted sum of the

word embeddings of the context words.

Some other approaches depend on automatically creating sense-labeled data in

which the words are disambiguated and the intended sense is placed into a corpus, then,

the sense embeddings are extracted from the newly created corpus. Iacobacci et al. (2015)

use a Babelfy algorithm (the algorithm takes the input text and constructs a subgraph of a

semantic network representing the input text. Babelfy searches the intended sense using

this subgraph) to label senses. First of all, the senses are disambiguated using BabelNet

(Navigli and Ponzetto, 2012) as an underlying sense inventory and then Babelfy algorithm

is used, which is known as an Entity Linking algorithm. Then the disambiguated/sense-

tagged data are used as the raw data for CBOW. Therefore, the resultant vectors of CBOW

are the sense vectors rather than word vectors. Furthermore, Trask et al. (2015) utilize

CBOW with the labeled data. The distinctive property is that the data is not sense-labeled.

Instead, it is labeled by the Part-of-Speech tagger or Named-entity-Recognition tagger (it

is a word classification task where words are classified according to name-entities, e.g.

person, location, organization, etc.). In this case, at least, words are disambiguated ac-

cording to different features. Similarly, Chen et al. (2014) change the objective function

29

of the Skip-gram in which the main aim is to predict the context words from the mid-

dle word. Instead, the proposed objective function attempts to predict the context words’

senses. To evaluate whether the predicted senses are true, they disambiguate the polyse-

mous words, before the data are given to the system. In the disambiguation part, the most

similar sense to the context is chosen as the intended sense. Here, the sense is represented

as a vector using the gloss words of WordNet. All the words in the gloss are taken and

the similarity values of these words with the polysemous word is calculated. The average

of word vectors (the word vectors are initialized by the Skip-gram) which is higher than

the threshold is assigned as the sense vector. Similarly, context vectors are calculated by

the average of all context word vectors. Then, the most similar sense vector to the current

context vector is chosen as the intended sense. Therefore, the Skip-gram with the new

objective function is trained with a loss between the predicted sense and the previously

disambiguated sense.

Alternatively, sense embeddings can be learned while training the system. Li et al.

(2016) use neural network architecture. Specifically, they use a Recurrent Neural Network

(RNN) (RNN is a kind of Deep Neural Networks used mostly in NLP as RNN is able to

catch the word sequences). They trained their system utilizing sense definitions from

WordNet. The main goal of the architecture is to predict the last word in the definition

and the objective function is a cosine similarity between the predicted embedding and the

actual word/sense embedding. In this comparison, the actual word/sense embeddings are

derived from the initialization of them. They initialize the monosemous words with their

word embedding extracted from Skip-Gram (trained on Google News dataset), explained

in section 2.1. In the initialization of polysemous words, firstly, the synonym word which

consists of only one sense is taken from WordNet and the word embedding of this one-

sense synonym word is used as the sense embedding. However, every time the situation

cannot hold because of the lack of one-sense synonym words. In this case, the most simi-

lar word in the sense definition of the polysemous word is taken and the sense embedding

is initialized by this word’ embedding. While selecting the most similar word, the highest

similarity value should be greater than 0.2, otherwise, they initialize the sense embedding

with the word embedding of the polysemous word. In another approach, Melamud et al.

(2016) propose an architecture to learn context embeddings. However, their main goal is

to address context embeddings and analyze them on WSD task rather than capturing sense

embeddings, directly. The neural network is the same as CBOW except this architecture

utilizes the bidirectional Long Short Term Memory (LSTM) (LSTM is a kind of Neural

30

Networks and capable of holding information for more time) rather than the average of

word vectors. The extracted context embeddings are used to find out to correct sense in a

supervised WSD scenario. Here, the sense whose context embedding is the most similar

to the context embedding of the test instance is selected as the predicted sense.

A quite different approach is to find the analogy between WSD and a well-known

problem and use the solution to this problem on WSD. Here, Li and Jurafsky (2015) define

WSD as new sense vector should appear when evidence in a context suggests the current

sense is distinctively different from others. In this perspective, the problem is similar to

the Chinese Restaurant Process where a customer could either sit at one of the existing

tables or choose a new table. Here, the customer is mapped to the current word while

tables are interpreted as the senses. The decision of which table is chosen is based on the

customers/words already sitting at the table. Actually, this algorithm can be interpreted

as a kind of clustering in which a set of senses for each polysemous word w is denoted

by Zw = z1w, z
2
w, ..., z

|Zw|
w and each sense embedding is represented by ezw. The current

word can be included in the existing cluster/context (according to semantic relatedness)

or a new cluster is created based on the distribution below:

Pr(zw = z) ∝

Nw
z P (e

z
w|context) if z already exists,

γP (ezw|znew) if z is new
(3.4)

whereNw
z is the number of times of w which is already assigned to z (the popular-

ity of word senses) and γ is the probability value of evaluating the amount of difference.

The main goal of Panchenko (2016) is to make a link between sense embeddings

and their senses in a dictionary, automatically. The method is interpreted as the bridge

between the Word Sense Discrimination and Disambiguation (their difference is explained

before). As a dictionary/sense-inventory, they used BabelNet and as a sense embedding

algorithm they used Adagram (Bartunov et al., 2015) (Adagram can learn senses using a

Bayesian nonparametric extension of the Skip-gram model). Their algorithm takes sense

embeddings and a set of synsets as the input and gives an output of mapping between

these two inputs. To be able to represent the synsets, they use the words in the synset

words, glosses and even captions of images representing synset. Each word, in this set, is

weighted according to frequency values. If the word has n synsets and m sense vectors,

then n ∗m similarities are calculated and a vector-synset pair is matched if the similarity

value is higher than the threshold, t. The algorithm is summarized in the equation 3.5,

below.

31

match(vi, sj) =

1 if sim(vi, sj) ≥ t

0 otherwise
(3.5)

where sim(vi, sj) is a similarity score (the similarity is either cosine or overlap)

between a word, vi, which is among the 200 most similar words of a sense vector and

a word, sj , from the set of synset words. They present one more matching algorithm in

which the synset is disambiguated by Adagram method. The input to the algorithm is the

set of words from synset interpreted as the context of the word. The assigned sense is

taken as the matched sense if the similarity value is higher than the threshold, t.

32

CHAPTER 4

EVALUATIONS OF WORD REPRESENTATIONS

In this section, our theoretical explanation related to word representations and case

study are explained.

4.1. Theoretical Explanation

Pointwise Mutual Information (PMI) is an information-theoretic metric, evaluat-

ing the association between words. The critical point in PMI is that it analyzes two words’

relation by taking into the individual frequencies of words besides the co-occurrence val-

ues. It prevents the frequent words from having high association values. This prevention

can be interpreted as the normalization.

PMI(w1, w2) = log
#(w1, w2).|D|
#(w1).#(w2)

The original formula of PMI is defined as:

PMI(w1, w2) = log
p(w1, w2)

p(w1).p(w2)

Here, the probability of w1 (or w2) can be expanded as:

p(w1) =

|V |∑
i

p(w1, vi)

Each word is assumed as a context word in the PMI. Therefore, we can consider

w1 or w2 as a context word. In this case, p(w1) = p(c), the normalization in PMI is

accomplished by a context. However, this context is limited by the word, w1 (or w2).

There has been some work to find out the relation between the vector represen-

tations and PMI values. When word vectors derived from neural approaches are taken

into account, there is no normalization explicitly. Instead, the objective functions contain

some normalization terms in training, in section 2.1. Therefore, it is wise to say the word

vectors are normalized, implicitly. When taking an objective function of one neural ap-

proach, e.g. CBOW, we can recognize the normalization is accomplished depending on

33

the words which are accompanied with the middle word, as also explained by Arora et al.

(2016a).

objective function = −logP (wi|wi−C , ..., wi−1, wi+1, ..., wi+C)

= −logP (wi|h)
= −log exp(wih)

|V |∑
j=1

exp(wjh)

When objective function is analyzed, the denominator,
|V |∑
j=1

exp(wjh) , can be con-

sidered as a context, p(h). However, like PMI, this context is limited by the middle words,

say the context of the middle word.

The impact of context in word2vec approach is not so differentiable because the

context size (window size) is not allowed to be high due to computational efficiency. In

order to be able to underline the effect of context in neural approaches, doc2vec is more

preferable. doc2vec has a similar architecture with word2vec except it has one more term,

document vector, to be fed into the system. The context, document vector, is not limited

by a word in this architecture. Therefore, the context impact is more clearly differen-

tiable. Also, we can analyze the effect of context with this architecture by constructing an

analogy between a document vector and a context prior in the Bayesian formula like the

generative model of Arora et al. (2016a).

In this perspective, we specifically attempt to interpret a context as a controlling

factor. In other words, playing context size has a distinctive effect on word representations

while we know the context is used for a normalization term.

We support our idea with our case study in which word representations including

doc2vec with different document sizes (paragraph, document, etc.) are implemented.

4.2. A Case Study

This section presents our case study about word representations.

4.2.1. Introduction

There have been a number of tasks to evaluate semantics in natural language pro-

cessing. In general, these tasks depend on the evaluation of the relation between two

34

words. In order to be able to evaluate two words, the numerical valuation denoting the

relation between words is necessary. For information-theoretic approaches of word rep-

resentations, it is not difficult since their representations already depend on two words.

However, vector embeddings represent only one word so a metric to evaluate the relation

of two words is required.

The cosine of the angle between the two word vectors/embeddings in a semantic

space has been used in order to evaluate the relation of these two words, described by

Landauer and Dumais (1997). It is called as cosine similarity and defined by the following

formula:

cos(w1, w2) =
wT

1 w2

||w1||||w2||
(4.1)

Here, the numerator, wT
1 w2, is the inner product of the word vectors and ||w1||

is the norm, length of a vector. The norm is calculated by the formula of
√
wTw. The

similarity values are between −1 and 1, [−1, 1]. The similarity becomes 1 when the

angle between the vectors is 0◦, and the similarity becomes −1 when the angle is 180◦.

Therefore, it can be said that the cosine similarity measures the orientation. The relation

between word similarity and the cosine similarity is defined by Landauer and Dumais

(1997).

In addition to cosine similarity, conditional probability has started to be used to

evaluate the relation of two words, after GLove (Pennington et al., 2014) is represented

where the objective function is based on the conditional probability. The conditional

probability calculation over vectors is accomplished using cosine similarity. However,

in this case, the rate of the two words similarity over the total similarity of given word

(conditioned word) with all other words in a vocabulary is taken as described by the

following formula.

p(w2|w1) =
cos(w1, w2)∑
i

cos(w1, wi)
(4.2)

4.2.2. Experimental Setup

We have implemented various types of word representations. A text corpus is

required to create a word representation. This section consists of a detailed explanation

of the data that we have utilized to create word representations and our implementation

details of the word representation models.

35

4.2.2.1. Data

We have used two datasets for all word representations to also evaluate whether

dataset influences the representations or not, Wikipedia 2017 dump (the dump is taken in

2017 May) and Reuters data (Rose et al., 2002).

Wikipedia data are the compressed form of xml formatted file. To extract the text

corpus from such data, gensim library (Řehůřek and Sojka, 2010) is used. The extracted

file contains the title and the text for each title. Here, the title means each page in the

Wikipedia.

Reuters data contain daily news information in a hierarchy. Each day folder is in

a compressed form. For each day, there are folders of news in an xml formatted file.

The details of each dataset are given in the table 4.2.2.1 (the size of the datasets is

the size of compressed form of them):

Table 4.1. The details of the datasets

Dataset Size
Wikipedia 14.64 GB

Reuters 1,03 GB

Wikipedia data are used as the main data to create word representations whereas

Reuters data are used due to its hierarchical structure. The hierarchy is required to eval-

uate the context impact in the form of context size to prove our idea introduced in the

Section 4.1 (as a hierarchy, we have used a day, document, and paragraph information as

the contexts). The hierarchical structure of Wikipedia is quite complicated to be able to

utilize.

4.2.2.2. Implementation of Word Representations

We have implemented both information-theoretic approaches and vector represen-

tations. For the information-theoretic approaches, we have implemented Positive Point-

wise Mutual Information (PPMI), a kind of PMI metric and explained in a detail in Sec-

tion 2.1.2.3. For vector representations, we have implemented PPMI vector, SVD on the

PPMI matrix, CBOW, SGNS, and Doc2Vec. The details of each model implementation

are in the following paragraphs.

36

Positive Pointwise Mutual Information (PPMI) implementation: The formula of

PPMI is introduced before, in the section 2.1.2.3. It can be interpreted as the value of PMI

shifted by a constant of log(k), where k is 1 as in the formula below:

ppmi(w1, w2) = max(pmi(w1, w2)− log(k), 0) (4.3)

Here, the pmi values are shifted by log(k) to improve the association metric as

used by Levy and Goldberg (2014). The PPMI global matrix is implemented using gensim

library. Here, we have played with the constant k, as 1, 5, and 15. When k is taken as 1,

log(k) becomes 0, as log(1) = 0. In this condition, we only take the Positive PMI values.

As an implementation detail, the vocabulary size is taken 80000 for the Wikipedia

dataset. The window/context size is taken as 10 for both datasets. For each (w1, w2) pair

in the vocabulary, the number of their cooccurrences is calculated, referred to #(w1, w2)

in the formula of PMI 2.2. Then, each word’s individual frequency is calculated, #(w1).

|D| is 80000 for Wikipedia dataset in our experiment. The index words are stored for the

creation of 3 PPMI global matrices for each dataset.

After all the implementations are completed, we have 6 PPMI global matrices;

PPMI global matrix for k = 1 shift, PPMI global matrix for k = 5 shift, and one for

k = 15 shift.

PPMI vector representations: For PPMI vector representations, the PPMI global

matrix is used directly. In this matrix, each row corresponding a word is taken as the

vector of that word. Therefore, no other computation is required except for deriving the

row vectors as word vectors.

Vector representations based on SVD over PPMI global matrix: Singular Value

Decomposition (SVD) is used to reduce the dimensionality of a global matrix. Here, as

a global matrix, PPMI matrix is used. In our implementation, the gensim library is used,

again. We have applied SVD to have word vectors having dimensions 100, 500, and 1000.

CBOW, SGNS: We have used the same vocabulary and window size as PPMI

global matrix construction. The gensim library is used to calculate the CBOW and SGNS

word vectors. The dimensionality of word vectors is as 100, 500, and 1000 for each model.

Additionally, they are run with 8 threads to train the model. For SGNS, the negative values

parameter is taken as 10.

Doc2vec: We have used the same vocabulary. The window size is taken as 8.

The gensim library is used. The dimensionality of word vectors are, 100, 500, and 1000.

For Reuters data, day, document, and paragraph information are taken as contexts given

37

to the system, separately. Therefore, 3 different models are created. For Wikipedia data

document is used as the context. Here, the document refers to a page in the Wikipedia.

For all contexts, the DBOW model is used as DBOW works more efficiently than the DM

model.

4.2.3. Tasks

There has been a number of tasks to evaluate semantics in natural language pro-

cessing. Word representations are used for the evaluation.

4.2.3.1. Similarity and Relatedness Task

There are some benchmarks that have been created by the human assessment of

how much two words are similar to each other or how much they are related. Human sub-

jects deliver a numerical rate denoting the degree of similarity/relatedness between two

words. To evaluate two words’ similarity with vector representations, cosine similarity is

used.

• Datasets: We have used three different datasets, WordSim353 (2002), Rubenstein

and Goodenough (rg) (1965), and Hassan and Mihalcea (mc) (2011). The format

of the datasets is word, word, and the amount of similarity/relatedness assessed by

human, as (the first few lines of wordsim353 similarity dataset) in Table 4.2:

Table 4.2. The first few lines of wordsim353 similarity dataset

tiger cat 7.35
plane car 5.77
train car 6.31

television radio 6.77
media radio 7.42
bread butter 6.19

rg and mc contain only similarity assessments while wordsim353 consists of both

similarity and relatedness assessments in separate files. Wordsim353 has 203 word-

pairs from the similarity task and 252 word-pairs for the relatedness task while rg

contains 65 and mc holds 30 word-pairs.

38

• Evaluation: The similarity assessment performance of the computational model is

evaluated by the correlation between human judgment and computational result.

For each word-pair in the dataset, in information-theoretic approaches, e.g. PMI

values, the values between two words are taken directly as a similarity/relatedness

evaluation whereas for vector representations cosine similarity values between two

words are taken. Then, the Spearman correlation between model predictions and

human evaluations is calculated. Spearman correlation is a metric evaluating the

strength and direction of the association between two lists of variables. In general,

we have used it to measure the association between model predictions and human

assessments. The results denote how close a computational model approximates

human assessments. In this task, this approximation shows whether the computa-

tional model catch the similarity of two words or not.

4.2.3.2. Most Similars Task

It is said that a good computational model should predict the neighbouring words

of a given word. Here, neighbouring words mean the words which are semantically simi-

lar to the given word.

• Dataset: There is no benchmark to evaluate this task. We randomly select one

word among the most frequent words in a vocabulary and evaluate whether the

most similar words represent meaningful neighbouring words or not. Here, our

randomly selected word is good. Besides the neighbouring words, the similarity

value of the neighbouring words to the selected word is evaluated.

• Evaluation: For each computational model, the most similar n words are derived

for a selected word. In information-theoretic approaches, the row of a given word

is derived from the global matrix and the words with the highest n values are taken

as the neighbouring words. For vector representations, all cosine similarity values

between a given word and all other words in the vocabulary are calculated and the

words with the highest n values are taken. Then, the neighbouring words and the

similarity values are analyzed. While evaluating, we determine n as 3. Therefore,

the most similar 3 words and their similarity values are taken into account in our

evaluations.

39

4.2.3.3. Analogy Task

The analogy task is based on assessing whether a computational model can catch

semantic or syntactic analogies between words. There are four words in the analogy tasks

and two pairs contain the same semantic/syntactic relation. The challenge is to find out

the last word given the other three words. The model should first find the relation between

the given word-pair, and then find a word having the same relation with the third word. To

illustrate, the two word-pairs are ”Brazil-real USA-dollar”. ”brazil real USA” are given

to a computational model and the last word should be predicted as ”dollar” by the model.

Here, the semantic relation is currency. In addition to semantic relations, the syntactic

relations are also included, e.g. ”bird birds horse horses”. The computational model

is not required to find the relation, explicitly. To be succeeded in the task, the correct

prediction of the last word is sufficient.

• Dataset: We have used a dataset developed by Mikolov et al. (2013). There are 14

categories in which 5 categories; common countries-capital, all countries-capital,

currency, state-city, and family, are related with semantics and others, adjective-

adverb, opposite, comparative, superlative, present-participle, nationality-adjective,

past-tense, and plural, are syntactic categories. In the file, each line contains a

relation separated by a space and each category is separated by a colon. There are

19558 lines in the file.

Table 4.3. A few lines from the dataset

: capital-common-countries
Athens Greece Baghdad Iraq
Athens Greece Bangkok Thailand
Athens Greece Beijing China

...
: capital-world

Abuja Nigeria Accra Ghana
Abuja Nigeria Algiers Algeria
Abuja Nigeria Amman Jordan

...

• Evaluation: Three words out of four are given to the computational model, as ex-

plained before. In vector representations, the last word is predicted as the formula

defined by Mikolov et al. (2013):

40

w4 = w2 − w1 + w3

For example, with the given three words ”brazil real USA”, the vector, real −
brazil + USA, is calculated. The most similar word of this vector is taken as a

prediction. For the information-theoretic approaches, there is no described formula.

4.2.3.4. Association Task

This task relates the association to human memory. In the task, the human is asked

to provide the first word that comes to his/her mind when one word is given. The given

word is called as the cue and the response is the target. The computational model’s perfor-

mance is measured by the degree to which the prediction matches with human responses.

• Dataset: Nelson Norms Association (Nelson et al., 1998) is used as a dataset. In

this dataset, there are 72176 cue-target pairs. There is more information than just

association values. However, we have used cue-target word pair and their associa-

tion value that is human assessed association value. Each line contains a cue-target

pair and their evaluations separated by a comma.

• Evaluation: Spearman correlation is used to evaluate whether the responses of

a computational model approximate human responses or not. For information-

theoretic approaches, the values are association values in nature. For vector rep-

resentations, we have used two types of evaluation. The first one is taking the

cosine similarity between two words as an association value. The other one is to

calculate the conditional probability between two words. The Spearman correla-

tion value between model predictions and human evaluations denotes how well the

model performs in this task.

4.2.3.5. Pun Task

Actually, this task is not a common NLP task. However, it is quite appropriate to

test the word associations. A pun is a form of wordplay in which a word suggests two or

41

more meanings in a sentence. To illustrate, the sentence ”I used to be a banker, but I lost

interest”, contains a pun which is located as the last word in the sentence, ”interest”. In

this experiment, we have attempted to find the location of puns, known as the pun location

task. As a solution scheme, we have used the solution proposed by N-Hance (Sevgili

et al., 2017), where the solution depends on the distinctive word associated with the pun

word. For example, in the given sample sentence the pun word ”interest” is associated

with the ”banker”, with a distinctive meaning. Pun task consists of homographic and

heterographic puns. If the two meanings of puns share the same pronunciation, puns are

called as homographic puns, whereas if puns have similar but not the same sounding, they

are named as heterographic puns. However, the solution scheme works for both types of

pun. The reason to take the pun task into evaluation is that the selected solution is based

on catching the distinctive word associations. Word association is an important task to

evaluate both representations and the effect of the context over them.

• Dataset: The dataset, SemEval2017-Task 7, is delivered by Miller et al. (2017).

There are 2250 sentences containing homographic puns, 1780 sentences contain-

ing heterographic puns in the dataset. The format of the file is xml consisting of

tokenized words and punctuations in a sentence for both homographic puns and

heterographic puns. Each word and sentence are given unique ids as an attribute.

The id of predicted word is delivered as the location of the pun.

• Evaluation: The evaluation is based on whether a computational model can predict

the pun word id correctly or not. For prediction, a model should find out the dis-

tinctive word association, according to the solution scheme, explained above. For

information-theoretic approaches, the pairwise values are taken and these values

are ranked. The word pair with the highest value is selected and the second word

in the selected pair is predicted as a pun. The reason to choose the second word as

a pun is the fact that the pun is located towards the end of the sentence, in general.

For the word vectors, the cosine similarity values and conditional probabilities are

used to find out the distinctive word associations. Again, all pairwise cosine simi-

larity/conditional probability values are calculated and ranked. The word pair with

the highest value is selected and the second word in the selected pair is predicted as

the pun as before. The results from the cosine similarity and conditional probabil-

ity are evaluated, separately. Evaluation is based on the accuracy value of predicted

pun locations.

42

4.2.3.6. Asymmetry Task

As explained before, words are asymmetric to each other according to (Nematzadeh

et al., 2017), e.g. China-North Korea relation in which North Korea is more similar to

China than China is to North Korea. Whether a computational model can catch the asym-

metry between words is evaluated using conditional probability. The asymmetry between

w1 and w2 is defined as (Nematzadeh et al., 2017):

p(w2|w1)

p(w1|w2)
(4.4)

Here, the ratio of conditional probabilities calculated by the formula 4.2 is used as

the asymmetry measure between w1 and w2.

• Dataset: As a dataset, Nelson Norms Association is utilized, again. However, in

this case, we select those cue-target pairs for which target-cue pairs exist in order

to be able to calculate the above ratio. In this case, there are 16772 cue-target pairs

that have their reverses. The filtering is required in order to be able to apply the

Formula 4.4.

• Evaluation: Firstly, for each computational model the conditional probabilities

are calculated, p(w2|w1). The information-theoretic approaches deliver symmet-

ric words. Therefore, a conditional probability calculation is necessary. In order to

calculate the conditional probability value for the information-theoretic approaches,

the row of a word is taken, w1, from the global PMI matrix. Then, the ratio of pmi

value of the words ,w1andw2, over the sum of all the pmi values in this row is taken

as the conditional probability. To illustrate, for pmi values, the calculation is as

below:

p(w2|w1) =
pmi(w1, w2)∑
i

pmi(w1, wi)

The conditional probability for vector representations is described before as in For-

mula 4.2. After the conditional probability calculations, the asymmetry values are

derived using the ratio, as described in Formula 4.4. The same asymmetry calcula-

tion is accomplished for the cue-target pairs in Nelson Norms Association. Then,

the Spearman correlation values between these asymmetry values and the values

predicted by the computational model are calculated. This correlation gives the

asymmetry performance of the computational model.

43

4.2.4. Results

Context has the normalization impact on word representation for both the information-

theoretic approach, PMI, and neural approaches, word2vec or doc2vec, as explained in

section 4.1. Here, we have analyzed this influence on different tasks with various word

representations where we play with the document sizes, also. We have two datasets,

Wikipedia and Reuters, to derive word representations. Wikipedia data are used as the

main data while Reuters data are used to evaluate the document granularity where the hi-

erarchy exists (the documents of a day are combined in a file and in the documents, there

are paragraphs. Therefore, we have three context levels; paragraph, document, and day).

In Wikipedia, such a hierarchy is complicated to be utilized.

4.2.4.1. Similarity and Relatedness Task Results

The Spearman Correlation values between the human assessments’ similarity val-

ues and word representations’ cosine similarity values are evaluated.

Table 4.4. Wikipedia-Similarity and Relatedness Spearman Correlation Results on
WordSim353 dataset

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia wordsim353-r wordsim353-s
CBOW 0.629 0.614 0.585 0.751 0.755 0.753
SGNS 0.557 0.558 0.556 0.622 0.599 0.576

doc2vec
document 0.551 0.571 0.596 0.713 0.752 0.747

SPPMI
(k=1)-value 0.570 0.702

SPPMI
(k=5)-value 0.126 (cov = 83/252) 0.396 (cov = 84/203)

SPPMI
(k=15)-value 0.049 (cov = 31/252) 0.237 (cov = 43/203)

SPPMI
(k=1)-vector 0.524 0.641

SPPMI
(k=5)-vector 0.625 0.709

SPPMI
(k=15)-vector 0.563 0.703

SVD-PPMI
(k=1) 0.574 0.667 0.677 0.677 0.748 0.759

SVD-PPMI
(k=5) 0.557 0.625 0.575 0.662 0.716 0.727

SVD-PPMI
(k=15) 0.564 0.549 0.418 0.625 0.634 0.618

44

In Table 4.4 (and in all other tables), k denotes the shift parameter in the For-

mula 4.3 and cov denotes the coverage. The table displays the correlation values. Here,

wordsim353-r represents WordSim353-relatedness where human evaluate two words in

terms of their relatedness and wordsim352-s represents WordSim353-similarity where

human evaluate word-pairs in terms of their similarity. CBOW and SVD-PPMI shifted

by 1 get best results in this dataset. Also, when we compare the results of SPPMI val-

ues shifted by 1 and SPPMI values shifted by 5, there is a gap. This results from the

shifting. The SPPMI values hold small values and when they are shifted, they lose the

competitiveness.

Table 4.5. Wikipedia-Similarity and Relatedness Spearman Correlation Results on rg
and mc datasets

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia rg mc
CBOW 0.736 0.785 0.812 0.723 0.797 0.752
SGNS 0.625 0.709 0.679 0.577 0.626 0.645

doc2vec
document 0.697 0.754 0.769 0.699 0.755 0.769

SPPMI
(k=1)-value 0.796 0.785

SPPMI
(k=5)-value 0.541 (cov = 28/65) 0.440 (cov = 14/30)

SPPMI
(k=15)-value 0.517 (cov = 12/65) 0.048 (cov = 8/30)

SPPMI
(k=1)-vector 0.524 0.592

SPPMI
(k=5)-vector 0.742 0.726

SPPMI
(k=15)-vector 0.718 0.724

SVD-PPMI
(k=1) 0.746 0.822 0.841 0.748 0.864 0.865

SVD-PPMI
(k=5) 0.686 0.758 0.797 0.694 0.822 0.847

SVD-PPMI
(k=15) 0.638 0.771 0.684 0.639 0.773 0.731

Table 4.5 represents correlation results rg and mc, and word representations. The

CBOW values, again, are among the highest values although the SPPMI value shifted by

k = 1 and SVD-PPMI shifted by k = 1 give the best results.

In the word representations derived from Reuters data, CBOW dominates again

for all datasets, with the correlation values between 0.68 and 0.75. The SPPMI values

and vector values, also, follow CBOW. In the analysis of the doc2vec values in Tables 4.6

45

Table 4.6. Reuters-Similarity and Relatedness Tasks Spearman Correlation Results
on WordSim353 dataset

d=100 d=500 d=1000 d=100 d=500 d=1000
reuters wordsim353-r wordsim353-s

doc2vec
paragraph 0.4515 0.4921 0.4865 0.5645 0.6248 0.6240

doc2vec
document 0.4525 0.4833 0.4640 0.5750 0.6238 0.6229

doc2vec
day 0.2558 0.2012 0.1945 0.3033 0.2876 0.2851

Table 4.7. Reuters-Similarity and Relatedness Tasks Spearman Correlation Results
on rg and mc datasets

d=100 d=500 d=1000 d=100 d=500 d=1000
reuters rg mc

doc2vec
paragraph 0.4500 0.4591 0.4481 0.4628 0.4682 0.4575

doc2vec
document 0.4104 0.4886 0.4549 0.5029 0.5296 .4384

doc2vec
day 0.1837 0.1605 0.1784 0.4170 0.4173 0.4333

and 4.7, when the context size is smaller, the results are increased, in general. CBOW

can be interpreted as the kind of the doc2vec because the context is fed into the system

in CBOW. In this consideration, while the context size decreased, the results are better

with the context granularity order doc2vec-day, doc2vec-document, doc2vec-paragraph,

and CBOW.

4.2.4.2. Pun Task Results

In this task, the evaluation is to determine the pun location in a sentence. The

accuracy values are calculated between the word representations’ predictions and actual

values. Homographic and heterographic types of puns are evaluated, separately, as in the

given dataset.

Table 4.8 shows the accuracy values of pun location where the word represen-

tations attempt to predict the pun word in a pun containing sentence. This prediction

depends on the cosine values between word pairs in a sentence, as in Formula 4.1. The

best values come from the SPPMI vectors shifted by k = 15 for both homographic and

46

heterographic puns. However, we cannot observe the effect of context in either CBOW or

doc2vec.

Table 4.8. Wikipedia-The Accuracy Values of Pun Location

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia homographic heterographic
CBOW 0.3043 0.3120 0.3251 0.2723 0.2905 0.2851
SGNS 0.2304 0.2689 0.2797 0.2140 0.2386 0.2386

doc2vec
document 0.2234 0.2165 0.2080 0.2022 0.2131 0.1840

SPPMI
(k=1)-value 0.3413 0.2942

SPPMI
(k=5)-value 0.2989 0.2550

SPPMI
(k=15)-value 0.2034 0.2122

SPPMI
(k=1)-vector 0.2219 0.1530

SPPMI
(k=5)-vector 0.3975 0.3033

SPPMI
(k=15)-vector 0.4276 0.3242

SVD-PPMI
(k=1) 0.2773 0.2866 0.2928 0.2404 0.2368 0.2395

SVD-PPMI
(k=5) 0.3259 0.3197 0.3320 0.2577 0.2668 0.2668

SVD-PPMI
(k=15) 0.3621 0.3744 0.3528 0.2851 0.2969 0.2969

In Reuters data, Table 4.9, the best results come from representations of doc2vec

model, however, this can be related to the data size. While the context size is increased, the

values are increased for both homographic and heterographic puns. Also, when dimen-

sionality is increased, the values become greater, except for representations from doc2vec

- document.

Table 4.9. Reuters-The Accuracy Values of Pun Location

d=100 d=500 d=1000 d=100 d=500 d=1000
reuters homographic heterographic

doc2vec
paragraph 0.2180 0.2126 0.2350 0.1757 0.2149 0.2596

doc2vec
document 0.2350 0.2095 0.2173 0.1821 0.2350 0.2641

doc2vec
day 0.2927 0.3436 0.3413 0.1985 0.2322 0.2304

47

Table 4.10. Wikipedia-The Accuracy Values of Pun Location V2

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia homographic heterographic
CBOW 0.5686 0.5686 0.5678 0.4335 0.4335 0.4335
SGNS 0.5686 0.5686 0.5678 0.4326 0.4326 0.4335

doc2vec
document 0.5948 0.5932 0.5948 0.5401 0.5392 0.5401

SPPMI
(k=1)-value 0.3413 0.2942

SPPMI
(k=5)-value 0.2989 0.2550

SPPMI
(k=15)-value 0.2034 0.2122

SPPMI
(k=1)-vector 0.5686 0.4335

SPPMI
(k=5)-vector 0.5693 0.4335

SPPMI
(k=15)-vector 0.5678 0.4335

SVD-PPMI
(k=1) 0.5686 0.5693 0.5678 0.4326 0.4326 0.4335

SVD-PPMI
(k=5) 0.5693 0.5701 0.5693 0.4326 0.4335 0.4326

SVD-PPMI
(k=15) 0.5678 0.5693 0.5686 0.4326 0.4335 0.4335

In Table 4.10, the representation is evaluated according to their conditional prob-

ability values, as in Formula 4.2, rather than cosine similarity. As the solution of pun

location is focused on the words’ association values, the accuracy values are better than

the previous evaluation for both homographic and heterographic puns. Here, we can

distinctively observe the context effect as the representations based on context give the

highest scores.

Table 4.11. Reuters-The Accuracy Values of Pun Location V2

d=100 d=500 d=1000 d=100 d=500 d=1000
reuters homographic heterographic

doc2vec
paragraph 0.5817 0.5810 0.5817 0.4481 0.4472 0.4472

doc2vec
document 0.5801 0.5801 0.5809 0.4481 0.4472 0.4472

doc2vec
day 0.5847 0.5847 0.5847 0.4472 0.4481 0.4481

The best values, again, are from doc2vec in Reuters data. The values are nearly

the same between different context sized vectors in table 4.11.

48

4.2.4.3. Most Similars Task Results

We mainly focus on the most similarity values of a randomly selected word, good,

among the most frequent words instead of the most similar words.

Table 4.12. Wikipedia-Most Similar Words and Values

wikipedia most similars of good: similarity rates

CBOW
d = 100 - ’excellent’: 0.6502; ’perfect’, 0.6399; ’decent’: 0.6228

d = 500 - ’bad’: 0.4478; ’excellent’, 0.4419; ’decent’: 0.4252
d = 1000 - ’bad’: 0.3964; ’excellent’: 0.3425; ’decent’: 0.3296

SGNS
d = 100 - ’st’: 0.6335; ’sorrows’: 0.5856; ’faithful’, 0.5825

d = 500 - ’excellent’: 0.3487; ’healy’: 0.3201; ’christ’: 0.3164
d = 1000 - ’hope’: 0.2779; ’galway’: 0.2447; ’mary’: 0.2423

doc2vec
document

d = 100 - ’always’: 0.8354; ’too’: 0.7967; ’so’: 0.7901
d = 500 - ’bad’: 0.6325; ’better’: 0.6096; ’what’: 0.5899

d = 1000 - ’bad’: 0.5482; ’better’: 0.5470; ’excellent’: 0.5042
SPPMI

(k=1)-value ’Good’: 0.0567; ’natured’: 0.0481; ’t9cnicos’: 0.0462

SPPMI
(k=5)-value ’Good’: 0.2740; ’natured’: 0.2167; ’t9cnicos’: 0.2037

SPPMI
(k=15)-value ’Good’: 0.5443; ’natured’: 0.3895; ’t9cnicos’: 0.3543

SPPMI
(k=1)-vector ’something’: 0.5775; ’you’: 0.5711; ’things’: 0.5703

SPPMI
(k=5)-vector ’bad’: 0.1867; ’Good’: 0.1849;’guys’: 0.1293

SPPMI
(k=15)-vector ’followed’: 0.2285; ’guys’: 0.1841; ’bad’, 0.1566

SVD-PPMI
(k=1)

d = 100 - ’proud’: 0.8250; ’honest’: 0.8004; ’sure’: 0.7950
d = 500 - ’your’: 0.5422; ’you’: 0.5214; ’thing’: 0.5001

d = 1000 - ’excellent’: 0.4893; ’thing’: 0.4158; ’things’: 0.4073

SVD-PPMI
(k=5)

d = 100 - ’kind’, 0.7713; ’think’, 0.7684; ’thing’, 0.7564
d = 500 - ’guys’: 0.5703; ’you’: 0.5699; ’thing’: 0.5637

d = 1000 - ’thing’: 0.4828; ’pretty’: 0.4736; ’kind’: 0.4551

SVD-PPMI
(k=15)

d = 100 - ’guys’: 0.6338; ’wouldn’: 0.5225; ’fool’: 0.5146
d= 500 - ’luck’: 0.4726; ’cnicos’: 0.4089; ’guys’: 0.3991

d = 1000 - ’cnicos’: 0.4743; ’rudos’: 0.4579; ’guys’: 0.4530

Table 4.12 displays the most similar 3 words and the similarity values of the word

good. The highest similarity values are delivered by doc2vec. For each word embedding,

when dimensionality is increased, word vectors become distant to each other. Thus, the

similarity values between them are decreased. The similarity values are cosine similarity.

The highest similarity value from the word representations of the Reuters data

comes from the SVD-PPMI shifted by k = 5 with the dimensionality is 100 (giving a

similarity value of 0.9906). When the granularity is increased, the values are increased.

49

Table 4.13. Reuters-Most Similar Words and Values
reuters most similars of ’good’: similarity rates

doc2vec
paragraph

d=100 - ’strong’: 0.8431; ’better’: 0.8381; ’solid’: 0.8334
d=500 - ’excellent’: 0.6751; ’strong’: 0.6362; ’better’, 0.6358

d=1000 - ’excellent’: 0.5203; ’better’: 0.5091; ’strong’: 0.4921

doc2vec
document

d=100 - ’very’: 0.8006; ’great’: 0.7761; ’better’: 0.7621
d=500 - ’excellent’: 0.6831; ’better’: 0.6541; ’strong’: 0.6313
d=1000 - ’excellent’: 0.5707; ’better’: 0.5510; ’very’: 0.5163

doc2vec
day

d=100 - ’great’: 0.9227; ’very’: 0.9099; ’tremendous’: 0.8955
d=500 -’great’: 0.8434; ’strange’: 0.8178; ’fantastic’: 0.8100

d=1000 -’great’: 0.8491; ’strange’: 0.8157; ’fantastic’: 0.8119

The result is the same as in Table 4.12, when CBOW and doc2vec are compared.

4.2.4.4. Analogy Task Results

The accuracy values between the predicted word from word representations and

the actual word are evaluated. There is no accepted solution scheme for SPPMI values.

Table 4.14. Wikipedia-The Accuracy Values of Analogy Task

d=100 d=500 d=1000
wikipedia analogy tasks
CBOW 0.5602 0.6093 0.5387
SGNS 0.2283 0.3472 0.3558

doc2vec
document 0.5053 0.6552 0.6589

SPPMI
(k=1)-value *

SPPMI
(k=5)-value *

SPPMI
(k=15)-value *

SPPMI
(k=1)-vector 0.4776

SPPMI
(k=5)-vector 0.405

SPPMI
(k=15)-vector 0.3093

SVD-PPMI
(k=1) 0.3150 0.4810 0.5388

SVD-PPMI
(k=5) 0.1644 0.2698 0.3040

SVD-PPMI
(k=15) 0.0989 0.1665 *

In Table 4.14, the representations form doc2vec and CBOW dominate with their

results. The vectors from SVD-PPMI shifted by k = 1 model follow them.

50

Table 4.15. Reuters-The Accuracy Values of Analogy Task

d=100 d=500 d=1000
reuters analogy tasks

doc2vec
paragraph 0.1312 0.1456 0.1250

doc2vec
document 0.1120 0.1498 0.1295

doc2vec
day 0.0138 0.0141 0.0139

In Reuters data, CBOW gets the best results with the values between 0.5 and

0.5937. When context size decreases, accuracy values increase, in Table 4.15. The CBOW

confirms this while considering it as a kind of doc2vec with the smaller context size.

4.2.4.5. Association Task Results

The Spearman Correlation values between the cosine similarity/conditional proba-

bility values from word representations and human assessments are taken as the evaluation

criteria in this task.

Table 4.16. Wikipedia-The Spearman Correlation Results of Association Task

d=100 d=500 d=1000
wikipedia association task
CBOW 0.2031 0.2173 0.2149
SGNS 0.1558 0.1783 0.1833

doc2vec
document 0.1755 0.2037 0.2120

SPPMI
(k=1)-value 0.2148

SPPMI
(k=5)-value 0.1369

SPPMI
(k=15)-value 0.0980

SPPMI
(k=1)-vector 0.1657

SPPMI
(k=5)-vector 0.1935

SPPMI
(k=15)-vector 0.1880

SVD-PPMI
(k=1) 0.1764 0.2251 0.2486

SVD-PPMI
(k=5) 0.1535 0.2020 0.2207

SVD-PPMI
(k=15) 0.1344 0.1756 0.1888

51

SPPMI shifted by k = 1 value and its vectors get the best results in the association

tasks, as shown in Table 4.16. The word-pairs’ scores are the cosine similarity values in

word vectors.

Table 4.17. Reuters-The Spearman Correlation Results of Association Task

d=100 d=500 d=1000
reuters association task

doc2vec
paragraph 0.1421 0.1762 0.1803

doc2vec
document 0.1396 0.1597 0.1642

doc2vec
day 0.0341 0.0297 0.0298

The best results in Reuters data are delivered by CBOW with the correlation values

from 0.2031 to 2074. Table 4.17 represents that the smaller context sized word vectors

get better results.

Table 4.18. Wikipedia-The Spearman Correlation Results of Association Task V2

d=100 d=500 d=1000
wikipedia association task
CBOW 0.2427 0.2330 0.2222
SGNS 0.2136 0.2086 0.2024

doc2vec
document 0.2269 0.2304 0.2279

SPPMI
(k=1)-value 0.2148

SPPMI
(k=5)-value 0.1369

SPPMI
(k=15)-value 0.0980

SPPMI
(k=1)-vector 0.2154

SPPMI
(k=5)-vector 0.2101

SPPMI
(k=15)-vector 0.2015

SVD-PPMI
(k=1) 0.2326 0.2403 0.2389

SVD-PPMI
(k=5) 0.2193 0.2330 0.2348

SVD-PPMI
(k=15) 0.2076 0.2212 0.2240

When the word-pairs are evaluated according to conditional probability value

rather than cosine similarity, the correlation values of CBOW and SVD-PPMI shifted

by k = 1 are the highest ones, as seen in Table 4.18.

52

Table 4.19. Reuters-The Spearman Correlation Results of Association Task V2

d=100 d=500 d=1000
reuters association task

doc2vec
paragraph 0.2170 0.2158 0.2071

doc2vec
document 0.2160 0.2139 0.2075

doc2vec
day 0.1779 0.1763 0.1765

When the context size is smaller, the results are better in this version, Table 4.19

the same as in the previous version Table 4.17. The doc2vec paragraph gets the best

results in this version.

4.2.4.6. Asymmetry Task Results

In this task, the evaluation is based on Spearman Correlation between word repre-

sentations and human evaluation based on the ratio between (w1, w2) and (w2, w1) for all

pairs.

Table 4.20. Wikipedia-The Spearman Correlation Values of Asymmetry Task

d=100 d=500 d=1000
wikipedia
CBOW 0.5226 0.5227 0.5238
SGNS 0.5257 0.5256 0.5261

doc2vec
document 0.5336 0.5341 0.5347

SPPMI
(k=1)-value 0.5257

SPPMI
(k=5)-value 0.4646

SPPMI
(k=15)-value 0.3930

SPPMI
(k=1)-vector 0.5346

SPPMI
(k=5)-vector 0.5252

SPPMI
(k=15)-vector 0.5221

SVD-PPMI
(k=1) 0.5221 0.5244 0.5265

SVD-PPMI
(k=5) 0.5119 0.5161 0.5186

SVD-PPMI
(k=15) 0.5056 0.5097 0.5120

53

In Table 4.20, the best values are given by the doc2vec and SPPMI vector shifted

by k = 1. However, they are not so distinctive as other word embeddings’ scores are very

close to the best results.

Table 4.21. Reuters-The Spearman Correlation Values of Asymmetry Task

d=100 d=500 d=1000
reuters

doc2vec
paragraph 0.5291 0.5272 0.5251

doc2vec
document 0.5288 0.5274 0.5256

doc2vec
day 0.5277 0.5255 0.5256

For Reuters data, again the results are close to each other where the best results

come from the doc2vec paragraph. Here, again, the context size is decreased, the values

are increased. However, the values, again, are close to each other.

4.2.5. Conclusion

We have evaluated word representations on six different tasks. Word representa-

tions are implemented by various word representation approaches. Our main goal is to

see whether our theoretical explanation is confirmed by the word representations on NLP

tasks.

In general, word vectors from CBOW, doc2vec, and PPMI based (value or vectors)

methods perform better. Actually, in CBOW, the context is given as an input and the

middle word is predicted. Therefore, the context is directly fed into the system similar

to doc2vec architecture (for both versions). In this perspective, we consider CBOW is

kind of doc2vec having smaller context size. Then, the order of granularity in terms of

the context size is doc2vec-day, document, paragraph, and CBOW in Reuters data while

it is doc2vec, CBOW in Wikipedia. Thus, we can interpret the results as the success

of these three models come from their consideration of the context while deriving word

representations.

Distinctively, the context-based models, doc2vec and PPMI based methods, are

better in the association tasks, e.g. Pun Task, Association Task. It can be said that as-

sociation evaluation is sensitive to normalization where the word representations from

54

context-based models are normalized by context words. Furthermore, when the word

vectors are evaluated with conditional probability rather than cosine similarity, the results

become better.

By taking all of the evaluations into consideration, the distinctive effect of the

context on word representations cannot be denied. Additionally, we recognize this impact

can be more observable on association tasks. The vector representations’ scores can be

enhanced by taking the conditional probability as the metric on association tasks.

55

CHAPTER 5

A CASE STUDY: A KNOWLEDGE BASED DEEP

LEARNING APPROACH TO SENSE EMBEDDINGS

This section covers information related to our proposed method to create sense

representations.

5.1. Introduction

Sense embeddings address the polysemous word vector representation problem

providing vector representation for each sense of polysemous words. We represent an

approach to sense embeddings where the disambiguated senses are taken as text corpus

for the learning algorithm, e.g CBOW, SGNS, etc.

The first step of the proposed method is to disambiguate the polysemous words’

senses. The lesk algorithm (Lesk, 1986) is used for disambiguation. The algorithm

achieves 50-70%. It is knowledge-based or dictionary-based algorithm which uses Word-

Net as the knowledge resource. As explained before WordNet contains the description

sentence and samples for each sense. Lesk algorithm depends on the calculation of the

word overlap between the context of the polysemous word in the text and the dictionary

definition and samples of the senses. The sense is selected with the highest word overlap

between sense description and context containing a polysemous word.

scoreLesk(Si) = |context(w) ∩ gloss(Si)|

In this formula, Si is each sense of the word, context(w) is a bag-of-words in

a context except the polysemous word, w, and gloss(Si) is, again, bag-of-words in a

dictionary definition and samples of sense, Si. The context similarity is evaluated as the

number of word overlap in this algorithm.

Table 5.1 displays the first three senses of a polysemous word, key. The example

sentence, from Navigli (2009), is I inserted the key and locked the door. When the

lesk algorithm is run, key1 has 3 overlap words (inserted, lock, and lock′s), as others

56

Table 5.1. The first three senses of a word key from WordNet

Sense Definition and Samples

key1
Metal device shaped in such a way that when it is inserted into the appropriate lock

the lock’s mechanism can be rotated
key2 Something crucial for explaining, ”the key to development is economic integration”
key3 Pitch of the voice, ”he spoke in a low key”

have no overlap words. Therefore, the selected sense is key1.

After all words are disambiguated by the Lesk algorithm, the text containing dis-

ambiguated words is taken as an input text to the word2vec. As known, word2vec takes

the text data as input and in the sliding window context, it either predicts the middle word

from context words (CBOW) or predicts the context from the middle word (Skip-gram).

In both conditions, the words fed to the system is one-hot vectors and the trained weights

of the architecture are taken as the resultant word vectors. In the disambiguated words,

again, the words/senses fed to the system are represented as one-hot vectors. However,

in this condition, the vocabulary size increases as it does not hold only words instead it

holds the senses.

For example, the first few lines of the disambiguated text in Wikipedia are as fol-

lows:

anarchism political.a.03 philosophy.n.03 that recommend.v.01 self.n.02 regulate.v.02 so-

ciety.n.04 free-base.v.01 volunteer.n.01 initiation.n.02 these exist.v.01 often.r.03 report.v.01

stateless society.n.04 although several.s.03 generator.n.03 take.v.35 specify.v.03 them more.

r.02 specifically mental-hospital.n.01 free-base.v.01 non hierarchical unblock.v.03 asso-

ciation.n.08 anarchism retain.v.03...,

where, the disambiguated words are represented with their POS tags (a for an ad-

jective, n for a noun, v for a verb, etc.) and sense numbers. The vocabulary is constructed

by these sense-tagged data. For each sense in the vocabulary, one-hot vectors are created

and fed to the system. Therefore, the resultant vectors, now, represent senses rather than

words.

5.2. Experimental Setup

We have developed a method to create a sense representation. The method consists

of knowledge-based disambiguation algorithm and neural networks. This section contains

57

a detailed explanation of the data utilized and the implementation of the proposed method

to create sense representation.

5.2.1. Data

We have used the dataset, Wikipedia 2017 dump, the same as in section 4.

5.2.2. Implementation of Sense Embeddings

Lesk algorithm is implemented using pywsd.lesk (Tan, 2014) library in which the

simple lesk algorithm is used. The algorithm takes a word and a sentence/context as an

input and returns a list of candidate senses. We select the first candidate sense in the list as

the predicted sense. As a sentence/context, we use the sliding window with the size 10 for

the Wikipedia data. The middle word in this sliding window is given to the algorithm as

the input word and the sliding window is given to the algorithm as the sentence/context.

The vocabulary is taken as 80000, the same as the word embeddings. However,

as for each word, senses are replaced, vocabulary of senses becomes greater than the

vocabulary of words.

CBOW is implemented as the word2vec algorithm with the disambiguated cor-

pus. The gensim library (Řehůřek and Sojka, 2010) is used for CBOW implementation,

again. In this condition, the input is sense-labeled data rather than raw data. We have

implemented sense embeddings in various dimensionalities.

5.2.3. Tasks

There are two common tasks to evaluate the sense embeddings. One of them is the

similarity/relatedness task. There are two words and their similarity or relatedness score

evaluated by a human in each line, as explained before, in section 4. Four benchmarks

have been used, WordSim353, rg, and mc, MEN. The first three datasets are explained in

the Section 4. MEN dataset is developed by Bruni et al. (2014). The format is similar to

other datasets; there are two words and their similarity rate evaluated by a human in every

line.

58

While evaluating word embeddings, the cosine similarities of two words’ vectors

are taken and the Spearman correlation value between human evaluations and cosine sim-

ilarities is based to determine whether the word embeddings predict as human or not. The

evaluation of sense embeddings rather than word embeddings should be accomplished at

the sense level rather than word level. However, the benchmarks consist of the words

rather than senses. The common solution to this problem is to evaluate the senses of the

polysemous word. Each sense of the first word and second word are taken from Word-

Net, then the cosine similarities between sense pairs (one from the first word, the other

from the second word) are calculated. The maximum cosine similarity value is taken

as the predicted similarity/relatedness value. To illustrate, take word pair, ’opera’ and

’performance’:

The senses of the word ’opera’ are ’opera.n.01’, ’opera.n.02’, and ’opera.n.03’.

The senses of the word ’performance’ are ’performance.n.01’, ’performance.n.02’, ’per-

formance.n.03’, ’performance.n.04’, and ’operation.n.08’. The similarity values between

the senses of the first word and the senses of the second word are as follows:

’opera.n.01’ - ’performance.n.01’ = 0.2321

’opera.n.01’ - ’performance.n.02’ = 0.3327

’opera.n.01’ - ’performance.n.03’ = 0.0841

’opera.n.01’ - ’performance.n.04’ = 0.1949

’opera.n.01’ - ’operation.n.08’ = 0.0154

’opera.n.02’ - ’performance.n.01’ = 0.1830

’opera.n.02’ - ’performance.n.02’ = 0.1639

’opera.n.02’ - ’performance.n.03’ = 0.0902

’opera.n.02’ - ’performance.n.04’ = 0.1749

’opera.n.02’ - ’operation.n.08’ = 0.1452

’opera.n.03’ - ’performance.n.01’ = 0.3064

’opera.n.03’ - ’performance.n.02’ = 0.3096

’opera.n.03’ - ’performance.n.03’ = 0.1221

’opera.n.03’ - ’performance.n.04’ = 0.2685

’opera.n.03’ - ’operation.n.08’ = 0.0089

The most similar value, 0.3327, is taken as the predicted value.

For every word pair in the benchmark, the prediction value from the sense embed-

dings is calculated. Then, the Spearman correlation value between the predicted values

and human evaluation values is calculated. The results display how much close the pre-

59

dictions of the sense embeddings to the predictions of human evaluators.

The other task is developed by Huang et al. (2012), named as SCWS test. In this

task, there are, again, two words and their similarity values are evaluated. However, in

this task, each word contains its context. Therefore, the words are evaluated according

to their contexts. It enables the evaluation of the senses by discriminating which sense is

used in the context. Furthermore, the benchmark contains 10 human evaluator and their

evaluations are provided by average evaluation values and separate evaluation values as

seen in Table 5.2.

Table 5.2. The first few lines of SCWS benchmark
Word 1 POS 1 Word 2 POS 2 Context 1 Context 2 Human 1-Human ..

Brazil n nut n
gap in
income

between...

of the neck ,
bridge , and
, pickups ,...

1.1 0.0 ...

Brazil n triple n
being

elected , has
not used...

Pythagorean
triple
. A ...

0.6 2.0 ...

CD n aglow a
other official
languages ,
except for

. In some
places the
shock...

1.8 0.0 ...

In Table 5.2, Human denotes the average value of 10 human evaluators, and ...

denotes the evaluations of the individual of human until 10−Human.

To determine which sense is used in the context, again we have used the Lesk

algorithm. The cosine similarity between the predicted senses is taken as the predicted

similarity between words in the given contexts.

5.3. Results

We have developed the system to provide the sense embeddings. The developed

sense embeddings are evaluated in two different tasks; the similarity/relatedness tasks

and similarity based on context task (SCWS). In this section, the results of these tasks are

displayed.

First, the similarity/relatedness tasks’ results are shown, then SCWS results are

presented. In the similarity/relatedness tasks, we compare the results of sense embeddings

with the word embeddings to assess whether the sense embeddings improve the results

or not. Additionally, we compare our sense embedding results with results of other sense

embeddings developed by Huang et al. (2012) and Iacobacci et al. (2015). The results

60

of Huang et al. (2012) are generally compared as they construct the dataset, SCWS. The

results of Iacobacci et al. (2015) are compared as their proposed method is similar to our

method. Thus, we attempt to find out the effects of the differences on the results.

Table 5.3. Similarity and Relatedness Spearman Correlation Results on WordSim353
dataset

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia wordsim353-r wordsim353-s

Word Embeddings 0.629 0.614 0.585 0.751 0.755 0.753
Sense Embeddings 0.562 0.539 0.543 0.665 0.691 0.697

Table 5.3 displays the correlation values between the predictions of the sense/word

embeddings and human predictions. Here, wordsim353-r represents WordSim353-relatedness

where human evaluate two words in terms of their relatedness and wordsim352-s repre-

sents WordSim353-similarity where human evaluate word-pairs in terms of their simi-

larity. CBOW architecture is used for both types of embeddings. In this benchmark,

the results of word embeddings are better than the sense embeddings. However, when

dimensions are increased, the results of sense embeddings become better.

Table 5.4. Similarity and Relatedness Spearman Correlation Results on rg and mc
datasets

d=100 d=500 d=1000 d=100 d=500 d=1000
wikipedia rg mc

Word Embeddings 0.736 0.785 0.812 0.723 0.797 0.752
Sense Embeddings 0.814 0.848 0.858 0.735 0.828 0.851

Table 5.4 displays the correlation values, again. Here, sense embeddings improve

the results, in every dimension.

Table 5.5. Similarity and Relatedness Spearman Correlation Results on MEN dataset

d=100 d=500 d=1000
wikipedia MEN

Word Embeddings 0.719 0.743 0.740
Sense Embeddings 0.688 0.708 0.709

Table 5.5 shows the correlation values, again. Here, the results of word embed-

dings dominate in every dimension. However, the difference between the results from

word embeddings and sense embeddings is not so high.

61

Table 5.6. Similarity and Relatedness Spearman Correlation Results on WordSim353
and MEN dataset

d=400 d=400 d=400
wikipedia wordsim353-r wordsim353-s MEN

Iacobacci et al. (2015) 0.645 0.894 0.779
Our Sense Embeddings 0.534 0.680 0.708

Table 5.6 presents the correlation values of the sense embeddings. Here, the di-

mension is restricted by the 400, because Iacobacci et al. (2015) provide the results only

in this dimension and their results are better than ours.

Table 5.7. Similarity and Relatedness Spearman Correlation Results on WordSim353

d=50
wikipedia wordsim353

Huang et al. (2012) 0.713
Iacobacci et al. (2015) 0.714
Our Sense Embeddings 0.605

Table 5.7 displays the correlation values of the sense embeddings. Here, the di-

mension is restricted by the 50 and the dataset is only WordSim353 (both relatedness and

similarity), because Huang et al. (2012) provide the results only in this dimension and this

dataset. Their results are so close to each other.

Table 5.8. Similarity and Relatedness Spearman Correlation Results

d=100 d=300 d=500 d=700 d=1000
wikipedia Our Sense Embeddings

WordSim353-r 0.562 0.543 0.539 0.537 0.543
WordSim353-s 0.665 0.684 0.691 0.675 0.697

rg 0.814 0.841 0.848 0.842 0.858
mc 0.735 0.802 0.828 0.824 0.851

MEN 0.688 0.708 0.708 0.711 0.709

Table 5.8 presents the correlation values of our sense embeddings. Here, various

dimensions are implemented to be able to see in which dimension our embeddings work

best. Actually, except dimension 100, the embeddings tend to give better results when

dimensionality is increased.

Table 5.9 displays the correlation values of sense embeddings. The distinctive

issue in this dataset, the context is included in the evaluation. The result of Huang et al.

62

Table 5.9. Similarity Spearman Correlation Results on SCWS

d=50
wikipedia SCWS

Huang et al. (2012) 0.657
Our Sense Embeddings 0.440

(2012) is better. This is related to the method of Huang et al. (2012) in which they use the

clustering technique.

5.4. Conclusion

We have developed a method for sense representations Sense representations are

implemented in various dimensions. Our main goal is to see whether sense embeddings

developed by knowledge-based algorithm improve the results or not.

In general, other sense embeddings’ results are better than us. The reason for this

result is that the method to label the raw data has a crucial effect as Iacobacci et al. (2015)

propose another method to label raw data. Distinctively, our sense embeddings give better

results in mc and rg dataset where we compare our results with word embeddings.

63

CHAPTER 6

CONCLUSION AND FUTURE WORK

This section contains the information of the conclusion of the thesis and future

work, respectively.

6.1. Conclusion

In this thesis, we have focused on the analysis of semantic representations. We

have two main goals:

• There are two main approaches to word representations, information-theoretic and

vectorial approaches. We attempt to find out the relation between them.

• In word representations, the main aim is to address the meaning of a word. How-

ever, there are polysemous words. In this case, one representation covers all senses

of a polysemous word. We attempt to create a sense representation for each mean-

ing of polysemous words.

For the first goal, we have analyzed both information-theoretic and vectorial ap-

proaches. We have observed that PMI values, an approach in information-theory, evaluate

two words relation with a normalization term. This normalization prevents high frequent

words to have high association values. And then, we start to analyze vectorial word rep-

resentations from a similar normalization perspective. In CBOW, a neural approach in

vectorial representations, the objective function has a normalization term. However, this

term is embedded into the architecture. Our main observation is that both normalization

terms depend on context. After this observation, we focus on the doc2vec architecture

where the context is fed into the system, directly. Our idea is that if the context has the

normalization impact on the representations, we can observe this influence in the doc2vec

architecture, more clearly, because this architecture utilize the context (normalization)

term explicitly whereas CBOW utilizes it implicitly in its objective function. This im-

pact is evaluated by the various NLP tasks. After the implementation of various word

64

representations and their evaluation on different NLP tasks, we have four main results to

underline:

• The relation between two main approaches is that they both use the context as the

normalization factor. In PMI, this is accomplished explicitly whereas, in CBOW, it

is done, implicitly.

• In the experimental work, the representations using context give the highest scores.

• In the experiments, we observe that when we use conditional probability rather than

cosine similarity while evaluating two words’ relation in vectorial representations,

results become better.

• We relate this improvement with the normalization, again, where we interpret con-

ditional probability as the normalized version of cosine similarity.

For the second goal, we have developed a method to have sense embeddings. Our

idea is that if we label the raw data according to the senses, we can use these data in the

word representation methods and we can derive the sense embeddings rather than word

embeddings in this time. Thus, to label data, we have used the Lesk algorithm and the

labeled data are fed into the CBOW. In the end, we compare our result with Iacobacci

et al. (2015) where they use a different algorithm to label data and their results are better

than us. Therefore, the method to label data is critical for these tasks. Additionally, we

have improved the results of word embeddings in the similarity task (in two datasets; mc

and rg), by using our sense embeddings.

In conclusion, semantics is a topic which is studied in various fields. We have

focused on semantics in a computational manner in this dissertation and improve it in

some perspectives.

6.2. Future Work

For the first study:

• In doc2vec, there are two versions, DM, and DBOW, as explained before. In the

experiment part, we have implemented one of them. As a future work, both versions

can be implemented. And then, their relation can be analyzed. In this study, the

context impact can be observed, again.

65

• For Wikipedia, the hierarchical structure can be extracted. The level of the docu-

ment can be analyzed in Wikipedia, also.

• Embeddings may be run on the triangle task.

For the second study:

• The impact of context may be analyzed on the sense embeddings.

66

REFERENCES

Arora, S., Y. Li, Y. Liang, T. Ma, and A. Risteski (2016a). A latent variable model ap-

proach to pmi-based word embeddings. Transactions of the Association for Compu-

tational Linguistics 4, 385–399.

Arora, S., Y. Li, Y. Liang, T. Ma, and A. Risteski (2016b). Linear algebraic structure of

word senses, with applications to polysemy. CoRR abs/1601.03764.

Bartunov, S., D. Kondrashkin, A. Osokin, and D. P. Vetrov (2015). Breaking sticks and

ambiguities with adaptive skip-gram. CoRR abs/1502.07257.

Bruni, E., N. K. Tran, and M. Baroni (2014, January). Multimodal distributional seman-

tics. J. Artif. Int. Res. 49(1), 1–47.

Chen, T., R. Xu, Y. He, and X. Wang (2015). Improving distributed representation of

word sense via wordnet gloss composition and context clustering. In Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing of the Asian

Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing,

China, Volume 2: Short Papers, pp. 15–20.

Chen, X., Z. Liu, and M. Sun (2014). A unified model for word sense representation

and disambiguation. In Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A

meeting of SIGDAT, a Special Interest Group of the ACL, pp. 1025–1035.

Church, K. W. and P. Hanks (1990, March). Word association norms, mutual information,

and lexicography. Comput. Linguist. 16(1), 22–29.

Damnjanovic, I., M. E. P. Davies, and M. D. Plumbley. Smallbox - an evaluation frame-

work for sparse representations and dictionary learning algorithms. In in LVA/ICA 10,

pp. 418425.

67

Goldberg, Y. (2017). Neural Network Methods for Natural Language Processing, Vol-

ume 37 of Synthesis Lectures on Human Language Technologies. San Rafael, CA:

Morgan & Claypool.

Griffiths, T. L., M. Steyvers, and J. B. Tenenbaum (2007). Topics in semantic representa-

tion. Psychological review 114 2, 211–44.

Harris, Z. (1954). Distributional structure. Word 10(23), 146–162.

Huang, E. H., R. Socher, C. D. Manning, and A. Y. Ng (2012). Improving word represen-

tations via global context and multiple word prototypes. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics: Long Papers - Vol-

ume 1, ACL ’12, Stroudsburg, PA, USA, pp. 873–882. Association for Computational

Linguistics.

Iacobacci, I., M. T. Pilehvar, and R. Navigli (2015). Sensembed: Learning sense embed-

dings for word and relational similarity. In In Proceedings of ACL, pp. 95–105.

Landauer, T. and S. Dumais (1997). A solution to Plato’s problem: The Latent Seman-

tic Analysis theory of the acquisition, induction, and representation of knowledge.

Psychological Review 104, 211 – 240.

Le, Q. V. and T. Mikolov (2014). Distributed representations of sentences and documents.

In ICML, Volume 32 of JMLR Workshop and Conference Proceedings, pp. 1188–

1196. JMLR.org.

Lesk, M. (1986). Automatic sense disambiguation using machine readable dictionaries:

How to tell a pine cone from an ice cream cone. In Proceedings of the 5th Annual

International Conference on Systems Documentation, SIGDOC ’86, New York, NY,

USA, pp. 24–26. ACM.

Levy, O. and Y. Goldberg (2014). Neural word embedding as implicit matrix factoriza-

tion. In Proceedings of the 27th International Conference on Neural Information Pro-

cessing Systems - Volume 2, NIPS’14, Cambridge, MA, USA, pp. 2177–2185. MIT

Press.

68

Li, J. and D. Jurafsky (2015). Do multi-sense embeddings improve natural language un-

derstanding? CoRR abs/1506.01070.

Li, Q., T. Li, and B. Chang (2016). Multi-phase word sense embedding learning using a

corpus and a lexical ontology. CoRR abs/1606.04835.

Marco Baroni, Georgiana Dinu, G. K. (2014). Don’t count, predict! a systematic compar-

ison of context-counting vs. context-predicting semantic vectors. 52nd Annual Meet-

ing of the Association for Computational Linguistics, ACL 2014 - Proceedings of the

Conference 1, 238–247.

Melamud, O., I. Dagan, and J. Goldberger (2017). A simple language model based on

PMI matrix approximations. CoRR abs/1707.05266.

Melamud, O., J. Goldberger, and I. Dagan (2016). context2vec: Learning generic context

embedding with bidirectional lstm. In Y. Goldberg and S. Riezler (Eds.), CoNLL, pp.

51–61. ACL.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word rep-

resentations in vector space. CoRR abs/1301.3781.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean (2013). Distributed represen-

tations of words and phrases and their compositionality. CoRR abs/1310.4546.

Miller, G. A. (1995, November). Wordnet: A lexical database for english. Commun.

ACM 38(11), 39–41.

Miller, T., C. Hempelmann, and I. Gurevych (2017, August). Semeval-2017 task 7: De-

tection and interpretation of english puns. In Proceedings of the 11th International

Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pp. 58–68.

Association for Computational Linguistics.

Navigli, R. (2009, February). Word sense disambiguation: A survey. ACM Comput.

Surv. 41(2), 10:1–10:69.

69

Navigli, R. and S. P. Ponzetto (2012). BabelNet: The automatic construction, evaluation

and application of a wide-coverage multilingual semantic network. Artificial Intelli-

gence 193, 217–250.

Neelakantan, A., J. Shankar, A. Passos, and A. McCallum (2015). Efficient

non-parametric estimation of multiple embeddings per word in vector space.

CoRR abs/1504.06654.

Nelson, D. L., McEvoy, C. L., and T. A. Schreiber (1998). The University of South

Florida word association, rhyme, and word fragment norms.

Nematzadeh, A., S. C. Meylan, and T. L. Griffiths (2017). Evaluating vector-space models

of word representation, or, the unreasonable effectiveness of counting words near

other words. In CogSci.

Panchenko, A. (2016, may). Best of both worlds: Making word sense embeddings in-

terpretable. In N. C. C. Chair), K. Choukri, T. Declerck, S. Goggi, M. Grobel-

nik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and S. Piperidis

(Eds.), Proceedings of the Tenth International Conference on Language Resources

and Evaluation (LREC 2016), Paris, France. European Language Resources Associ-

ation (ELRA).

Pennington, J., R. Socher, and C. D. Manning (2014). Glove: Global vectors for word

representation. In EMNLP, Volume 14, pp. 1532–1543.

Řehůřek, R. and P. Sojka (2010, May). Software Framework for Topic Modelling with

Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for

NLP Frameworks, Valletta, Malta, pp. 45–50. ELRA.

Reisinger, J. and R. J. Mooney (2010). Multi-prototype vector-space models of word

meaning. In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics, HLT ’10,

Stroudsburg, PA, USA, pp. 109–117. Association for Computational Linguistics.

Rose, T., M. Stevenson, and M. Whitehead (2002). The reuters corpus volume 1-from

70

yesterday’s news to tomorrow’s language resources. Proceedings of the Third Inter-

national Conference on Language Resources and Evaluation, 29–31.

Sahlgren, M. (2006). The Word-Space Model: Using Distributional Analysis to Represent

Syntagmatic and Paradigmatic Relations between Words in High-Dimensional Vector

Spaces. Ph. D. thesis, Stockholm University, Stockholm, Sweden.

Sevgili, Ö., N. Ghotbi, and S. Tekir (2017). N-hance at semeval-2017 task 7: A computa-

tional approach using word association for puns. In Proceedings of the 11th Interna-

tional Workshop on Semantic Evaluation (SemEval-2017), pp. 436–439. Association

for Computational Linguistics.

Socher, R. (2014). Recursive deep learning for natural language processing and computer

vision.

Sun, Y., N. Rao, and W. Ding (2017). A simple approach to learn polysemous word

embeddings. CoRR abs/1707.01793.

Tan, L. (2014). Pywsd: Python implementations of word sense disambiguation (wsd)

technologies [software]. https://github.com/alvations/pywsd.

Trask, A., P. Michalak, and J. Liu (2015). sense2vec - A fast and accurate method for

word sense disambiguation in neural word embeddings. CoRR abs/1511.06388.

Turney, P. D. and P. Pantel (2010). From frequency to meaning: Vector space models of

semantics. CoRR abs/1003.1141.

Tversky, A. and I. Gati (1982). Similarity, separability, and the triangle inequality. Psy-

chological review 89(2), 123.

71

