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ABSTRACT

A LEARNING-BASED DEMAND CLASSIFICATION SERVICE WITH
USING XGBOOST IN INSTUTIONAL AREA

This study, purposes to explain the development stages and methodology of data
classification service that has a text-based adaptable programming interface. One of the
successful classification algorithms, XGBoost, was preferred in the study. The dataset
that is used in the study obtained by ‘Digital Business Tracking Application’ of a name
anonymized company. The dataset is tested by using different classification algorithms
and detailed performance evaluation was conducted. As a result, highest accuracy rate is
obtained with ‘Data Classification Service’ which was developed by using XGBoost

algorithm.

Keywords: Supervised-learning, multinomial classification, XGBoost, text-

classification, natural language processing.
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OZET

KURUMSAL ALANDA XGBOOST iLE OGRENME TABANLI TALEP
SINIFLANDIRMA SERVISi

Bu c¢alisma, metin-tabanli, veriler i¢in uyarlanabilir bir programlama arayiiziine
sahip, siniflandirma servisi gelistirme agamalarini ve ¢calismada takip edilen metodolojiyi
konu alir. Calismada, basarili siniflandirma algoritmalarindan biri olan XGBoost tercih
edilmistir. Calismada kullandigimiz veri kiimesi, bilgilerini anonimlestirdigimiz bir
sitketin ‘Dijital Is Takip Uygulamasi® aracihig ile elde edilmistir. Veri kiimesi farkl
simiflandirma algoritmalar1 ile de test edilmis ve performans degerlendirmeleri
yaptlmistir. Caligmalarimizda en yiiksek dogruluk oram1 XGBoost algoritmasi ile

gelistirdigimiz veri siniflandirma servisi ile elde edilmistir.

Anahtar kelimeler: Gozetimli 6grenme, ¢ok terimli siniflandirma, XGBoost, metin

siniflandirma, dogal dil isleme.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Software applications (Jira, HPQC, DBTA and etc.) which don’t have specific
rules for dispatching requests to related person, group or other target that is related with
request may cause some problems such as time loss & late solution, waste of labor force
and wrongly directed requests.

A name anonymized company integrated a manual demand dispatching process
on their business tracking application. (refer to: 4.1.1. A Digital Business Tracking
Application) In this real-life experiment, the company produced different kinds of
precious data for the data scientists. The thesis closely correlated with the data collected
on the experiment during 2018. In this time interval, stakeholders observed some
malfunctions of the manual dispatching such as time loss before demands are dispatched,
effort consuming in order to find correct department or specialist for demands.

Furthermore, manual dispatching caused many wrongly directed demands and
around 2166 hours are spent annually for dispatching of approximately 65000 demands.

(average time for dispatching a demand is stored in the DBTA as two minutes)

1.2. Contributions

Universal interface of ‘Data Classification Service’ provides modular and
adaptable structure for different text classification needs in different platforms.

Basically DCS dispatches demands automatically, that comes from non-technical
employee to the related specialist or department of an organization. Simple infrastructure
of the service provides many advantages like ‘time efficiency to solve demands’, ‘finding
the right specialist or department for demands’ and ‘decreasing dispatching effort’ in

industrial use.



In manual dispatching demands may lose time on the dispatcher before dispatcher
process the demand. In a corporate company this time loss can be critical. DCS will
eliminate this service time.

The other problematic issue on manual dispatching is incorrect assignments of
demands. The DCS offers high accuracy for finding right department at first try.

Another advantage of using the service is to reduce the need for staff to make
dispatching. Each demand starts its journey with the additional dispatcher time when it
manually dispatched. Basically its observed for one-year period; for a dispatching
operation a dispatcher spend nearly two minutes in each demand. The Data Classification

Service, reduces or eliminates those kind of the human-oriented dispatching issues.

1.3. Organization of Thesis

The thesis begins with a short introduction part that mentions the problem
definition of the thesis and continues with the advantages of using the Data Classification
Service. (Motivation and Contributions subtitles)

The second chapter is related with literature review (background). Briefly, some
of the previous works about text classification and supervised learning methods are
summarized in this chapter.

The third chapter is about implemented technologies in this study. The XGBoost
algorithm and the other technologies that are used in the thesis are explained here. Also,
some other popular algorithms are tested with Weka tool to provide a basis for the work
done with XGBoost and DBTA dataset. (Other Models and Scores for Classification
subtitle.)

The fourth chapter is about the solution that is proposed in the study. This part
begins with ‘A Sample: Digital Business Tracking Application’ and explains the Data
Classification Service in detail and gives some results that are succeeded with the service.

The last chapter is about future works and conclusion. The chapter explains what
kind of improvements can be made on the DCS and what kind of applications can be built
with the infrastructure and summarizes advantages and disadvantages of using the ‘Data

Classification Service’ with the current perspective of this study.



CHAPTER 2

BACKGROUND

Schapire and Singer's (2000) study which is called as “BoosTexter: A Boosting-
based System for Text Categorization”, two extensions of AdaBoost have been used; with
the first extension, all correct labels was determined and with the second one, it is aimed
to rank these correct labels so as to get highest ranks. Then, they presented a new text
categorization method named as Boostexter and compared its results with the other four
different text and speech categorization algorithms. In terms of several measures, they
experimented that as a multilabel text categorization method BoosTexter’s performance
was better than other methods which they studied.

Aly (2005) published a study named as “Survey on Multiclass Classification
Methods” he explained and applied different classification techniques for multiclass
classification algorithms. Mainly, he studied three different approaches in order to solve
multiclass classification problem. While first approach was to apply binary classification
methods to solve multiclass problem, the second one was decomposition of the binary
classification and the third approach was using binary trees to handle multiclass problem.

Kotsiantis (2007), published a study called as “Supervised Machine Learning: A
Review of Classification Techniques”, in which he describes supervised machine learning
methods in details. The aim was not only explaining and define different methods in
general concept, rather than that he described critical features of the mentioned
methods. In addition to that, previous studies on machine learning subject were available
which enable readers to get citations about different issues. He also analyzed whether
integration of two or more algorithms gives better performance or not, and even if
integrating or assembling has some advantages, he suggested it for the researchers that
try to get best possible accuracy for classification.

Aurangzeb, Baharudin, Lee and Khan (2010) study called as “A Review of
Machine Learning Algorithms for Text Documents Classification” was published. They
aimed to provide a detailed review for those who want to learn available machine learning

algorithms, document representation techniques and feature selection. Some of the



algorithms that they examined are Naive Bayes (NB), Structural Vector Machine (SVM)
and K-nearest neighbour (k-NN).

After they describe and compare these algorithms in terms of usage and results, they
concluded that still there is a need for more studies on these areas and different techniques
should be developed for text mining, classification, semantics, spam filtering in order to
get better and accurate results.

A study was published on Journal of Machine Learning Research, (2011),
by Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer,
Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay. This
study’s called as “Scikit-learn: Machine Learning in Phyton”. In this study, they describe
Phyton language and its usage both on academical researches and in the industry.

As a machine learning toolbox, they describe the advantages of using Scikit-learn
in detail and compared the results with Scikit-learn and other libraries in Phyton such as
Mlpy and Pybrain. Depending on their study, they stated that Scikit-learn is more
preferrable in terms of its easy usage and with its high level language. Besides these
advantages, Scikit-learn also provides better and easier comparison for supervised and
unsupervised machine learning algorithms.

Tiangi and Carlos (2016), published a comprehensive study which is “XGBoost:
A Scalable Tree Boosting System”. They described the advantages of using gradient tree
boosting system called as XGBoost, they stated that besides providing state-of-art-results
and this system enables researchers to get better performance among other methods.
Tiangi and Carlos also made contributions to the literature by studying and analyzing on
out-of-core computation, cache aware and sparsity- aware learning. They provided a
novel sparsity aware algorithm for parallel tree learning. They founded and stated that
XGBoost has good performance for real world scale problems even with the minimal

resources.



CHAPTER 3

IMPLEMENTED TECHNOLOGIES

3.1. XGBoost Classification Technique (State of the Art)

Recently the importance of machine learning has been recognized in many areas.
Machine learning algorithms are everywhere in our lives, from online shopping, smart
spam classifiers, advertising systems to fraud detection we come across with any
applications of it. (Chen Tianqi and Guestrin Carlos, 2016)

Companies are also benefited from these machine learning algorithms in various
areas such as finding target clients via right advertises, detecting the demanded goods and
services on the market with demand forecasting systems. (Chen Tianqi and Guestrin
Carlos, 2016) Although there are many methods used for machine learning, gradient tree
boosting is one of the most preferred technique. Gradient tree boosting is also called as

gradient boosting machines. (GBM) (Natekin Alexey and Knoll Alois, 2013)

1306<0.108000763
yes, Missing
11616<0.181744933

yes, issing \1no Ves 10, MiSSIng

leaf=-0.151219517

Figure 3.1. A Part of boosting tree that is used in DCS model.

leaf=-0.178835973 leaf=0.168704319



In this context, boosting refers to add new models to the ensemble in sequence,
by doing that a new weak model is trained in accordance with the error of the whole
learning that is made to completed extent. It was important and necessary to set up a
connection with the statistical framework as a result, gradient based formulation of
boosting methods has been formed (Friedman Jerome, 2001) These methods hereafter are
called as gradient boosting machines. This formulation has been methodological base for
the future developments on gradient boosting model. (Natekin Alexey and Knoll Alois,

2013)

Table 3.1 Comparison of major tree boosting systems. (Chen Tianqi and Guestrin
Carlos, 2016)

System exact app. app. out-of- sparsity parallel
greedy global local core aware
XGBoost | Yes yes Yes yes yes yes
pGBRT | No no Yes no no yes
Spark | No yes No no partially yes
MLLib
H20 | No yes No no partially yes
scikit-learn | Yes no No no no no
R GBM | Yes no No no partially no

XGBoost can be defined as scalable machine learning system for tree boosting
which is commonly used by researchers in order to get state of the art results. It is the
abbreviation of “extreme gradient boosting” which is mainly preferred and used by data
scientists for its high speed and performance. One of the co-creators of XGBoost is Tianqi
Chen who studies on building machine learning systems and Carlos Guestrin published
an article which gives details on XGBoost and its advantages. In 2016, Tiangi Chen
annunciated that with its innovative system characteristics XG Boost provided
approximately ten times faster solutions than other popular machine learning algorithms.
(Chen Tiangi and Guestrin Carlos, 2016)

Also, Kaggle is a machine learning competition site, it is an online site for data
scientists, they can find and publish data sets, besides being very popular and widely used
tool by researchers, XGBoost also mostly implemented by Kaggle competitions. (Titanic

Machine Learning from Disaster, 2018)



By downloading XGBoost to your machine, you can have an access from a different
inter faces. In particular, it supports below mentioned interfaces (Natekin Alexey and

Knoll Alois, 2013):

e Command Line Interface

o (C++

e Python
e R

e Julia

e Java and JVM languages like Scala

Advantages of Boosting Trees

XGBoost has been implemented in a variety of machine learning applications, it
is observed that the system is much faster than the available popular solutions on a single
machine. One of the most distinctive features of this system is its scalability, by means of
it the system ranks distributed data with optimum memory usage. Its flexibility in usage,
easily accessible features as an open source software, provides high usage rates by the
data scientists. (Chen Tianqi and Guestrin Carlos, 2016)

XGBoost can be used in all Windows, Linux and OS X due to its portability and
consistence. First, it has been developed to be used Command Line Interface (CLI)
nowadays it can be used in many interfaces including Python and Java. (Chen Tianqi and
Guestrin Carlos, 2016) There are many more reasons why XGBoost is a widely
implemented method for data scientists.

The following table contains the results calculated using pre-processing
techniques with the DCS data set. Best scores obtained with the DCS. It should be noted
that pre-processing techniques are used only in the algorithm while examining the results.

Table 2, shows XGBoost algorithm score on DBTA dataset by using department
classes with DCS using DBTA dataset. The test is performed using 1000 randomly
selected requests. 6 requests are deleted in run time in pre-processing. In the test supporter
fields: explanation, company and owner columns are used. The model is created with 795
requests. Remained 198 of requests used for the testing. The highest score with this

shortened data set, the highest score was obtained by DCS.



Table 3.2. XGBoost algorithm scores on DBTA dataset by using department classes with DCS.

Algorithm type

XGB, Word Level TF-IDF

Accuracy score
Relation

Test mode

Date time
Duration

Demands in
set
Labels type

Labels count
Train data
Test data
Terms in data
Corpus in set

Stop Words
count
Model name

TF-IDF name

73.86 %
2018-department-1000.csv

Standard test with 994 demand. Supporter information are explanation,
company, owner columns.
2019-05-06 15:47:01.219610

0:00:07.968443
994

Department
16

795

198

17922

4239

519

model-xgb-department-994-%73.dat
tfidf-xgb-department-994-%73.dat

Other Important Features of XGBoost

1. Regularization: With XGBoost, it is possible to penalize complex models by

L1 and L2 regularization.

2. Weighted Quantile Sketch: While other tree based algorithms are able to

handle just quantile sketch in other words, data of equal weights; XGBoost is

able to give solutions for weighted data.

3. Block Structure for Parallel Learning: Besides being known with its

quickness, XGBoost also uses multiple cores on CPU which enables it to make

split finding and sub-sampling.
(Chen Tianqi and Guestrin Carlos, 2016)

3.2. Other Models and Scores for Classification

In order to compare BTA Dataset classification results on different algorithms

Weka is used. (test tool for ML algorithms) This part of the study compares the test

8



results. Random Forest Algorithm that is mentioned about its methodology has the second

highest scores on the results.

3.2.1 Random Forest

Random forest has been proposed and introduced by Breiman, Leo (2001), with
the aim of building a set of decision trees by random selected data. Briefly, random forest
can be explained as learning algorithms which builds multiple decision trees and

consolidate these trees together in order to obtain more definite results.

Table 3.3. Random Forest Algorithm scores on DBTA dataset by using department classes.

Algorithm type  Random Forest

Accuracy score | 64.00 %

Scheme | weka.classifiers.trees.RandomForest -P 100 -1 100 -
num-slots 1 -K0-M 1.0 -V 0.001 -S 1
Relation | 2018-department-1000.csv

Instances | 999

Test mode | split 80.0% train, remainder test. Bagging with 100
iterations and base learner.
weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V
0.001 -S 1 -do-not-check-capabilities

Time taken to build model | 0.64 seconds

Time taken to test model on test | 0 seconds
split
Correctly Classified Instances | 130 - 65 %

InCorrectly Classified Instances | 70 - 35 %
Kappa statistic | 0.4233
Mean absolute error | 0.0684
Root mean squared error | 0.1754
Relative absolute error | 82.7006 %
Root relative squared error | 85.9817 %

Total Number of Instances | 200

While splitting a node, random forest search for the best feature among other
subset of features rather than searching for the most important one. (Breiman Leo, 2001)
Random forest is one of the machine learning algorithms which can be used for

both classification and regression problems. The forest here refers to ensemble of decision



trees which are generally applied with the technique of bootstrap aggregating (bagging).
Bagging method increases the overall result and enables researchers to avoid from
overfitting so that it possible to run many trees. (Biau Gerard, 2012)

Random forest is widely preferred method in Bioinformatics because of the fact
that it can deal with small sample size, high-dimensional feature space and complex data

structures. (Qi Yanjun, 2012)

3.2.2. Naive Bayes Classifier

Naive Bayes are linear classifiers that can be applied on both binary and multi-
class classification problems. This algorithm is called as Naive Bayes as the calculation
of the probabilities are being made simpler to be able to observe their calculation. (Xu
Shuo, 2016)

The model of Naive Bayes classifiers is based on Bayes theorem of which
assumption is that features are mutually independent. The independence assumption is
very important and interesting issue in here that despite being unrealistic in real data, the
results on Naive Bayes classifier show us that it still performs. (Xu Shuo, 2016)

Naive Bayes classifiers can perform very well for small sample size data. Besides
being easy to implemented, it is also fast and accurate that can be applied in different
research areas.

Naive Bayes classifiers can be implemented in decision making of treatment
processes, spam filtering.

Nevertheless, there are two main disadvantages of Naive Bayes. One of them is
that it leads to poor performance of this classifier. The other one is, in some cases it can
lead to strong violation of the independence assumptions, the second is non-linear
classification problems of it. (Xu Shuo, 2016)

Where;

P (c/ x) is posterior probability of class given predictor

P (c) is prior probability of class

P (x/c) is likelihood which is the probability of predictor given class

P (x) is the prior probability of predictor

The Naive Bayes Algorithm: P (c/x) =P (x/c).P(c)
P(x)

10



Table 3.4. Naive Bayes Classifier algorithm scores on BTA dataset by using department classes.

Algorithm type Naive Bayes Classifier

Accuracy score | 64.00

Scheme | weka.classifiers.bayes.NaiveBayesMultinomialText -P 0 -M
3.0 -norm 1.0 -Inorm 2.0 —stopwords
Relation | 2018-department-1000.csv

Instances | 999
Test mode | split 80.0% train, remainder test
Dictionary size | O
Time taken to build model | 0 seconds

Time taken to test model on | 0 seconds
test split
Correctly Classified Instances | 94 - 47%

InCorrectly Classified Instances | 106 - 53%
Kappa statistic | 0
Mean absolute error | 0.0827
Root mean squared error | 0.204
Relative absolute error | 100%
Root relative squared error | 100%
Total Number of Instances | 200

3.2.3. Decision Tables

Decision tables become a useful tool when dealing with complex data rather than
simple structured ones. Even in a situation with complicated logic, it is possible to see
each combination of the conditions or choices with decision tables. (Lu Hongjun and Liu
Hongyan, 2000)

Decision tables can be generated more easily with grouping and counting
facilities, if these are implemented with appropriate grouping and counting, researchers
can achieve statistical information related to class distribution over featured values. (Lu
Hongjun and Liu Hongyan, 2000)

In order to simplifier the complicated data, in decision tables the conditions are
generally recorded as True (T) or False (F). With decision tables, researchers can
recognize combination of conditions which wouldn’t have been founded in the contrary
case. (Lu Hongjun and Liu Hongyan, 2000)

The disadvantage of decision tables is that it doesn’t provide completion of test

cases which give details about the instruction’s gradual processes. If this detailed

11



information is required, decision table need to be included to test conditions. (Lu Hongjun

and Liu Hongyan, 2000)

Table 3.5. Decision Table scores on DBTA dataset by using department classes.

Algorithm type Decision Table
Accuracy score | 63.50
Scheme | weka.classifiers.rules.DecisionTable -X 1 -S
"weka.attributeSelection.BestFirst -D 1 -N 5"
Relation | 2018-department-comma-1000
Instances | 999
Test mode | split 80.0% train, remainder test
Number of training instances | 999
Number of Rules | 476 Non matches covered by Majority class. Best
first.
Start set | no attributes
Search direction | Forward
Stale search | After 5 node expansions
Total of subsets evaluated | 16
Merit of best subset found | 61.962
Evaluation (for feature selection) | CV (leave one out)
Feature set | 3,6
Time taken to build model | 0.06 seconds
Time taken to test model on test split | 0 seconds
Correctly Classified Instances | 127 - 63.5%
Incorrectly Classified Instances | 73 - 36.5 %
Kappa statistic | 0.4222
Mean absolute error | 0.0847
Root mean squared error | 0.1964
Relative absolute error | 99.3132 %
Root relative squared error | 96.306 %
Total Number of Instances | 200

3.2.4. Random Tree

Random tree is an ensemble of forest (tree predictors) and it is a supervised
classifier Random tree adopts bagging idea while constructing decision trees. (Mishra
Ajay Kumar and Ratha Bikram Kesari, 2016)

Leo Breiman and Adele Cutler introduced random tree, it is possible to handle
both classification and regression problems with this algorithm. The classification process
is made as following;

e The classifier receives the input feature vector
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e Then, make it classified with each tree in the forest
e Provides the class label which gets the majority.
Regarding regression with random tree, the feedback of the classifier becomes the
average of replies over all the tree predictors. Single model trees are combined with
random forest idea and consist the random tree. (Mishra Ajay Kumar and Ratha Bikram

Kesari, 2016)

Table 3.6. Random Tree Algorithm scores on DBTA dataset by using department classes.

Algorithm type Random Tree

Accuracy score | 50.00
Scheme | weka.classifiers.trees.RandomTree -K 0 -M 1.0 -V 0.001 -S 1
Relation | 2018-department-comma-1000
Instances | 999
Test mode | split 80.0 % train, remainder test
Size of the tree | 968
Time taken to build model | 1 seconds
Time taken to test model | 1 seconds
Correctly Classified Instances | 100 - 50 %
Incorrectly Classified Instances | 100 - 50 %
Kappa statistic | 0.0785
Mean absolute error | 0.0782
Root mean squared error | 0.1985
Relative absolute error | 94.5088 %
Root relative squared error | 97.3207 %

Total Number of Instances | 200

3.2.5. ZeroR Classifier

ZeroR classifier is the baseline for both classification and regression problems. It
is the simplest classification algorithm which based on the target. ZeroR doesn’t have the
predictability feature, it just determines the baseline for especially unbalanced data set.

ZeroR chooses the mostly frequent (majority) class as determinant and the

algorithm assumes that all predictions are related with this class. (Nasa Chitra, Suman,

2010)
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Table 3.7. ZeroR Algorithm scores on DBTA dataset by using department classes.

Algorithm type ZeroR

Accuracy score | 47.00
Scheme | weka.classifiers.rules.ZeroR
Relation | 2018-department-1000.csv
Instances | 999
Time taken to build model | 0 seconds
Time taken to test model on test split | 0.02 seconds
Test mode | split 80.0 % train, remainder test
Correctly Classified Instances | 94 - 47 %
Incorrectly Classified Instances | 106 - 53 %
Kappa statistic | 0
Mean absolute error | 0.0827
Root mean squared error | 0.204
Relative absolute error | 100 %
Root relative squared error | 100 %

Total Number of Instances | 200

3.2.6. OneR Classifier

OneR classifier is a machine learning algorithm and it is an abbreviation of One
rule. It is the improved form of ZeroR algorithm. It is expected to get better output than
the ZeroR because of the fact that OneR chooses the one which gives the best output
among all training data classes. (Nasa Chitra, Suman, 2012)

OneR algorithm mechanism is as following for each value of the predictor (Nasa
Chitra, Suman, 2012)
e First it counts how often each class value takes place

¢ Find the mostly appeared class

e Make the rule assign that class to this value of predictors

e Each predictor’s total error of the rules is calculated

e The predictor with the smallest total error is chosen

¢ Find the best predictor with smallest total error that using OneR algorithm

OneR algoritm results by using department nominal value is shown in table 3.8. These

results are collected with Weka.
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Table 3.8. OneR Algorithm scores on DBTA dataset by using department classes.

Algorithm type

OneR

Accuracy score

Scheme

Relation

Instances

Test mode

Time taken to build model
Time to test model on test split
Correctly Classified Instances
Incorrectly Classified Instances
Kappa statistic

Mean absolute error

Root mean squared error
Relative absolute error

Root relative squared error

Total Number of Instances

49.50
weka.classifiers.rules.OneR -B 6
2018-department-comma-1000
999

split 80.0 % train, remainder test
0 seconds

0 seconds

99-49.5%

101 -50.5%

0.0686

0.0561

0.2369

67817 %

96.1444 %

200

3.2.7. Other Classification Results

Different algorithms are tested on the study for DBTA Dataset and the results are
listed in the Algorithms and Scores figure 3.2. The test done with same text-based data

XGB, Word Level TF-IDF
RandomForest

Naive Bayes Classifier
Naive Bayes
InputMappedClassifier
Decision Table
RandomTree

ZeroR

OneR

MultiClassClassifier

0 20

Figure 3.2. Algorithms and Scores using 1000 data from DBTA Dataset with using Weka. (XGB

score is observed with DCS)

40 60 80

% Success Rate




set with 1000 data. Twenty percent of them were allocated for testing. There exist 16

different department labels. In the data set there were 17922 tokens and 4239 terms.

3.3. Used Other Technologies in DCS (Environments, Packages and

Libraries)

Other technologies that are used for development of data classification service
explained below such as environments, application interfaces and libraries.

3.3.1 Python Pandas Data Frames

Pandas is a frequently used Python package for data analytics, especially for data
processing and analysis. The Pandas package is based on two data structures called series
and data frames. It can be described the series as one-dimensional arrays and data frames
as two-dimensional matrices. However, Pandas package offers different functions from
lists and matrices. Here are the basic operations we can do with Pandas package
(Mckinney, 2011)

e Data can be read from files in various formats and printed to files.

e [t contains methods to fill in or remove missing values.

e (Graphics can be drawn in different types.

e The data can be summarized by grouping the data into groups (like add, counting,

average) with group by function.

McKinney, W. believes that Python would be an attractive choice for data analysis
applications by designing powerful, user friendly data structures that are coherent with
the rest of the Python stack and pandas provides a strong basis upon which a very
powerful data analysis ecosystem can be founded. (Mckinney, 2011);

Also in the DCS Application, data collections are stored on Pandas and all process up

to model creation done on the Pandas Data frames.

3.3.2. Scikit Learn Application Interface

Scikit-learn is a library in Python that provides many unchecked and supervised
learning algorithms. It is compatible to work with NumPy, Pandas and Matplotlib

libraries that data scientist are familiar with. (Pedregosa Fabian, 2011)
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Some functions provided by Scikit-learn can be listed as follows:

e Regression including Linear and Logistic Regression

e (lassification including K-Nearest Neighbors

e K-Means and K-Means ++, including Clustering

e Model selection

e Pre-processing including Min-Max Normalization

Scikit-learn brings out a wide variety of machine learning algorithms using a
consistent, task-oriented interface. Therefore, it enables to compare the methods for a
given application easily. Scikit-learn also covers these machine learning algorithms while
maintaining a user friendly interface tightly combined with Python. (Pedregosa Fabian,

2011)

3.3.3. Matplot Library

Matplotlib is a Python 2D visualization library with its GUI application. Many
different output types are supported with the library. The library is used in order to
visualize some graphical views that refer to part of boosting trees. (Barrett Paul, Hunter

John, Miller J.Todd, Hsu Jin —Hsung, 2005)

3.3.4. Numpy Package

NumPy (Numerical Python) is a math library that allows us to do scientific
calculations quickly. It creates the basis of NumPy arrays. The arrays are similar to python
lists, but they are more useful than python lists in terms of speed and functionality.
NumPy arrays should be homogeneous, which means that all elements in the array must
be of the same data type.

One of NumPy's main purposes for data analysis are being the primary container
for data to be passed between algorithms beyond the fast array-processing abilities that it
provides to Python. NumPy arrays are much more efficient way of storing and
manipulating data than the others built-in Python. (Mckinney, 2013)

In DCS, NumPy arrays are only used for graphical representations of model and

dataset.
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3.3.5. Graphviz Application Interface

Graphviz is a free graphical visualization software. Graph visualization is a way
to represent structural information as abstract graphs and network diagrams. It has
important applications in networking, bioinformatics, software engineering, database and
web design, machine learning and various other technical fields.

It is possible to represent simulations of the dynamic behavior of the processes
using a free tool like Graphviz. It means, there is no need to spend so much time on
developing complex program visualization software always, if it's possible to use simpler

solutions. (Riesco Miguel, Fondon Marian D., Alvarez Dario, 2009)

M Administrator: Anaconda Prompt - conda install graphviz

graphviz-2.38 | hfd603c8_2 37.7 MB
sqlite-3.27.2 | he774522_0 941 KB
Total 141.3 MB

The following NEW packages will be INSTALLED:

graphviz: 2.38-hfd603c8_2
krb5: 1.16.1-hc@4afaa_7

The following packages will be UPDATED:

ca-certificates: 2018.03.07-0 --> 2019.1.23-0

certifi: 2018.8.24-py37_1 --> 2019.3.9-py37_0
conda: 4.5.11-py37_0 --> 4.6.8-py37_0
cryptography: 2.3.1-py37h74b6da3_0 --> 2.6.1-py37h7aldbc1_0
curl: 7.61.0-h7602738_0 --> 7.64.0-h2a8f88b_2
libcurl: 7.61.0-h7602738_0 --> 7.64.0-h2a8f88b_2
libpng: 1.6.34-h79bbb47_0 --> 1.6.36-h2a8f88b_0
libssh2: 1.8.0-hd619d38_4 --> 1.8.0-h7aldbcl_4
openssl: 1.0.2p-hfabe2cd_0 --> 1.1.1b-he774522_1
pycurl: 7.43.0.2-py37h74b6da3_0 --> 7.43.0.2-py37h7aldbcl_0
qt: 5.9.6-vc14h1e9a669_2 --> 5.9.7-vc14h73c81de_0
sqlite: 3.24.0-h7602738_0 --> 3.27.2-he774522_0

Proceed ([y]/n)? y

Downloading and Extracting Packages
qt-5.9.7 | 92.3 MB | #HHHHHHHEHHA | 24%

Figure 3.3. A view from installation step of Graphviz with Anaconda.
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CHAPTER 4

PROPOSED SOLUTION TO THE PROBLEM

4.1. A Sample: Digital Business Tracking Application and Basics of
DCS Implementation

The study based on the dataset that is collected from A Digital Business Tracking
Application. The next part of the chapter explains the application in detail and shows the
demand flow in DBTA and marks the stage which is integrated the “Data Classification
Service” to the application.

The test dataset is collected from business tracking application of holding during
2018. The application collects demands that come from internal and external customers

IT needs. The dataset is called as DBTA Dataset in the study.

4.1.1. A Digital Business Tracking Application

Large-scale companies have their own help desk organizations. These organizations
are responsible for installation, activation and maintenance of technical equipment, also
their mission is to support users in the case of possible software and hardware problems.
The job definition of these organizations might differentiate at larger scale companies
depending on the organization needs. The company that collects the data set, succeeded
to be beyond these mentioned concepts by providing technology services to both holding
companies and external customers.

This situation led to transfer of the communication needs between the customer and
the anonymized Information Technology Company (referred as IT Company) on a more
manageable process. Thus, customer will transfer his/her demand by using an application
in a quicker way and with a quick assessment; then the demand created by the customer,
redirected to the related department in the IT Company. Basically, ‘The Digital Business

Tracking Application’ has been developed based on this concept and idea.
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When a demand is created on the application by the customer or Information
Technology personnel, (hereafter called as IT personnel) the following information are
provided;

e Company: The company that is related with the request.

e Demand Scope: Request owner selects demand scope. (Refers to priority of a

demand. That can be a critical error that prevents the operation of a factory.)

e Module: User selects related module with the request. (SAP, Software

development, User support, Network etc.)

e Title of the request. (in the data set the support column wasn’t used)

e Details of the request.

e The owner name and owner company of the demand: Owner information are

known because of the LDAP Authentication.

If the request is not within the scope, service duration is defined regarding demand
category. Service duration is based on the agreement made with the companies. As per
agreement, service durations are as following:

e The authorization process: 1.2 days.

e Error recovery: 1.7 days.

e Sustenance and innovation it is 2.3 days.

These durations are determined by taking consideration of company experiences up
to date and customer’s requirement. (these periods are guaranteed by contract between
customer and the solution provider company) Some requests are considered as ‘project’.
The time period for requests that within the scope of the project is determined after an
effort analysis and prioritization. These requests are not bounded with the service level
agreement. (a.k.a. SLA) Those demand that are defined in the scope of project are
submitted to manager’s approval. The approximate effort of a request that is evaluated as
a project; is expected to be over three working days.

Due to the fact that some of holding companies are quoted on stock exchange markets;
it is so important that all financial actions and authorization processes between employees
have to be in a transparent and traceable structure. For legal legislation reasons; even
basic processes are required to be under registration and such reasons lead to difference
on completion and assignment processes. The authority requests and authorization

processes are directed to related user or managers depending on the request.
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The Digital Business Tracking Application offers a broad reporting infrastructure in
terms of cost and staff time reports with using information that is stored on demands. In
this way, the application allows retrospective inquiry in terms of demand time and cost,
that has been invoiced to companies. This capability provided backward accountability

and records the past development processes.

4.1.2 Demand flows in Digital Business Tracking Application

Briefly, the process can be explained with five main stages. (there exists other
kind of demands are not mentioned because other stages that are not remarkable for the

study)

Demand
Creation

Moves on

l

Dispatcher <

T
Redirects demand

l

Department or
Specialist

Solution or other
e Sends Back—

Reject Demand

|

--4 Demand Owner

|

Accept Solution

Demand
Solved

LReject Solution

21



Figure 4.1. Demand flow in A Digital Business Tracking Application.
One of them is “Demand Creation”. These demands are created by holding

employees and they are directed to the dispatchers.

‘Dispatching’ is the next step of the process. Dispatching on the DBTA system
resuming in manual way (by recruiting an employee who is in dispatcher role). The Data
Classification Service that is developed during the study is implemented on the
dispatching stage which is stated on the ‘Demand flow in A Digital Business Tracking
Application’ flow chart. (in the dispatcher stage) The DBTA general flow of demands are

as follows shown in figure 4.1.

4.2. Basics of Data Classification Service (DCS)

Data Classification Service, built on the study, implements pre-processing
techniques and XGBoost algorithm. Universal interface of ‘Data Classification Service’
provides modular and adaptable structure for different text classification needs in
different platforms.

In this study, classification results are referenced to the natural DBTA Dataset.
(dataset of A Digital Business Tracking Application where none of the pre-processing
methods are applied) The dataset is collected from request of holding companies are
engaged in business in food and paint industries (referred as demands). These demands
are related with IT needs of the companies which is submitted on the business tracking
application of the IT Company during 2018. The dataset includes demands that have
different kind of text-based information related with the request such as; request priority,
module, owner company, title, explanation and etc. In the dataset, each demand has one
specialist and each specialist belongs to a department. In this point of view, the
classification problem in the dataset can be described as a multinomial text classification
in terms of the specialist and department labels.

The Data Classification Service implements XGBoost classifier. The classifier
gets TF-IDF matrix as an input value. In order to create the matrix, features are selected
after pre-processing stages. In order to determine optimal number for the count of the
features; we observed accuracy scores for the DBTA Dataset using different count of
highly used terms from the corpus. The highest score is determined between 2750 and
3000 features. (weight of those features are calculated according to TF-IDF. The method
is explained in “Weight Calculation Method’ part of the thesis)

22



The service is tested to create two types of models. One of them is for the specialist
and the other is for the departments. After the model creation, the model is stored on the
file system using a unique name and accuracy score with a test-card. The test-card
includes; ‘Test type’ for the basic information and supporter columns for the algorithm;
‘Demand in set’ for the count of demand used to build the model; ‘Labels type’ for the
target field of the model. ‘Label count’ for count of the nominal values and ‘Token and

Term’ counts for the dataset. (in the test-card figure the responsibility column is shown)

Test type ! Standart test with 38949 demand. Supporter informations are ; explanation', 'company', 'type', ‘owner' columns.
Date time 1 2019-02-20 08:22:12,106025
Duration © 0:02:42,262203

Demands in set : 38949

Labels type  : responsibility

Labels count : 16

Train data @ 33106

Test data 15842

Terms in data : 675825

Corpus in set : 43572

Stopwords count: 515

Algorithm type : XGB, Word Level TF-IDF
Model name  : model-xgb-responsibility-38949-%71.dat
Accuracy score @ 71.50436419647441

Figure 4.2. A test-card that shows the model that accepts responsibility as a target field.

The Data Classification Service accepts text-based, semi-column separated values
to create a model. The dataset can be given to the service as a CSV file. After the dataset
loaded into the DCS, the next step pre-processing according to the data type can be
applied on the set. Then a field from the comma separated values must be selected as a
nominal field and the DCS is ready to create a model with given parameters.

The XGB Classifier is achieved its best performance with the given parameters while
testing on DBTA dataset:

e base score=0.5

e colsample bytree =1

e gamma =0,

e learning rate =0.15

e max delta step=0

e max depth=5

e min_child weight=0.5

e Missing = None
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e n_estimators = 100
e Nthread =-1
e Objective = 'multi:softprob’
e Seed=0
e Silent = True
e Subsample =1
After the model creation, a test-card is printed as an output to the console. In the
test-card, accuracy score for the model is expressed as a percentage. At this stage user is
ready for the prediction with using newly created model. (Figure-2 A test-card that shows
the model that accepts responsibility label as a nominal value.)
Basically, the service user is able to make a prediction only using the fields:
explanation of the request and owner company. The following visual is about the

prediction stage:

INPUT FIELDS:
test explanation : SAP seyehat portalinda, muhasebelestirme yetkisinin verilmesi konusunda yardinlarinizi rica ederim,

test_owner * Emine Tanridver
test_company © Pinar Su
test type

QUTPUT FIELDS:
predicted specialists —: AyXX KaXxxx
predicted department  : Insan Kaynaklari

Figure 4.3. An example prediction for specialist and department models with using the Data
Classification Service.

The DCS has functions that are able to anonymize determined tokens that takes
place in the dataset. The following visual, shows a result about the anonymization of
company and employee names in a dataset. (Figure-4) The anonymization can be applied
on demand owner, company, explanation or other given fields. By the way, the function
is able to give automatic names to the selected columns. The correspondence of the
automatically renamed fields are stored on an exported file that includes the matchings.

In conclusion, the service provides programmable interface for detailed
pre-processing for dataset operations and prediction. The pre-processing is divided into
two steps: ‘Token Preprocessor’ and ‘Cluster Preprocessor’. Both steps are defined in

detail at ‘Pre-processing Methods Used in DCS’ part of the study.
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P Q R
explanation specialist department
Company_1 Zincir sipariglerini aktarma programinda fiyat gecisine denk geldiginde fiyat bulamama problemi+P32 User 2 Surname_ 2 Java Uygulan]
Digital crm'e giris yapilamiyor.Atf degerlendiremiyoruz,ekran donuyor. Gaktivite yonlendirilmesi ricasiyla Emre Sencan Java Uygulan
PSU Pilot sisteminin 1.11.1 siirimiine gegirilmesi sirasinda gikan problemlerin ¢dziimlenmesini rica ederim. Emre $encan Java Uygulan]
Dijital Promasyan sisteminde yillik anlasma atflerinde reyon segilemiyor. Kontrol edilmesini rica ederim, Emre $encan Java Uygulan]
BDU ekibine verilecek olan postman egitimi icin agilmig istektir. Emre Sencan' a atanmasi Emre $encan Java Uygulan]
BW icin hazrladizimiz serviste aktivite tipi ve teshir tiri inaktif olmustur. Yeniden giincellenmesini rica ederim. ~ Emre Sencan Java Uygulan

Figure 4.4. An example of the anonymized words in the dataset. Replacement of the words are
red marked.

4.2.1 About the Data Source and Content

The Digital Business Tracking Application dataset (DBTA Dataset) that is
collected during 2018 as its mentioned in the previous section. The dataset is created with
the contributions of technical and non-technical personnel via requests that are delivered
to the name anonymized IT Company. These caused some differences on the explanations
about explaining same problems and same requests.

Because of the improper use of terminology by non-technical personnel; in the
dataset there exist some bad expressions for the demands. Basically, we can say that in
the dataset there exist so many different explanations of same requests or problems. This
condition makes difficult the work of classification algorithms.

Some of the explanations include only some features that are meaningless about
the requests and they do not contain enough explanations. Also, they are not the requests
which are preferred to be seen in dataset. Those kind of records are marked as corrupted
and they are eliminated in the run-time for the model creation. (approximately %1 of the
records in DBTA dataset)

The demands on the dataset have no department field when it is created. The
department field is added to the DBTA Dataset with using external tabular data of the
organization that includes specialist and department pairs. However, while matching
demands with the related department some problems are encountered on the dataset. For
example, the name, surname fields that come from the tabular data may not match with
the existed dataset. For example, in the tabular data; there could exist an additional middle
name and surname but in the dataset there is only name surname or the surname of a

female employee who has a new surname after she married and etc.
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Basically, we accepted that they are same person; if there exist two or more same
tokens that come from different data sources. However, this does not give a hundred
percent accurate results. (Assume that we have ‘Ali Ismail Korkmaz’ from a source and
from another source we get ‘Ismail Korkmaz’. According to the logic; total same tokens
count are two. They are probably same persons. Even so, there could be a matching
between name and middle name fields and that breaks previous logic.)

After we apply the logic to the DBTA dataset, approximately 73% of the records
are matched with departments in first iteration. 14% of the records are not found any
candidate for department label on the tabular data. Remained part is not matched for any
other reason. Thus, there has been an additional column ‘department’ took place in the
natural set after the process.

The detailed explanations about the other attributes and statistical background of

the dataset are mentioned in the next part.

4.1.1.1. Design of Datasets

The dataset, that is collected from a business tracking application during 2018 is
called as natural dataset in this study. The natural dataset contains those fields:

e Demand Id

e Demand Type

e Company

e Owner
e C(Creator
e Project

e Record Date

e Base Demand Id
e Demand Category
e Demand State

e Demand Scope

e Specialist

e End Date

e Explanation

e Survey
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The ‘Demand Id’ refers the request identification key that is given by the DBTA.
‘Demand Type’ is not added as a field to the model because it has high importance to
determine the departments on by own.

The Demand Type field includes options such as emergency, SAP applications,
special business applications and user support that gives an important hint for finding the
department. Actually, there exist some tests with using the Demand Type support column
and we observed that this field increases the accuracy score approximately 4%. (the
difference between the two rates refers to the observation of an arithmetical average of
difference for a new model with the field, for four times)

The ‘Company’ field refers to the demand owner company. Those kind of fields
are provided to the dataset from the LDAP when the customer logged on the DBTA.
Therefore, there is no need to type the company field on the demand creation form.

‘Owner’ is an identifier that corresponds the name and surname. Basically its
format is: ‘name.surname’. This format is a unique identifier for the demand owner.

‘Creator’ is the creator person of the demand. If there is a need, the DBTA system
allows the users to open a demand instead of another employee.

‘Project’ field is an optional area. It could give an important data for the classifier
but it can be selected only by a personal who knows the related projects. The field did not
used on the dataset.

‘Base Demand’ field is used for establishing a hierarchical relation between two
demands. A demand can be a base or child demand for another. Those kind of relations
are optional and in the DCS the field is not used in any model creation.

‘Demand category’ is a field that determines the average solution time in service
level agreement. If the request is not within the project scope, service duration is defined
regarding demand category. Service duration is based on the agreement made with the
companies. Its mentioned on ‘A Digital Business Tracking Application’ part of the study.

‘Demand State’ gives actual state of the demand. Only solved demands are used
in the dataset because if demand is solved that means the demand has find the right
department and right specialist for the solution. If a demand incorrectly directed to
specialist or department, dispatcher of the department redirects the demand to another
specialist and department. This iteration continues until finding the right interlocutors.

(the iteration ensures the right collocutor after nth iteration)
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Specialist and Department (department is an artificial column) columns are used
for target label on this study. In the next section: ‘Dataset Statistics’ has some statistics
about these areas.

‘Survey’ field is not a meaningful context for the dataset. This field refers to
demand owners score for the solution of the demand.

‘Demand Scope’ and Date fields are not used on the study. Those fields are closely
related with time and period of the demand.

In conclusion, although there exist many other supporter columns in the DBTA
natural dataset; they are not used to preserve universal structure of the data classification
service. Hence, unless otherwise noted DCS tests are based on just ‘Explanation’ and

‘Company’ fields.

4.1.1.2. Dataset Statistics

This study based on two different types of dataset in terms of size. One of them is
full natural form of the all demands, include approximately 50 032 demands. They are
collected during 2018 in the anonymized holding. The set called as DBTA Dataset or
natural set in the study. The second dataset includes about 1000 demands. It is considered
as a short form of the natural set appropriately to the content characteristics. Both of the
datasets are unbalanced, multinomial and text based.

The natural set is used for testing the Data Classification Service in different
conditions. The approximate time for building a model with the dataset takes half an hour

via the computer:

Windows edition
Windows 10 Pro

© 2017 Microsoft Corporation. All rights reserved.

System
Processorn Intel(R) Core(TM) i7-83300 CPU @ 1.80GHz 1,99 GHz
Installed memory (RAM): 8,00 GB (7,39 GB usable)
System type: Bd-bit Operating System, x64-based processor
Pen and Touch: Mo Pen or Touch Input is available for this Display

Figure 4.5. The test system specification.
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In the pre-processing stage; nearly 12130 of them are filtered by cluster-based
filters. Remaining part that is separated for training and testing. %80 of the demands are
used to create a model and the remaining 20% were reserved for testing. That means the
main model is created using almost 30 296 demands. Tests are made with 7574 demands.

The natural set does not have a homogeneous distribution over specialists and
departments. Each demand has 14 attributes. As its mentioned before, department is an
artificial column that is added to dataset after all dataset is collected on the DBTA. Only
specialist and department columns are accepted as nominal and they are used as target
label.

In the natural set, there exist about 130 specialists and 16 department label.
Demands on the dataset are not homogeneously distributed on specialist or departments.

That means in the natural set a department may have 4 or 19190 demands.

19190

3614

2136 4747 1613 w?? - . 1562 18?5 1365
| R 2 B 5 e

Figure 4.6. The graph shows count of demands on a department in the DBTA dataset. The yellow
bar represents a department name called: 'User Support’ in the natural set.

In the natural set, as mentioned before; ‘demand type, owner company, owner id,
creator, project, record date, base demand id, demand category, demand state, demand
scope, end date, explanation, survey’ attributes are existing. But in the study only ‘owner
company, explanation’ fields are used as a text and scores are calculated with this fields.

After filtering, the unnecessary demands and no needed words (after pre-

processing step) there remain 622771 tokens in the set. Corpus of the set includes 43572
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piece of terms. About 519 stop words filter is applied after snowball stemmer applied on

tokens. (Snowball stemmer is mentioned on ‘Stemming and Lemmatization’ part.)

4.2.2. Pre-processing Methods Used in DCS

The DCS provides, programmable interface for pre-processing. The pre-
processing is divided into two main phases that follows each other: ‘Token Preprocessor’
and ‘Cluster Preprocessor’. In order to apply pre-processing steps, the dataset gets into

the data structure of Panda data frames.

4.2.2.1. Token-Based Preprocesses

The process begins with the ‘token preprocessor’. The token preprocessor
processed on the word pieces that take places in the text body of the requests. These phase
has optional steps like: removing unnecessary or corrupted tokens, stemming, stop words
and etc. The tokenization step is processed after the demands are written into the data

frames.

4.2.2.1.1 Tokenization

This is a well-known step in data science. In the DCS, before the step data column
is prepared to the tokenization; some other operations are done like: adding support
column to the base raw data; converting the raw data to lower-case; filtering of
unnecessary characters and punctuations etc. After the preparation, the raw data is split
into the tokens that is stored in a token array. (Tokens are subsequence of a string that is
broken into pieces like: words, numbers, phrases, symbols etc. Usually, in the text-based

content white space is used to split the raw data.)

4.2.2.1.2 Stemming in Turkish

Stemming is a common approach in natural language processing based on text

normalization. Snowball stemmer is a library that is developed by Boulton, Andrew

30



Macfarlane in 2001 to provide programming interface for language such as: C, Java, Perl

end Python etc. (in DCS it is used to get root of the word without postfixes)

In the DCS, Turkish Stemming method of Snowball Stemmer is used. The

Snowball Stemmer is based on the Porter’s stemming algorithm. (M. Porter, Richard

Boulton, Andrew Macfarlane, October 2001)

INPUT DATA:

QUTPUT DATA:

Dijital Sirket Sistemine Bayi gecislerimizin baslamasi sebebi ile Sat1s Muhasebe Servisi olarak Dijital Sirket Sistemi Egitimi ihtiyacy dogmustur

hijital sirket bayl gecis baslamas sebep  satis muhasep servis olarak dijital

Figure 4.7. After stemming some of the words are deleted by the stop-words filter.

Notice: I believe that more work is needed to improve the Turkish stemmer algorithm.

4.2.2.1.3 Remove Stop-Words

The stop-word list that is used in the DCS is collected with using a basic Turkish

dictionary and observing requests that include text-based data.
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Figure 4.8. The figure shows a short list for Turkish Stop-word list.
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The stop-word list is stored on a text document as the root of words. The figure 11. Shows
a short list sample of the list.

The Stemmer algorithm is applied on the text data that comes from the demand
and the stop-words list at run-time. Although we apply Turkish Stemmer to both stop-
words and request body, we observed that; some of the terms which comes from the stop-
words list are not compatible with the terms that come from the requests data. But the
difference is not caused significant change on accuracy score of the algorithm. Therefore,
in the study, the incompatibility problem is ignored.

In the Turkish stop-word list archive, we have almost 519 different tokens that are

stored.

4.2.2.1.4 Term List and Corpus

In data science, term refers to the root of a token. Each token in dataset represented
with a term in the DCS. In the DBTA Dataset there exist approximately 675825 pieces of
terms.

Corpus is the set of the terms. In the corpus, there exist just 43572 different pieces.
(assumed that each term occurs at most one times in a set) Features of the ML algorithms

are selected within the corpus.

4.2.2.2. Cluster-Based Preprocesses

Followed by the token-based preprocess, cluster based filters are applied to the
data frames. The aim of the cluster-based filters is to remove the improper data from the
dataset at run-time in model creation. The improper data in the dataset is called on the

DCS service as ‘corrupted data’.

4.2.2.2.1 Cluster-Based Filters

In the DCS, there exist optional cluster-based filters that remove the data
according to demand status, type, state, size and content of the explanation. Cluster based
filters remove lines from the data frame at run-time.

One of those filters that removes a line which includes at least one corrupted word

or a which has a word count smaller than predefined token size. (Corrupted words can be
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selected as word which are smaller that tree chars or includes adherent numerical

characters or words consist of character from unknown charset.)

The Data Classification Service pseudo code sample:

1 Input values are demand collection, demand column

2 FOR text in demand_collection.at(i, data column)

3 counter equals zero

4 FOR EACH letter in text

5. IF letter is a numeric value

6 increment the counter

7 IF length of text is greater counter AND counter is greater zero

8 IF length of demand_collection.at(i, data column) less than avg. token size
9 Demand num. equals to demand_collection.at(i, demand column)
10. IF demand no not in removable demands

11. append i to removable demands

12. Demand collection .drop(index of removable demands, delete)

13. Demand collection reset index(delete, drop)

Figure 4.9. Pseudo code of a DCS function that removes a line which includes at least one
corrupted words or a which has word count smaller than average token size. (‘1’
assumed as an incremental integer)

4.2.2.3. Effect of Filters on BTA Dataset

Pre-process steps affect the performance of the algorithm. In order to measure the
effect of each filter, the model is created tree times and the average score is shown in the
following tables. (shown by tables 9-10)

In the table ‘Base Result’ column refers success score without adding related field.
Each row from top to bottom in the table is added to the previous row. For example;
‘Module info’ field added as a parameter means that, ‘owner’ field already added as an
input.

‘Filter Affect’ refers to the difference after the filter is applied. As can be seen
from the table; the effect for module and type fields is very high for cluster-based filters.
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Filters usage status in DCS is placed on the ‘Explanation’ column. ‘Default’
means that this filter is applied when the model is created and ‘Not used” means that the
filter is optional.

Actually, the success of the cluster based filters depends on the given dataset. The

tests are done on the DBTA natural dataset.

Table 4.1. Shows the average of cluster-based filters on department in DBTA dataset.

Cluster Filters (Avg. %) Base Result Filter Affect After Applied Expl.

%73 +%1 %74 Default
%74 +%5 : Not used
%74 +%2 %76 Default
%76 +%1 : Not used
%76 +%3 %79 Default
%79 +%1 : Not used

The next table is about token-based preprocessing steps. In the table, assumed
that demand explanation, demand owner and company fields are added as an input values

for model creation.

Table 4.2. Shows the average of token-based filters on department in DBTA dataset.

%71 +9%62 %73 Default
%73 +9%3 %76 Default
%76 +%63 %79 Default
%79 %0 %79 Default
%79 %1 %80 Default

Removing stop words has big effect on the score. The other filter ‘Remove
corrupted words from data frame’ deletes meaningless, misspelled words or the words

that consisting of letters and numerical characters.

4.2.2.4. Determining Feature Importance

The following figure is a part of a long graph. The graph shows each feature and
the importance of the feature for a demand in the model of the DCS.
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Figure 4.10. A graph that represents feature importance on DBTA Dataset.

The horizontal bars on the graph represent a group of terms that are selected as a
feature on the DBTA dataset. Each bar corresponds a feature in the dataset. Most
frequently, repeated terms in the set are determined as feature. In the DBTA Dataset, in
order to get highest accuracy the feature count has to be between 2750 and 3000. (The
model created four times in order to observe changes related with the feature count. The
change observation is started from 500 peace and its lasted up to 3500 peace of feature.
Optimal feature count is determined around between 2750 and 3000 for the dataset.)

I believe that; optimal feature count for each dataset can be calculated; if token

count and corpus size are known. There is no need for any other information.

4.2.2.5. Weight Calculation Method

In order to calculate weight of a request; the feature or features that is located in
the request has to be determined. Calculation of weight of a feature is strongly related
with these features and their frequency.

Basically, if a term repeats itself many times in a request, that means the feature
is important for the demand. On the other hand, if a term repeats itself again and again in
other requests, that decreases the importance of the request. That’s a well-known concept

in data science as: term frequency x inverse document frequency. (a.k.a. TF-IDF)
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In the DCS, Sci-kit library is used to calculate the TF-IDF values. The basic
formula of the calculation is: TF-IDF = TF(t,d) x IDF(t) According to this calculation;
e The Term Frequency is occurrence times of a feature in a request.
e The Inverse Document Frequency: IDF(t) = log ((1 + n) / (1 + df(t))) + 1 where
n is the count of the total demands and df{(?) is the number of the documents that
includes the feature in the dataset.
(Juan Ramos, 2016)
Aim of the weight calculation is converting feature frequency to numerical values
which refers to weight of the features for each document. The feature weight used in

XGBoost classification algorithm to create a model.

4.2.3. Demo of Data Classification Service

The Data Classification Service integrated with a basic test graphical user
interface. The demo interface is done to make the service tests easier. The interface is

built with ‘Tkinter’ library on Python.

f Data Classification Service - O X

Data Classification Service

istek Aciklamasi :

Istek Sahibi
Ilgili Sirket : | v]

Predict‘ Clear Form‘

Predicted Department :

Predicted Specialist :

Figure 4.11. Graphical user interface of the Data Classification Service demo.
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Basically, the interface gets demand explanation, owner and company fields as
input values and returns predicted department and specialist of the given requests. (The
figure 4.11 shows the demo interface of the service.)

The Data Classification Service will be running on a centralized application server
and will be communicating with clients with using Rest architecture via a JSON object.

The prediction in the interface is made in two stages. One of them is prediction of
the department for the given input. After department is determined, the second stage is
specialist prediction. In the stage, according to the predicted department a new model is
created from the dataset and prediction is done with the new modal. (There could be an
alternative approach to do both predictions. As we know, each specialist belongs to a
department. After a specialist predicted for demand, department can be found from the

relation.)
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Manual Measuring Accuracy Score for Data Classification Service

The given prediction scores in the study calculated programmatically according
to one to one relation that comes from the dataset. For the DBTA dataset, each demand
has a one specialist and one department. If prediction result is not the same with the given
person or department which is stated on the test record, program marks the record as a
false prediction. However, the prediction could be correct if roles or responsibilities in
the organization are same.

The situation decreases accuracy score when it is calculated programmatically.
For example, in the network and security group of name-anonymized company, there
exist five personnel in similar roles and two of them working on VPN related issues. If a
request related with the first person (in the test record) and the model predicts the second
person as the specialist, the record is assumed as a false prediction by the program.

There are similar roles/responsibilities in the departments as well as the
specialists. Some of the departments are specialized in a sector. For example, some of the
SAP departments in the name-anonymized company, work in only food industry and
some other departments work for only construction industry. However, technically both
groups have the same roles/responsibilities.

In manual measuring, the scenario which decreases the accuracy score is
eliminated. Each prediction results are evaluated one by one and they are put into five
different categories. (Figure 5.1 and Figure 5.2.) While dark green bar refers to same label
with the test record, red bar is an alternative label for the request. (alternative department
or specialist) The yellow bar refers to false predictions. Blue bar refers to total correct
predictions and lastly light green bar refers wrongly directed demands. (left to right bars
color: dark green, red, yellow, blue, green)

For the manual testing, one hundred pieces of demands randomly selected from

the DBTA dataset.
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Figure 5.1. Manually evaluated prediction results for department. (done with 100 demands)
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Figure 5.2. Manually evaluated prediction results for specialist. (done with 100 demands)

5.2. Auto Generated Scores for Data Classification Service

The data classification service generates a test-card automatically after model
creation. The card contains short information about test such as date-time, test duration
(model creation time), demands count in the set (after cluster-based filters remove some

of the records in run-time), labels type (target field), labels count (total different labels in
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the dataset), train-test data counts, terms in data (includes redundant terms count in train
data), count of the corpus, stop words count, algorithm type and accuracy scores. Some

of them are listed below:

Test type  : Standard test with 38949 demand. Supporter information are ;
explanation', 'company’, 'owner' columns.

Date time  :2019-02-20 08:19:29.768076

Duration :0:02:59.099823

Demands in set : 38949

Labels type : department

Labels count : 17

Train data : 33106

Test data  : 5842

Terms in data : 675825

Corpus in set : 43572

Stopwords count: 515

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-38949-%70.dat
Accuracy score : 70.03251754235838

Test type  : Standard test with 38949 demand. Supporter information are ;
explanation', 'company', 'owner' columns. Two SAP group is concated.
Date time  :2019-02-20 08:22:12.106025

Duration  :0:02:42.262203

Demands in set : 38949

Labels type : department

Labels count : 16

Train data  : 33106

Testdata  : 5842

Terms in data : 675825

Corpus in set : 43572

Stopwords count: 515

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-responsibility-38949-%71.dat

Accuracy score : 71.50436419647441
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Test type  : Standard test with 35218 demand. Supporter information are;
'explanation', 'company’, 'owner' columns.

Date time  :2019-03-03 17:44:17.178881

Duration :0:13:38.968016

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 623303

Corpus in set : 36558

Stopwords count: 516

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%72.dat
TF-IDF name : tfidf-xgb-department-35218-%72.dat
Accuracy score : 72.40204429301534

Test type  : Standard test with 35218 demand. Supporter information are;
'explanation’, 'company’, 'owner' columns. Two SAP group is added.
Date time  :2019-03-03 17:45:43.244133

Duration :0:15:05.033268

Demands in set : 35218

Labels type : department

Labels count : 16

Train data  : 29935

Testdata  : 5282

Terms in data : 623303

Corpus in set : 36558

Stopwords count: 516

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-responsibility-35218-%71.dat

TF-IDF name : tfidf-xgb-responsibility-35218-%71.dat
Accuracy score : 71.20954003407155
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Test type  : Standard test with 35218 demand. Supporter information are;
'explanation', 'company’, 'owner' columns. With using 1500 feature.
Date time  :2019-03-15 12:10:52.008758

Duration  :0:09:30.511163

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 622771

Corpus in set : 36557

Stopwords count: 519

Feature count : 1500

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%73.dat

TF-IDF name : tfidf-xgb-department-35218-%73.dat

Accuracy score : 73.61347719098997

Test type  : Standard test with 35218 demand. Supporter information are;
'explanation’, 'company’, 'owner' columns. After XGBoost tuning from the default
parameters.

Date time  :2019-03-15 12:00:49.167261

Duration :0:10:27.290093

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 622771

Corpus in set : 36557

Stopwords count: 519

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%78.dat

TF-IDF name : tfidf-xgb-department-35218-%78.dat

Accuracy score : 78.40242286579596
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Test type  : Standard test with 35218 demand. Supporter information are;
'explanation', 'company’, 'owner' and 'type' columns.
Date time  :2019-03-15 13:29:27.290634

Duration :0:09:39.496597

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 622771

Corpus in set : 36557

Stopwords count: 519

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%75.dat
TF-IDF name : tfidf-xgb-department-35218-%75.dat
Accuracy score : 75.75241340147643

Test type  : Standard test with 35218 demand. Supporter information are;
'explanation’, 'company’, 'owner' columns. After XGBoost tuning from the default
params.

Date time  :2019-03-15 13:54:32.992369

Duration  :0:11:11.122564

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 622771

Corpus in set : 36557

Stopwords count: 519

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%79.dat

TF-IDF name : tfidf-xgb-department-35218-%79.dat

Accuracy score : 79.61385576377057
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Test type  : Standard test with 35218 demand. Supporter information are;
'explanation', 'company’, 'owner' columns. After XGBoost tuning from the default
parameters.

Date time  :2019-03-15 14:07:33.818095

Duration :0:11:55.078383

Demands in set : 35218

Labels type : department

Labels count : 17

Train data  : 29935

Testdata  : 5282

Terms in data : 622771

Corpus in set : 36557

Stopwords count: 519

Feature count : 2750

Algorithm type : XGB, Word Level TF-IDF

Model name : model-xgb-department-35218-%80.dat

TF-IDF name : tfidf-xgb-department-35218-%80.dat

Accuracy score : 80.37100132500473
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CHAPTER 6

FUTURE WORKS AND CONCLUSION

The dataset is collected from archive from requests that are sent in 2018. Each
request called as a demand in the dataset. Each demand in the dataset, that is already
solved in the corporate company; belongs to a department and specialist personnel. In the
company, there exist 16 different departments. Each department differentiated from the
content because of unique or rarely used words. (those kind of words are selected as
feature for the model)

For example; if a demand contains a feature like; VPN, awebsite.net, foreign
access, OTP and etc. that increases the probability about the demand belongs to a
department related with ‘network’.

Although the demand is likely to be associated with a department related with
network, there could be exceptional cases too. In other words; any demand includes these
key words in its explanation but the demand may be belong to some other departments.

Similar conditions apply to specialist classes. By the way, there exist some
specialists who has the same responsibility with someone works in another department.
In order to avoid those kind of confusions; we offered to do a dispatching mechanism
according to the responsibilities instead of department or specialist labels.

One of our goals at the beginning of the study were to develop a public service
with a universal interface. The study has a universal and text-based interface but the
service has no graphical interface to manage the functions and it is not opened to public
use.

e In order to open the DCS to publicity, the service has to be launched from a web-
based graphical user interface. The GUI has to provide following functions:

e Uploading text-based dataset to the service.

e Updating the dataset if there exist new data or there is need to delete existed data.

e Manageable pre-processing operations. According to dataset service user can
decide to apply a pre-processing step. These processes must be optional.

e Manageable tuning options for XGBoost model.
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e Selecting nominal value and built a new model with uploaded data via the GUI.
e Defining web services related with the model and providing public or private

access to the service via a security token.

The main purpose of the web-based GUI is enable users to create their model and
prediction service using basic web-interfaces with those functions which are ready to
serve via using text-based programmable python interfaces.

We’ve mainly emphasized the advantages of DCS classification service which has
been developed within the scope of this study. Although there exist many advantages of
the system, it has disadvantages too. One of them is the necessity to keep the data set
updated. Depending on rapidly changing conditions and needs in industrial area, the
organization of the departments and responsibilities of employees may have to be
changed. In Turkey, it has been calculated that an average turnover rate on I'T companies
are approximately 15%. (Brumley Sara, 2019)

If we consider the situation in this context, classification model that has been
prepared with the data of year 2018, (in case data is not updated) it means that the model
won’t be served to 15% of the employees during 2019. Depending on the changing
conditions and needs, it can be required to re-organize the roles and responsibilities of
departments that takes place within the institution.

When both advantages and disadvantages are being considered, we suggest
institutions to pass hybrid solution depending on our study’s results. Besides having DCS
service integration, our hybrid solution proposal is, to have at least one dispatcher on the
departments of companies. (in our company of which DBTA data set is being received,
each department has its own dispatcher or dispatchers who are able to make dispatch to
his / her team members or to the other departments)

In this way, the possible demands that might be dispatched incorrectly by DCS’s
can be addressed to correct person by the dispatcher. (mis-dispatching rate is
approximately 18% on label of department). Also, it will be possible to include newly
joined person to team or newly formed team in the institutions to the data set that is
intended for preparing the next model.

For proper functioning of the system; updating the model with certain intervals is
correct approach. It is predicted according to the study that this interval should be between

two or three months. On DBTA system, approximately 15.000 new demands will be
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created within this time period. These demands will be directed to about 118 specialists
and 16 different departments.

As well as departments and specialists that are renewed in according to the new
requirements; there could be departments which are no more necessary for the institution
or specialists who left the companies. It is necessary to omit these departments or
specialists from data set which is ordered by date priority. Therefore, the model will stay
updated and will provide better performance.

All these processes are proceeding on a data set prepared in specified text format
and it is eligible to be managed easily using the DCS interfaces. The DCS is designed in
order to have universal and coherent interface as far as possible. Thus, it is aimed to
implement the service on manual classification practices in different platforms.

It is planned that “A Digital Business Tracking Application” which is sampled
many times in this study will become integrated with “Data Classification Application”

in 2020.
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