
Journal of Systems Architecture 91 (2018) 62–82

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A survey on modeling and model-driven engineering practices in the

embedded software industry

Deniz Akdur a , Vahid Garousi b , Onur Demirörs c , d , ∗

a ASELSAN Inc., Ankara, Turkey
b Information Technology Group, Wageningen University, The Netherlands
c School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
d Department of Computer Engineering, İ zmir Institute of Technology, İ zmir, Turkey

a r t i c l e i n f o

Keywords:
Embedded systems
Embedded software
Modeling
Model-based
Model-driven engineering (MDE)
Practitioner survey

a b s t r a c t

Software-intensive embedded systems have become an essential aspect of our lives. To cope with its growing
complexity, modeling and model-driven engineering (MDE) are widely used for analysis, design, implementa-
tion, and testing of these systems. Since a large variety of software modeling practices is used in the domain of
embedded software, it is important to understand and characterize the-state-of-the-practices and also the bene-
fits, challenges and consequences of using software modeling approaches in this domain. The goal of this study
is to investigate those practices in the embedded software engineering projects by identifying to what degree,
why and how software modeling and MDE are used. To achieve this objective, we designed and conducted an
online survey. Opinions of 627 practicing embedded software engineers from 27 different countries are included
in the survey. The survey results reveal important and interesting findings about the state of software modeling
and MDE practices in the worldwide embedded software industry. Among the results: (1) Different modeling
approaches (from informal sketches to formalized models) are widely used in the embedded software industry
with different needs and all of the usages could be effective depending on the various modeling characteristics;
(2) The majority of participants use UML; and the second most frequently selected response is “Sketch/No formal
modeling language ”, which shows the wide-spread informal usage of modeling; (3) In model-driven approaches,
it is not so important to have a graphical syntax to represent the model (as in UML) and depending on the type
of target embedded industrial sector, modeling stakeholders prefer models, which can be represented in a format
that is readable by a machine (as in DSL); (4) Sequence diagrams and state-machines are the two most popular
diagram types; (5) Top motivations for adopting MDE are: cost savings, achieving shorter development time,
reusability and quality improvement. The survey results will shed light on the state of software modeling and
MDE practices and provide practical benefits to embedded software professionals (e.g., practitioners, researchers
and also educators).

1

s

p

r

n

b

e

f

c

f

l

b

i

c

d

s

w

[

m

m

h

h
R
A
1

. Introduction

It is difficult to imagine day-to-day life without embedded software
ystems [1] . They can be found in many devices such as cars, TVs, smart
hones and also systems such as avionics or defense [2–5] . The growth
ate in software-intensive embedded systems is more than 14% per an-
um and it is forecasted there will be over 40 billion devices world-wide
y 2020 [6] .

Analysis, design, implementation and testing of software-intensive
mbedded systems are not trivial due to multiple constraints across dif-
erent dimensions of performance and quality [7–9] . Moreover, the in-
reasing amount of components in these systems and having distinct
unctionalities incorporated into a single system, which require seam-
∗ Corresponding author at: Department of Computer Engineering, İ zmir Institute of
E-mail addresses: denizakdur@aselsan.com.tr (D. Akdur), vahid.garousi@wur.nl (V

ttps://doi.org/10.1016/j.sysarc.2018.09.007
eceived 13 June 2018; Received in revised form 27 September 2018; Accepted 29 S
vailable online 2 October 2018
383-7621/© 2018 Elsevier B.V. All rights reserved.
ess integration of many hardware and software systems, make the em-
edded systems development more challenging [10 , 11].

In order to manage the complexity of these systems, software model-
ng helps engineers to work at higher levels of abstraction and facilitates
ommunication [12–16] . However, the modeling approaches in embed-
ed software industry usually vary since the characteristics of modeling
uch as purposes, motivations and challenges differ among systems as
ell as among sectors, e.g., consumer electronics, defense or automotive

17] . At one extreme, some modeling stakeholders (e.g., some project
anagers or systems engineers) use software modeling at a very infor-
al level, where diagrams are sketched on a white board in order to
elp communicate ideas with colleagues. In such cases, the emphasis is
 Technology, İ zmir, Turkey.
. Garousi), onurdemirors@iyte.edu.tr (O. Demirörs).

eptember 2018

https://doi.org/10.1016/j.sysarc.2018.09.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2018.09.007&domain=pdf
mailto:denizakdur@aselsan.com.tr
mailto:vahid.garousi@wur.nl
mailto:onurdemirors@iyte.edu.tr
https://doi.org/10.1016/j.sysarc.2018.09.007

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

o

d

a

s

m

l

w

m

o

p

l

b

o

(

(

a

b

(

s

i

v

a

g

g

t

s

w

s

t

t

a

s

t

r

d

t

f

s

v

fl

s

h

c

m

S

t

c

2

M

(

b

2

s

n

i

t

Fig. 1. Venn diagram depicting the relationship among MBE, MDE and MDD.

t

g

c

s

s

(

a

A

t

p

m

s

g

n

f

o

t

w

v

d

a

a

c

w

o

a

u

a

s

o

e

m

M

e

i

2

v

i

m

m

T

b

p

A

i

w

w

i

t

v

"
n selective communication and these diagrams might be either soon
iscarded or quickly become inaccurate since they are not kept updated
long with the source code [12] . At the other extreme, for some other
takeholders (e.g., software developers), modeling turns into program-
ing with automated generation of code and these diagrams have long

ifespans and demand for archivability. Moreover, even in the same soft-
are project, different units within the same company can use different
odeling approaches for different purposes [18] . Since a large variety

f modeling practices is used in embedded software industry, it is im-
ortant to identify different modeling approaches, in relation with chal-
enges and benefits they provide.

There have been a few prior surveys related to modeling in the em-
edded software industry (e.g., [19–21]). They have either focused on
nly one aspect of modeling, (e.g., the use of Unified Modeling Language
UML) or the use of formal models), or modeling in regional contexts
e.g., UML and model-driven approaches in Brazil or in Greece). There
re also some surveys, whose participants were involved with model-
ased/driven techniques on a single sub-domain of embedded systems
e.g., automotive [19]).

The goal of the practitioner survey reported in this paper is to under-
tand the state-of-the-practice in modeling and model-driven engineer-
ng (MDE) practices in the embedded software industry by providing a
iew on the latest software modeling approaches, languages, tools used,
nd also the relevant challenges faced by practitioners. To achieve this
oal, we designed and conducted a survey that is responded by 627 en-
ineers from 27 countries working in different industrial sectors related
o embedded software projects. The survey takes a holistic scope on the
ubject and covers a wide range of modeling aspects in embedded soft-
are industry. We focused on the modeling practices of the embedded

oftware industry for two reasons: (1) given the specific characteris-
ics of embedded software, modeling practices are usually tailored for
hese systems, e.g., there are specific UML extensions (profiles) such
s MARTE [22] and various Domain-Specific Languages (DSLs) for this
ector; (2) in the context of an ongoing industry-academia collabora-
ive project of a major embedded software firm in Turkey, the need has
aised to critically assess the global state of the modeling in the embed-
ed software industry so that proper decisions can be made with respect
o adopting the right modeling practices and modeling approaches.

We believe that the results will benefit both embedded systems pro-
essionals as well as researchers, by creating an awareness for the trends,
uccesses and challenges of practitioners. We also believe that the sur-
ey results would provide practical benefits to all stakeholders by in-
uencing not only the aspects related to software-intensive embedded
ystems development, but also the system-level design and methods for
ardware/software co-design.

The remainder of this paper is structured as follows. Section 2 dis-
usses background and the related work. Section 3 presents the research
ethodology used to perform the survey. Section 4 presents the results.

ection 5 summarizes the results and implications, and reviews the po-
ential validity threats. Finally, Section 6 concludes this study and dis-
usses the future work directions.

. Background and related work

In this section, we first present a brief overview of the concepts of
odel-Based Engineering (MBE), MDE and Model-Driven Development

MDD). Related work in relation with the surveys on modeling for em-
edded software is reviewed next.

.1. MBE versus MDE and MDD

In the literature, there are different terminologies in the context of
oftware modeling. While designing the survey, we followed the termi-
ology offered by Brambilla et al. [23] for describing and differentiat-
ng between “model-based ” and “model-driven ” approaches. According
o Brambilla et al. [23] , MDD treats models as “the primary artifact of
63
he development process ”. Usually, in MDD, there is an automatic code
eneration from the models. In addition to just development, MDE en-
ompasses all the other tasks of the software engineering (SE) process
uch as testing and maintenance, and thus, MDE is considered a super-
et of MDD. On the other hand, MBE is a process, in which diagrams
either formal models or informal sketches) still play an important role
lthough they are “not necessarily the key artifacts of the development ”.
s in the case of our industrial experience, we agree with and followed

he idea that MBE does not “drive ” the process as in MDE. For exam-
le, software designers specify the diagrams (e.g., on paper or by using
odeling tools), but then these diagrams are directly handed out to the

oftware developers to manually write the code (i.e., no automated code
eneration). Therefore , all model-driven processes are model-based but
ot the other way round. The Venn diagram shown in Fig. 1 (adopted
rom [24]) visually depicts these concepts.

Note that the terminology offered by Brambilla et al. [23] focuses
n “prescriptive modeling ”, but in the literature, there is also “descrip-
ive modeling ” terminology, in which sketching plays an important role
hile modeling (e.g., [18, 25, 26]). However, while designing our sur-
ey, we counted “informal sketch ” as a part of MBE since these diagrams
o not “drive ” the development process and they have less lifespan and
rchivability than the ones used in MDE [26] .

According to various sources, (e.g., [23 , 27 , 28]), MDE is considered
s one of the most popular approaches in software abstraction. In the
ontext of embedded domain, by abstracting out details, MDE helps soft-
are engineers manage the complexities in embedded software devel-
pment [10] by automating Software Development Life Cycle (SDLC)
rtifacts not only in implementation [29] but also in testing and doc-
mentation. There are many books, e.g., [30–32] , many conferences
nd a large body of knowledge in the application of MDE. Furthermore,
ince economic factors such as time-to-market require a reliable devel-
pment process allowing quick SDLC [33] , many practitioners in differ-
nt domains (e.g., consumer electronics, defense and aerospace, auto-
otive, and telecommunication) have started to adopt MDE [34–37] .
ore specifically, several studies point out the necessity of MDE in the

mbedded world to minimize the effects of platform heterogeneity and
ts complexity [38] besides validation and verification [39] .

.2. Related work

We were able to find three survey studies [19–21 , 40], which have in-
estigated the-state-of-the-practice of model-driven techniques via opin-
on surveys. Some of the surveys have focused on the embedded do-
ain, while others are generic in terms of the domain. Table 1 sum-
arizes those three surveys, which have been conducted in this topic.
he respondents of these surveys were basically from a specific em-
edded domain (i.e., automotive) or in regional levels (i.e., Brazil) or
eople who have already worked with model-based/driven techniques.
part from these embedded-related surveys, there are also several stud-

es, which investigate mainly UML-based modeling [27 , 41–49], which
e also briefly review in Table 1 .

The study in [19] was a 2011 world-wide survey of 67 participants
hich investigated the reasons of introducing model-based development

n a single sub-domain of embedded systems (i.e., the automotive indus-
ry) taking into account its costs and benefits. It focused only on "de-
elopment" phase (e.g., model-based development (MBD)) of the entire
engineering" (MBE) process. The main findings from this study were:

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Table 1

Existing surveys explicitly on MDE.

Citation Year Scale/ region Number of
subjects

Goal/focus area MBD/MBE/
MDD/MDE

Domain

[19] 2011 World-wide 67 Investigated the reasons of introducing model-based
development in a single sub-domain of embedded systems (i.e.,
the automotive industry) with its costs and benefits.
Focused on only "development" phase (MBD) of the entire
"engineering" (MBE) process.

MBD Embedded
systems

[20] 2013 Brazil 209 Investigated the use of UML and model-driven approaches in
the embedded software development industry

MDD Embedded
systems

[21] 2014 Europe 112 Investigated the positive & negative effects of MBE.
It did not address categorization between model-based and
model-driven techniques.
Same authors presented another study [40] in 2018 in which
they analyzed the results in more depth.

MBE (MDE) Embedded
systems

This study 2015 World-wide 627 Investigates the degree to which, why and how software
modeling and its benefits, challenges, and consequences.

MDE Embedded
systems

[41] 2005 World-wide 131 Investigated the adoption and usage of UML by analyzing its
perceptiveness and perceived ease of use.

MBD In general

[42] 2006 No information
given

182 Investigated how and why using UML. MBD In general

[43] 2006 No information
given

80 Investigated UML usage and its quality in actual projects. MDD (but
only with
UML)

In general

[44] 2006 Bulgaria 100 + Investigated the utilization of UML MDE (but
only with
UML)

In general

[45] 2008 Europe 80 Investigated the impact of UML modeling styles. MDD (but
only with
UML)

In general

[46] 2014 Greece 91 Investigated the role of UML. MDD (but
only with
UML)

In general

[47] 2008 World-wide 113 Investigated software modeling experiences. MDE In general
[48] 2011 World-wide 250 Investigated the adoption and application of model-driven

software development in industry.
Same authors presented another study [27] by identifying the
importance of complex organizational, managerial and social
factors, as opposed to only technical factors, that appear to
influence the relative success, or failure of MDD.

MDD In general

[49] 2011 Italy 155 Investigates the modeling languages, processes and tools with
MDE. Same authors presented another study [50] in 2013 in
which they analyzed the results in more depth.

MDE In general

[51] 2014 World-wide 3785 Investigates the use of software design models in software
development

MDD/MDE In general

(

p

c

o

s

a

a

b

a

a

c

a

A

c

a

a

d

s

u

u

t

o

r

t

c

n

m

a

e

t

d

t

e

p

u

r

s

i

[

a

p

i

T

fl

s

(

d

1) The top three motivations of model-based development are: “im-
rovement of the product quality ”, “development of functions with high
omplexity ”, and “shorter development times ”; (2) Positive experiences
f MBD are "communication with other colleagues", "possibility of early
imulation of the functional model", "easier maintenance if the gener-
ted code is not changed manually"; whereas the negative experiences
re "high process of redesign costs" and "tool costs"; and (3) MBD can
ring significant cost savings, but only with a “well-chosen ” approach
nd an established development process with defined interfaces and role
llocations. Otherwise, MBD can be much more expensive than a hand-
oded manual software development.

The study in [20] investigated the use of UML and model-driven
pproaches in the Brazilian embedded software development industry.
ccording to the results: (1) 45% of the participants use UML either
ompletely or partially; (2) The subjects report increases in productivity
nd improvements in quality (maintainability and portability) as key
dvantages of model-driven techniques; (3) Models are mainly used for
ocumentation and design with only little of code generation; (4) Class,
equence, use case, and state machine diagrams are the most popularly
sed diagram types. One of the interesting results is that experienced
sers (i.e., the ones with more than 10-year experience) can better assess
he benefits of UML for the development of embedded software. On the
ther hand, the major problems encountered in the adoption of UML
efer to the lack of modeling skills, the lack of appropriate tools, and
he strict time requirements.
64
The study in [21] was a 2014 European survey that investigated the
urrent state of MBE in embedded domain by analyzing its positive &
egative effects and its shortcomings. Its target projects were applying
odel-based and model-driven approaches, where its participants had

lready used model-driven techniques (93%), therefore, it lacks of gen-
ral embedded software professionals contribution (Note that according
o their terminology, there is no model-driven but MBE includes model-
riven techniques too). The results confirmed that MBE is widespread in
he embedded domain. The main finding from this study was that mod-
ls are clearly not only used for informative and documentation pur-
oses; they are key artifacts of the development processes, and they are
sed for, e.g., simulation and code generation. Moreover, while survey
espondents reported mostly positive effects of MBE, the results showed
ome common and major challenges (i.e., adoption, tool support and
ts interoperation). The same group of authors presented another study
40] in 2018 in which they analyzed the results of [21] in more depth,
nd offered insights into the current industrial practice.

The survey in [41] was a 2005 world-wide survey of 131 partici-
ants, which investigated the adoption and usage of UML by analyzing
ts perceptiveness and perceived ease of use. The results showed: (1)
he majority of respondents viewed UML as accurate, consistent, and
exible enough to use on development projects; (2) Developers clearly
eemed eager to use UML, which was spreading across the world; and
3) Use case, class, and sequence diagrams are the most popularly used
iagrams types.

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

t

“

R

g

d

s

f

a

i

a

a

c

i

v

w

f

o

i

s

T

i

e

[

o

a

t

m

c

s

s

t

m

U

s

n

e

i

C

e

n

o

c

o

c

v

v

n

t

o

p

d

i

f

t

m

t

t

g

c

v

u

u

s

l

d

t

∼

u

U

m

p

g

s

(

a

w

i

3

b

d

h

fi

p

t

s

l

c

t

f

a

o

c

o

fi

fi

c

d

s

3

t

s

s

c

t

3

e
In [42] , how and why using UML were investigated. According to
heir results, UML may be too complex supported by phrases such as
Not well understood by analysts ” or “insufficient value to justify the cost ”.
espondents of [42] reported that class, use case, and sequence dia-
rams were the most popularly used diagrams; whereas collaboration
iagrams were used the least. The other interesting result was that class,
equence and state machine diagrams were considered as the most use-
ul for capturing technical aspects; whereas use-case narratives, activity
nd use case diagrams were the preferred means with regard to customer
nvolvement.

The study in [43] investigated UML usage and its quality. The results
ddressed UML’s problems, where the main problems were synthesized
s: “scattered information ”, “incompleteness ”, “disproportion ” and “in-
onsistency ”. The results in [43] showed that UML practices should be
mproved in some areas such as modeling uniformity and standards, de-
elopment of project-specific reference architectures and patterns.

The survey in [45] was a 2008 European survey of 80 participants,
hich investigated the impact of UML modeling styles. The findings

ocused only on aspects related to the improvement in software devel-
pment quality and productivity. One of the results revealed that the
mpact of using UML on productivity was perceived mostly in the de-
ign, analysis, and implementation phases.

On the other hand, there were also some national surveys on UML.
he results of survey in [44] , which investigated the utilization of UML

n Bulgarian companies, showed that in most cases UML was not prop-
rly used in the industry and more training was needed. A Greek survey
46] with 91 participants, which mentioned "model-driven" concept but
nly with UML, investigated the role of UML in all different types of
pplications (e.g., web, windows, or embedded). The findings indicated
hat UML was used successfully in the majority of software develop-
ent. Among the results: (1) The most popular diagrams were class, use

ases and activity, whereas the least used diagrams were package and
tate machines; (2) Even though UML was extensively used, its exten-
ions (such as SysML) were not well known and a large percentage of
he user group was not familiar, whereas others rarely or never use. The
ain conclusion was that despite the limitations and extensions needed,
ML is the only general-purpose modeling language that is an industry

tandard for specifying software-intensive systems, that is supported by
umerous tool vendors [46] .

There are also surveys on MDE in general [27 , 47–49], which do not
xplicitly address embedded software industry as their target. The study
n [47] was a 2008 survey with two thirds of the respondents from
anada and the United States, which investigated software modeling
xperiences. According to its results, UML was identified as the domi-
ant notation. Participants reported that the biggest perceived problem
f model-centric approaches is keeping the model up-to-date with the
ode. Moreover, another interesting result is that participants working
n real-time systems are more likely to agree that their organizational
ulture does not like modeling.

The study in [48] was a 2011 survey of 250 participants which in-
estigated the adoption and application of model-driven software de-
elopment. According to the results: (1) MDE represented a need for
ew skills, including UML modeling expertise (in which significant addi-
ional training is needed); (2) Code generation was an important aspect
f MDE gains, but integrating the code into existing projects could be
roblematic; and (3) Class, activity and use case were the most popular
iagrams. The same authors presented another study [27] by identify-
ng the importance of complex organizational, managerial and social
actors, as opposed to only technical factors, that appear to influence
he relative success, or failure, of MDD.

Another study [49] was a 2011 Italian survey which investigated the
odeling languages, processes and tools in the Italian software indus-

ry with MDE. According to its results: (1) 68% of participants reported
o always or sometimes use models, and among them, 44% reported
enerating codes from models; (2) The subjects who do not use models
ommonly stated that modeling requires too much effort and time in-
65
estment (50%) or was not useful enough (46%); and (3) Models were
sed mainly in larger companies and that a majority of all the subjects
sing models (76%) apply UML although DSLs are used as well. The
ame authors presented another study [50] in 2013 in which they ana-
yzed the results in more depth.

The study in [51] was a 2014 survey, which investigated the use of
esign models in software development. The results of this study showed
hat design models are not used very extensively in industry (almost
50% of participants never use them), and where they are used, the
se is informal and without tool support, and the notation is often not
ML. According to results, these models are used primarily as a com-
unication and collaboration mechanism where there is a need to solve
roblems and/or get a joint understanding of the overall design in a
roup.

Our work builds on these studies and significant extensions: our
tudy is not limited to neither a sub-domain of the embedded systems
e.g., automotive), nor a subset of SE phase (e.g., development), nor just
 specific region (e.g., Brazil). In this perspective, our survey is the first
orld-wide survey, which focuses on embedded software industry by

nvestigating a wide range of modeling practices.

. Research methodology

Survey methodology is a well-established technique for obtaining
road characterization of a particular issue by enabling collection of
ifferent information such as opinions, perceptions, attitudes and be-
aviors [52] . It has been applied in various fields. Surveying is a well-
tted strategy as it is suitable for collecting empirical data from large
opulations.

There are different surveying methods, each with different advan-
ages and disadvantages [53] . In this study, we chose to use the online
urvey method since we wanted to obtain information from a relatively
arge number of practitioners in a quick manner so that we can easily
ategorize and analyze these data. The other conventional approach in
he SE is to conduct interviews with subjects, which is usually more ef-
ort intensive. Compared to the latter, the former (the opinion surveys
pproach) may have drawbacks since there is no interviewer, ambigu-
us and poorly-worded questions might be problematic [52] . In order to
ope with this challenge, a pilot study was applied before the execution
f the survey.

Moreover, even though it is relatively easy for software engineers to
ll out questionnaires, they still must do so on their own and may not
nd the time [52] . In that sense, the organization of survey questions is
rucial and requires special considerations [54] . Accordingly, we have
esigned the question in order to reduce the time taken to complete the
urvey.

.1. Goal and research questions

The research approach used in our survey study is the Goal, Ques-
ion, Metric (GQM) [55] . By using its template [55] , the goal is to under-
tand the state-of-the-practice of modeling and MDE in the embedded
oftware domain by identifying to what degree, why and how they are
onducted with its benefits and challenges. Based on this goal, we raised
he following research questions (RQs):

• RQ1 : What is the current state of modeling in the embedded software
industry?

• RQ2 : What is the current state of MDE adoption in the embedded
software industry?

• RQ3 : What are the benefits, challenges, and consequences of using
MDE in the embedded software industry?

.2. Survey design and execution

In designing of the survey, we made sure that the questions are rel-
vant to the embedded software industry and capture the most useful

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

i

t

(

e

3

s

e

s

s

a

3

c

d

w

t

s

p

w

a

c

p

l

s

p

s

t

o

t

h

b

m

m

v

s

i

a

t

b

r

3

s

r

o

t

p

v

e

c

r

i

v

p

s

t

a

s

t

c

p

s

t

i

i

s

q

T

w

“

c

u

o

n

t

a

m

t

i

c

c

t

t

g

a

v

l

u

y

t

i

v

s

a

c

b

w

3

s

l

m

t

d

p

T

e
nformation as relevant to the goal and RQ’s of the survey. In designing
his survey, we utilized and benefitted from several survey guidelines
e.g., [54 , 56 , 57]), and also our previous experience in designing and
xecuting industrial survey studies (e.g., [58]).

.2.1. Identifying target audience
The identified target audience is anyone working in the embedded

oftware industry, with a variety of different SE roles from requirement
ngineer to business analyst and from software developer to tester. This
tudy established a sampling frame composed by a large set of embedded
oftware professionals working in different locations around the world
nd in different industrial sectors.

.2.2. Sampling method
In our study, given our limited resource constraints, it was not practi-

ally doable in the outset of our project to recruit a large pool of embed-
ed software practitioners. As in the survey guidelines (e.g., [54 , 56 , 57]),
e thus used the ‘accidental non-probabilistic’ sampling [54] and we

argeted subjects via our industry contacts, professional social network
ites such as LinkedIn, industry events, and forums. The survey was also
romoted through SE and academic institutional mailing lists. Besides,
e also encouraged recipients to distribute the survey to their colleagues
nd partners. After receiving the non-probabilistic sampled data, one
ould possibly perform a-posteriori probability-based (systematic) sam-
ling, e.g., by grouping the data for various companies and then se-
ecting the filtered data so that every member of the population has
tatistically seen an equal chance of being selected, in a way to mimic
robability sampling. However, this was also infeasible in our setting
ince data in our survey were fully anonymous, since we did not want
o gather company names nor any revealing information. Anonymity
f data was important since revealing information could have damaged
he quality of the data reported by participants since they would have
esitate to report honest opinions (such situations have been observed
efore, e.g., [53]).

Another issue in our survey design, inter-related with the sampling
ethod, is the ‘unit’ of interest [53] . The units of analysis in this survey
ight be anyone working in the embedded software domain, who indi-

idually and anonymously participated in our survey. Thus, for all the
tatistics and analysis, these professionals are the unit of analysis and the
mplications shall be tied to world-wide community under investigation
nd neither to companies nor projects. We also might need to emphasize
hat taking individual embedded professional as the unit of analysis has
een considered a generally acceptable approach in previous surveys
eported in the literature (e.g., [59]).

.2.3. Designing survey questions
Surveys require special considerations [54] . In order to develop a

urvey that would adequately cover the latest trends on modeling, we
eviewed the similar past surveys (See Section 2.2), benefitted from
ur professional experiences in industrial projects (for the case of all
hree authors), considered factors given in survey guidelines [54] , and
repared a draft set of questions. We conducted a round of peer re-
iews with nine industrial practitioners from different industries, differ-
nt software engineering roles, different experiences and five different
ompanies, in which our personal contacts have been working. All peer
eviews were conducted face to face and according to their results, we
mproved four questions (i.e., Q20, Q25, Q26, and Q27). The final sur-
ey questionnaire consisted of four sections: the first section gathers the
rofiles of the participants and their companies; the other sections corre-
pond to each of the study RQs, as shown in Table 2 (For each question,
he type of answers are also mentioned, e.g. , single answer from a list, or
 Likert scale) . Due to space constraints, we do not present the entire
urvey in this paper, but it can be found in an online source [60] .

The introduction of the survey is written to attract respondents’ at-
ention. Therefore, the survey began with an informed consent, which
66
ontained the topic of the study, a confidentiality statement, the ex-
ected time to complete the survey and a thank you statement (See [60])
o that the majority of potential respondents will decide whether or not
o drop out of the questionnaire based solely on the first page. By click-
ng through the consent statement and submitting the completed survey,
ndividuals are indicating their willingness to participate.

It is very important to have clear definitions and easy-to-follow in-
tructions in the survey to get high quality data [54] . The first part of the
uestionnaire gathered personal and organizational demographic data.
he 10th question investigated how often any informal or formal soft-
are modeling (i.e., sketches and/or models) is used in SDLC by asking

How often do you use software modeling in your software development life
ycle? (informal or formal: i.e. , sketches or models) ”. Since any informal
sage of modeling was seen as "modeling usage" in this survey, the aim
f this question was to understand the ratio of participants, who did
ot use any software modeling. After categorizing this group and made
hem complete the survey, the questionnaire continued with modeling
pproaches questions, which aimed at understanding informal usage of
odeling, model-based and model-driven techniques. In other words,

his second part aimed at gathering the current state of software model-
ng. At the beginning of 19th question, we gave the terminology, which
learly explained the difference between model-based and model-driven
oncepts as in Section 2.1 (See [60]) so that participants could consis-
ently answer subsequent questions:

“Please read the following definitions before proceeding with the rest of
the survey.

In terms of terminology, Model Driven Development (MDD) uses mod-
els as the primary artifact of the development process. Usually, in MDD,
the implementation is automatically generated from the models. Model
Driven Engineering (MDE) is a superset of MDD since it encompasses
other tasks of a complete software engineering process like testing and
maintenance (e.g. , documentation). On the other hand, Model Based
Engineering (MBE) is a process, in which software models still play an
important role although they are not necessarily the key artifacts of the
development. For example, designers specify the models (i.e. , by using
paper or modeling tool), but then these models are directly handed out to
the programmers to manually write the code (no auto generation). ”

With the help of this terminology and given example, we assume
hat respondents, at least, can understand the concept of " the automatic
eneration of an artifact ", e.g., code, or document. Then, the survey asked
bout the degree of model-driven techniques in SDLC. In order to pre-
ent any misunderstanding and potential threat in this terminology, pi-
ot study was applied. After the pilot study, instead of asking “Do you
se any model-driven techniques? ”, we modified this question into " When
ou write code, document or test, to what degree do you use model driven
echniques?" by assuming that the respondent can answer whether there
s an automatic generation of some artifact or not. At that point, the sur-
ey was completed for the respondents, who chose “Never ” in the Likert
cale (which means that informal usage of modeling (e.g., sketching)
nd/or model-based approach). Then, in the remaining parts, MDE spe-
ific questions, which were interested to know about MDE practices,
enefits and, challenges, started for the respondents, whose answers
ere different from “Never ” (e.g., “Sometimes ” to “Always ”).

.2.4. Survey piloting and execution
Performing a pilot study before distribution is an important step

ince it would help preventing misinterpretations in large-scale data col-
ection of the survey. Pilot studies are carried out by using the same
aterial and procedures but with a smaller number of participants from

he target population [54] . Before the pilot study, it was necessary to
ecide whom to use as participants. It is recommended to select partici-
ants based on differences instead of trying to replicate similarities [61] .
herefore, the survey was firstly piloted by eight colleagues from differ-
nt industries working in different SE roles, with different experiences

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Table 2

List of the questions developed and used in the survey (details of the responses can be found in [60]).

RQ & Aspect Survey questions (and metrics) Type of answers

Single
answer from

a list

Multiple
answers
from a list

Free
text
field

Likert
scale

Likert scale
(Range
value from

never to
always)

Profiles Practitioners Q1. Please choose the country that you work in. x x
Q2. What is your highest academic degree? x
Q3. What is (are) your university degree(s) in? x x
Q4. What is (are) your current position(s)? x x
Q5. How many years of work experience do you
have in software development?

x

Q11. How many years of modeling experience do
you have in software development?

x

Q12. Where/how did you learn modeling? x x
Companies Q6. What is the type of the application(s)

developed in your company?
x x

Q7. What is the target sector of the product(s)
developed?

x x

Q8. What is the number of employees working in
software engineering roles?

x

Q9. What is the size of your typical software
development team?

x

RQ1

Current state of modeling
Q10. How often do you use software modeling in
your software development life cycle? (informal or
formal: i.e., sketches or models)

x

Q13. What medium do you use to create the
sketch or model?

x x

Q14. Which modeling language(s) do you use for
modeling?

x x

Q15. Which programming languages do you use
with the above modeling language(s)?

x x

Q16. Which modeling environment/tool(s) do you
use, if any?

x x

Q17. When modeling, which diagrams do you use? x x
Q18. In which phase(s) of software development
life cycle do you use modeling?

x

RQ2

Current state of MDE and its
adoption

Q19. When you write code, document or test, to
what degree do you use model driven techniques?

x

Q20. What do you use MDE for? x x
Q21. What is the estimated effort (in
person-month) of the most representative MDE
project in your company?

x

Q22. How would you describe your company’s
maturity in terms of its MDE usage?

x

Q23. What have been the motivations (potential
benefits) that your company has considered for
adopting MDE?

x x

RQ3

Benefits, challenges and
consequences

Q24. Based on your experience, to what degree
has each of the above motivations (potential
benefits) been achieved?

x x

Q25. What is (are) MDE challenge(s) in your
company?

x x

Q26. To what extent do the following problems
apply to the MDE environment/tool(s) that you
have used?

x x

Q27. Based on your experience, what do you think
about the following statements?

x x

a

o

n

t

c

c

t

b

g

a

r

t

t

t

t

b

a

T

E

2

T

p

s

nd from different nations (four Turkish, two English, one French and
ne Taiwanese). This was done to ensure that the wording and termi-
ology used in the survey is easily understandable and well-formulated
o get high quality data. In order to prevent misunderstandings, which
ould lead to invalidity of conclusions, great importance was given to
larifying survey questions and explanations. Given their feedback and
he time they needed to fill out the survey, the questionnaire was refined
y modifying three questions (i.e., Q10, Q19 and Q23), the terminology
iven at the beginning of 19th question (See [60] for more details), and
lso five pre-given answers set (i.e., Q14, Q23, Q25, Q26 and Q27). The
evised survey was reviewed a second time by five other colleagues and
wo colleagues, who were participated in the first pilot study. Therefore,
67
he final version of this survey was reviewed by 13 professionals. After
he revisions, the final version of the questionnaire consisted of 27 ques-
ions, in the form of multiple-choice (checkboxes), single-choice (radio
uttons) and Likert-scale answers. Where applicable, free-text areas for
dditional input were provided to respondents as “Other ”.

To design and execute the survey, we used the Google Forms tool.
he ethics approval for the survey was issued by the Human Subjects
thics Committee of Middle East Technical University (METU) in March
015. The survey was then executed in the period of April–May 2015.
he hyperlink of the survey has been distributed to embedded software
rofessionals via social networks as well as to our network of embedded
oftware professionals working in all around the world.

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Table 3

Plan for cross comparison of our findings with the previous surveys on
modeling in embedded systems.

Study
reference

Aspects to be compared in
Section 4

Question
in our
survey

Types of
comparison

[19] Motivations of model-based
development

Q23 Quantitative

Benefits of model-based
development

Q24 Qualitative

Positive/negative
experiences of model-based
development
(Reasons/challenges of
model-based development)

Q20-Q25 Qualitative

[20] Modeling languages Q14 Quantitative
Diagram types Q17 Quantitative
Benefits of model-driven
development

Q24 Qualitative

Major problems in
model-driven development

Q25 Qualitative

[21] Modeling languages Q14 Quantitative
Modeling environments Q16 Quantitative
Types of notations (diagram

types)
Q17 Quantitative

Development phases where
MBE is used

Q18 Quantitative

Motivations of model-based
development

Q23 Quantitative

Benefits of model-based
development

Q24 Qualitative

Major problems in
model-based development

Q25 Qualitative

3

A

v

t

T

c

e

a

A

o

A

2

m

c

i

p

3

S

M

i

p

a

w

[

d

f

o

q

s

Fig. 2. Countries and geographical distribution of respondents.

0.5%
38.9%

49.9%
10.7%

High School or lower
BSc

MSc
PhD

Fig. 3. Highest academic degrees.

4

s

f

4

t

a

s

fi

a

b

o

(

w

n

E

(

t

i

s

t

t

b

v

(

a

i

r

t

e

b

i

e
.3. Pre-analysis considerations and data validation

The last step of the survey process was to analyze the collected data.
lthough the title of the survey, the protocol part of the survey, the in-
itations and forums entries are emphasizing on “embedded ”, some par-
icipants chose just "Desktop applications" or "Web applications" for Q6.
he answers, which do not include any “Embedded applications ”, were
onsidered out of scope of this survey. Some companies develop differ-
nt kinds of applications (e.g., both embedded and desktop); therefore
ny answer, which consisted of “Embedded ”, was included in the sample.
side from that requirement, there were no other criteria for inclusion
r exclusion. By applying this criterion, 15 survey data were excluded.
fter the data validation phase, we had 627 acceptable responses from
7 different countries. To increase transparency, the raw survey data is
ade available online [62] for other researchers to validate and repli-

ate. Considering that no incentive was offered to the participants, it is
nteresting to see that the number of participants is quite high in com-
arison to previous surveys (Section 2.2).

.4. Plan for cross comparison with previous surveys

One of the important analyses that we conducted and report in
ection 4 is cross comparison of our findings with previous surveys on
DE in embedded systems [19–21] . To plan the cross comparisons, we

temized the types of findings reported by each of those studies and
aired them (if any) with a question in our survey. Table 3 presents
n overview of our plan for the cross comparisons. For example, we
ill compare the benefits of model-based development as reported in

19] with results of Q24 in our survey. Based on the types of available
ata, some of the comparisons are quantitative or qualitative. Note that
or easier traceability and understanding, we will present the results
f these comparisons and the interpretations of possible reasons in the
uestion itself (e.g., in a single section), instead of splitting their discus-
ions in a separate sub-section (e.g., moving into discussion part).
68
. Survey results

In this paper, due to space constraints, we report a subset of the
urvey results. All other remaining results in the survey are accessible
rom [63] .

.1. Demographic of participants and their companies

The first question asked respondent about their geographical loca-
ion (Q1). Our goal was to reach out to as many countries as possible
nd to ensure that all regions where there is a presence of embedded
oftware industry are reasonably well represented in the dataset. The
nal dataset had respondents from 27 different countries distributed in
ll the continents. Fig. 2 shows the world heat-map, and also the distri-
ution of responses by continents, showing that most of the responses
riginating from Europe (66%), followed by Asia (17%) and America
14%). Of course these data do not provide any information in relation
ith relative sizes of the embedded software industry in different conti-
ents. Note that due to researchers’ location (i.e., Turkey), the ratio of
uropean respondents is higher than others.

Participants were asked to provide their highest academic degrees
Q2). The result reveals that 50% and 11% of respondents have a Mas-
er’s and Ph.D.’s degree respectively. Only 3 respondents (0.5%) report-
ng to have High School or lower degree, denoting that the embedded
oftware is demanding in terms of background knowledge. Fig. 3 shows
hat our dataset includes more Ph.D. and MSc holders than our expecta-
ion, perhaps denoting that the modeling in embedded software might
e demanding more combination of academic disciplines to understand
arious part of the system (e.g., both hardware and software) easier
e.g., a participant, whose BSc is in Electrical/Electronics Engineering
nd MSc is in SE).

In order to understand the respondents’ educational skill-set, partic-
pants were then asked to provide their university degrees (Q3). The
esults of this multiple-response question are shown in Fig. 4 . Note that
he department name of computing discipline degrees might be differ-
nt (e.g., depending on the university of the participant); hence it is
etter to analyze the underlying discipline in a single item as “Comput-
ng Disciplines ” (e.g., computer engineering, computer science, software
ngineering, information systems) since their “software modeling ” cur-

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

1.50%
1.0%
1.5%
2.0%
2.1%

4.0%
5.6%

19.4%
28.5%

34.4%

Other
Industrial Engineering

Mechanical/Mechatronics…
Mathematics

Business Administration
Information Systems

Software Engineering
Computer Science

Computer Engineering
Electrical/Electronics Engineering

Fig. 4. University degrees.

 2.2%
1.0%
1.3%
1.3%
1.8%
2.1%

4.9%
5.9%
8.1%

11.5%
17.2%
19.0%

68.7%

Other:
Business Analyst

Academic
Quality Assurance Engineer/Lead

Systems Engineer
High Level Manager

Consultant
Requirement Engineer

Project Manager
Software Tester

Software Architect
Software Designer

Software Developer/Programmer

Fig. 5. Current positions.

0%

20%

40%

60%

less than 2 years 2-5 years 6-10 years 10+ years

Work
Experience

Modeling
Experience

Fig. 6. Work vs. modeling experience of participants who use any software
modeling.

r

a

t

t

b

t
r
r

w

y

(

t

o

b

s

p

h

(

t

o

r

i

0.9%
27.9%

51.4%
70.8%

Other
Formal corporate training

On your own (i.e. from books, in…
University (i.e. from software…

Fig. 7. Where/how software modeling was learned.

1.8%
10.0%

15.3%
15.5%

18.5%
23.1%
23.6%

45.8%

Other:
Government

Finance & Banking
Automotive & Transportation

Healthcare & Biomedical
IT & Telecommunications

Defense & Aerospace
Consumer Electronics

Fig. 8. Target sectors of products.

t

m

q

w

p

t

w

y

i

h

o

w

n

e

w

A
a

w

t

g

q

c

p

i

t

t

(

d

c

w

c

t
a

a

o

c

a

t

s
iculum might be similar. Then we can say that Computing Disciplines
nd Electrical/Electronics Engineering are the top university degrees in
he survey. Please refer [63] for the details of other university degrees.

The current positions of respondents (Q4) are shown in Fig. 5 (Note
hat multiple roles could be recorded in this question, e.g., a person can
e a software developer/programmer and software designer at the same
ime). Most of the participants have “Software Developer/Programmer ”
ole. “Software Designer ”, “Software Architect ” and “Software Tester ”
oles are the other majority roles in the survey.

When work experience of the participants in software development
as asked (Q5), it is seen that the majority of respondents have 10 +
ears (52%) and 6–10 years (40%) work experience. 41 participants
6%) reported to have 2–5 years of experience; whereas only 10 par-
icipants (2%) have less than 2 years of experience. This indicates that
ur participants are generally experienced industry professionals in em-
edded systems (assuming that their work experience is on embedded
ystems). We also asked the participants to report their modeling ex-
erience (Q11) in software development (Fig. 6). The interesting point
ere is that, although the majority of survey respondents have 10 + years
52%), which is followed by 6–10 years (40%) of work experience, in
his question the majority is in 6–10 years (46%), followed by 10 + years
f modeling experience (40%). This might be occurred by some possible
easons. Firstly, some respondents might have learned software model-
ng after getting the job or employment (i.e., after graduation, during
69
he job or with some training). Secondly, modeling in embedded domain
ight require some initial work experience to understand embedded re-

uirements and systems.
Q12 was again a multiple-response question, in which we asked

here/how the participant learned software modeling. (e.g., partici-
ants might learn modeling in university and from formal corporate
rainings). The answers are compatible with the previous question,
hich investigates the modeling experience and explains why 6–10
ears modeling experience is the majority. For example, some partic-
pants, who were graduated from Electrical/Electronics Engineering,
ave learned software modeling after getting the job (after graduation,
n his/her own or with formal corporate training). Therefore, his/her
ork experience is longer than modeling experience since he/she did
ot take any software engineering or computer science courses on mod-
ling during university. However, any computing discipline graduate’s
ork experience and modeling experience are most probably the same.
s expected, “University ” is the majority, followed by “On your own ”
nd “Formal corporate training ”. The given responses are shown in Fig. 7
ith “Other ” responses.

Q6, in which the type of the applications developed was asked, is
he only question, which is used for inclusion or exclusion of data points
athered from the respondents. Since this was again a multiple-response
uestion, multiple type of application could be recorded, e.g., a company
an develop both embedded and desktop applications. 77% of partici-
ants reported developing “Embedded" applications and 13% of partic-
pants (13%) both “Embedded ” and “Desktop ” applications. Some par-
icipants used the free-text area as “Other ” (10%) to explicitly indicate
heir type of applications developed in their company. Some responses
e.g., “Smart TV applications ”) are also counted to be in the embedded
omain and included in our dataset.

Q7 was about the target sectors of the products developed by the
ompany employing the participants (Fig. 8). Seven possible choices
ere pre-provided in the questionnaire, which were designed in dis-

ussions with embedded software industry partners. The most popular
arget is “Consumer Electronics ”, followed by “Defense & Aerospace ”
nd “IT & Telecommunications ” (Please refer Section 4.5 for cross-factor
nalysis based on these sectors).

To get a sense of the size of the companies, instead of asking the size
f the company (in order to eliminate non-engineering roles as techni-
ians, office workers, etc.), the number of employees in SE roles was
sked (Q8). Results are shown in Fig. 9 .

We should note that, as it has been established in studies on informa-
ion quality (for example by Garvin [64]), people in different positions
ee and rate importance of different issues differently and in general

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Fig. 9. Number of employees in SE roles.

h

g

a

t

e

4

4

m

s

c

t

4

t

u

m

e

(

t

r

w

o

t

v

c

t

a

a

p

v

o

l

(

i

g

w

o

m

i

t

4

"

t

a

p

p

s

i

“

L

g

g

a

p

o

e

F

w

a

l

o

o

[

[

l

w

d

m

v

o

n

z

g

f

o

s

(

g

h

t

u

u
ave varying viewpoints on SE and related processes. As seen, there is a
ood mixture of respondents from various embedded software industry
nd different number of employees in SE positions (from developer to
ester and project manager to quality assurance engineer), which would
nable our analysis to cover a wider spectrum of inputs.

.2. Current state of modeling (RQ1)

.2.1. Degree of using software modeling in SDLC (Q10)
This question investigated how often the participants use software

odeling in the SDLC by including both informal and formal usage (i.e.,
ketches or models) using a 5-point Likert-scale (Notice that sketching is
ounted as software modeling in the survey). As we can see from Fig. 10 ,
he “often ” choice is the most reported one.

.2.2. Media used to create sketch or model (Q13)
In this multiple-response question, respondents were asked to report

he media they use to create (draw) models. A 5-point Likert-scale was
tilized for the answers. Results are depicted in Fig. 11 . By far, using
odeling software on PCs for modeling is the most used medium. Mod-

ling using pen and paper is the next common approach.
The purpose of the modeling and the category of software modeling

e.g., sketch, model-based or model-driven) are strongly related with
he medium used [26] . It is possible that some of the respondents were
eferring to descriptive modeling and others to prescriptive modeling
hile answering this question as in [18] . If there is no auto-generation
f any software artifacts (e.g., code, document or test scripts – as in
he case of model-based usage, which includes “sketching ” in the sur-
ey), analog media like paper or whiteboard are enough for communi-
ation or understanding a problem at an abstract level. It does not mean
hat model-driven users do not use paper or whiteboard; indeed, such
nalog mediums might be a quick solution for a better communication
nd faster idea sharing technique in some situations. However, the lifes-
an of these sketches or diagrams is less than the ones created digitally
ia PC or tablet/smartphone. In that sense, the digital mediums like PC
r tablet/smartphone have advantageous on archiving and have longer
ifespan. Therefore, by providing modeling tools and archiving diagrams
either informal sketches or formal models) easier as being digital, PC
s the most used medium.

Cross-factor analysis of the above data with Q14 (Modeling lan-
uages) showed that the participants, who do not use any formal soft-
are modeling (i.e., the ones who draw some sketches), use just paper
Fig. 10. Degree of softwa

70
r whiteboard. On the other hand, the participants, who use any formal
odeling language (e.g., the ones, who use UML), usually use model-

ng tools on PCs. We have a specific question to ask about the modeling
ools (Q16).

.2.3. Modeling languages (Q14)
Notice that any informal usage of modeling (as a sketch) is seen as

modeling usage" at that point and this question tried to understand
he modeling language that participant use, if any. Since this was again
 multiple-response question, multiple items could be recorded (e.g.,
articipants might use both UML and DSL). The majority of partici-
ants (77%) use UML (not surprisingly), but it is interesting that the
econd most frequently selected response is “Sketch/No formal model-
ng language ” (65%), which is the informal usage of modeling. “DSL ”,
Any UML extensions (profiles) such as MARTE ”, “Systems Modeling
anguage (SySML)", “MATLAB ”, “Any Business Process Modeling Lan-
uage such BPML ” and “Service Oriented Architecture Modeling Lan-
uage (SoaML) ” took also some responses as shown Fig. 12 .

Another interesting result is that some respondents chose both UML
nd also “Sketch/No formal modeling ”, which show that these partici-
ants use modeling both formally and informally as in [17] depending
n their purposes. Apart from the pre-given choices, many “Other ” mod-
ling languages (8,6%) were reported (e.g., AUTOSAR, Eclipse Modeling
ramework (EMF), Markov Chain Markup Language, AADL or Modelica)
hich you can access its detail from [63] . This denoted that there exists
 wide spectrum of modeling languages in this domain and engineers se-
ect the modeling languages suitable for their needs (e.g., target sector
f the product or modeling purpose) in their projects (See Section 4.5).

Agner et al. [20] and Liebel et al. [21] have reported the usage share
f modeling languages in their survey pool. According to Agner et al.
20] , 45% of participants use UML either completely or partially. In
20] , only 1% of participants reported that they use another modeling
anguages than UML, and the names of those other modeling languages
ere not explicitly reported. Thus, the results of Agner et al. [20] are
ifferent from our results and it is not easy to explain why. In [21] , the
ajority of participants (46%) reported using UML, followed by SysML,

arious DSL’s, Modelica and the MARTE UML profile.
Since UML is a general-purpose modeling language, its usage is not

nly restricted to modeling software, but it is also used for system engi-
eering, for business process modeling and for representing the organi-
ational structures [46] although there are some specific modeling lan-
uages for these disciplines (e.g., SysML for system engineering, BPML
or business process). Moreover, although UML is built upon object-
riented concepts such as classes and operation, non-object oriented
ystems may also be modeled using it. Furthermore, during university
e.g., from SE courses, if taken), mostly UML is taught as modeling lan-
uage. Therefore, UML’s popularity is not a surprise [65] . On the other
and, a very recent study on the usage of UML in practice [17] shows
hat although UML is viewed as the ‘de facto’ standard, it is by no means
niversally adopted. The majority of those interviewed in [17] who do
se UML tend to do so selectively and often informally. This finding also
re modeling usage.

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

0%

50%

100%

Never (0%) Sometimes (<50%)
Often (>=50%) Most of the time (>75%)
Always (100%)

Fig. 11. Mediums to create diagrams and their usage frequency.

 8.6%
6.4%
8.9%
10.7%
12.3%

16.9%
33.7%

65.2%
77.0%

Other:
Service Oriented Architecture…

Any Business Process Modeling…
MATLAB modeling utilities

Systems Modeling Language…
Any UML extensions (profiles)…

Domain Specific Language (DSL)
Sketch/No formal modeling…

UML

Fig. 12. Modeling languages.

 7.5%
2.7%

4.9%
5.1%

8.0%
8.1%

11.3%
33.3%

45.3%
51.0%

Other
Smalltalk

Delphi
Ada

 BPEL
C#

MATLAB
Java
C++

C

Fig. 13. Programming languages.

s

f

e

t

m

t

r

T

4

t

b

g

a

g

S

(

s

18.4%
7.2%

2.7%
2.9%
3.2%
5.2%
5.8%

12.6%
13.2%

16.4%
20.0%

30.8% 54.8%

Other
None

ARIS Business Process Analysis…
Artisan Studio

IBM WebSphere Business Modeler
Visual Paradigm

StarUML
MATLAB/Simulink/Stateflow

IBM Rational Family
In-house tool

Enterprise Architect
Microsoft Visio

Eclipse-based tools

Fig. 14. Modeling tools.

v

"

O

w

m

q

t

u

q

4

p

r

V

a

w

i

t

p

(

g

d

l

c

4

w

t

e

(

5

t

s

n

t

w

m

o

a

c

b

t
upports the ratio of our second most selected response as “Sketch/No
ormal modeling ”.

As observed in [18] , UML is not so popular for prescriptive mod-
ling since its semantics is not exactly defined and this would hamper
he automatic translation towards other models. We also found that in
odel-driven approaches, it is not so important to have a graphical syn-

ax to represent the model (as in UML), but these models should be
epresented in a format that is readable by a machine (as in DSL) [66] .
his also supports our findings on “DSL ”s.

.2.4. Programming languages (Q15)
The responses given for this question is shown in Fig. 13 . According

o this multiple-response question, the C language is the first, followed
y C ++ and then Java. Notice that, although C is the most popular pro-
ramming language in the embedded world, the total responses for C ++
nd Java combined, which are both object-oriented programming lan-
uages are much more than C. MATLAB, C#, BPEL, Ada, Delphi and
malltalk took some responses, which were in the pre-given answer set.

Apart from these pre-given choices, Python (2,7%), Objective-C
2,7%), JavaScript (1,2%) and Scala (1%) were among the “Other ” an-
wers for this question.
71
We observed that the participants, whose type of application de-
eloped is related with "mobile" (the ones, who explicitly mentioned
mobile" in the "Other" free-text area in Q6) are using mostly Java and
bjective-C, which also showed that mobile applications are developed
ith such programming languages.

Notice that this question was not intended to inquire about auto-
ated code generation (e.g., model-based users also responded this

uestion while they might use software modeling as a communication
ool). Thus, this question did not answer the target languages/encoding
sed by code generators (e.g., C, C ++ or Java). We thus postpone such
uestions and inquiries to the future work.

.2.5. Modeling environments/tools (Q16)
This question was also a multiple-response question, and thus multi-

le modeling tools could be recorded. As seen in Fig. 14 , the majority of
espondents use “Eclipse-based ” tools, which is followed by “Microsoft
isio ”. About 7.2% of the respondents indicated that they do not use
ny modeling environment or tool, which almost all came from users
hich reported not using PC-based tools.

Again, among the “Other ” answers, respondents mentioned model-
ng tools such as: Papyrus, MaTeLo, argoUML, MetaEdit + , Astah, and Ar-
op. Notice that although Papyrus (∼3%) is an eclipse-based tool, some
articipants wanted to explicitly mention on this tool in “Other ” part.
For the details of “Other ”, please see [63]).

The study [20] stated that survey studies are needed to investi-
ate the types of UML tools used in practice. As a comparison, in the
ataset of the survey reported in [21] , the majority (%50) used Mat-
ab/Simulink/Stateflow, followed by Eclipse-based tools, Enterprise Ar-
hitect, in-house tools and IBM Rational Software Modeler.

.2.6. Diagram types (Q17)
Participants were then asked about the diagram types that they use

hile modeling via the same 5-point Likert-scale used in previous ques-
ions. Notice that, it was not mandatory to select a frequency answer on
ach item, therefore, total responses for each diagram types might vary
i.e., total response for Class Diagram is 542, whereas this number is
16 for Deployment Diagram). Note that the respondents, who state that
hey were doing informal modeling, make the sketches, which include
ome essences of UML (e.g., some elements of state machine/charts, but
ot dependent on strict UML rules) as in [17] , who do use UML tend
o do so selectively and often informally. Therefore, these participants,
ho do informal modeling, answered this question by selecting some
odel (diagram) types (e.g., some participants draw a use case diagram

r sequence diagram informally). All responses for each diagram types
re shown in Fig. 15 .

According to the responses, sequence diagrams and state -machines/-
harts are the most popular diagram types in the embedded software
y analyzing their usage interval values [63] . It came as a surprise
hat sequence diagrams were more popular than state machines/-charts,

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Fig. 15. Usage frequency and interval of different diagram types.

s

f

p

c

p

p

i

t

r

u

t

(

l

a

a

u

r

c

c

c

o

f

m

s

4

s

i

n

i

N

s

t

m

m

 4.0%
5.4%

9.0%
17.7%

24.1%
64.1%

74.4%
89.5%

Integration
Installation and Deployment

Business Process Analysis
Testing

Maintenance
Preliminary/Systems Analysis

Implementation
Systems/Software Design

Fig. 16. SDLC phases where software modeling is used.

t

s

m

t

t

4

4

a

t
a

t

d

i

r

i

y

e

a

p

p

ince the latter are discussed more commonly in the embedded-software-
ocused research. By an in-depth look at the data, we found that most
eople use sequence diagrams informally and selectively to convey the
ommunication among the entities in a given system (e.g., the partici-
ants, who use “Sketch/No formal modeling ” with “UML ”).

Notice that although class diagram is relevant for object-oriented
rogramming languages (e.g., C ++ or Java) and is not used in C, which
s the most used programming language according to our survey result,
his diagram is in third place. In other words, where applicable (i.e., if
elevant for the used programming language), Class Diagram is widely
sed. The reason for a large usage of class diagram might be just due to
he fact that it is a fundamental part of any well-formed UML diagram
i.e., if you draw a sequence diagram you need some classes to type the
ifelines).

In [20] , since it focused only on UML, the four most used UML di-
grams were class, sequence, use-case and state machines, which were
lso reported so in [41 , 42]. Class diagrams were the most frequently
sed in these three surveys [20, 41, 42] . One of the most interesting
esult is that, although previous surveys on modeling indicate that use-
ase diagram usage was at one of the first places, the frequency of use
ase diagram usage is relatively low in our survey. Perhaps, since use-
ase diagram has a specific role for the analysis phase rather than design
r implementation of SDLC and our pool of participants might use dif-
erent types of diagrams for analysis, if needed. Moreover, use cases
ight not be the best way to present the requirements for an embedded

ystem.

.2.7. SDLC phases in which software modeling is used (Q18)
This multiple-response question was about SDLC phases, where

oftware modeling is used. The majority of respondents use model-
ng in the “systems/software design ”, “implementation ” and “prelimi-
ary/systems analysis (requirements) ”. “Integration ” is the SDLC phase,
n which modeling is used at least. The results are presented in Fig. 16 .
otice that there is no categorization on modeling approach (i.e., for

ketches, model-based or model-driven) while answering this question;
herefore there is no distinction for either descriptive or prescriptive
odeling [66] .

The survey in [21] reported similar results as that dataset stated that
odels are mainly used for subsystem/component design, implementa-
72
ion, system architecture, and testing. These findings are as expected
ince modeling (e.g., UML) is mainly applied for design and require-
ents phases. Although the survey in [19] did not explicitly mentioned

heir ratios, it reported that MBD is mainly used in design, implementa-
ion and maintenance.

.3. Current state of MDE and its adoption (RQ2)

.3.1. Degree of using MDE (Q19)
This question investigates how often the participants use MDE. Q19

cted as a decision point in the survey in a way that the survey ended for
he participants who mentioned not using MDE at all (i.e., the “Never ”
nswers (370 respondents, 59.5% of all participants)). The survey con-
inued for participants who said they use MDE (remaining 185 respon-
ents, 29.5% of all participants). This decision logic was programmed
nto the online survey form. The results are shown in Fig. 17 .

Our results show that the MDE usage ratio is slightly more than the
atio reported in [20] , in which 15.8% of its participants reported know-
ng MDE and using it. Our study reflects a world-wide picture and ∼2
ears have passed after [20] was executed. We might speculate that the
mbedded software industry has gradually adapted the MDE practices
nd its usage ratio has increased. Therefore, this difference might be ex-
lained with the participants’ demographics and the possible increasing
opularity of MDE practices in the embedded software industry.

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Fig. 17. Degree of using MDE.

 2.2%
15.1%

37.3%
38.4%
40.5%

57.8%
67.0%

76.2%
76.8%

Other
Model simulation

Model-to-Model (M2M)…
Test-case generation (Model-…

Communication
Documenting designs

Understanding a problem at an…
Code generation

Documentation generation

Fig. 18. What MDE is used for.

4

m

t

f

a

a

s

a

o

s

t

y

F

e

T

p

w

e

l

i

m

t

S

r

t

g

s

s

t

s

e

t

t

m

B

e

o

e

Table 4

MDE-specific purposes’ ratio comparison with the related works [20 , 21].

Purpose In [21] In [20] This
study

MDE-specific purposes a 76% 23% 61%

The modeling purposes, which might
be achieved without model-driven
approach (e.g., with sketching or
model-based) b

24% 77% 39%

a “code generation ”, “test-case generation ”, “documentation generation ”,
“M2M transformation ” and “model simulation ”.

b “communication ”, “understanding ” and “documenting analysis & design ”.

t

a

w

w

d

t

[

d

f

i

u

a

p

w

s

u

d

[

a

[

c

g

a

t

t

b

p

i

i

c

p

f

m

w

i

r

4

u
.3.2. What MDE is used for (Q20)
We further asked the reasons and purposes for MDE usage as a

ultiple-response question. Results are shown in Fig. 18 . Documenta-
ion and code generation were reported to be the most popular reasons
or using MDE. Notice that we do not distinguish between descriptive
nd prescriptive modeling in that question (e.g., as in [18]). However,
s we indicated that the purpose of the modeling and the category of
oftware modeling (and also the media used, the lifespan and the archiv-
bility) are strongly related (See Q13). Descriptive models classify actual
bjects, events, and processes into categories; whereas prescriptive ones
pecify what is expected of systems components and how to develop
hem [18] . That distinction provides a formal justification between anal-
sis and design models, which might affect the reasons for MDE usage.
or example, just for “communication ”, descriptive modeling might be
nough (e.g., sketch), and it might not be a primary concern of MDE.
herefore, from this perspective, we suggest the future surveys to ex-
licitly identify this distinction.

In [19] , communication and early simulation of the functional model
ere reported as the main usage reasons of MBE. According to Agner

t al. [20] , communication, understanding of a problem at an abstract
evel and documenting designs are the most important reasons of us-
ng MDE. The survey [21] reported that models are mainly used for
odel simulation, code generation, test-case generation and informa-

ion/documentation; hence, using models for assisting activities in the
DLC seems to be an important function as also confirmed by our survey
esults.

On the other hand, most participants in the survey of [20] reported
hat they are not conducting model-based automatic code and document
eneration. The authors in [20] argued that the lack of skilled profes-
ionals in MDE and also the lack of powerful and user-friendly MDE tool
upport are the main reasons of such a situation. They also claimed that
hese findings differ from results of [48] , which reported that activities
uch as code generation, transformation models, and executable mod-
ls are more used in practice. We assumed that “documentation genera-
ion ”, “code generation ” and “test-case generation ” include some Model-
o-Text (M2T) transformation; therefore we just gave “M2M ” transfor-
ations in the answer set in order to get rid of any possible duplication.
y focusing on the embedded software, our survey differs from Agner
t al. [20] ’s results since automatic artifact generation (e.g., document
r code) seems to be quite popular in the embedded world for those who
mploy MDE.
73
Note that some MDE purposes in that question (e.g., “communica-
ion ”) might not be specific to MDE usage and the stakeholder might
chieve such purposes without MDE enforcement (e.g., strict syntax) or
ithout using a modeling tool. If we categorize the answer set of Q20
hether the purpose is specific to MDE or not, we have two groups:

- MDE-specific purposes (i.e., “code generation ”, “test-case gener-
ation ”, “documentation generation ”, “M2M transformation ” and
“model simulation ”)

- The modeling purposes, which might be also achieved without
model-driven approach (i.e. , “communication ”, “understanding ” and
“documenting analysis & design ”)

By this way, we want to understand the relative ratios of these two
erived groups in each related works as in Table 4 (Notice that in [19] ,
here is not any percentage values for the reasons, therefore we include
 20 , 21] as a comparison).

The majority of participants (93%) in [21] had already used model-
riven techniques in their projects and software modeling is mainly used
or MDE-specific purposes (76%). On the other hand, in [20] , MDE activ-
ties are mainly used for the purposes, which might be also achieved by
sing sketching or model-based approach (77%). In our survey, there
re also some participants, who just use one of the MDE-specific pur-
oses such as “documentation generation ” or “model simulation ” (e.g.,
ithout “code generation ”) besides having general modeling purpose(s)

uch as “understanding ” (Note that 67% of our respondents use MDE for
nderstanding a problem at an abstract level).

On the other hand, although it is not directly related with embed-
ed software development and focused on only UML, the survey in
67] showed that practitioners use modeling during communication
nd planning of joint implementation effort. Similarly, Gorschek et al.
51] found that modeling are used primarily as a communication and
ollaboration mechanism where there is a need to solve problems and/or
et a joint understanding of the overall design in a group.

With the comparison of these related works, we can say that there
re different understanding (and also purposes) of “MDE ” in the indus-
ry, which might be specific to MDE purpose or not. Our survey showed
hat although MDE has different benefits (Q24), it has also some draw-
acks (Q25), which are not experienced in sketching or model-based ap-
roaches. Since there is a danger that resources are being wasted, decid-
ng in what degree and with how much modeling rigor (e.g., by automat-
ng software artifact generation as in MDE with an extra tool cost) is a
ritical question. Moreover, while using MDE, the type of MDE-specific
urpose (e.g., “code generation ” or “document generation ”) might af-
ect modeling practices with respect to technology cost (e.g., selection of
odeling tool). We believe that purpose is one of the important factors,
hich determines the most effective modeling approach (from sketch-

ng to model-driven approach) depending on stakeholder’s tasks and
esponsibilities in the particular project (See Section 5.2).

.3.3. MDE maturity levels (Q22)
Participants were asked to describe their company’s maturity in its

se of MDE. We were aware of several existing maturity models for MDE

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

 10%
6%

10%
57%

9%
8%

Level 1: Prototyping
Level 2: Initial exploration

Level 3: First significant project
Level 4: Multiple projects…

Level 5: Extensive experience of…
I don't know

Fig. 19. Maturity of MDE usage.

48%

30%

21%

23%

36%

41%

16%

10%

66%

Level 1 & Level 2: Initial
exploration OR New

Level 3: First experimental use &
First significant project OR…

Level 4 & Level 5: Multiple projects
completed / Well experienced

This survey MBE experience in [21] MDE with UML in [20]

Fig. 20. MDE/MBE maturity level comparing with data categorization from

[20 , 21].

(

e

v

n

r

p

w

t

r

i

p

p

m

o

w

p

p

h

a

s

fi

e

t

t

n
i

e

c

c

i

(

E

d

b

s

4

c

0% 20% 40% 60% 80% 100%

Portability
Team collaboration

Traceability
Maintainability

Reusability
Quality improvement

Reliability
Ensuring source code &…

Productivity
Test effectiveness

Shorter development time
Cost savings

Very Important Important Moderately Important
Of Li�le Importance No importance I don't know

Fig. 21. Motivations for adopting MDE.

0% 20% 40% 60% 80% 100%

Portability
Team collaboration

Traceability
Maintainability

Reusability
Quality improvement

Reliability
Ensuring source code & design…

Productivity
Test effectiveness

Shorter development time
Cost savings

Fully achieved Moderately achieved Partially achieved
No effect I don't know

Fig. 22. Benefits of MDE in embedded software engineering.

v

1

T

c

g

m

v

O

t

m

p

4

4

i

a

p

Q

e

(
4

R

e

o

e
e.g., [68 , 69]). [68] seems to be the most comprehensive maturity mod-
ls in this context. In choosing a maturity model to be used in our sur-
ey, we had two criteria in mind: (1) using the maturity model should
ot lead to having many questions which would negatively impact the
esponse rate of our survey, and (2) the maturity model should be com-
arable to existing measurements in the reported surveys. Due to this,
e adopted the maturity model as shown in Fig. 19 .

The majority of the participants (57%) are in the Level 4, indicating
hat they have completed multiple MDE projects. 10% of participants
eported that they have the first significant project on MDE (just fin-
shed); whereas 6% are in initial exploration phase and 10% are in the
rototyping phase of MDE. On the other hand, 9% of participants re-
orted an extensive experience of MDE on many projects and/or over
any years.

According to Agner et al. [20] , since it only focused on UML, 48%
f the respondents confirmed its use as an initial exploration of MDE
ith UML and only 21% declared the development of several complete
rojects using UML, whereas the others confirmed its use as a first ex-
erimental use (13%) and first significant project (17%). On the other
and, concerning the MBE experience in [21] , many participants (41%)
re well experienced with more than 3 years of usage; whereas 36%
tate that they have moderate experience and only 23% are new in the
eld of MBE.

Since the terminologies used in these two studies are different from
ach other, we want to categorize them in similar groups. According to
hat categorization, we assume that “initial exploration ” in [20] is in
he same category in “new ” in [21] ; “first experimental use and first sig-
ificant project ” in [20] is in the same category in “moderate experience ”
n [21] ; and finally “several complete projects " in [20] is in the same cat-
gory in “well experienced ” in [21] (which is our both “multiple projects
ompleted ” and “extensive experience ” categories). The maturity level
omparison is depicted in Fig. 20 .

As it can be seen, we can say that maturity level has changed (and
ncreased) depending on either time, generalization of geographical area
i.e., [20] was executed at 2011 in Brazil and [21] was more recent in
urope) or participant demographics. Notice that, by no means, these
ata indicate that the popularity and the usage of MDE have increased,
ut it gives an insight about its trends although all studies use different
cales (and questions) and have entirely different populations.

.3.4. Motivations for adopting MDE (Q23)
Participants were asked about the motivations that they and/or their

ompanies considered for adopting MDE (Fig. 21). Since using MDE pro-
74
ides different types of benefits for different users, the survey provided
2 motivations to be selected according to the degree of importance.
his set of motivations was synthesized from the related work (as dis-
ussed in Section 2.2).

According to results, cost savings and shorter development time were
enerally ranked of the highest importance. In [19] , quality improve-
ent, development of functions with high complexity and shorter de-

elopment time were reported as the top three motivations for MDE.
n the other hand, according to Liebel et al. [21] , shorter development

ime, reusability and quality improvements were the most three popular
otivations to introduce MBE; whereas cost savings is at sixth place in
opularity while adopting MBE.

.4. Benefits, challenges and consequences of using MDE (RQ3)

.4.1. Benefits of MDE (Q24)
Since it is important to understand the impact of the MDE, partic-

pants were asked about the degree to which their motivations were
ctually achieved after using MDE (i.e., the degree to which their ex-
ectations were met). Note that the list of possible answers for question
23 (i.e., motivations such as cost savings, shorter development time,
tc.) is the same as for that question, where their ranges are different
i.e., “importance ” ranges are from no importance to very important (0–
); whereas “benefit ” ranges are from no effect to fully achieved (0–3)).
esults are shown in Fig. 22 . According to respondents, cost savings,
nsuring compatibility between source code and models, shorter devel-
pment time and quality improvement are the top four benefits. Gen-
rally, all the benefits are below the importance levels, denoting that

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

2.2%
18.4%

25.4%

27.0%

29.7%

33.5%

39.5%

45.4%

51.4%
73.0%
75.7%

Other (Field debugging, cost of…

Optimization and performance…

Modeling languages (i.e. domain…

Software certification (i.e. for safety-…

Transformation/merging of models…

Training

Model quality (i.e. how to define,…

Model verification/validation…

Understanding and acceptance of…

Modeling expertise in the company

Tool support (Guaranteeing…

Fig. 23. Challenges of MDE in embedded software engineering.

e

a

n

m

e

b

t

a

f

s

a

a

s

d

a

g

b

a

w

o

c

i

d

e

A

4

a

m

(

t

p

c

n

s

b

t

r

d

t

i

a

s

o

n

0% 20% 40% 60% 80% 100%

Difficulties with code…

Difficulties with version…

Difficulties with traceability…

Back/Forward compatibility…

High effort for training

Difficulties in taking…

Lack of model checking…

Many usability issues in its…

Difficulties with model-level… NotAppli
cable
Strongly
Disagree
Disagree

Neutral

Agree

Strongly
Agree

Fig. 24. Problems with MDE environments/tools in embedded software engi-
neering.(For interpretation of the references to color in this figure, the reader is
referred to the web version of this article).

I

a

e

o

“

[

l

m

M
w

4

t

a

F

r

g

o

a

v

f

u

g

t

w

i

b

a

m

o

a

o

s

i

s

4

a

M

q

o

t

t
xpectations are not fully met. Please refer [63] to see what expected
nd gotten from MDE.

Such findings differ from Agner et al. [20] , in which the most sig-
ificant benefits are associated with quality improvement, portability,
aintenance and productivity. On the other hand, according to Liebel

t al. [21] , the effect of introducing MBE are quality, reusability, relia-
ility, traceability, maintainability, development time and cost, respec-
ively (according to highly positive answers). In that sense, our results
re also different from [21] since cost savings is the most significant ef-
ect of MDE. In that sense, Broy et al. [19] also says that MBD can bring
ignificant cost savings and time savings, but only with a well-chosen
pproach (i.e., without manually changing auto generated code).

As in any engineering activity, embedded software projects should
lso be completed within anticipated budget (cost), within anticipated
chedule (time) in conformance to requirements (quality) [70] . All in-
ividual quality factors (e.g., reusability, maintainability, portability)
nd shorter development time have significant effect on project bud-
et, which is related with cost. Our participants experienced different
enefits degrees on some specific quality attributes (e.g., moderately
chieved reusability, but partially achieved productivity or vice versa)
ith a direct or an indirect effect on cost savings. Similarly, some of
ur participants achieved shorter development time, which also affects
ost savings. In other words, although there might be some variations
n the degree of benefit for quality attributes, improvements and shorter
evelopment time; all these resulted cost savings. This viewpoint might
xplain why "Cost savings" is the only benefit, which is between "Fully
chieved" and "Moderately Achieved" range according to our findings.

.4.2. MDE challenges (Q25)
Participants were asked about the MDE challenges in their company

s multiple-response answers. According to responses, tool support and
odeling expertise in the company are the most encountered challenges

 Fig. 23). Thus, we can pick those as areas for possible improvement in
raining, further research and tool development.

Note that, during the pilot study, we needed to modify this question
re-given answer set by combining some separate answers; but in that
ase we tried to make the argument clearer by including some expla-
ations. For example, although “transformation ” and “merging ” models
eem to be two different challenges, we combined them in a single item
ut include “how to integrate models in different projects? ” explanation.

Although there was no explicit question on MDE challenges in [20] ,
he reasons of not using UML diagrams was asked and the top three
esults were: short lead-time for the software development, lack of un-
erstanding or knowledge of UML models and existence of few people in
he company who have deep knowledge of UML. Furthermore, accord-
ng to Agner et al. [20] , in MDE the users must have access to appropri-
te tools, in a way that integrates a tool suite that meets requirements
uch as modeling, transformations, and code generation. This supports
ur finding about tool support challenges in order to guarantee synchro-
ization between software artifacts; i.e., code, document and test driver.
75
n that sense, our findings are similar to Agner et al. [20] . In addition,
lthough it is not directly related with embedded systems, Hutchinson
t al. [48] pointed out the need of a longer training period so as to
vercome the lack of UML expertise, which is also in parallel with the
modeling expertise ” challenge in our survey. According to Liebel et al.
21] , “high effort for training of developers ” and “modeling tool chal-
enges ” (which will be analyzed separately in Section 4.4.3) were also
entioned, which are similar to our findings. There was no explicit
DE-challenge question in [19] , however "tool costs" and “training ”
ere seen as a negative aspect of MDE in the automotive industry.

.4.3. Problems with MDE environments/tools (Q26)
As a both multiple-response and 5-point Likert-scale question, par-

icipants were asked about the degree to which the given problems are
pplied to MDE environment/tool they use. All responses are shown in
ig. 24 , whose x-axis indicates the response percentage. In the figure,
ed and orange bars indicate the existence of such a problem; whereas
reen-based bars indicate that there is no such an existence. On the
ther hand, neutral responses are depicted with yellow bar, and “not
pplicable ” answers are depicted with grey bar. Notice that MDE en-
ironments/tools problems are directly related with what MDE is used
or (Q20) hence “not applicable ” answers (e.g., for the respondents who
se MDE for only “documentation generation ”, “difficulties with code
eneration capabilities ” is not applicable).

According to Liebel et al. [21] , tool-related problems were reported
o be the following: many usability issues with the tools, difficulties
ith version management, difficulties of integration with legacy code,

mpossible/difficult to customize the tools, lack of model checking capa-
ilities and difficulties with code generation capabilities. Such findings
re quite similar to our results.

Although it is not directly related with embedded software develop-
ent, a recent study in 2017 pointed out that MDE tools, which depends

n technical, organizational and social factors, play a major part in the
doption of MDE [71] . Note that in that question, we focused not only
n technical features of the MDE tool, but also non-technical factors
uch as organizational and social factors (e.g., training and difficulties
n taking support from the vendor), which the respondents were also
tated as impeding issues.

.4.4. Impacts and implications of MDE (Q27)
This question investigated the impacts of MDE on code generation

nd model-based/driven testing as well as the complexity aspects of
DE. By applying a similar design to Hutchinson et al. [48] ’s " paired

uestions ", in which they aimed to explore the balance between the types
f positive and negative effects of MDE, participants were asked about
he consequences of MDE. The results are shown in Fig. 25 .

Due to the growing complexity of software, it is generally agreed
hat the only realistic way to manage this complexity is using appropri-

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

Fig. 25. Impacts and implications of MDE in embedded software engineering.

a

c

[

o

c

a

e

v

e

t

w

s

b

r

t

b

t

(

o

“

t

a

p

s

c

s

t

s

d

i
te methods of abstraction with modeling [72] . Moreover, model-driven
ode generation is an important aspect to improve productivity in MDE
20] . However, an interesting result in [47] is that participants working
n real-time systems are more likely to agree that their organizational
ulture does not endorse (like) modeling due to automatic code gener-
tion. Similarly, as in [42] , UML is too complex or according to Lange
t al. [43] , there are lots of UML complexity problems as reported in pre-
ious studies (e.g., [73–75]). In this question, to address the balance, for
xample, in model-driven code generation part, the first statement men-
ions about the possible positive consequences of MDE on “abstraction ”,
hereas the second statement mentions about the possible negative con-

equences of MDE on “abstraction ”. Similar approaches are applied for
oth model-based/driven testing and complexity. As seen in Fig. 25 , all
esponses are depicted according to response percentage (in y-axis) and
he mean value is also presented with its corresponding color at the

ottom of each statement. d

76
In terms of implications of MDE, the results showed that “abstrac-
ion ” has positive impacts since the mean value of the first statement
i.e., possible positive consequence) is near to “Yes ”; whereas the mean
f the second statement (i.e. possible negative consequence) is between
Neutral ” and “No ”. Moreover, similarly, respondents generally agreed
hat modeling reduces the design complexities as a positive consequence
nd they mostly did not agree that modeling languages are too com-
lex to be learned and applied, which might be a possible negative con-
equence. Therefore, for these two “paired ” arguments, there was no
onflict (e.g., the majority of participants did not agree with the pos-
ible negative consequences; instead the negative argument supported
he first one, which is the positive consequence). On the hand, many re-
pondents believed that model-based/driven testing makes it easier to
evelop and execute test cases by supporting test automation (e.g., pos-
tive consequences); however, although it helps to start to test and its
esign earlier; it requires significant additional upfront efforts to model

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

a

r

a

f

i

w

m

4

w

t

u

w

i

t

o

w

g

d

5

S

s

a

S

5

c

b

h

t

i

u

e

d

S

f

t

U

f

“

“

f

s

i

“

u

c

t

m

r

c

d

l

o

c

e

o

a

o

M

d

p

c

w

g

M

e

t

d

a

t

n

5

s

b

e
nd validate them (e.g., negative consequence). Therefore, according to
esponses, there should be a “balance ” while applying such an approach.

Note that the pre-given answer set for that question was also revised
fter pilot study. For example, the second part of the second argument
or model-driven code generation was added after the first pilot study,
n which three participants suggested such an argument too. Therefore,
e decided to include this argument but with a probability (i.e., “which
ight decrease…”).

.5. Cross-factor analysis

One of the opportunities the survey data provided as a further study
as to analyze relations among software modeling practices and practi-

ioner demographics. To understand the effect of target sector of prod-
ct(s) on the modeling practices and approaches, a cross-factor analysis
as conducted. Please refer [76] for the details of this study (Note that

n that study, due to space constraint, we excluded “Government ”, which is
he least chosen sector in the survey). According to the results:

• “Healthcare & Biomedical ” sector is using software modeling the
least as being at “Sometimes ” level, the other sectors is at “Often ”
level. However, according to MDE usage, all sectors are at “Some-
times ” level, where “Finance & Banking ” is the least.

- Although “Consumer Electronics ” might be probably considered as
one of the sectors where innovation and time to market drives the
business, MDE usage ratio is between 9 − 17%. MDE is a technique
established to support these values at most; but it might be important
to analyze what and where is the problem in this sector although its
software modeling usage ratio (but not MDE usage) is high (e.g., the
participants in this sector use sketching or model-based approaches,
but what are the specific consumer electronics’ challenges or bad
experiences on MDE, which resulted such a situation?)

- “Defense & Aerospace ” sector is the one, which uses MDE at most,
whose MDE usage ratio is between 24 − 43%. Perhaps, the project
length and necessary investigation on MDE (its corresponding costs,
i.e., tool, training, etc.) might be suitable for this sector.

• The dominant modeling language is UML in all sectors; however,
there are interesting results based on sectors.

- Specific modeling language for target sectors (i.e. AADL (Architec-
ture Analysis & Design Language) for “Defense & Aerospace ”, EAST-
ADL for “Automotive & Transportation ” and Markov Chain Markup
Language for “Consumer Electronics ”) are interesting results.

- DSL is mostly used in “Automotive & Transportation ”, where AU-
TOSAR usage is ∼15% although it was not in the pre-given answer
set.

- The usage of “Sketch/No formal modeling language ” is very similar
to UML usage in “Finance & Banking ” sector.

• The most used diagram type according to the survey result (i.e., Se-
quence Diagram) is also the most used diagram for only two sectors
(i.e., “IT & Telecommunications ” and “Healthcare & Biomedical");
the other sectors have different most frequently used diagram types
(e.g., for “Consumer Electronics ” is “Flowchart/Diagram ” or for “De-
fense & Aerospace ” is “State Machine/Chart ”).

With the help of this cross-factor analysis, the state-of-the-practice
f software modeling and MDE practices in different industrial sectors
as better understood by addressing RQ1 and RQ2. Some modeling lan-
uages or diagrams are specific to some sectors or their usage ratio is
ifferent depending on their purposes and challenges [76] .

. Discussions

A summary of our findings is discussed in Section 5.1 .
ection 5.2 provides implications of our findings for software modeling
takeholders. Limitations, potential threats to the validity of our study
nd steps we have taken to minimize or mitigate them are discussed in
ection 5.3 .
77
.1. Summary of findings

Our survey received 627 acceptable responses from 27 different
ountries in five continents and different industrial sectors related to em-
edded software. There was a good mixture of different profiles, which
elped our results to be unbiased from certain types of demographics in
he embedded software engineering projects. A highlight of the results
s discussed next.

RQ1 – Summary of the current state of modeling
Software modeling (either informal, selective or formal) is widely

sed by many embedded professionals (89%). As expected, different
ngineers and companies use software modeling approaches in varying
egrees, which usually depends on the modeling characteristics [26] .
oftware modeling is conducted from informal sketches (on paper) to
ormalized models using sophisticated modeling tools.

The majority of respondents use UML. However, depending on the
ype of industrial sector, a general-purpose modeling language such as
ML is usually not sufficient to meet the specific requirements; there-

ore other modeling languages are used, e.g., the AUTOSAR language (in
Automotive & Transportation ”), models based on the Markov chains (in
Consumer Electronics ”), and various other DSLs (e.g., AADL for “De-
ense & Aerospace ”). Especially, in model-driven approaches, modeling
takeholders prefer models, which can be represented in a format that
s readable by a machine (as in DSL).

A variety of modeling tools are used, the most popular ones being the
Eclipse-based ” family of tools, followed by “Microsoft Visio ”. The most
sed diagram types are sequence diagrams, state-machine diagram, and
lass diagram. The majority of respondents use modeling in the sys-
ems/software design phase, followed by implementation ” and require-
ents/systems analysis phases of SDLC.

RQ2 – Summary of the current state of MDE adoption
Notice that 29.5% of all participants use MDE approaches (Q19). The

espondents reported that they use MDE for mostly documentation and
ode generation, and then for understanding and analysis the problem
omain at an abstract level.

To assess MDE maturity levels, we adopted from the literature a 5-
evel maturity model. Based on that model, we found that the majority
f the participants (57%) are in the Level 4, indicating that they have
ompleted multiple MDE projects. This is a generally good sign for the
mbedded software industry. The other aspect that we explored in terms
f the current state of MDE and its adoption was the motivations for
dopting MDE. The top motivators were “cost savings ”, “shorter devel-
pment time ”, “reusability ” and “quality improvements ”.

RQ3 – Summary of the benefits, challenges and consequences of using
DE

In terms of benefits of MDE, “cost savings ”, “ensuring source code &
esign model compatibility ”, and “shorter development time ” were re-
orted the most. In terms of challenges, tool support, and more specifi-
ally difficulties with model-level debugging and usability issues of tools
ere stated as the most impeding issues.

In terms of positive consequences and impacts, model-driven code
eneration was generally reported to be a beneficial outcome of MDE.
any respondents believed that model-based/driven testing makes it

asier to develop and execute test cases by also supporting test automa-
ion via test scripts; however, although it helps to start to test and its
esign earlier; it requires significant additional upfront efforts to model
nd validate them. The embedded software community largely believes
hat modeling reduces design complexities and modeling languages are
ot that complex as reported in many studies.

.2. Implications of results

Modeling captures some or all of the design decisions that comprise a
ystem’s architecture besides affecting all facets of software architecture
y serving as the intellectual centerpiece of software development and
volution [77] . The survey results have shed light on the state of model-

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

i

w

p

i

(

e

t

t

5

5
s

5

ng and MDE practices in embedded software engineering projects and
ould provide practical benefits to various modeling stakeholders (es-
ecially software architects), by enabling them observe the latest trends
n this industry and also influencing not only the system-level design
e.g., hardware/software co-design), but also other software-intensive
mbedded systems development aspects.

We discuss below the implications of our survey findings for practi-
ioners, researchers, educators and tool vendors besides for the company
hat commissioned this study.

.2.1. Implications for practitioners
• Benefitting from what others are doing: By looking at the benefits

and challenges of MDE (See Section 4.4), this empirical evidence
will help embedded software professionals, who are thinking about
adopting MDE in their projects, to know common practices other
adopted for their context. As survey results showed that there is a
wide variety of practices, motivations and tools. Although we con-
sulted with several industrial practitioners and used our personal in-
dustrial experiences when designing the closed-ended questions in
the survey, we had a lot of “Other ” answers than we expected (e.g.,
modeling language (Q14), programming language (Q15) or model-
ing tool (Q16)). This showed that there is a wide spectrum of in
terms of the technology used for software modeling and our results
might also help embedded software professionals to get awareness
of these new technologies. In order to solve this need, a database
that is formed by modeling community’s prior experiences (i.e., sur-
vey data) has already constructed to guide different SE roles (e.g.,
software developers, software architects, systems engineers, test en-
gineers) with respect to process and tool improvements during em-
bedded software development [78] . By this way, this survey data
helps modeling stakeholders (via this database) to know beforehand
what similar profiles (e.g., similar SE positions, target sector of prod-
ucts, etc.) are doing while modeling and this saves time and budget
before embarking on a project with alternative modeling practices.

• Need to identify the characteristics of modeling and the relations between
them: We found that software modeling is widely used (89%), across
a diverse range of embedded software industries to better handle the
growing complexity of their software-intensive products. Embedded
software professionals use different modeling languages, program-
ming languages, environments with different motivations and face
different challenges. In other words, different SE roles can use mod-
eling and MDE selectively not only in implementation but also anal-
ysis, design or maintenance phase of SDLC according to the char-
acteristics of modeling [26] (e.g., purpose). All of these approaches
could be effective depending on these characteristics. As the survey
results showed, MDE has certain challenges, which are not experi-
enced in sketching or model-based approaches (e.g., MDE tool cost
or automatic code generation challenges). Since there is a danger
that resources are being wasted, deciding when to model or in what
degree and with how much modeling rigor (e.g., as a sketch with-
out modeling language formality or by automating software artifact
generation as in MDE with strict enforcement) are frequently asked
and challenging questions for software teams. Therefore, it is impor-
tant for the practitioner to identify these characteristics and apply
the most suitable approach for her/his tasks and responsibilities in
the particular project.

• Modeling as an effective communication tool: Q20 revealed that model-
ing are also used as a communication and collaboration mechanism.
Since software-intensive embedded systems include many hardware
and software components, modeling is beneficial not only for soft-
ware development side but also during system-level design includ-
ing hardware/software co-design among all stakeholders. As the sur-
vey (Q23) also revealed that collaboration seems one of the motiva-
tions for using software modeling since it creates a common lan-
guage and understanding among the teams during communication
and planning of joint development. We investigated that some mod-
78
eling stakeholders (mainly, systems engineers, whose responsibilities
are cross-cutting with both hardware and software components of
the system) use modeling (especially with sequence and activity di-
agrams) to convey the communication among the entities in a given
system: Their purpose is a quick communication and explaining a
scenario among both hardware and software stakeholders’ of the sys-
tem. If all modules’ communications/interactions are well-depicted
in a complete diagram with the necessary inputs (e.g., message in-
terfaces) during a system scenario, every SE roles can understand the
corresponding scenario without looking at the “textual description ”
of it, which might cause some misinterpretation; hence they could
save time and effort by getting rid of unnecessary meetings between
stakeholders [66] . By this way, modeling via “visualization ” creates
a common language for embedded software development [78] . Since
modeling provides great support in the communication with other
colleagues because of its possible graphical design, even colleagues
from other departments or domains, who are not familiar with soft-
ware development, can be involved in the software development.

.2.2. Implications and benefits for the company that commissioned this
tudy
• Software modeling and MDE research group: As survey results revealed,

software modeling is not only used by software developers or archi-
tects; there are also other stakeholders such as systems engineers,
test engineers or project managers. All necessary stakeholders in
the company were informed about the results of this research (via
presentations and meetings) to increase the awareness on the latest
state-of-the-practices while modeling in the embedded software de-
velopment. Then, in order to follow the latest modeling trends and
apply them in a systematic manner, it was decided to form a new
research group from different departments (e.g., Software Engineer-
ing Department (three software architects), Systems Engineering De-
partment (two systems engineers), and Test Department (two test
engineers)). This group is responsible for analyzing the problems in
a specific context (e.g., within specific process or project) and try to
find possible modeling approaches and solutions to these challenges
besides working on the adoption/acceptance of related-technologies.

• The adoption of MDE concepts & technologies & tools: The Company
had already worked with some MDE concepts; but there were some
challenges in their adoption (e.g., one of the challenges in the sur-
vey - an organizational resistance). Although some teams in software
department had used an MDE tool, which automatically generates
code, document and test driver for communication interfaces of each
component [4] , some non-developer stakeholders (e.g., systems en-
gineers and test engineers) had some concerns about using this tool
for their business side. As Q27 (i.e., diagram 3 in Fig. 25) revealed
that most practitioners with different SE (e.g., not only software de-
velopers or architects) believed that if code generation is synchro-
nized with other artifacts (e.g., document, test driver), MDE benefits
are maximized. After having the results (as being an empirical evi-
dence) and with the help of newly organized research group men-
tioned above, the usage of this MDE tool increased not only in the
software departments, which uses automatic code generation facility
of that tool, but also in test and systems department, which utilize
from other generated SDLC artifacts (e.g., test driver/simulator and
documentation). As a domino effect (since this tool is now used by
many teams), the adoption and understanding of different concepts
of modeling has been positively changed in the company. Moreover,
with the experience gained by MDE usage, the Company have de-
signed and implemented various SDLC artifacts, which is currently
used by many teams [16] .

.2.3. Implications for researchers
• Need for more MDE techniques across all SDLC phases : In Q18, we

found that the majority of respondents use modeling in the sys-
tems/software design phase, implementation and analysis phases.

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

5

5

5

l

c

t

t

[

s

f

e

m

p

s

a

T

m

s

t

v

s

fi

o

fi

l

c

u

s

p

[

i

s

t

a

b

c

n

B

i

m

d

c

c

i

c

a

w
1

f

m

o

e

t

d

s

F

w

c

s
Modeling is used not that widely for integration and testing, al-
though there are lots of academic advances and novel techniques
in these areas. This makes us think whether there are issues which
decrease the practical application of those techniques in industrial
settings. Researchers are encouraged to look into these issues.

• Addressing the MDE challenges : Tool support and modeling expertise
in the companies were the most encountered challenges. Researchers
can work to develop better research-prototype tools and also collab-
orate with industry to improve modeling expertise of engineers.

.2.4. Implications for educators
• Improving the software modeling educations : Our results also have im-

plications for software modeling educations, e.g., [79 , 80], and edu-
cators. Our survey results suggest implications for the way in which
software modeling is taught (from Q12). Some respondents (espe-
cially the Electrical and Electronics Engineering graduates) reported
that they have mostly learned software modeling after getting the job
(i.e., after graduation, during the job or with some training). Some
respondents who were computer and software engineering gradu-
ates also reported that they have learned some modeling techniques
during their undergraduate studies, but not at the application level
in the industrial context.

• MDE is not just the analysis and design phase : A typical university
SE course teaches a top–down fashion, in which diagrams are first
developed for analysis and then iteratively refined into design, im-
plementation and test phases of SDLC. In most software modeling
courses, the students study how to design and develop a software
system using software modeling techniques, but the focus is gener-
ally on the analysis and the design phases and there is a missing part
while translating these diagrams into executable code. Extensions of
these courses could focus on the important concepts in MDD, the
requirements for setting up a model-driven approach, the state-of-
the art MDE approaches, and the corresponding challenges in soft-
ware modeling projects (there is an increasing number of universi-
ties, which use [23] as a SE course book and that might be a good
sign for educators to understand and teach modeling trends and stan-
dards in practice). Therefore, we believe that the given courses on
modeling might also be updated or enhanced after a further analysis
of the results in our survey, which suggest topics that could have
been widely covered or emphasized.

.2.5. Implications for MDE tool vendors (builders)
• Need for better tool support : Tool support is one of the most encoun-

tered MDE challenges (Q25). We have also observed several short-
comings in terms of tool support (Q26). Supporting MDE with ap-
propriate tools increases modeling benefits. Not only for embedded
software development but also for rapid prototyping for different
platforms with a flexible design-space exploration, such a powerful
tool is crucial. Notice that useful and usable tools not only help max-
imizes MDE’s benefits, but also play an important role in the adop-
tion of MDE [71] . Therefore, we suggest MDE tool vendors to invest
more efforts in development and improvement of these tools and in-
cluding/improving the features that practitioners mentioned in this
survey (such as “increasing usability of the tool ”, “customization on
the tool ”, “model verification/validation and model-level debugging
feature ”).

• Focusing on what industry uses the most : Documentation, code gener-
ation and understanding of problems at higher abstract levels were
reported to be the most popular reasons for using MDE with differ-
ent benefits and challenges. Thus, we recommend that tool vendors
work on developing more industry-relevant tools and techniques,
which are not tackled by commercial tool vendors. This might be

achieved with more industry-academia collaborations.

79
.3. Limitations and threats to validity

We discuss the possible validity concerns based on a standard check-
ist [81] , in terms of construct, internal, external and conclusion validity
oncerns, and also the steps that we have taken to minimize or mitigate
hem.

Construct validity: Construct validities are concerned with the extent
o which the objects of study truly represents theory behind the study
81] . In other words, the issue relates to whether this survey measured
oftware modeling approaches in embedded industry. We collected data
rom different sources (different countries, different industrial sectors,
tc.) in order to avoid mono-operation bias.

When people feel being evaluated based on what they think, they
ight deflect their answers. To mitigate these, we informed participants
rior to the survey that our motivation in this study was to take a snap-
hot of the embedded software industry and that we will not collect
ny identifying information so that participants will remain anonymous.
herefore, for the sake of objectiveness, the survey is completely anony-
ous.

In our measurement strategy, what we did was common to other
urvey studies (e.g., [58]) —we counted the votes for each question and
hen made statistical inferences. We believed that results based on such
oting data can, to a certain extent, reflect the opinions of the embedded
oftware professionals.

Although we tried to select the most suitable “paired questions ” to
gure out the balance between the positive and negative consequences
f MDE (See Q27), we presented “possible positive consequence ” as a
rst statement in this question; and the choice of this order may have

ed the respondents to bias in the results (e.g., if the possible negative
onsequences was given first, the results might have been different).

Last but not the least is the issue and definitions of MDE vs. MBE as
nderstood by that participants. We tried to reduce this threat by making
ure the participants understood and distinguished the terminologies by
roviding them the definitions mentioned by Brambilla et al. [23] (See
60]). In order to prevent any misunderstanding and potential threat
n this terminology, we conducted a pilot phase of the survey in which
everal practitioners filled the survey and we met with them to assess
heir common understanding of the terminologies regarding MDE, MDD
nd MBE (See Section 2.1). However, the definition provided by Bram-
illa et al. [23] sadly still leave room for subjectivity and we could not
ome up with better definitions while designing the survey since we did
ot have the definition provided in [26] yet (Notice that this definition,
rambilla et al. [23] is enriched and synthesized with the concept of sketch-

ng). Thus, this issue stays as a potential threat, e.g., a given practitioner
ight in fact use MBE, even though s/he stated to use MDE or s/he
oes not count sketching in MBD. Moreover, although there was no spe-
ific feedback on the pre-given answer set for some items (i.e., “model
hecking capabilities ”, “M2M transformation ”), as we have not explic-
tly specified the terms, there might be different interpretations and we
ould not be sure that the all respondents have the same understanding.

Internal validity: Internal validity reflects whether all causal relations
re studied or if unknown factors affect the results [81] . Instrumentation
as improved by using a pilot study. The survey took approximately 2–
0 min to be filled out depending on the modeling usage type (e.g.,
or no modeling, it takes ∼2 min just to take demographic data; for
odel-driven usage, it takes ∼10 min) and was intended to be filled

ut once by every participant. This reduces the likelihood for learning
ffects and, hence, maturation effects. Moreover, since the wording and
erminology used should be easily understandable to get high quality
ata and to prevent misunderstandings, the pilot includes embedded
oftware professionals with different native languages (English, Turkish,
rench and Taiwanese), different SE roles and different experiences.

External validity: External validity is concerned with the extent to
hich the results of this study can be generalized [81] . In order to de-

rease the effect of possible dominant participant number in a specific
ector due to authors’ previous and current work experiences’ network

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

(

h

c

T

d

t

w

p

t

d

e

e

i

t

e

c

m

s

e

W

i

p

t

t

d

h

s

d

t

r

M

a

a

m

t

6

e

w

b

p

w

d

g

t

(

(

i

f

t

b

e

a

c

t

b

t

p

s

b

e

t

i

t

(

t

t

i

t

m

s

t

p

l

t

L

i

m

s

o

s

w

s

a

[

i

i

f

o

w

o

a

s

m

t

m

v

A

w

S

t

R

i.e., defense & aerospace, consumer electronics, academia), the survey
as been distributed to embedded software professionals via various so-
ial network sites in all around the world for different industrial sectors.
herefore, we have done our best to reach the subjects with a variety of
ifferent backgrounds representative for the embedded software indus-
ry. Our sample size is quite high compared to previous surveys. While
e did our best to achieve an even geographical distribution, the sam-
les were mostly based from Europe (66%), followed by Asia (17%) and
hen the Americas (14%). Due to researchers’ location, ∼40% of respon-
ents are from Turkey, which may have led to bias in the results. Nev-
rtheless, note that we used non-probabilistic sampling design and thus
xternal validity is limited. To address this, we reported demographic
nformation of the participants and companies covered in our study, and
herefore the readers will be able to evaluate the applicability in differ-
nt contexts.

Conclusion validity: Conclusion validity of a study deals with whether
orrect conclusions are reached through rigorous and repeatable treat-
ent [81] . This study was designed by one author, who has both re-

earcher and practitioner hat and two other researchers from two differ-
nt institutions; therefore the risk for “fishing ” on the results is reduced.
e attempted to conclude, qualitatively, that the modeling approaches

n embedded software industry have economics and organizational as-
ects as well as purely technical concerns. For each RQ, we attempted
o reduce the bias by seeking support from the statistical results. Al-
hough we collected data from different sources (different countries,
ifferent industrial sectors, different SE roles, etc.), we, clearly, do not
ave any intentions to generalize our findings to all over the embedded
oftware world since these results depend the company and practitioner
emographics. Nevertheless, we reported demographic information of
he participants and companies covered in our study, and therefore the
eaders will be able to evaluate the applicability in different contexts.
oreover, to increase transparency, the raw survey data is made avail-

ble online [62] for other researchers to validate and replicate; hence,
ll the conclusions that we drew are strictly traceable to data. Further-
ore, we improved the reliability of our survey using pilot studies prior

o the survey execution.

. Conclusion

With the help of this study, the state-of-the-practice of software mod-
ling and MDE was better understood by identifying to what degree,
hy and how it is used in embedded software industry with its possi-
le challenges and its benefits. By this way, both embedded software
rofessionals and also researchers could benefit from our results, which
ould influence not only aspects related to software-intensive embed-
ed systems development, but also the system-level design.

Different SE roles use software modeling approaches in varying de-
rees (e.g., from informal sketches to formal models). Our study showed
hat 11% of respondents do not use any software modeling approaches
neither informal nor formal); whereas the remaining 89% is somehow
partially or fully) using it in their SDLC.

This study also showed that “Sketch/No formal modeling language ”
s widely used in the embedded software industry (i.e. , the second most
requently selected response after UML usage) and this finding revealed
hat the formality of the modeling language is not very important while
enefitting from modeling for different purposes. The formality of mod-
ling is important when there is an auto-generation of some software
rtifacts (e.g., code, document or test scripts); on the other hand, for
ommunication or understanding, this is not so crucial. We observe that
he purpose and the category of software modeling (i.e., sketch, model-
ased or model-driven) are strongly related with the medium used. If
here is no auto-generation of some software artifacts, analog media like
aper is enough for communication or understanding. At that sense, our
tudy showed that, not surprisingly, by providing modeling tools (for
oth sketch/model-based and model-driven) and archiving diagrams
asier as being digital, PC is the most used medium. However, we think
80
hat in the near future tablet/smartphone usage ratio might increase as
t provides more mobility than PC while modeling.

We observed that model-driven code generation (Q27) is an impor-
ant aspect and if code generation is synchronized with other artifacts
e.g., document, test driver), the benefits are maximized as in [4] . On
he other hand, the results (Q27) also showed that model-based/driven
esting makes easier to develop and execute test cases by also support-
ng test automation via test scripts; however, although it helps to start
o test and its design earlier; it requires significant additional time to
odel and validate them.

We also observed that the “cross-factor ” correlations among the re-
ults are interesting. Some modeling languages or diagrams are specific
o some sectors or their usage ratio is different depending on their pur-
oses and challenges. For example, although the dominant modeling
anguage is UML in all sectors; specific modeling language for target sec-
ors (e.g., AADL for “Defense & Aerospace ” and Markov Chain Markup
anguage for “Consumer Electronics ”) are interesting results as reported
n Section 4.5 .

The survey showed that the embedded software professionals use
odeling approaches in varying degrees (e.g., either as an informal

ketch or more formalized model) with different constrains depending
n their needs. All of the usages could be effective depending on the
oftware modeling characteristics in embedded software industry, but
hat are these significant characteristics? Based on the results of the

urvey and a conceptual model of software modeling usage, we have
lready identified these characteristics and the relations between them
26] . Then, we focused to fill one major part of the gap in the exist-
ng literature by identifying and defining modeling approach patterns
n embedded software industry. In order to improve what we found out
rom this survey result (e.g., quantitative data), we conducted a series
f semi-structured interviews over eight months with 53 embedded soft-
are professionals to get more personalized, qualitative data [66] . Based
n these findings, we created a characterization model, which identifies
nd defines a modeling stakeholder’s pattern and culture as common-
ense practices by presenting what the similar profiles are doing while
odeling (via the database constructed with survey data presented in

his study) [78] . This characterization model is the first wide-coverage
odel of software modeling characteristics for embedded software de-

elopment projects built on extensive input from the industry.

cknowledgments

The authors would like to thank all embedded software professionals,
ho contributed to this survey.

upplementary materials

Supplementary material associated with this article can be found, in
he online version, at doi: 10.1016/j.sysarc.2018.09.007 .

eferences

[1] C.J. Ebert , J. Capers , Embedded software: facts, figures, and future, IEEE Comput.
Soc. 42 (2009) 42–52 .

[2] J. Schäuffele , T. Zurawka , Automotive Software Engineering: Principles, Processes,
Methods, and Tools, SAE International, 2005 .

[3] Y. Yin , B. Liu , H. Ni , Avionics embedded software modeling based on time-con-
strained transition equivalence class, Adv. Sci. Lett. 5 (2012) 844–847 .

[4] D. Akdur , V. Garousi , Model-driven engineering in support of development, test and
maintenance of communication middleware: an industrial case-study, in: Proceed-
ings of the International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD) , 2015 .

[5] L. Jóź wiak , Advanced mobile and wearable systems, Microprocess. Microsyst. 50
(2017) 202–221 .

[6] M.A. Vega-Rodríguez , Design space exploration of embedded systems: a view from
diverse domains, J. Syst. Archit. 59 (2013) 1113–1114 .

[7] M. Broy , Challenges in automotive software engineering, in: Proceedings of the 28th
International Conference on Software engineering, Shanghai, China, 2006 .

[8] J. Rushby , New challenges in certification for aircraft software, in: Proceedings of
the Embedded Software (EMSOFT), 2011 .

[9] C. Walls , Embedded Software, Second ed., Newnes, Oxford, 2012 .

https://doi.org/10.1016/j.sysarc.2018.09.007
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0001
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0002
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0003
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0004
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0005
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0006
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0007
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0008
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0009
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0009

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

[

[

[
[

[

[
[

[

[

[

[

[

[

[
[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[
[

[
[

[

[
[

[

[

[

[

[
10] A. Gokhale , D.C. Schmidt , B. Natarajan , J. Gray , N. Wang , Model driven middleware,
Middleware for Communications, Wiley, 2004 .

11] L. Jóź wiak , S.-A. Ong , Quality-driven model-based architecture synthesis for real–
time embedded SoCs, J. Syst. Archit. 54 (2008) 349–368 .

12] W.J. Dzidek , E. Arisholm , L.C. Briand , A realistic empirical evaluation of the costs
and benefits of UML in software maintenance, IEEE Trans. Softw. Eng. 34 (2008)
407–432 .

13] E. Linehan , S. Clarke , An aspect-oriented, model-driven approach to functional hard-
ware verification, J. Syst. Archit. 58 (2012) 195–208 .

14] N.A. Karagoz , O. Demirors , Conceptual modeling notations and techniques, Concep-
tual Modeling for Discrete-Event Simulation, CRC Press, 2010 .

15] A. Dikici , O. Turetken , O. Demirors , Factors influencing the understandability of pro-
cess models: a systematic literature review, Inf. Softw. Technol. 93 (2018) 112–129 .

16] D. Akdur , E. Özpolat , T. Ba şı büyük , Model driven engineering of communication
protocol artifact with design pattern usage in distributed and real-time embedded
systems: an industrial experience, Int. J. Eng. Sci. Appl. 1 (2017) 91–98 .

17] M. Petre , UML in practice, in: Proceedings of the 35th International Conference on
Software Engineering (ICSE), 2013, pp. 722–731 .

18] R. Heldal , P. Pelliccione , U. Eliasson , J. Lantz , J. Derehag , J. Whittle , Descriptive vs.
prescriptive models in industry, in: Proceedings of the ACM/IEEE 19th International
Conference on Model Driven Engineering Languages and Systems, France, 2016 .

19] M. Broy , S. Kirstan , H. Krcmar , B. Schätz , What is the benefit of a model-based design
of embedded software systems in the car industry? in: Emerging Technologies for
the Evolution and Maintenance of Software Models, IGI Global, 2011, pp. 343–369 .

20] L.T.W. Agner , I.W. Soares , P.C. Stadzisz , J.M. Simão , A Brazilian survey on UML
and model-driven practices for embedded software development, J. Syst. Softw. 86
(2013) 997–1005 .

21] G. Liebel , N. Marko , M. Tichy , A. Leitner , J. Hansson , Assessing the state-of-prac-
tice of model-based engineering in the embedded systems domain, in: Model-Driven
Engineering Languages and Systems, 8767, Springer International Publishing, 2014,
pp. 166–182 .

22] B. Selic , S. Gérard , Modeling and Analysis of Real-Time and Embedded Systems with
UML and MARTE: Developing Cyber-Physical Systems, Morgan Kaufmann, 2013 .

23] M. Brambilla , J. Cabot , M. Wimmer , Model-Driven Software Engineering in Practice,
Synthesis Lectures on Software Engineering, 1, Morgan & Claypool, 2012 .

24] J. Cabot, 2009. Available: http://modeling-languages.com/relationship-between
-mdamdd-and-mde/ .

25] 2016. Available: https://www.youtube.com/watch?v = 9qPbGksB3d4 .
26] D. Akdur , O. Demirörs , V. Garousi , Characterizing the development and usage of

diagrams in embedded software systems, in: Proceedings of the 43rd Euromicro
Conference on Software Engineering and Advanced Applications (SEAA), Vienna,
Austria, 2017 .

27] J. Hutchinson , J. Whittle , M. Rouncefield , Model-driven engineering practices in
industry: social, organizational and managerial factors that lead to success or failure,
Sci. Comput. Program. 89 (Part B) (2014) 144–161 .

28] P. Liggesmeyer , M. Trapp , Trends in embedded software engineering, Softw. IEEE
26 (2009) 19–25 .

29] R. France , B. Rumpe , Model-driven development of complex software: a research
roadmap, in: Proceedings of the Future of Software Engineering, 2007 .

30] B.P. Douglass , Real Time UML: Advances in the UML for Real-time Systems, Addis-
on-Wesley, 2004 .

31] G.M. Nicolescu , Model-Based Design for Embedded Systems, CRC Press, 2009 .
32] S. Gerard , J.-P. Babau , J. Champeau , Model Driven Engineering for Distributed Re-

al-Time Embedded Systems, Wiley-IEEE Press, 2010 .
33] , Model driven architecture – foundations and applications, in: Proceedings of the

ECMDA, The Netherlands, 2009 .
34] Eclipse.org. (2012). EclipseCon Available: www.eclipsecon.org/2012 .
35] M. Guttman , J. Parodi , Real-life MDA: Solving Business Problems with Model Driven

Architecture, Elsevier/Morgan Kaufmann Publishers, Amsterdam; Boston, 2007 .
36] D. Frankel , Model Driven Architecture: Applying MDA to Enterprise Computing,

John Wiley & Sons Inc, 2002 .
37] T. Weigert , F. Weil , Practical experiences in using model-driven engineering to de-

velop trustworthy computing systems, in: Proceedings of the IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006 .

38] G. Karsai , S. Neema , D. Sharp , Model-driven architecture for embedded software: a
synopsis and an example, Sci. Comput. Program. 73 (2008) 26–38 .

39] H. Espinoza , D. Cancila , B. Selic , S. Gérard , Challenges in combining SysML and
MARTE for model-based design of embedded systems, in: R. Paige, A. Hartman,
A. Rensink (Eds.), Model Driven Architecture – Foundations and Applications, 5562,
Springer, Berlin Heidelberg, 2009, pp. 98–113 .

40] G. Liebel , N. Marko , M. Tichy , A. Leitner , J. Hansson , Model-based engineering in
the embedded systems domain: an industrial survey on the state-of-practice, Softw.
Syst. Model. 17 (2018) 91–113 .

41] M. Grossman , J.E. Aronson , R.V. McCarthy , Does UML make the grade? Insights from
the software development community, Inf. Softw. Technol. 47 (2005) 383–397 .

42] B. Dobing , J. Parsons , How UML is used, Commun. ACM 49 (2006) 109–113 .
43] C.F.J. Lange , M.R.V. Chaudron , J. Muskens , In practice: UML software architecture

and design description, Softw. IEEE 23 (2006) 40–46 .
44] J. Peneva , S. Ivanov , G. Tuparov , Utilization of UML in Bulgarian SME – possible

training strategies, Commun. Cognit. Artif. Intell. 23 (2006) 83–88 .
45] A. Nugroho , M.R. Chaudron , A survey into the rigor of UML use and its perceived

impact on quality and productivity, in: Proceedings of the ACM–IEEE Empirical Soft-
ware Engineering and Measurement (ESEM), 2008, pp. 90–99 .

46] P. Fitsilis , V.C. Gerogiannis , L. Anthopoulos , Role of unified modelling language in
software development in Greece – results from an exploratory study, Softw. IET 8
(2014) 143–153 .
81
47] A. Forward , T.C. Lethbridge , Problems and opportunities for model-centric versus
code-centric software development: a survey of software professionals, in: Proceed-
ings of the International Workshop on Models in Software Engineering, Leipzig, Ger-
many, 2008, pp. 27–32 .

48] J. Hutchinson , J. Whittle , M. Rouncefield , S. Kristoffersen , Empirical assessment of
MDE in industry, in: Proceedings of the 33rd International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA, 2011, pp. 471–480 .

49] M. Torchiano , F. Tomassetti , F. Ricca , A. Tiso , G. Reggio , Preliminary findings from
a survey on the MD state of the practice, in: Proceedings of the Empirical Software
Engineering and Measurement (ESEM), 2011, pp. 372–375 .

50] M. Torchiano , F. Tomassetti , F. Ricca , A. Tiso , G. Reggio , Relevance, benefits, and
problems of software modelling and model driven techniques – a survey in the Italian
industry, J. Syst. Softw. 86 (2013) 2110–2126 .

51] T. Gorschek , E. Tempero , L. Angelis , On the use of software design models in software
development practice: an empirical investigation, J. Syst. Softw. 95 (2014) 176–193 .

52] F. Shull , J. Singer , D.I.K. Sjoberg , Guide to Advanced Empirical Software Engineer-
ing, Springer-Verlag, Inc., New York, 2007 .

53] R.M. Groves , F.J. Fowler , M.P. Couper , J.M. Lepkowski , E. Singer , R. Tourangeau ,
Survey Methodology, Second, John Wiley & Sons, 2009 .

54] J. Linaker, S.M. Sulaman, R. Maiani de Mello, M. Höst, and P. Runeson, "Guidelines
for Conducting Surveys in Software Engineering," 2015.

55] V.R. Basili , G. Caldiara , H.D. Rombach , The goal question metric approach, Ency-
clopedia of Software Engineering, Wiley, 1994 .

56] T. Punter , M. Ciolkowski , B. Freimut , I. John , Conducting on-line surveys in software
engineering, in: Proceedings of the International Symposium on Empirical Software
Engineering, 2003, pp. 80–88 .

57] T.R. Lunsford , B.R. Lunsford , The research sample, part I: sampling, J. Prosthet.
Orthot. 7 (1995) 105–112 .

58] V. Garousi , A. Co ş kunçay , A. Betin-Can , O. Demirörs , A survey of software engineer-
ing practices in turkey, J. Syst. Softw. 108 (2015) 148–177 .

59] L. Wallace , M. Keil , A. Rai , Understanding software project risk: a cluster analysis,
Inf. Manage. 42 (2004) 115–125 .

60] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded SW industry – survey
form (questions)," doi: 10.6084/m9.figshare.4262978, 2015, (Last accessed: 27 Nov
ember 2016).

61] P. Runeson , M. Host , A. Rainer , B. Regnell , Case Study Research in Software Engi-
neering: Guidelines and Examples, Wiley Publishing, 2012 .

62] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded SW industry – raw sur-
vey data," doi: 10.6084/m9.figshare.4262972, 2015, (Last accessed: 27 November
2016).

63] D. Akdur, V. Garousi, and O. Demirörs, "MDE in embedded software industry, Tech-
nical Report METU II-TR-2015-55, doi : 10.6084/m9.figshare.4262990, 2015, (Last
accessed: 27 November 2016).

64] D.A. Garvin , Managing Quality: The Strategic and Competitive Edge, Free Press,
1988 .

65] I. Malavolta , P. Lago , H. Muccini , P. Pelliccione , A. Tang , What industry needs from
architectural languages: a survey, IEEE Trans. Softw. Eng. 39 (2013) 869–891 .

66] D. Akdur , O. Demirörs , B. Say , Towards modeling patterns for embedded software
industry: feedback from the field, in: Proceedings of the 44th Euromicro Confer-
ence on Software Engineering and Advanced Applications (SEAA), Prag ue , Czech
Republic, 2018 .

67] T. Ho-Quang , R. Hebig , G. Robles , M.R.V. Chaudron , M.A. Fernández , Practices
and perceptions of UML use in open source projects, in: Proceedings of the 39th
IEEE/ACM International Conference on Software Engineering (ICSE), 2017 .

68] , MDD Maturity Models, 2014 Last accessed: September 2016. .
69] A.G. Kleppe , J.B. Warmer , W. Bast , MDA Explained: The Model Driven Architecture:

Practice and Promise, Addison-Wesley Professional, 2003 .
70] I. Sommerville , Software Engineering, Addison Wesley, 2010 .
71] J. Whittle , J. Hutchinson , M. Rouncefield , H. Burden , R. Heldal , A taxonomy of

tool-related issues affecting the adoption of model-driven engineering, Softw Syst.
Model. 16 (2017) 313–331 May 01 .

72] J. Kramer , Is abstraction the key to computing? Commun. ACM 50 (2007) 36–42 .
73] D. Thomas , MDA: revenge of the modelers or UML utopia? Softw. IEEE 21 (2004)

15–17 .
74] C. Kobryn , Will UML 2.0 be agile or awkward? Commun. ACM 45 (2002) 107–110 .
75] D. Dori , Why significant UML change is unlikely, Commun. ACM 45 (2002) 82–85 .
76] D. Akdur , V. Garousi , O. Demirörs , Cross-factor analysis of software modeling prac-

tices versus practitioner demographics in the embedded software industry, in: Pro-
ceedings of the 6th Mediterranean Conference on Embedded Computing (MECO),
Montenegro, 2017 .

77] R.N. Taylor , N. Medvidovic , E.M. Dashofy , Software Architecture: Foundations, The-
ory, and Practice, Wiley Publishing, 2009 .

78] D. Akdur , Modeling patterns and cultures of embedded software development
projects Thesis, Doctor of Philosophy (Ph.D.), Information Systems, Middle East
Technical University (METU), 2018 .

79] S. Akayama , S. Kuboaki , K. Hisazumi , T. Futagami , T. Kitasuka , Development of
a modeling education program for novices using model-driven development, in:
Proceedings of the Workshop on Embedded and Cyber-Physical Systems Education,
Tampere, Finland, 2013 .

80] S. Flint , H. Gardner , C. Boughton , Executable/translatable UML in computing educa-
tion, in: Proceedings of the Sixth Australasian Conference on Computing Education,
30, Dunedin, New Zealand, 2004 .

81] C. Wohlin , P. Runeson , M. Höst , M.C. Ohlsson , B. Regnell , A. Wesslén , Experimen-
tation in Software Engineering, Springer, Berlin Heidelberg, 2012 .

http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0010
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0011
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0012
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0013
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0014
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0015
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0016
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0017
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0018
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0019
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0020
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0021
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0022
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0023
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0023
http://modeling-languages.com/relationship-between-mdamdd-and-mde/
https://www.youtube.com/watch?v=9qPbGksB3d4
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0026
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0027
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0028
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0029
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0030
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0031
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0032
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0033
http://www.eclipsecon.org/2012
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0034
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0035
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0036
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0037
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0038
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0039
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0040
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0041
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0042
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0043
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0043
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0043
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0043
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0044
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0045
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0046
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0047
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0047
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0047
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0047
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0047
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0048
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0049
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0050
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0051
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0052
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0053
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0053
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0053
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0053
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0054
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0054
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0054
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0054
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0054
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0055
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0056
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0057
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0058
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0058
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0058
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0058
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0058
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0059
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0059
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0060
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0061
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0062
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0063
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0064
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0065
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0066
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0067
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0068
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0068
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0069
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0070
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0071
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0071
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0071
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0071
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0072
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0073
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0073
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0074
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0075
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076
http://refhub.elsevier.com/S1383-7621(18)30245-5/sbref0076

D. Akdur et al. Journal of Systems Architecture 91 (2018) 62–82

a

e

a

Deniz Akdur is a Lead Software Engineer at ASELSAN, Inc.,
which is the largest Defense & Aerospace company of Turkey.
Prior to that, he worked as a Software Architect for different
companies in both Turkey and United Kingdom in Consumer
Electronics sector. He received his BSc degree in Computer
Science from Bilkent University and MSc & Ph.D. degrees in
Information Systems from Middle East Technical University
(METU), Ankara, Turkey. His specialties and research interests
include software-intensive embedded systems, software en-
gineering, model-driven engineering, technology acceptance,
software quality management and industry-academia collabo-
rations.

Vahid Garousi is an Associate Professor of Software Engineer-
ing in Wageningen University, the Netherlands. His research
interests in software engineering include: software testing and
quality assurance, model-driven development, software main-
tenance and empirical software engineering. He is also pas-
sionate about of development of "scientific" and engineering
software (e.g., software for oil pipelines or embedded con-
trollers). Since 2002, he has also worked as a consultant for
software companies in Canada, Turkey and the Netherlands,
helping them in various areas of software engineering.
82
Onur Demirors is a Professor of Computer Engineering at the
Izmir Institute of Technology (ceng.iyte.edu.tr) and the strat-
egy director of Bilgi Grubu Ltd. (www.bg.com.tr). He has re-
cently joined UNSW for his sabbatical. His current research
focuses on decentralized modeling and organizational change,
software measurement, and management. He has leaded ma-
jor research and application projects on developing improve-
ment and modeling techniques, on establishing and imple-
menting modeling approaches for organizations and on es-
tablishing measurement infrastructures for software organiza-
tions. He has leaded application projects for dozens of compa-
nies to improve their processes, to establish their measurement
infrastructures, to create organizational knowledge structures

nd to identify their software needs. He continues to teach on decentralized modeling,
vent based systems, software project and quality management, software measurement
nd innovative software development approaches.

http://www.bg.com.tr

	A survey on modeling and model-driven engineering practices in the embedded software industry
	1 Introduction
	2 Background and related work
	2.1 MBE versus MDE and MDD
	2.2 Related work

	3 Research methodology
	3.1 Goal and research questions
	3.2 Survey design and execution
	3.2.1 Identifying target audience
	3.2.2 Sampling method
	3.2.3 Designing survey questions
	3.2.4 Survey piloting and execution

	3.3 Pre-analysis considerations and data validation
	3.4 Plan for cross comparison with previous surveys

	4 Survey results
	4.1 Demographic of participants and their companies
	4.2 Current state of modeling (RQ1)
	4.2.1 Degree of using software modeling in SDLC (Q10)
	4.2.2 Media used to create sketch or model (Q13)
	4.2.3 Modeling languages (Q14)
	4.2.4 Programming languages (Q15)
	4.2.5 Modeling environments/tools (Q16)
	4.2.6 Diagram types (Q17)
	4.2.7 SDLC phases in which software modeling is used (Q18)

	4.3 Current state of MDE and its adoption (RQ2)
	4.3.1 Degree of using MDE (Q19)
	4.3.2 What MDE is used for (Q20)
	4.3.3 MDE maturity levels (Q22)
	4.3.4 Motivations for adopting MDE (Q23)

	4.4 Benefits, challenges and consequences of using MDE (RQ3)
	4.4.1 Benefits of MDE (Q24)
	4.4.2 MDE challenges (Q25)
	4.4.3 Problems with MDE environments/tools (Q26)
	4.4.4 Impacts and implications of MDE (Q27)

	4.5 Cross-factor analysis

	5 Discussions
	5.1 Summary of findings
	5.2 Implications of results
	5.2.1 Implications for practitioners
	5.2.2 Implications and benefits for the company that commissioned this study
	5.2.3 Implications for researchers
	5.2.4 Implications for educators
	5.2.5 Implications for MDE tool vendors (builders)

	5.3 Limitations and threats to validity

	6 Conclusion
	 Acknowledgments
	 Supplementary materials
	 References

