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ABSTRACT

SPIN-SPIN INTERACTIONS OF MAGNETIC IMPURITIES IN
GRAPHENE NANORIBBONS

In this thesis, we investigate the interaction between two impurity adatoms with
high magnetic moment which are located on zigzag graphene nanoribbons that consist
of 10516 atoms. The magnetic adatoms communicate with each other through the host
electrons such as Ruderman-Kittel-Kasuya-Yoshida (RKKY) interactions. Firstly, in or-
der to numerically calculate the two impurity Anderson model, we use quantum Monte
Carlo technique. When the impurity adatoms are located far from edges, the results we
obtained are consistent with the bulk graphene results in the literature. On the other
hand, the specific location and orientation of adatoms on the sublattices, significantly af-
fects the spin-spin correlations of the two impurities. However, we observe that while
the adatoms approach to the edges, significant differences occur due to the edge effect
of zigzag graphene nanoribbon. As a results of this, we found that the magnetic corre-
lations can be also enhanced if the adatoms belong to the same sublattice as the edge
atoms, since the states of the adatoms hybridize with edge states. Moreover, we show that
changing chemical potential can crucially affect the magnitude of the correlations of the
adatoms, and may lead to a phase transitions from ferromagnetic to antiferromagnetic or
vice versa. Besides, we observe that when the width of the zigzag graphene nanoribbons
is decreased, the spin-spin correlations are affected. On the other hand, we also calcu-
lated spin-spin correlations using mean-field approximation for the mean-field Anderson
model. We found that results significantly differ from quantum Monte Carlo results. In
addition, when the electron-electron interactions of the host atoms are taken into account,

crucial differences are obtained at the impurity correlations.

v



OZET

GRAFEN NANOSERITLERDEKI MANYETIK SAFSIZLIKLARIN
SPIN-SPIN ETKILESIMLERI

Bu tezde, 10516 atomdan olusan zigzag grafen nanoseritlerin iizerinde bulu-
nan yiiksek manyetik momentli iki safsizlik adatomu arasindaki etkilesimi arastiriyoruz.
Manyetik adatomlar, Ruderman-Kittel-Kasuya-Yoshida (RKKY) etkilesimleri gibi konak
elektronlar1 yoluyla birbirleriyle iletisim kuruyorlar. Ilk olarak, iki safsizlik Anderson
modelini sayisal olarak hesaplamak ic¢in, kuantum Monte Carlo teknigini kullaniyoruz.
Safsizlik adatomlar1 kenarlardan uzaga yerlestirildiginde, elde ettigimiz sonuglar literatiir-
deki y18in grafen sonuclartyla tutarlidir. Ote yandan, alt orgiiler iizerindeki adatomlarin
spesifik konumu ve yonelimi, iki safsizligin spin-spin korelasyonlarin1 6nemli 6lciide etk-
iler. Bununla birlikte, adatomlar kenarlara yaklasirken, zigzag grafen nanoribbonun kenar
etkisinden dolay1 6nemli farkliliklar oldugunu gézlemliyoruz. Bunun bir sonucu olarak,
adatomlarin kenar durumlar ile melezlestiginden, adatomlarin kenar atomlariyla ayni
alt orgiiye ait olmas1 durumunda manyetik korelasyonlarin artabilecegini bulduk. Da-
hasi, degisen kimyasal potansiyelin, adatomlarin korelasyonlarinin biiyiikliigiinii 5nemli
oOlciide etkileyebilecegini ve feromanyetikten antiferomanyetige veya tersi bir faz gegisine
yol acabilecegini gosteriyoruz. Ayrica, zigzag grafen nanoseritlerin genisligi azaldiginda,
spin-spin korelasyonlarinin etkilendigini gozlemliyoruz. Diger taraftan, ortalama alan
Anderson modeli i¢in ortalama alan yaklagimi kullanarak spin-spin korelasyonlarini da
hesapladik. Sonuglarin kuantum Monte Carlo sonuglarindan 6nemli 6l¢iide farkli oldugu-
nu bulduk. Ek olarak, konak atomlarin elektron-elektron etkilesimleri hesaba katildiginda,

safsizlik korelasyonlarinda 6nemli farkliliklar elde edilir.
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CHAPTER 1

INTRODUCTION

Throughout the history, people have improved themselves and learned more with
conventional technology, materials and knowledge. They have kept improving themselves
with increasing knowledge and science and obtained new achievements which were found
accidently or on purpose. Either way they have always served to humanity in any areas
by taking themselves to the next further information.

In 2004, the extraordinary carbon based material graphene was fabricated with me-
chanical exfoliation by Novoselov and his group mates (Novoselov et al. (2004)). How-
ever, long before fascinating discovery, the graphene was theoretically investigated by
P.R.Wallace in 1947 (Wallace (1947)) who found remarkable features such as semimetalic
behaviour due to the zero energy band gap and linear dispersion relation around K and
K’ point by using tight-binding approach (TB). Moreover, graphene significantly differ
from any semiconductor or metal due to some vital properties such as two dimensionality,
linear energy dispersion, controllable chemical potential potential by applying gate volt-
age and the charge carriers similar to massless Dirac fermions (Novoselov et al. (2005);
Castro Neto et al. (2009); Geim and Novoselov (2007)). As a consequence, the discovery
of graphene led to a large number of possible applications (Geim and Novoselov (2007);
Geim (2009); Castro Neto et al. (2009)). In addition to possible roles in nanoelectronics
and optoelectronics, all graphene materials have also been suggested for applications in
spintronics (Yazyev (2010)), such as information storage as binary code, data sharing on
storage at higher speeds and communication than today’s conventional electronic devices
(Chappert et al. (2007); Awschalom and Flatté (2007)). The main physical idea behind
spintronics is to take advantage of charge of electrons and spin with its intrinsic angular
momentum.

On the other hand, graphene’s lack of a bandgap limits possible application ar-
eas. One way of dealing with this problem is to reduce the size of the graphene to the
nanoscale. This comes with additional striking effects. Particularly, the electronic and
magnetic properties start to depend on its geometric shape by breaking sublattice sym-
metry of graphene along a direction (Han et al. (2007); Yang et al. (2007)). Two edge
terminated graphene nanoribbons which can be armchair or zigzag edged show a band

gap due to breaking sublattice symmetry at the edges and have been theoretically shown



many times (Son et al. (2006); Jung et al. (2009); Jung and MacDonald (2009)). On the
other hand, zigzag graphene nanoribbons is theoretically expected to have ferromagneti-
caly spin polarization within each edges and antiferromagnetically coupled edges accord-
ing to the Lieb’s theorem (Lieb (1989)) for a bipartite lattice. Moreover, zigzag graphene
nanoribbons have been experimentally produced by using the bottom-up approaching and
some research group show that narrow, long and disorder ZGNRs can be fabricated (Ki-
mouche et al. (2015); Ruffieux et al. (2016)). Besides, thanks to relation between bandgap
and width of narrow nanoribbon, magnetic phase transition can be indirectly observed
(Magda et al. (2014)). These results promise for the graphene based spintronic devices.

Another possible process of graphene based spintronics is occurrence of disorders
that arise in graphene. This may lead to magnetism (Yazyev and Helm (2007)), despite
the fact that carbon atom of graphene is not magnetic. Indeed, the magnetism in graphene
is not caused by d or f orbitals of any impurity. So, magnetism is occurred by breaking
sublattice symmetry with small zigzag edge domains and started to form around vacancy
(Palacios et al. (2008); Zhang et al. (2016)).

Another striking way for using graphene in spintronic applications, is to dope of
graphene with magnetic impurities. However, in this condition, graphene is acting as
host for these transition metal atoms unlike two previous approaches (reducing the size
of graphene and creating vacancy). Moreover, graphene host electrons mediate interac-
tions in order to transfer spin information between the impurities. Besides, the interac-
tion strongly depends on the electronic structure of the host atoms. This is the indirect
exchange interaction also known as Ruderman-Kittel-Kasuya-Yosida (RKKY )interaction
(Ruderman and Kittel (1954); Kasuya (1956); Yosida (1957)). This type of interaction
should oscillate and decay as a function of distance between the two impurities. In addi-
tion to that, the oscillations are defined by the Fermi surface of the host atoms, and decay
power of interaction depends on dimension of the host material. Namely, RKKY inter-
action should be expected to decay as R3 in the graphene (Wunsch et al. (2006)) where
R is the distance between the two impurities unlike the behaviour of a two dimensional
electron gas where the decay goes as R~2 (Fischer and Klein (1975)).A recent work by
Ref.(Guclu and Bulut (2015)) shows that full treatment of spin correlations about mag-
netic adatoms on graphene significantly differ from the RKKY model in bulk graphene.

In this thesis, we consider the zigzag graphene nanoribbons that has zero energy
edge states at Fermi level unlike armchair edges that has no such specific states (Fujita
et al. (1996); Nakada et al. (1996)). Because of that, spin-spin interactions of magnetic

impurities in zigzag graphene nanoribbons with periodic boundary conditions are stud-



ied using the two impurity Anderson model. Due to the edge states in the ZGNRs, the
magnetic properties of two impurities could lead to new behaviours which are different
from the bulk graphene or metallic system results in the literature. To examine deeply
and broaden horizons on this topic, mean-field Anderson model are introduced in order
to make comparison between the mean-field Anderson model and the two-impurity An-
derson model. Moreover, in the MF Anderson model, electron-electron interactions taken

into account for the host electrons could lead to vital results.



CHAPTER 2

GRAPHENE

In this chapter, we will briefly explain graphene and its lattice structure. Then,
several fabrication techniques of graphene nanostructures will be described. Particularly,
thanks to a specific method, ZGNRs with edge sites are experimentally fabricated. Be-
cause of that, we will theoretically focus on finite ZGNRs and distinctly examine its edge

effect.

2.1. Graphene

A single carbon atom has 6 electrons in the 152,2s! and 2p? orbitals. Moreover,
there are 2 paired electrons in the 1s? orbital. Carbon atom has 4 valance electrons. In
graphene, three unpaired electrons occupy 2s',2p, and 2p,, orbitals that make sp® bonds
with surrounding atoms or carbon atoms as seen in the Fig.(2.1). Furthermore, these three
bonds are responsible for mechanical properties of graphene. The last electron fills the last
2p, orbital that is perpendicular to surface and forms 7 bonds as seen in the Fig.(2.1). In

addition, this electron that moves freely contributes to electronic properties of graphene.

Figure 2.1. Schematic representation of a graphene (left) and zoom in any point on
graphene to show the structure of a single carbon atom where blue orbital
p, represent the free valance electron in the z-plane, and that carbon atom
connect to the other carbon atoms with sigma bonds. (Reprinted from
(Guclu et al. (2014)))

In the following, the lattice of graphene that is honeycomb with lattice constant

a = 0.142nm between two carbon atoms consists of two different sublattices which are



A sublattice marked by red one and B sublattice marked by blue as seen in the Fig.(2.2).

So, positions of all A and B carbon atoms can be found by using the following equation,

RA = nal+mag+b (21)
RB = na; + may (22)

where n and m are integers, b is a vector between A and B carbon atom and a; » is the

lattice vector,
a = 2(V3.3), & = 5(—V3.3) and b =a(0,1) (23)

Before discovering existence of graphene, the electronic structure of graphene was
theoretically investigated by P.R.Wallace in 1947 (Wallace (1947)). Wallace made two
major assumptions. One of them is that when space between graphene layers in graphite
is enlarged, this large space may lead to confine electrons that move only in the graphene
plane. The other one is that electronic properties of graphene can be described by only
using 2p, orbital within tight-binding approximation. Moreover, in the sec.(4.1), we will
see tight-binding methods for the finite system and examine all process in detail. In the
next section, a few experimental techniques will be examined in order to fabricate finite

graphene and graphene nanoribbon structures.

2.2. Fabrication Techniques

In this section, several production ways are described in order to fabricate graphene
and graphene nanoribbon samples. A few production methods are presented. Moreover,

a recent fabrication method that produced ZGNRs is briefly explained.

2.2.1. Mechanical Exfoliation

Exfoliation of graphene is the first and basic method in order to acquire the graphene
by brute force. This method, also known as ”Scotch Tape Method” , was used by Novoselov,

Geim and their group in 2004, (Novoselov et al. (2004)). On the other hand, graphite con-



Figure 2.2. Honeycomb lattice of graphene where marked by red is A sublattice and
the other one is B sublattice, and a, 2, b is primitive unit vectors. (Reprinted
from (Guclu et al. (2014)))

sists of a hundreds of single layers of graphene that are bounded to each other by weak
van der Waals forces. Furthermore, a piece of graphite is sticked to a scotch tape and
thanks to the adhesive force of the tape, peeling the tape off leaves a few graphite. Then,
this process is applied over and over again. So, layers of graphite is separated from each
other by breaking the these bonds in order to get single layer graphite. After that, the
graphene should be transferred to a substrate such as St0O,. Namely, the tape is pressed

on the substrate and peeled off.

2.2.2. Chemical Vapour Deposition

One of the most commonly used method is CVD in order to obtain the synthesis of
high quality graphene which contains controlled number of layers in a wide area or single
layer of graphene. In this method, two mainly different transition metal films are used
such as Copper (C'u) and Nickel (N4). So, main point is that one can get a single layer
graphene by using C'u (Yan et al. (2012)). On the other hand, the other method is used to
achieve controllable growth of graphene layer that depends on changing nickel thickness
or growth time. After that, obtained graphene can be transferred to arbitrary substance
(Reina et al. (2009)). Thus, using different transition metal affects quality, efficiency of

graphene.



Figure 2.3. Thanks to the optical microscope, images of the graphene samples where
single and a few layers of graphene are showed by lighter and darker re-
gions, respectively. (Reprinted from (Exfoliation (2018)))

2.2.3. Thermal Decomposition of SiC’

Another approach is thermal decomposition of SiC' to epitaxially grow single
layer of graphene directly on S7C' substrate (Berger et al. (2004, 2006)). This substrate
has same hexagonal lattice structure like graphene and is heated. Then, temperature of the
substrate is increased up to 1100°C in order to break S7 bonds from surface. After that,
surface carbon atoms rebind to each other to obtain shape of monolayer or multilayers
of graphene (Hass et al. (2008)). Moreover, quantity of the graphene can be controlled
on SiC. Also, using of this technique is to give a chance to obtain different forms like
nanoribbons and quantum dots (Tapaszt6 et al. (2008); Sprinkle et al. (2010); Palacio et al.
(2015)).

2.2.4. Bottom-up Synthesis of Graphene Nanoribbons

A few techniques have been performed in order to successfully obtain the graphene

nanostructures. Furthermore, one of them is bottom-up method (Cai et al. (2010, 2014);
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Figure 2.4. (a) Fabricated ZGNR, (b) observation of the edge states using scanning
tunneling spectroscopy and (¢) DFT based edge states. (Reprinted from
(Ruffieux et al. (2016)))

Massimi et al. (2015); Ruffieux et al. (2016); Smerieri et al. (2016)). This method shows
perfect edge sites (Ruffieux et al. (2016)) and is consistent with theoretical results (Nakada
et al. (1996)) unlike top-down approach which failed due to the limited precision (Han
et al. (2007); Li et al. (2008); Magda et al. (2014); Kosynkin et al. (2009); Wang and Dai
(2010); Maet al. (2013)). The bottom-up method is based on surface assisted polymeriza-
tion with catalysed cyclodehydrogenation of U shaped monomer. This method atomically
produces precise zigzag edges on Au(111) substrate. As a results of this, as shown in the
Fig.(2.4), edge states with ultra-narrow nanoribbons is successfully fabricated and ob-
served by using scanning tunneling spectroscopy (Ruffieux et al. (2016); Kimouche et al.
(2015)).

2.3. Edge Effect of Graphene Nanoribbons

In this section, we will explain that zigzag edged graphene nanoribbons is so vi-
tal for this research on the contrary armchair edged graphene nanoribbons. Moreover,
we will show differences between distinct samples of ZGNRs. As we have mentioned
before, we work on finite size of zigzag graphene nanoribbons with periodic boundary
condition. First of all, we have two vectors which scans every each atom one by one on

bulk graphene. Acceptable atoms are picked if each scanned atom provides our conditions



Figure 2.5. Edge geometry of graphene nanoribbon. (a) zigzag edge and (b) armchair
edge. (Reprinted from (Cakmak (2018)))

which are defined by cutting axis. Also, according to the cutting axis conditions, we can
obtain any shape of graphene system lite zigzag or armchair edged graphene nanoribbons
as can be seen in the Fig.(2.5). Moreover, these two edge patterns has a crucial role on
electronic property of nanostructure. On the other hand, edge terminations of graphene
nanoribbon have extra unpaired electrons per carbon atoms. In this thesis, we assume that
all these sites are doped by hydrogen atoms. Namely, we make the edge passivation with
the hydrogen atoms because hydrogen atom has only one unpaired electron on 15 state.
On the other hand, we need to narrow the subject to the specific shape of edges
and let us begin with zigzag edges. After diagonalizing TB Hamiltonian, TB energy spec-
trum of ZGNRs is obtained for small different systems as seen in the Fig.(2.6). Also, zero
energy states known as edge states are shown in the energy spectrum around the Fermi
level due to broken sublattice symmetry (Castro Neto et al. (2009); Guclu et al. (2014);
Nakada et al. (1996); Cakmak (2018); Ozdemir (2016); Giiclii et al. (2013)). Moreover,
armchair GNRs has no such these states. Furthermore, these edge states are increased
with length of ZGNRs. Also, width of ZGNRs is same in all shown examples. Addi-
tionally, absence or presence of the edge states depend on sublattice symmetry, size and
edge geometry shape and contribute undeniable extraordinary feature to the electronic

properties of GNRs (Guclu et al. (2014)). As seen in the Fig.(2.7), we have probability
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Figure 2.6. TB energy spectrum of different length of ZGNRs shows the degenerate
states in the vicinity of the Fermi level. These ZGRNs respectively consist

Eigenvalue Index

of (a) 36 atoms, (b) 68 atoms, (¢) 132 atoms and (d) 260 atoms.

distribution of the highest valance state of the system. As we have known before, the

graphene consists of two sublattices that are A marked by blue and B marked by red in

the Fig.(2.7). Now, we focus on upper-half part of the graphene and go to top of the

graphene. This probability distribution just spreads through the A sublattice. When look-

ing at lower-half of the graphene, same spreading occurs there for the B sublattice. This

feature unexpectedly affects our results. Moreover, we will discuss this effect in detail in

the results chapter.

Figure 2.7. Demonstration of probability distribution of highest valance band of small
ZGNRs system. Upper edge totally A sublattice marked by blue one and
lower edge totally B sublattice marked by red one. Also, big blue and red

circle on the edges defines probability distribution of electrons.

€ Upper edge

+«— lower edge
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Figure 2.8. (a) Representation of probability density distribution of our actual system
that consists of 10516 host atoms. Width of the graphene is W = 44 or
4.54nm and (b) Just visualization of zigzag

As shown in Fig.(2.8), the probability density of real system that we work on is
indicated for the highest valance band of ZGRNs. According to the figure, the density
of electrons are accumulated on the upper and lower edge sites. Then, they are spread
from these edges to middle of the graphene like in the Fig.(2.7). However, this spreading
effect is decreased until specific point unlike the Fig.(2.7), due to width of graphene.
Consequently, the real system consist of 10516 host atoms with length of 58.66nm and
width of 4.54nm. On the other hand, as seen in the Fig.(2.7)(b), this is just one zigzag.
So, there are 22 zigzag (W = 44).
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CHAPTER 3

THEORETICAL MODELS

During this research, we investigated spin-spin correlation between two impuri-
ties. These two adatoms are attached to the graphene that is our host. In order to ex-
plain the physical fact and get correct results, we have employed some theoretical mod-
els which are tight-binding, two-impurity Anderson, mean-field Hubbard model. These
models assist us to understand physics behind main event. Now, starting with defining

Tight-Binding model in the following section.

3.1. Tight Binding Model

The tight-binding model is not only a basic, easier and accurate but also lower
computational cost unlike mean-field approximation which we will examine in two next
section. Roughly speaking, thanks to its low computational cost, one can simply simulate
a system which may consist of ten thousand atoms and may be carbon based material
such as graphene. Despite the fact that the simplest model for graphene is comparatively
accurate, there is no spin dependence terms

To start from atomic limit by writing crystal Hamiltonian for an electron. It can

be written as

H = Hgpomic + AU(T) (3.1)

where AU (?) periodic potential due to crystal structure. The periodic potential comes

from all other atoms. We can write atomic wave function down,

where ¢ is an eigenstate of Hamiltonian and F, is atomic energy. One assumes Bloch

wavefunction that assures periodicity of the lattice as

Uni(F) = > €5 6, (7 — R) (3.3)
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where ¢,, is a molecular orbital and called Wannier function that is not an excat eigenstate
of Hgiomic. The Wannier functions can be expressed as Linear combination of atomic
orbitals (LCAQO) which is to approach to make a trial solution in the wavefcuntion and

can be defined as

on(F = R) = by ou(i = R) (3.4)

where (,, is atomic orbital. Each of them is multiplied by corresponding coefficient b,,.
Now, one applies that Bloch’s wavefucntion defined by Eq.3.3 is subtituted into Hamilto-

nian in Eq.3.2 because solution of Schrodinger equation must obey the Bloch’s theorem,

Hwk(F) = ( Hatomic + AU(F) ) z/}k(f&) = Ekwk(F) (35)

and one multiplies both side by [ d®r ¢ (7)

o / Pr on (7) () = / &1 01 (7) Hotomse V()
B [ dr o5 () 0 (7)

A PN UGG
(66— En) / Pr ot (7) bulF) = / Pr (7 AU(R) () 3.7)

one will substitute Eq.3.3 into Eq.3.7.

(e, — Eny) / d*r 05, (7)Y bn e R o (F— R) (3.8)
R,n
_ / dr ¢ (7) AU S boe R, (7 R) (3.9)
Rn

one will examine series over K summation in two different values which are R = 0 and

R#0

13
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+Hew — E Zb (Ze’”/dgr 03 (F) on( — ) ) (3.10)
R#0 X 5
(ﬁ)
=S [ ) AU ol
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S (T [ AU - ) ) a1
n R#0 < _

~”

v(R)

where 04(]%) is overlap integral and small term. Because of that we can ignore that term.
Second term is [ that is independent of k£ and energy shifting due to potential of the sur-
rounding atoms. last term is y(ﬁ) that is mostly called as hopping integral and gives
the energy interaction between different atoms. Graphene consists of two different sub-
lattices. Each carbon atom in infinite graphene lattice has three opposite neighbouring
atoms as seen in the Fig.(2.2). So, electron of each carbon atom sites feels potental (AU)
of other atoms at its lattice. Because of that, electron are hopping next nearest neighbour

due to screening effect.

wéz—/fmamAWﬂw< _Ry=t (3.12)

Here, v is the hopping integral. So, electron located at 77— R position is hopping to second
site located position at 7" or vice versa. Therefore, ¢ is call as hopping parameter and
depends on related material type. Also, this parameter is usually taken for the graphene
as t = —2.8eV (Castro Neto et al. (2009)). As a consequently of this, above Eq.(3.10)
and (3.11) turn into the following,

ek — B+ B)brm = Y_ e*F ~(R) (3.13)
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where F,, and § will only result in a physical difference in the eigenvalues. So, we can

ignore this energy (Ashcroft and Mermin (1976)),

Exbn =t ™ F (3.14)
RA0

the above equation was found for any material. Thus, we need to use this equation for
graphene. As a results of this, we can know that three nearest neighbour atom’s vectors
—1A

which are @) = i, @ = %(%i +3)), ds = %(72 — 27). After summation over all

nearest neighbours, the following equation is defined,

f(k) — t(eiE.dl +6iE-62+6iE-63) (315)
frk) = t(eFh g RR g iRy (3.16)

turning into eigenvalue equation in matrix form,

(o) e
b tf*(k) 0 b

Hence, solution of the system,
e+ (k) = £[tf (k)| (3.18)

According to the obtained energy states for the bulk graphene as seen in the Fig.(3.1), we
obtain two distinct energy levels which are valance band (¢(k) < 0) and conduction band
(e(k) > 0). Also, they are symmetric with respect to the fermi level (¢(k) = 0)

As a result of this, all above calculation was done for the bulk graphene in the
momentum space. However, during this research, we did all calculations which are tight-
binding model and mean-field Anderson model in real space. Namely, working in the
real space gives us some advantages such as easily adding adatom, vacancy, potential or
controlling each atoms. In the next section, Anderson model will be introduced for the
HFQMC Algorithm.

15



Figure 3.1. Graphene band structure. Obtained from (Castro Neto et al. (2009))

3.2. Anderson Model

Two magnetic impurities which interact with each other as RKKY are embedded
in a homogenous host as can be seen in the Fig.(3.2). Firstly, one impurity system was de-
scribed by Anderson (Anderson (1961)). The Anderson model gives us information about
electronnic and magnetic structure of transition metal impurities in the host material. In

this thesis, the two impurities Anderson model for the ZGNREs is studied and given by,

— thwc]g—l—Z (Eq— 1 dT diy

<z J)

+ Z Vijczadjo +he)+U Z NidtThid| (3.19)

Z?J?O

where ¢ is hopping parameter of the host electrons, c;ra (¢jo) creates (annihilates) a host
electron with spin o, E; is the impurity energy level, d;(dw) is creation (annihilation)
operator at site ¢ for the impurity electrons, V;; is the hybridization between host and
impurity electron, U term is the on-site Coulomb interaction for the d electrons and n;4, =
djadig is the number operator for the impurity electrons.

Transition metal impurity has half-filled or partially-filled of d or f orbital. There-
fore, electron exchanging only between impurity and host depends on state occupied by

only one electron or doubly occupied by two electrons. So, there is no magnetization if

16
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Figure 3.2. (a) Eigenvalues of the host electrons which was obtained from TB results.
(b) Two magnetic impurities are embeded in the homogeneous host states
with energy F,. (c¢) Adatom state will be located above the Fermi level
with energy 2F,; + U if the adatom state is doubly occupied.

state is occupied by two electrons as shown in the Fig.(3.2). On the other hand, d or f
states of transition metal that are unoccupied states is not allowed to communicate with
each other. As a results of this, it is very hard to solve the Eq.(3.19) with on-site Coulomb
term. Because of that, we will employ Hirsch-Fye quantum Monte Carlo (HFQMC)
which is explained in the next chapter in order to solve the two impurity Anderson model,

numerically. In the next section, we will derive mean-field Hubbard model.

3.3. Mean-Field Hubbard Model

In this section, another realistic approaching model will be discussed in order to
comprehend magnetism and electronic structure of correlated materials unlike TB model
that has no spin dependency. Hubbard model which was first proposed by J. Hubbard in
1963 (Hubbard and Flowers (1963)) gives us a chance to realize physical picture of mag-

17



netism with spin dependency o. On the other hand, the Hubbard model is exactly solvable
in one dimension which is 1D ising model and was solved by E. Ising (Ising (1925)). Be-
sides, two-dimensional Ising model was solved by L. Onsager (Onsager (1944)). So, basic
system can be exactly solved without any approximation. As a consequence of this, we
should employ approximation method that is known as Weiss mean-field theory in order
to numerically solve unsolvable model. Therefore, many-body problem is reduced to one
body problem by adding mean-field method. This method presumes that each electron
feels an average interactions that comes from all others.

To begin with defining the system and its Hamiltonian which consisting of kinetic

energy of electrons and their electron-electron interactions,

h? 1
H=) (——V)+=)> Ve(ri—r; 3.20
D (5 VD H 5> Veelri = 1)) (3.20)
The Hamiltonian with field operators in second quantization,

2m

H =) / d*rl (r)((— e V)W, (r) (3.21)

’

]' 4 ’ ’
’ 52/ [ LWl =00 322

where ¥, (r) is field operator,
U,(r) = @ilr)cio (3.23)

After the above definitions, the many-body Hamiltonian in second quantization form was

obtained,

1
H = Z tpch,cq + 3 Z(pq\V\rs)c;;cj]crcs (3.24)
pa

pgrs

where p, ¢, r and s are io, ja’, ko and 1o, respectively. ¢ =1 / | is the spin of
electrons. On the other hand, % is double counting of interactions in front of second term

of the Eq.3.24. Because of that, one must divide second term by 2.

18



/

to = (Dltlg) = (ioft|jo’) = (ilt|j) (o|o') = i, (3.25)
)

oo

now, one will apply same thing for the second term in the Eq.3.24,

Vigrs = 5 Z (pa|V|rs)cicle e (3.26)

pq’rs

1 ’ " "

— 52(2’03’0 \V|ko lo )cjac;r,a,ckauclam (3.27)

ijkl
= —Z ij|VIkDclycl epr i (ol0”) (0'l0”) (3.28)

ijl 6 n 5 71
Eventually, Eq.3.24 can be written as,
1 .

H =3 tijclocio + 5 Y (ijlVIkDeclel cppair (3.29)

lj) ijkl

Now, one should consider two things which are (i¢|V|ii) = U and (ji|V|ij) = V;; about
second term of Eq.3.29. Then, one will discuss them and their consequences. (ii|V']ii) =
U means on-site Coulomb interaction term. Thus, : = 7 = k = [ and second term turn

into following form,

1 1
5 Z(ij|V|kl>c;c}U, Cro’ Clo = 5 Z chocja, Ci' Cio (3.30)

ijkl

According to the Pauli exclusion principle, two identical fermions can not occupy same
site i. So, o and o (o =+ o) must be different from each other. Also, one needs to firstly
define commutation relations in order to use these properties which are {c;,, cjax} =0,
{cl, } =0 and {c s Cic} = 0ij 0,,. Now, one will use commutation relations
and expand the spin terms. So, one has two different configurations which are o =7
.0 =l oro =], =1 for Eq.3.30. Thus, Eq.3.30 becomes,

— Z CipCit cjicw —|—cz¢cz¢c7Tcﬁ =U Z NN (3.31)
—— ——
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Similarly, for off-site repulsion term,

1
(7i|V']ij) = Vi; and 52(]@|V|2])c c o/ Cio’ Cia (3.32)
i#]

oo

Thanks to the commutation relations {c;,, ¢;,»} =0 and {c s Cio}t = /, one

1] 0'0"

needs to rearrange operator order by swapping with each other one by one,

— g Vnc c o Cio'Cic = —35 E V;chc 1CioCjy!
z#] W_/ 17&]
:—rmr] ’

= __Z‘/Z] Cio Ciac;r‘al + 5ivj 500/)Cj0/
~

1#] -0

i#]

— —Z‘/;jnmn ’ (333)

173]

Again, one is going to expand the spin terms in the Eq.3.33. So, there are four possible
spin term configurations which are {0 =1,0’ =1}, {¢ =|,0 =l|}, {0 =t,¢" =]} or
{0 =|,0 =1}. Therefore,

1
= 5 Z Vij(nnnﬁ + nunﬂ + niTnN + nunﬂ) (334)
i#]
= Z Vij (mig + ny) (nr + 1)) (3.35)
1#] n n7
- > Z Viman, (3.36)
i#]

Eventually, one will substitute the on-site interaction term in the Eq.3.31 and off-site
direct interaction term in the Eq.3.36 into Eq.3.29 to get Hubbard and extended Hubbard

Hamiltonian,

H = tyclatin + U3 mana 3 5> Vi, (3.37)
(ig) 175]
Hubbard Model
Extended Hubbard Model
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After all, above equation is exact Hubbard Hamiltonian. We should do an approximation
in order to solve Hubbard model by using Weiss mean-field theory that was first intro-

duced by Weiss (Weiss (1907)). So, following equations is defined as,

nit = (nip) + (nip — (i) (3.38)
Angp
ni = (i) + (nig — (nay)) (3.39)

ATL,’J}

Assuming An;; and An;| terms are really small and apply these terms to the on-site term
in the Eq.(3.37),

npni, = [(na) + (i — ()] [(nay) + (nay — (nay))]
~ (i) (nag) + (i) (i — (nag)) + (i) (niy — (nar))
+ (nip — (nip)) (niy, — (nay))

.

Vv
~0

~ g (nag) + nag(nay) — (nap) (nay) (3.40)

On the other hand, defining these terms for off-site term and similarly applying,

ng = {(ng + (ng — (ny)) (3.41)
A .
n; = (ng)+ (n; —(ny)) (3.42)
A
these above terms turn into,
ning ~ ni(ng) +ng{ng) — (ng){n;) (3.43)

Consequently, Hamiltonian becomes by using Eq.(3.40) and Eq.(3.43),

(ij

Hyp ~ tijclyCio + U Y (nap(nag) + niy(nir) — (nag) (nay)
) i

5 S Vi) + g — (i) ) (344
i#
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Moreover, there is another approximation that electrons of system interact with fixed ion.

So, following values are defined as,

(n;) =1 (3.45)
1
(nig) = = (3.46)
2
after that, one will define bulk mean-field Hamiltonian,
FBuk ;tucwcﬂ, + UZ S - Pt5 ; Vii(ni+n;—1)  (3.47)
ij i#j

o

now, one will obtain one body mean-field Hubbard Hamiltonian by using next expression

and put each one of terms which are Eq.(3.44) and Eq.(3.47)

Bulk Bulk

= Zt” clcjo +U Z(w(mﬁ + niy(nir) — (nir) (i)

+5 Z Vij(ni(ng) +nj(ni) — (i) (n;))

i#]

— 3 tiel,cio — UZ fiit W_l __Zv;j (ni +nj —1)
(U) 2 i#]

+ 3ty wcﬂ,+UZ Doty ZVU (n; +n; — 1)
(w) z;ﬁ]

U 1
Hyur = Y tiyclcio + 3 > (s + i) + 3 > Vig(ni +ny)
(ij) i i#£j

.

V

> (z]) Tij (‘/ o Cioth.c. )

+ UZ (nir) nu, + ((nay) — %)nm]

+3 ;m«n» ~ Uy + ((n) = D] + (348)
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In addition, we know V;; = Vj;. So, mean-field Hamiltonian turns into following last

form,
1 1
Hyrn = Tij(c;rgcjg + h.c.) + UZ[((nm — Q)ni¢ + ({ngy) — §)n”]
(i5) 1
1
+ 5 2 Vil((ma) = Dny + ((ng) = 1)) (3.49)
1#]

Eventually, we told all models used in this thesis.So, we are done with this theoretical
model chapter and need to keep moving with methods. In next chapter, we will get more

detail about procedure of each models.
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CHAPTER 4

NUMERICAL METHODS

In this chapter, we will define a method that is a observable path, procedure and
duration in order to find out a truth in the scientific research for each defined models.
All above models are going to be numerically solved to obtain results. Moreover, their
working principle will be explained in detail one by one.

On the other hand, this thesis completely consists of two main part. One of them is
to be Anderson model and tight-binding model that is integrated to the Anderson model in
order to examine. Second one is mean-field Hubbard model that turns into the mean-field
Anderson model. As aresults of this, above explained first model will be distinctly discuss
in this chapter. After using these models, we will obtain results that will be mentioned in

result chapter. To begin with simple and precise TB.
4.1. Tight-Binding

In the section (3.1), we found the hopping parameter for the bulk graphene. During
this research, we work on zigzag graphene nanoribbons with periodic boundary condition
which has finite structure and certain atom numbers. Thus, we will apply the TB method
to finite ZGNRs in real space. In this section, we will explain about application and inner
working principle of TB method.

Let us introduce the TB Hamiltonian,

Hy = th;rcj 4.1)
(i,9)

where (i, j) denotes only nearest neighbour hopping that is allowed, cj (cj) 1s creation
(annihilation) operator at site ¢ (j) for an electron. Moreover, an electron is sitting at j
site and suddenly hopping to the ¢ site which is nearest neighbour of electron located at j
site.

Now, we should construct the TB Hamiltonian by defining a method which is

matrix for finite system size as shown in the Fig.(4.1). Here, we have mentioned before,
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Figure 4.1. Zigzag graphene nanoribbon consists of 36 carbon atoms

graphene consists of two different sublattices which are A sublattice marked by blue and
B sublattice marked by red in the Fig.(4.1). On the other hand, total number of atom
is 36 atoms. So, atom number 1 on edge site has two neighbours which are 19th and
20th atoms. Secondly, the TB Hamiltonian matrix is built by (N x ) matrix where N
is number of atom. Moreover, first row in the matrix belong to the our 1st atom that is
hopping to 19th and 20th. Hence, we are writing hopping parameter as ¢ to column of the
19th and 20th matrix element. So, rest of all elements are zero. Therefore, all rows are
filled up with similar way, gradually.

After constructing the TB Hamiltonian matrix, one need to do diagonalization
process in order to get results as numerical. Moreover, at end of this process, we will
obtain eigenvalues and eigenfunctions of the above defined system corresponding to the
labeled atom indices. As a results of this, we can obtain energy spectrum, density of states
and probability density of related system by examining the results. Although there is no
electron-electron interaction, we can obtain accurate results in a short time thanks to the
TB for any system. As a results of this, the TB Hamiltonian is a part of the Anoderson
model and mean-field Anderson model. In the next section, we will mention the Hirsch-

Fye Quantum Monte Carlo Algorithm for the Anderson Model.
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4.2. Hirsch-Fye Quantum Monte Carlo Algorithm

In this section, the Hirsch-Fye quantum Monte Carlo (HFQMC) algorithm for
the two-impurities Anderson model given in the Eq.(3.19) will be described. The quan-
tum Monte Carlo algorithm that we used was provided by Prof. Dr. Nejat Bulut (Bulut
(2003); Bulut et al. (2007); Kandemir, Zafer et al. (2016); Mayda et al. (2017); Bulut
and Maekawa (2006); Bulut (2002); Oztarhan (2018); Mayda (2013)) and uses two vital
things which are Trotter decomposition and discrete Hubbard-Stratonovich (HS) trans-
formation. HS transformation allows us to map a interacting electron system to a non-
interacting electron system with a fluctuating magnetic field. Moreover, electrons move
in that field which is determined by using a set of random spin configurations. Then, these
random spin configurations are generated by using a heat-bath or Metropolis algorithm
with a probability. Moreover, spin configurations are accepted of rejected by Monte Carlo
method that is based on a random sampling technique to obtain numerical results. Thus,
several methods can sample partition function in quantum mechanics in order to calculate
expectation value of an observable (Gull et al. (2011); Sandvik and Kurkijarvi (1991)).
Then they lead us to quantum Monte Carlo (QMC). On the other hand, in this research,
a discrete partition function is used by defining the auxiliary field which discretizes the
operator or the action. Therefore, the algorithm samples summation of the discrete parti-
tion function instead of dealing with all entire spin configuration. Moreover, the method
is concerned with the calculation of the Green’s function at finite temperature that allows
researcher to measure the electronic and magnetic properties of the system.

The two-impurity Anderson Hamiltonian in the Eq.(3.19) can be written in two

parts, Hy and H,

H=H,+ H, (4.2)

where H is the non-interacting terms
HO = tz C;fUng + Z(Ed - ,U)djgdia
(4:3) 1,0

U
-+ Z(V;]'C;rodjg —+ hC) —+ 5 Z(nm + nm) (43)

©,7,0 7

where H, is all interaction terms.
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U
H =U Z MidiTid, — Z(nm + Nyqy) 4.4)

The partition function for the system can be written as,

L
7 = Tre PUHotH) — 1y H e~ AT(HotH1) 4.5)

=1

Trotter approximation (Trotter (1959); Suzuki (1976); Hatano and Suzuki (2005)) is used
in order to separate into simpler components. Then, the partition function can be written

as,

L
=~ Tr l_I(e’A”LIOe’ATH1 + O(AT?)) (4.6)

=1

In addition, imaginary time interval between 0 and [ is discretized into L time slice with
defined 5 = A7L. Now, we can use discrete the Hubbard-Stratonovich transformation
(Hubbard (1959); Stratonovich (1957)) and define following identity (Hirsch (1983)),

1 1
NatNg, = —§(ndT — ndi)z + i(ndT + ndi)Z (47)

and this identity is applied to the /; interaction term. So, following equation is obtained,

U
H, = ) Z(nm — Niay)? (4.8)
with cosh()\;) = e227Ui,
—ATH U 2
e U= expy — AT Z E(nm — Niay) 4.9)
1
= 5 Z ea:p{ Z )\lS,(nsz — nidi)} (410)
S;=%+1 )

where 5; is an auxiliary field that is a fluctuating field. Moreover, that field takes the
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values as +1 and —1. So, the summation over these discrete .S values is vital for HFQMC
algorithm. After we apply the Trotter approximation and discrete Hubbard-Stratonovich
transformation which allows us to map the many-body interacting problem to a system
of non-interacting problem with a fluctuating field (Hirsch (1983); Kristjan (2006)), the

partition function becomes,

L
1
7 = Tr{ | | 3 exp{ — ATHO}exp{ E XiSii(Nigr — nidi)}}

=1 7 Su=

L
= Tr ll_[ % Z { AT Z KUCzTCJT}exp{ Z +A S“n“”}
-1

Si=%1 i

exp{ ATy Kijcgcﬂ}exp{ > —Aislmm} (4.11)
i %

where K is an (N + 2) x (N + 2) matrix form for the bilinear part of H and N is number

of host electrons,

HO = Z Kijajaajg (412)
ijo
NiSpim;
Hy = Z Kijchejr — i ATZ i (4.13)
H¢ = Z KijC;riCji + % (414)

ij
Also, a shows c and d electrons. On the other hand, we define following equation,

V;U == O'/\ZSZ|Z><Z| (415)

the Eq.(4.15) is a potential and acting at the impurity sites. Moreover, its matrix form is a
diagonal (N + 2) x (N + 2) matrix. Its matrix elements are ¢"¢" for the impurity sites, 1
for the host sites and O for rest of all off-diagonal terms. Additionally, we now introduce
following matrix BY, = e=27% V%7, After using previous defined equation, we can rewrite

the partition function as,
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Z = Y ] detlI + BLi(0)BL-1i(0) ... Bu(0)] (4.16)

{S;;=%1} o==%1
{Sii=%1}

where 97, is an (N +2)L x (N + 2)L matrix, N is the number of hosts with 2 adatoms

and L is number of times slices. So, the single particle Green’s function is defined as,

o = —(Tr daody,) (4.18)
1
- _ETr{e_ﬁHTT dao (1) dl, (I} (4.19)

the one-particle Green’s function is the inverse of the matrix ¥7,. Thus, there is a relation
between these two (Kristjan (2006); Fye and Hirsch (1988)).

Gaar = (97) 7" (4.20)

As we has mentioned before, the size of the 97, is (N+2)L x (N+2)L. Thus, calculation
of the Green’s functions for the huge system size with the set of spin configurations is very
difficult.

4.2.1. New Green’s Function from the Old Green’s Function

Here, new Green’s function (G*9¢)" will be derived with new spin configuration
{S]} from the old Green’s function with old spin configuration {S;} by using Hirsch
and Fye algorithm (Hirsch and Fye (1986); Fye and Hirsch (1988)). Moreover, they
noticed that the Green’s function can be calculated for a spin configuration. Then, after
changing one spin flip, new spin configuration is arranged for new condition. So, G can
be updated to the new Green’s function with new spin configurations. Also, a Dyson’s

equatin connects to the Green’s functions of different spin changing. Thus, we define G~*
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Vid

and e"* matrix with dropping the spin indices for simplicity.

I 0 Br
-By I 0 0
0 —By I :
e | (4.21)
1 0
0 o --- 0 —-Bp. |1
(N+2)L x (N+2)L
()] (42) x (2 0
(eYia) ™! = [(evzd)](_z\lurz) x (N+2)
0 [(GVLd)](_J\lf+2) x (N+2)

(4.22)

where B, = e 27K¢eVv, Also, dimension of above matrix is (N +2)L x (N +2)L. So,

matrix multiplication is done for these two matrices,

[(e¥14)] 0 . o ATK
—eATE [(eVea)] 0 0
Gfl(eVld) 1 _ 0 —e ATk [(6V3d>]_1
() S
0 0 e 0 —e K [(eVra)] !
(4.23)

Here, following equation is obtained by using above calculations,

G = '@ (4.24)
@At = ¢ e (4.25)
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According to the above obtained result, off-diagonal elements of matrix do not depend

on spin configuration. When the HS field is changed, only diagonal elements of above

matrix change. So, it can be written,

by using Eq.(4.25),

6V/G/ _ eVG . evG((eV’)—l . (€V>—1)€V’G/

Then, dividing both sides by eV,

)V =G - G((eV) e - D&

Adding G’ to the both sides,

Gl = Gaa+ (Gaa — D((e") e = )Gl

(4.26)

(4.27)
(4.28)

(4.29)

(4.30)

(4.31)

where G4q is a L x L matrix that is old one, G/,; is a L x L matrix that is new one.

-1,V _

Moreover, ((e¥) e Iisa L x L diagonal matrix where [ is a L. x L identity

matrix. Accordingly, the relation between the new Green’s function and the old Green’s

function is found as,

b =41 — (Gag — (V) e =)} ' Gaa

(4.32)
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4.2.2. Initial Calculation of Green’s Function G° from G° and ¢V

In the Hirsch-Fye quantum Monter Carlo method (Fye and Hirsch (1988)), the
relation in the Eq.(4.32) was found between the new and old Green’s function. Thus,
we should do some adjustment in order to find new relation for the initial calculation of

Green’s function.

G — G°
G — Q° (4.33)

The equation in (4.32) turns into new one with above identities,

=11 — (G- D"V -N}'GY, (4.34)

where GY, is the impurity Green’s function for case {S;} that is set to zero. So, we can

define and calculate the Green’s function G,(1, '),
(L) = —(T. dgd, ) (4.35)

where T is Matsubara time odering operator. GY; is calculated from the Hy part of the

Hamiltonian that is recalled,

HO = tz C:-fUng -+ Z(Ed - ,U)d;’rgdia
(1,9) 1,0

U
+ Y (Vijel,djo + hc) + o) > " (niat + niay) (4.36)

ij,o i

The above impurity Green’s function with hybridization and no Coulomb interaction
(U = 0) can be calculated by using the following Feynman’s diagrams, From the above

Feynman’s diagram, the Dyson’s equation can be obtained,
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Figure 4.2. Feynman diagram for the impurity Green’s function G9 (iw,) and U = 0.
Double lines denote GY, (iw,,) and single lines denote g, (iw,) and g,4(iw, )
for the non-interacting Green’s functions.

Gop(iwn) = aaga(iwn) + > ga(iwn) Vi gk, iwn) Vi ar Gy gu(iw,) (4.37)
k,d"

Gy (iwn) = Sawga(iwy,)

3 gation) { D2 Wara Poelhsisn) } Gonlisn) — (438)
k

d//

self—energ;/:r > (K, dwy)

Before going on, we should define two things that non-interacting Green’s function for the
impurities and host is defined with no hybridization (V;; = 0) and no Coulomb (U = 0)

interaction,

1
) = - for the host electrons (4.39)
eliv) = e )
1
wy) = - for the i ity elect 4.40
galiwy,) P ( for the impurity electrons ) (4.40)

where w,, = (2n + 1)7T is Matsubara frequency with temperature 7" for fermion and n

that is from —oo to co. Also, we introduce the self-energry which is,

1
(er — 1)

-

wy) = Fya(k,iw,) = |2 4.41
D ki) = Fuarlhn) = 32 Va7 — (4.41)

ge(iwn)

As a results of this, G is calculated in the Eq.(4.38) which is the Dyson’s equation and
obtained in frequency space (1w,,). After calculating all Green’s functions, they are trans-
formed to imaginary time space (7 = ¢t). In this space, physical measurements are going

to be done to obtain results.
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4.2.3. Ratio of the Determinants

In this section, the ratio of the determinants will be calculated and used in up-

dating Green’s functions with new spin configuration S;;. Namely, in a quantum Monte

Carlo simulation, new spin configuration is generated by a porbability of the ratio of the

determinants of ¥/ and v,. Moreover, we omitted the spin indices for simplicity.

Sl —>Sl/: —Sl

To start with recalling the following equation,

Gy = Gaa — Gaa((e"i)™ — (") ™) Gl

where G40 = €"14Gyg. So, multiplying both sides by (G”,,,)~" on the right,

I = Gaw(Glhy)™ = Ga((eVia)™ — (V)7
Gaw(Glha) ™t = T+ Gaa((e¥i)™ — ("))

Recalling Gyo = (94) ! from Eq.(4.20),

Gaw = eMGaa

= BVM (ﬁd)_l

Thus, inserting Eq.(4.46) into Eq.(4.44),

(Y14 (0a) ™) (¥ (0) ™ = I + (€M Gaar) (")~ — (") 71)

Here, multiplying by e~"i¢ on the left and "« on the right,

(W) 1) = e ViaeVia 4 Gup (I — e ViaeVia)

— e_vl'i@VZId(Gdd/ — ])(I — G_Vldevlld) + (_[ — e_vldevlld)

(4.42)

(4.43)
(4.44)

(4.45)
(4.46)

(4.47)

(4.48)
(4.49)
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Hence,

(ﬂd)il(l%d) = [ + ([ — Gdd/)<evlldefvld _ [)

Taking the determinant of the both sides, following equation is obtained,

det 9},

— _ N (eVia—Via _
det ﬁld det([ + (I Gdd )(6 ]))

Therefore, the ratio of the determinants with the spin dependency,

_ det Uy,

- = = detA,
det 19ld ¢

where,

Ay =T+ (I — G5y (eYia=Yia — 1)

(4.50)

4.51)

(4.52)

(4.53)

In the quantum Monter Carlo algorithm, heat-bath algorithm is used in order to deter-

mine the transition probability from the old spin configurations {S;;} to the new spin

configurations {S};}. On the other hand, random number is generated between 0 and 1.

Additionally, if this probability is greater than the random number, the new spin configu-

rations are acceptable move. Otherwise, that move is rejected.

P

P(Sia — Spy) = 1+ P

where

P =RiR,

(4.54)

(4.55)
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4.2.4. Calculation of Updated Impurity Green’s Function for the
New Spin Field Configuration

In this section, new expressions will be derived for the updated Green’s functions.
As seen in the Eq.(4.31), there is the relation between the old and the new Green’s func-

tion. So, Eq.(4.32) is recalled in order to insert into the following equation,

Gy = Gaa+ (Gaa — D) (") e = DGy (4.56)

and

w =11 = (Gaa = I)((")'e"” = D} ' Gaa (4.57)

The expression for the updated algorithm is obtained. Thus, when .S}, is flipped, the new

impurity Green’s function is given by,

(G5a) = G5y + (Gy — I)(e¥™V — 1A' GY, (4.58)

where

Ay =T+ (I — G5y (eVa=Via — 1) (4.59)

4.2.5. Quantum Monte Carlo Measurements

Thanks to the Green’s function method which are calculated by using Hirsch-Fye
QMC technique, physical measurements is done. Moreover, the numerical results are
obtained and represented in the results chapter. Roughly speaking, during the calculation
time, we wait the system to reach equilibrium state at the given temperature. Speaking
of equilibrium, number of warm up and number of measurements sweeps were described

in the simulations. So, warm up is the thermalization of the system at given temperature.
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After certain warm up, measurements start. Then, the Green’s functions are calculated
and sampled from the spin configurations {S;;}. Thus, we take average of them over
the QMC samples. The single Green’s functions in the Matsubara time are defined by

following equation,

’

Gl (1) = —(Tedan (7' + 7)dly (7
Gﬁld/(T) = —(TTdC“(T/ + T)dZm(T

) (4.60)
) (4.61)

!

where d and d’ defines the impurities and 7' is the Matsubara time ordering operator. The
physical measurements is calculated in terms of the single particle Green’s funciton using

the following commutation relation between the impurity electrons,

{dda, dIl,U,} = SO (4.62)
the magnetization operators are defined by,

Mj = dlydgy — dfydgy (4.63)
the equal-time magnetic correlation function,

<(M§)2> = <(dIdedT - dziddj,)(dzndcn - diuddi» (4.64)
1 L
= 2 ((Glmm) = Gly(ri )’

=1

+ Gly(m, ) (1= Gly(7i, 7))
+ Gﬁd@'h i) (1 — Gﬁd(ﬂ‘, Tz))> (4.65)

mc

the square of the magnetic moment of the impurity is ((M3)?), so,

(mg'7)? = (M M) (4.66)
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the magnetic correlation functions between the two impurities,

(MiMG)) = ((dlydar — dfyday)(dlysdar — dly dary)) (4.67)
L
1
= £ 2 (Glulrm) = Glymm)
=1

X (Gl (13 73) — Gy (73, 73))
+ Gl (13, 7) (Bawr — Glg(7i, 7))
+ G (70, 1) (g — G (5, n))> (4.68)

mc

In this research, we calculated the static magnetic susceptibility between two magnetic
adatoms. So, above calculations were done in the imaginary time space for the magnetic

correlation functions between the two impurities,
X(7) = (T- M (1) M (0)) (4.69)

Thus, we need to pass from the imaginary time to frequency space by taking the following

inverse fourier transformation,

B
X(iwn):/ dre™nTx (1) (4.70)
0

And the zero-frequency magnetic susceptibility is calculated by,

B8
y(w=0) = / dr (M () ME(0)) @71

4.3. Mean-Field approximation process for the Hubbard model

Before starting the process, Lieb’s theorem (Lieb (1989)) is used in this method
for a bipartite lattice. According to the Lieb’s theorem, we define the number of spin up
and down electrons in order to search ground state. So, the total spin of the system is

defined by the following equation,
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which S, = 0 for the clean ZGNRs with PBC if Ny = N,. Also, it is coupled

antiferromagnetic edges and

_ Ny = N

S, 5

(4.72)

Moreover, the ground state is S, = 0 for the clean ZGNRs with PBC if the number of
spin-up and down (N+ = N|) equal to each other. Furthermore, during the mean-field
calculations, Temperature are taken into account. So, Fermi-Dirac distribution is defined

by,

i 1
I7(&) = T e o

(4.73)

1
kT’

ture, €7 1s energy of that ¢ th particle and ;7 is chemical potential with o spin dependency.

where [ is inverse temperature taken as kp is Boltzmann’s constant, 7" is tempera-

Additionally, 117 is defined by below equation,

1o = 4.74)

Starting with choosing a simple TB Hamiltonian given in the Eq.(4.1). After diagonaliz-
ing the TB Hamiltonian, we obtain its eigenvalues and eigenvectors. The obtained energy
level are filled up by N, V| with the Fermi Dirac distribution. After that, spin up and spin
down densities are calculated by the following Eq.(4.75). Moreover, the mean occupation

number can be calculated by the next Eq.(4.76). Also, N is total number of electrons,

N
p7(i,5) =D WP f (&) (4.75)
(Nig) = diag(p° (1, j)) (4.76)

the U term in the Eq.(3.49) has two blocks which are spin-up Hamiltonian and spin-down

Hamiltonian. As can be seen in the Eq.(3.49) the spin-up density calculated from the
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Eq.(4.76) are added to the diagonal elements of the spin-down Hamiltonian. Then, same
process is applied for the spin-up Hamiltonian. After diagonalizing spin-up and spin-
down Hamiltonians, new snip-up and spin-down densities again are calculated. Besides,
these new spin densities are used in order to find new spin Hamiltonian. Furthermore, this
process is repeated itself until difference between last two energies is less than desired

sensitivity.
4.4. Mean-Field Hubbard to Mean-Field Anderson Model

In this section, we have developed new model which are called mean-field An-
derson model from the mean-field Hubbard model in the Eq.(3.49). So, we recall the

Hamiltonian,

Hurn = 3 mig(cheso +he) + U 32 [(0ns) = S)msy + ((00) = 3
) i

(i

LSVl = s+ () = D @
1#]

Our aim is to obtain the static magnetic susceptibility by using the mean-field approxi-
mation for the mean-field Anderson model. Because of that, we need to reproduce new
model from above used model. The Hamiltonian consists of three terms which are the
hopping term, on-site and off-site Coulomb interaction. However, during the research,
off-site Coulomb interactions are not taken into account. Therefore, V;; is zero. Sec-
ondly, one impurity or multi impurities could be in the system. Because of that, we derive
general form of the model. So, we add another on-site Coulomb interaction for the impu-
rity or impurities and hybridization term between the impurities and host electrons. As a
results of this, new model is derived by,
Hyra = Tij(c;fgcja + h.c.) + Z(Vijcjadja + h.c.)
(i) 04,0
PG 1 1

Uimp Z [((nar) — Q)nu + ((nay) — 5)7%]

Unow Y (003) = g+ () = ol 479
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The first term belongs to the host electrons and 7;; is effective hopping parameter between
the host electrons for the graphene. Second one term is hybridization term between the
impurities and host electrons. Third one is adatom term where U, is defined for the
adatoms and N, is number of the impurity. The last one is the host term where Up, is
taken for the host electrons and NV, is number of the host. On the other hand, there is
one more thing to explain that when the Anderson model is looked in the Eq.(3.19), it has
the impurity energy level which is . Thus, in the Eq.(4.78), £, term is compensated by
the % in the third adatom term. As a consequence of this, mean-field Anderson model was

derived and is literally same with Anderson model if the last Uj,,s; host term is ignored.

4.4.1. Calculation of \;» Solving Mean-Field Approximation

Here, we have obtained the mean-field Anderson model in the previous section
in order to use in the mean-field approximation. So, the model was solved numerically
in order to get specific ground state for AA configuration or AB configuration. First of
all, we need to find ground state of the system by using the Eq.(4.72). According to the
Lieb’s theorem, ground stat of the system will be S, = 0 for clean ZGNRs if the number
of spin-up and down electrons (/Ny = N|) equals to each other. Additionally, when two
adatoms are put to the system, we have two extra electrons. Moreover, if two adatoms are
located on the same AA sublattice, the new ground state will be S, = 1 with two extra
electrons. On the other hand, the new ground state will be S, = 0 with two extra electrons
if two adatoms are located on the different AB sublattice. Thus, according to these two
configuration, the ground state of the system will be changed. Eventually, the system
reaches the ground state at specific temperature with FD distribution. After that, we have
obtained the expectation value of the two impurities for up and down electrons. During
this research, two impurities are embedded to the system and performed in order to get
correlation function between these two impurities. Accordingly, we marked adatoms as 1

and 2. So, their expectation values are defined by,

(n14) , (n1,y) (for the first adatom) (4.79)

(n2t) , (n2y) (for the second adatom) (4.80)

Besides, magnetization can be calculated by using above equations from the MFA,
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my'" = (nay) — (nay) (4.81)

We basically try to obtain the magnetic susceptibility between two impurities by using the

Green’s function method. Before doing that, Feynman diagram is defined by, From the

g V g
e = —<— + <A —<—H—<—=x
d d d d d (iv¥}) ¢ (iv) d d"

Figure 4.3. Feynman diagram for the impurity Green’s function with spin dependency
GYy (iwy,). Double lines denote G, (iw,,) and single lines denote g.(iw, )
and g4(iw,,) for the non-interacting Green’s functions.

above Feynman’s diagram, the Dyson’s equation can be obtained by,

ng' (an) = 5dd’gd’ (an> + Z gar (iwn)v:;’,kgc(k7 iwn)vk,d’Gg,d’/ (an) (482)

k,d’
ng’ (iwn) = Ogarga(iwn)

3 gartion) { D0 Wara Poelk,iwn) } Ghunlion)  (483)
k

d//

. 7

self—energ}: > (K, dwy)

In our system, there are two impurity and we will obtain the specific impurity Green’s

functions from the Dyson’s equation,

1 Fa
G7, = , G, =G,————— (4.84)
() - it T Hg2)t = Fa
F12 1
G5 =Gy——, GS, = (4.85)
)T =P T ()7 — P

non-interacting Green’s functions for the impurities and host are defined with no hy-

bridization. So, non-interacting Green’s functions are defined by following equations,
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1
ge(iw,) = ——— ( for the host electrons ) (4.86)
iw, —

1
ga(iw,) = ———=— ( for the impurity electrons ) (4.87)
Wy — Ed,a

where w,, = (2n + 1)7T is Matsubara frequency with the temperature 7" for the fermion

and Edyg = E4+ (ngt) X Uimy . Also, the self-energry is defined by,

1
S (hw) = Faa(bw) =Y Vaal? ——— (4.88)
k

MWy — €k

gc(iwn)

According to above equations, we set up interacting Green’s functions matrix,

Go, Ge
Gow)y=[ " " (4.89)
G5 G5

Eq.(4.89) is in the Matsubara frequency. Thus, we need to move to the Matsubara time

by taking fourier transform of the interacting matrix,

Gr)=T Y e ™G (w) (4.90)

n=—oo

We need to measure in the imaginary time space over one sample unlike QMC simulation

by using following equation,

(M (M)MZ(0) = (diydar — diyda,)(dlydar — dfy day) 4.91)
L

MEOMEO) = > ((Glumm) = Ghalrim)

i=1
x (Gl (7i,7m) = G (73, 73)

+ Gjld’ (Ti7 Ti)<6dd’ - Gjyd<7'i7 Tz))

+ Gizd/ (75, ) (Ogar — Gixd(ﬂ‘, 7—1))) (4.92)

After getting measurement, we need to come back to the frequency space using the

inverse-fourier transformation in order to find the static magnetic susceptibility by us-
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ing following equation. So, the static magnetic susceptibility between two impurities is
defined by,

B8
Ww=0)= / dr (M (1) MZ(0)) (4.93)

4.5. RKKY Interaction

In this section, we will discuss that how two identical magnetic impurities com-
municate each other without any direct connections if these are embedded to specific
location on the host material. First of all, we will define direct exchange interaction
that conduction electrons of the host atoms communicate with each other due to overlap
of charge distribution of ions as seen in the Fig.(4.4)a. Secondly, another one is indi-
rect exchange interaction between two magnetic adatoms as seen in the Fig.(4.4)b. The
magnetic moment of nucleus of first adatom scatters a conduction electron with spin. Ad-
ditionally, interaction between electron and nuclear magnetic moment is hyperfine. Then,
the magnetic moment of nucleus of second adatom feels that scattered electron with spin.
Thus, the two magnetic adatoms indirectly see each other. As a result of this, this in-
teraction first was studied in a metal host known as the Ruderman-Kittel-Kasuya-Yosida
(RKKY)interaction (Ruderman and Kittel (1954); Kasuya (1956); Yosida (1957)). A few
recent work (Kogan (2011); Sherafati and Satpathy (2011b)) have shown that decay of
RKKY interation is proportional to R~ in the graphene, where R is the distance between

two magnetic impurities

Qar0rgrar @ D@

Figure 4.4. Schematic demonstration of (a) direct exchange and (b) indirect exchange.
(Reprinted from the source (Ashcroft and Mermin (1976)) )

In particular, effects and behaviours of the interaction has been searched in terms
of shape of the host, impurity type (Black-Schaffer (2010b,a); Bunder and Lin (2009);
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Hwang and Das Sarma (2008); Klinovaja and Loss (2013); Lee et al. (2012)) and different
configurations of impurities (Uchoa et al. (2011); Sherafati and Satpathy (2011a); Dugaev
et al. (2006); Saremi (2007); Brey et al. (2007)).

1+ cos|[(K — K') - R

Jis = —C (Rja (4.94)
B 1+ cos[(K — K') - R+ 7 — 20g)
Jap = 3C (RJa) (4.95)

where C' = 9\*h% /2567t , K and K is reciprocal lattice vector.

To sum up, during the research, we have worked on ZGRNs with PBC in order
to calculate the spin-spin susceptibility of two magnetic impurities by using HFQMC
simulation and mean-field approximation for the two-impurity Anderson model. Thus, we
obtained the results far from the edges of ZGNRs. These two models will be mentioned
and compared with RKKY model that Eq.(4.94) for AA configuration and Eq.(4.95) for
AB configuration was used and taken from the Ref.(Sherafati and Satpathy (2011b)). In
the next chapter, we will show and explain numerical results that we obtained by using

QMC simulations and mean-field approximation.
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CHAPTER 5

RESULTS

In this chapter, the static magnetic susceptibility yi, between the two magnetic
adatoms will be investigated for both the two-impurity Anderson model in the Eq.(3.19)
and the mean-field Anderson model in the Eq.(4.78). These models was solver by using
HFQMC algorithm and mean-field approximation, respectively. Then, we will explain
these main models in two separated subtitle which are QMC measurements and MFA
measurements. Moreover, ZGNRs consists of 10516 host carbon atom and 22 zigzag

(W = 44). Also, there are only two magnetic impurities on the ZGNRs.

Figure 5.1. Representation of two magnetic impurities which are randomly located on
the zigzag graphene nanoribbons.

Before beginning to explain results, we need to be more clear about a few things
what we used in this thesis. As seen in the Fig.(5.1), two magnetic impurities are added
to specific locations. Then, measurements are done in order to get the magnetic suscep-
tibility between these two adatoms. Moreover, as seen in the Fig.(5.2)(c), one adatom
is fixed at Ay point and marked by black circle. Then, the other one is located at A;.
So, the magnetic susceptibiltiy was calculated at R/b = 1 where R is distance between
two magnetic adatoms. Then, second adatom was moved to right lattice site. Again, the

magnetic susceptibility was measured at R/b = 2 for these two adatoms. As a conse-
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quence of this, that process was repeated one by one until 9th carbon atom that is shown
as Ag. Moreover, as in the Fig.(5.2)(c), these correlation groups are called as C'hain.
Namely, C'hainl is located on the middle of the ZGNRs. Then, when these correlation
groups are located on the edge of ZGNRs, all they are called as Chainll as seen in the
Fig.(5.2)(a). On the other hand, these calculations are done for different sublattices of the
ZGNRs which are AA, BB and AB. Also, in the Fig.(5.2)(a), we show the ZGNR with
PBC what we work on. Moreover, we marked two ends as y and 3/ that are connected

with each other.

Upper Edge— ::
(@

Middle —

Lower Edge = “i— z
y'

© Chain_11
Ao A, A, A, A, As As A, A A,

1 —>
B, B, B, B, By B; By B; Bg By

Chain_1

Ao A, A, A, A, As As A, As A,
NN
B, B, B, B, B+ B; By B; Bs By

Figure 5.2. (a) Demonstration of ZGNR with PBC what we use in this research and
consists of 10516 host atoms and it is showed middle, upper and downer
edge. (b) it is zoomed in specific location on Figure (a). (c¢) we focus
on specific areas in middle and upper edge of the graphene and two black
rectangle which are Chainl and C'hainll

During this research, the measurements was done on upper-half of ZGNRs as seen
in the Fig.(5.2)(b). On the other hand, as seen in the Fig.(5.3)(a), another important point
is all Ay — A; calculations which belong to all C'hains. Then, as seen in the Fig.(5.3)(b),
all calculations are plotted by blue that is called as R1. On the other hand, all A, — A,
calculations are plotted by red that is called as R2. As a results of this, we do these
calculations in order to comprehend how all Ay — A; 5 . calculations are changed at
each R/b position when all correlation groups are moved from the middle to edge of the
ZGNRs.
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Chain_10
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Figure 5.3. (a) Indicating of all chain we have and their first calculations are marked
by red (Ag — A1). (b) Just representation of 12 versus number of Chains

48



5.1. Results for Quantum Monte Carlo Measurements

In this section, we will indicate all QMC results. Before doing that, each QMC
simulations have been performed using the Anderson Hamiltonian (3.19) for 10 warm up
and 10° measurement sweeps and done 10 times which is number of simulations. Also,
we need to define some certain constants which are energy level of the impurities taken
as By = —1.2eV (—0.4¢) for the first impurity and Fy = —1.2eV (—0.4¢) for the second
impurity, the on-site Coulomb repulsion taken as U = 2.4eV (0.8t), chemical potential
taken as ;. = 0 in units of ¢~, the size of the time step taken as A7 = 1 in units of ¢~*
and inverse temperature 3 = LAT expressed in terms of ¢t~!. Moreover, during QMC
simulations, inverse temperatures are taken as 5 = 16,32 and 64 which correspond to
T = 2177K,1087K and 544K, respectively. As we have mentioned before, all QMC

simulations have been performed in terms of ¢~ (£ = 3eV).

AA and Beta16, 32 and 64
T T T T T 3

F —F—Betat6 | ]
L —F—Beta32
107 E —F—Beta64 | 3

=& RKKY

Figure 5.4. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainl which is located on the middle of ZGNRs. The solid lines are
obtained by QMC simulations for different inverse temperature 5. The
dashed line is the RKKY results obtained from Ref.(Sherafati and Satpathy
(2011b)). All results are ferromagnetic.

The static magnetic susceptibility is calculated by using Eq.(4.71) between two

magnetic impurities along the zigzag direction as a function of distance (in units of the

second nearest neighbour distance b). Moreover, these adatoms are located on the AA
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sublattice which is blue carbon atom, the BB sublattice which is red carbon atom (im-
purities on the same sublattice) and the AB sublattice which is blue and red carbon atom
(impurities on the opposite sublattice) as shown in the Fig.(5.1). Also, two impurities
are located far from the edges. As seen in the Fig.(5.2) they are located in the middle
of ZGNR. Moreover, as we have mentioned before, these correlation groups are called
as C'hainl. Besides, QMC calculations are obtained for different inverse temperature 3
and the analytical RKKY results ,using these both Eqns.(4.94) for the AA sublattice and
(4.95) for the AB sublattice and obtained from Ref.(Sherafati and Satpathy (2011b)), are
showed with the dashed lines for the both figures in order to compare to QMC results. We
begin to examine with Fig.(5.4),Fig.(5.5) and (5.6). For the AA and BB configurations
(Fig.(5.4) and Fig.(5.5), respectively.), QMC results are consistent with RKKY results in
terms of FM behaviour (positive susceptibility). Moreover, results of QMC simulation
shows same Fermi oscillations (Saremi (2007)) with maxima at every (3 + 3n)th A or B
atom like RKKY results. On the other hand, although QMC simulations was done for two
different sublattices, Fig.(5.4) for AA and Fig.(5.5) for BB show same behaviour. How-
ever, when temperature is decreased (inverse temperature is increased), the correlations
is diverged from the RKKY results. So, at low temperature, the magnetic susceptibility

becomes more important.

BB and Beta16, 32 and 64

102 E T T T T T T T T T E
5 —F—Beta16 | ]
r == Beta32 | -
0l F —I—Betab4 | o
100 F E
~
> 10 E E|
102 ¢ 3
10°F E
10_4 1 1 1 1 1 1 L
0 1 2 3 4 5 6 T 8 9 10
R/b

Figure 5.5. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the BB sublattice and
Chainl which is located on the middle of ZGNRs. The solid lines are
obtained by QMC simulations for different inverse temperature 5. The
dashed line is the RKKY results obtained from Ref.(Sherafati and Satpathy
(2011b)). Also, all results show same ferromagnetic behaviour.
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On the other hand, same observations can be interpreted for the AB configuration
(Fig.(5.6)), QMC simulation results that show AFM behaviour are same with the RKKY
results (negative susceptibility). Moreover, QMC results have Fermi oscillations with
minima at every (2 + 3n)th B atom along the zigzag AB direction like RKKY results.
However, when the temperature is decreased (/3 is increased), the QMC results diverge
from the RKKY results like the AA and BB results. As a results of this, for the three
cases which are AA,BB and AB, QMC results agree with RKKY results at high tem-
peratures.Furthermore, the oscillations decay as R~3. Besides, when the temperature is
decreased, the magnitude of the static magnetic susceptibility is strongly enhanced at each
sublattice configurations. On the other hand, although ZGNRs has finite system size, all
results agree with the bulk graphene results in the literature (Guclu and Bulut (2015)).

AB and Beta16, 32, 64
T T

—J—Beta16 | ]
il —JF—Beta32 | |
10°¢ —J—Betab4 | J

=@ RKKY | 1

102§ T

Figure 5.6. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainl which is located on the middle of ZGNRs. The solid lines are
obtained by QMC simulations for different inverse temperature 3. The
dashed line is the RKKY results obtained from Ref.(Sherafati and Satpathy
(2011b)). Also, all results show same antiferromagnetic behaviour.

5.1.1. All Chains from the Middle to Edge of the ZGNR

In this section, we will examine all C'hains results from the Chainl located on
middle to the C'hainll on edge of ZGNR for the specific inverse temperature. However,

we will show only C'hainl, 3,6,9 and 11 results for simplicity. Moreover, we plot all
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results into two groups which are solid lines and dashed lines in order to comprehend
differences between them. Namely, the solid lines belong to C'hainl and C'hain11 and
the dashed lines belong to C'hain3, Chain6 and Chain9.

AA and Beta16

10% . .
: —Jchaint
Chain3
i Chain6
ol -F chaing |1
107 ¢ —F-chain11]3
N 3
=
102 E
10
0 2 4 6 8 10

R/b

Figure 5.7. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice. The
solid lines and dashed lines are obtained by QMC simulations for the one
specific inverse temperature 5 = 16. All results show same ferromagnetic
behaviour. Also, Chainl and Chain11 are located on the middle and edge
of ZGNRs, respectively.

In the Fig.(5.7), when the correlation groups are close to zigzag edges, the mag-
netic susceptibility as a function of distance between the two impurities are changed. The
locations of adatoms where they are far from edges or on the edges, significantly affect the
spin susceptibility. On the other hand, all QMC results show same Fermi oscillations and
FM behaviour except C'hainl11 that is located on the edges. Furthermore, in the Chainll
that is purple one in the Fig.(5.7), major changing appears that there is no Fermi oscilla-
tion. Also, at shortest R distance, when C'hainl and Chainl1 are compared, magnitude
of C'hainl1 is significantly enhanced.

On the other hand, in the Fig.(5.7), we focus on each R distance such as R/b = 1.
Moreover, we need to obtain more informamtion about how correlation groups at all R/b
are affected when two impurities are close to the edges. As seen in the Fig.(5.8), the
magnetic susceptibility as a function of number of chains is obtained for the 5 = 16.

According to these results, the magnetic susceptibility are same for each graph exclude

52



-—8— R1
GE | | AA andTBeta16 | | D
R3
-8 R4
0.5 | |—e—Rs
R6
—— R7
0.4 1 [F=es
=@ R9
0.3 - a
o~
=
02 o—e—"—o 1
01r : ; il
0r J
_0-1 L 1 1 1 1
0 2 10 12

6
# of Chain

Figure 5.8. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of number of chains for the AA sublat-
tice. The solid lines are obtained by QMC simulations for inverse temper-
ature 3 = 16. All results show same ferromagnetic behaviour.

R1 (R/b = 1, blue one) that is dramatically increased. However, interpretation of this
results are still difficult without observing other results.

In the Fig.(5.9), we will examine the AA configuration for 5 = 32. When cor-
relation groups are close to the edges, the static magnetic susceptibility is significantly
affected. On the other hand, as seen in the Fig.(5.10), remarkable results are appeared at
the specific R distance which are R1 (R/b = 1, blue one), R3 (R/b = 3, yellow one) and
R4 (R/b = 4, purple one). When adatoms are close to the edges, the spin susceptibility
firstly is increased. Then, correlations are dramatically decreased. Because of that, we
need to examine energy spectrums of C'hainl and C'hainll by marking two impurity
states. As seen in the Fig.(5.11)(a), two impurity states marked as red and zero energy
edge states are hybridized with each other at Fermi level for C'hainl. Moreover, As seen
in the Fig.(5.11)(b), two impurity states are located away from edge states for C'hainl1.
Namely, impurity states and edge states are not hybridized with each other anymore. Ac-
cording to obtained information, when impurity states are hybridized with edge states,
the magnetic correlations is significantly enhanced. Moreover, when these impurity states
start to be separated from edge states, the correlations is suddenly decreased.

In the Fig.(5.12)(a), we will observe the AA configuration for § = 64. Same

effects are occurred like = 16 and 32 results. Thus, when correlation groups are
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Figure 5.9. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of number of chains and specific dis-
tances for the AA sublattice. The solid lines and dashed lines are obtained
by QMC simulations for the one specific inverse temperature 5 = 32. All
results show same ferromagnetic behaviour. Also, C'hainl and Chainll
are located on the middle and edge of ZGNRs, respectively.

close to the edges, all QMC results show FM behaviour and Fermi oscillations. Also,
for Chainl11 which is the solid purple lines, there are no Fermi oscillations. Moreover,
magnitude of the correlations is dramatically decreased by changing R distance. How-
ever, in the Fig.(5.12)(b), striking results are appeared at the specific R distances which
are R1 (R/b = 1, blue one), R3 (R/b = 3, yellow one) and R4 (R/b = 4, purple one).
When adatoms are close to the edges, the spin susceptibility firstly is increased. Then, the
spin-spin correlations between two adatoms are rapidly decreased due to hybridization
effect.

As a results of this, we have mentioned the edge effect of ZGNRs in (2.3) before,
there are zero energy edge states in the ZGNRs. Furthermore, their effects are spread on
the A sublattice and the upper edge of the ZGNRs as seen in the Fig.(2.7). On the other
hand, as seen in the Fig.(5.11)(a) for the C'hainl, adatom states marked by red are mixed
with host atoms that are shown by blacks. Moreover, adatom states are located with the
zero energy edge states at Fermi level and are hybridized with edge states. Because of that,
when adatoms are close to the edges, the spin-spin correlations are positively affected.

However, as seen in the Fig.(5.11)(b) for the C'hainl1, adatom states marked by red are
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separated away from the zero energy states. So, there are no connection between mixed
adatom states and zero energy states. Thus, when adatoms are close to the edges or on the
edge sites, the spin-spin correlations of the adatoms is reduced due to the hybridization
between the adatoms and edge states.

Furthermore, we have calculated at different temperatures 8 = 16, 32 and 64 for
the BB and AB sublattices by using QMC simulation. Thanks to information of the
probability density of our system as seen in the Fig.(2.8), the probability distributions are
spread on A sublattice at upper half plane of ZGNRs. When two impurities are located
on BB and AB sublattices, our system and the correlations of two magnetic impurities
will be affected because of this information. Moreover, we will interpret these results and
focus on the only 5 = 32 results.

We focus on the BB configuration results where both adatoms are located on the
B sublattice ( same sublattice). As seen in the Fig.(5.13), when adatoms are close to the
edges, the static susceptibilities for the adatoms have same FM behaviour and Fermi oscil-
lations for all C'hains exclude C'hainll that is the solid purple one. So, the correlations
are gone at certain points for C’hain11. On the other hand, we focus on the all particular
R distances in order to comprehend very well how they are changed, internally. As seen
in the Fig.(5.14), when the adatoms are close to the edges, spin-spin correlations are not
affected or slowly and monotonically decreased unlike all results of AA sublattice. As a
results of this, probability density distribution of the edge states are only spread on the
A sublattice for upper-half of ZGNRs. Moreover, the two adatoms are located on the B
sublattice. Because of that, there are no contributions to the magnetic correlations for the
BB configuration.

On the other hand, we focus on results of the AB configuration where one adatom
is located on the A sublattice and the other one is located on the B sublattice. As seen in
the Fig.(5.15), the magnetic susceptibilities for the adatoms indicate same AFM behaviour
and Fermi oscillations. Moreover, when the adatoms are close to the edges, the magnetic
correlations are changed. Furthermore, for the C’hainll which is the solid and purple
one, the magnetic correlations is decreased with distance. Apparently, there is no Fermi
oscillations. Now, we focus on the each particular distance in order to understand. As
seen in the Fig.(5.16), the spin-spin correlations of the adatoms are significantly reduced
like all BB configurations as we expected. However, this decreasing of the correlations
are strikingly different then BB configurations. Because, one of adatoms sits on the B
sublattice. Namely, this one are not affected much due to probability distributions on A

sublattice and the other one located on A sublattice are influenced.
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Figure 5.10. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of number of chains for the AA sublat-
tice. The solid lines are obtained by QMC simulations for inverse temper-
ature § = 32. All results show same ferromagnetic behaviour.
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Figure 5.11. Demonstration of the energy levels of the impurities and the host atoms for
(a) the C'hainl and (b) Chainll
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Figure 5.12. (a) The static magnetic susceptibility between two magnetic impurities

along the zigzag direction as a function of distance for the AA sublattice.
The solid lines and dashed lines are obtained by QMC simulations for the
one specific inverse temperature 5 = 64. All results show same ferromag-
netic behaviour. Also, Chainl and C'hainll are located on the middle
and edge of ZGNRs, respectively. (b) the static magnetic susceptibility as
a function of number of chains.
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Figure 5.13. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the BB sublattice. The
solid lines and dashed lines are obtained by QMC simulations for the one
specific inverse temperature 5 = 32. All results show same ferromagnetic
behaviour. Also, Chainl and C'hainl1 are located on the middle and edge
of ZGNRs, respectively.
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Figure 5.14. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of number of chains and specific dis-
tances for the BB sublattice. The solid lines and dashed lines are obtained
by QMC simulations for the one specific inverse temperature 5 = 32. All
results show same ferromagnetic behaviour. Also, C'hainl and Chainll
are located on the middle and edge of ZGNRs, respectively.
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The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice. The
solid lines and dashed lines are obtained by QMC simulations for the one
specific inverse temperature 5 = 32. All results show same ferromagnetic
behaviour. Also, C'hainl and C'hainl1 are located on the middle and edge
of ZGNRs, respectively.
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The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of number of chain for the AB sublat-
tice. The solid lines and dashed lines are obtained by QMC simulations
for the one specific inverse temperature 5 = 32. All results show same
ferromagnetic behaviour. Also, C'hainl and C'hainll are located on the
middle and edge of ZGNRs, respectively.
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5.1.2. Torus and ZGNR

The aim of this result section is to make a comparison between Torus graphene and
ZGNR. As seen in the Fig.(5.2), graphene nanoribbons has two ends whcih are z and 2'.
Moreover, these two ends are connected with each other in order to make Torus graphene.
So, as seen in the Fig.s(5.17) and (5.18), the static magnetic susceptibility between two
magnetic impurities along the zigzag direction for the AA and AB sublattice, have been

measured by using QMC simulations, separately.
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Figure 5.17. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for (a) the AA sublattice.
The solid lines and dashed lines are obtained by QMC simulations for the
different inverse temperature /3. Here, the dashed line belongs to the ZGNR
and also, as known, our system has PBC. Besides, the solid lines shows
Torus graphene it means that there are no any edges. So, there are no
difference between both solid lines Chainl and C'hainll when the shape
of ZGNR 1is reshape to the Torus graphene.

First of all, we focus on the Fig.(5.17) for the different inverse temperature (3
and the AA sublattice. The solid lines are torus graphene results for the C'hainl that is
blue line and C'hain11 that is red line. Clearly, there are no difference between when the
shape of the system is torus graphene. Besides, the correlations show same FM behaviour,
Fermi oscillations and temperature dependency at the different temperature. So, when
ZGNR results are added to the graphs, at the short R distance, the correlation are perfectly
matched with each other although there is edge effect at ZGNR results. In addition, at the
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large R values, the dashed lines which is the ZGNRs results, are slightly diverged from
the other results due to the edge effect of ZGNRs. Because of that, the width of ZGNR is

good enough in order to be comparable with bulk graphene.
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Figure 5.18. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice. The
solid lines and dashed lines are obtained by QMC simulations for the dif-
ferent inverse temperature 3. Here, the dashed line belongs to the ZGNR
and also, as known, our system has PBC. Besides, the solid lines shows
Torus graphene it means that there are no any edges. So, there are no dif-
ference between both solid lines C'hainl and Chainll when the shape of
ZGNR is reshape to the Torus graphene.

In addition, we turn into the AB sublattice. As seen in the Fig.(5.18), the corre-
lations of the magnetic adatoms still show same AFM behaviour and Fermi oscillations
for both results. Moreover, at short R distance, the correlations are still matched at the
different inverse temperature at 3 = 16 and 32. However, at the 2nd R distance, the result
of ZGNRs is different from the torus results for § = 64.Afterwards, at large R values,
the dashed line start to be diverged from solid lines due to the edge effect. However,
there are no much differences between the results. On the other hand, we can say that
the magnetic correlation of ZGNR are much stronger than torus results for the R/b = 5
and R/b = 8 at given temperature. As a results of this, there are no significantly differ-
ences between Torus and ZGNRs at short R distance for both AA and AB configurations.
At long range, the correlations are distinctly affected. However, there are no order of

magnitudes between the correlations.
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5.1.3. Changing Chemical Potential ;. # 0

Main idea is that how the system will be affected during this process if we eject
the electrons from the system. In reality, we apply gate voltage to the ZGNRs. On the
other hand, we theoretically change value of chemical potential in QMC simulations. So,
QMC measurements will be done by changing chemical potential 1 at inverse temperature
B = 32 for the two-impurity Anderson model. Also, two adatoms are located on closest
position for the AA and AB sublattice as can be seen in Fig.(5.1). Moreover, we did
measurements by using QMC simulations for C'hainl and Chainl1 that are located on

the middle and edge of ZGNRs, respectively.
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Figure 5.19. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of changing chemical potential x4 for the
AA sublattice shows ferromagnetic behaviour. The solid lines are obtained
by QMC simulations for the inverse temperature 5 = 32. Also, C'hainl
and C'hain11 are located on the middle and edge of ZGNRs, respectively.

To begin with the Fig.(5.19) for the AA sublattice. We focus on the C'hainl
which is blue one.the correlations show FM behaviour at 1 = 0. When p is slowly
decreased, magnitude of the correlations start to be decreased. At p = —0.25¢, FM
correletion disappears for two magnetic adatoms. On the other hand, we focus on the
Chainl11 which is red one and is located on the edge of ZGNRs. the correlation is FM
at 4 = 0. At p = —0.1¢, magnitude of the correlation is surprisingly increased. Then,

the magnitude is decreased. Moreover, at 1 = —0.25¢, the behaviour of the correlation
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is changed from FM case to AFM case. At p = —0.35¢, magnitude of AFM correlation
is maximized. Furthermore, AFM correlation is slowly decreased. Then, At ;. = —0.6¢,
AFM correlation vanishes. As a results of this, when, two magnetic impurities are located
on edge of ZGNRs, phase transitions can be gradually controlled from FM to AFM unlike

C'hainl calculations.
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Figure 5.20. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of changing chemical potential ;4 for the
AB sublattice shows antiferromagnetic behaviour. The solid lines are ob-
tained by QMC simulations for the inverse temperature 5 = 32. Also,
Chainl and C'hainll are located in the middle and edge of ZGNRs, re-
spectively.

As seen in the Fig.(5.20), we focus on the AB calculations which is AFM be-
haviour for different sublattice. For C'hainl that is blue curve, at u = 0, AFM correlation
is strongest and start to be decreased, gradually. Moreover, AFM correlation turns to FM
correlations at = —0.2¢. After that, magnitude of correlation grows as p is decreased
further. Finally, at 4 = —0.6¢ FM correlation is slightly decreased. On the other hand, we
examine C'hainl1 calculations which is red curve. At u = 0, AFM correlation is weaker
than blue curve. Furthermore, magnitude of correlation remains same as u is decreased,
gradually. At p = —0.45t, AFM correlation begin to turn to FM correlation. Strikingly,
when . = —0.6¢ is decreased, strength of correlation remains same as absolute strength
at 1 = 0. As a consequence of this, we can observe a phase transition from AFM to FM

correlations.
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5.1.4. Different Width of ZGNRs

In this section, we show results of changing width of ZGNRs that are obtained
for the AA and AB configurations thanks to QMC simulations. Also, QMC simulations
were done for only Chainl and Chainll at § = 32. During this research, actual size
of ZGNR has 22 zigzag (W = 44 and 10516 host carbon atoms). Moreover, we erase
one whole zigzag chain from the upper half of the ZGNRs which has 21 zigzag (W = 42
and 10038 host carbon atoms). Furthermore, size of ZGNRs is symmetrically decreased
in order to obtain specific widths that are 14, 10 and 6 zigzag (W = 28, W = 20 and
W = 12 which have 6692, 4780 and 2868 host carbon atoms, respectively.).
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Figure 5.21. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainl is located on the middle of ZGNRs, respectively. The solid lines
are obtained by QMC simulations for the inverse temperature 5 = 32.
Besides, each separated chains belong to different width of ZGNRs W' =
12,20, 28,43 and 44 and W = 44 is original width of our ZGNR we used
in the beginning of the research.

As seen in the Fig.(5.21), when width of ZGNRs is changed, the static magnetic
susceptibility is significantly affected. Moreover, the static magnetic susceptibilities be-
tween the two impurities are still FM behaviour and show same Fermi oscillations for the

AA sublattice at § = 32 except W = 12 that is blue curve. Surprisingly, Fermi oscilla-
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tions was supposed to be maxima at every (3 4 3n)th A atom. However, new maxima is at
4th A atom. Besides, at close R distance, all correlations have no any differences except

W = 12. Also, at long range, correlations start to be separated from each others.
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Figure 5.22. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainll is located on the edge of ZGNRs, respectively. The solid lines
are obtained by QMC simulations for the inverse temperature 7 = 32.
Besides, each separated chains belong to different width of ZGNRs W =
12,20, 28,43 and 44 and W = 44 is original width of our ZGNR we used
in the beginning of the research.

On the other hand, as seen in the Fig.(5.22) for the Chainll, there are no any
considerable changing at different width of ZGNRs. At short R distance, All correla-
tions is still same. Moreover, magnitude of the susceptibility is dramatically decreased.
Furthermore, at long range, the correlations are stable or disappear.

As seen in the Fig.(5.23), the static magnetic susceptibility between the two im-
purities have AFM behaviour and show same Fermi oscillations for the AA sublattice at
B = 32. When width of ZGNRs is decreased, the spin-spin correlations are apparently
changed. In addition, Fermi oscillation with minima at every (2 + 3n)th B atom is slowly
and strikingly disappeared like AA case and Chainl. As a results of this, there are no
predictable Fermi oscillations at 11/ = 12 that is blue curve.

When width of ZGNRs is changed, the two magnetic impurities is always located
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Figure 5.23. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainl is located on the middle of ZGNRs, respectively. The solid lines
are obtained by QMC simulations for the inverse temperature 5 = 32.
Besides, each separated chains belong to different width of ZGNRs W' =
12,20, 28,43 and 44 and W = 44 is original width of our ZGNR we used
in the beginning of the research.

on the edge sites. As seen in the Fig.(5.24), there are no any changing at the magnetic
susceptibilities at short R distance. Beside, at long range, the correlations are still stable

or vanish.

5.2. Results for Mean-Field Approximation Measurements

In this section, we have obtained the static magnetic susceptibility for two adatoms
by using the mean-field approximation. We will examine and interpret results. Also, we
will compare both QMC and MFA results in detail.

In the Fig.(5.25), we compare MFA and QMC results that are respectively dashed
and solid lines at different inverse temperature 5 = 16, 32 and 64 for the AA sublattice.
Additionally, there is an extra inverse temperature 3 = 128 for the MFA results. MFA
and QMC results show same FM behaviour. Surprisingly, MFA results are much more

stronger than QMC results. Moreover, at inverse temperature 5 = 16 which are the
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Figure 5.24. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainl1 is located on the edge of ZGNRs, respectively. The solid lines
are obtained by QMC simulations for the inverse temperature 5 = 32.
Besides, each separated chains belong to different width of ZGNRs W =
12,20, 28,43 and 44 and W = 44 is original width of our ZGNR we used
in the beginning of the research.

blue solid and blue dashed line, MFA and QMC results are same order of magnitude.
Especially, at short R distance, MFA and QMC results indicate same Fermi oscillation.
After certain short range, Fermi oscillations of dashed curve vanish. Besides, at low
inverse temperature, MFA results are apparently separated from QMC results. On the
other hand, when specific dashed cure that is red is zoomed, static magnetic correlations
show Fermi oscillations at short R distance. Moreover, Fermi oscillation disappear like
beta = 16 that is dashed blue curve at long range.

On the other hand, we can say that MFA results are much stronger than QMC
results. So, an important question is apparently risen. In order to answer that question,
we need to research magnetization of MFA and QMC simulations by using Eq.(4.66) and
Eq.(4.81). As seen in the Fig.(5.26), solid blue curve belongs to magnetization of MFA
results and solid black line belongs to the magnetization of QMC results at all inverse
temperature. Also, we did curve fitting for the MFA results in order to find critical tem-
perature with red dashed curve. Clearly, we did not expect these magnetization figures for
MFA and QMC results. According to obtained results in the Fig.(5.25), magnetization of
MFA results would be supposed to be higher than QMC’s magnetization. Apparently, the
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Figure 5.25. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainl is located on the middle of ZGNRs. The solid lines and dashed
lines are obtained by QMC and MFA calculations for different inverse tem-
perature /3, respectively. All results show same ferromagnetic behaviour.
(b) MFA and Beta = 32 calculation is zoomed and shown in the inset.

results of Fig.(5.26) leads us to one conclusion. As a results of this, MFA overestimates
measurements of the static magnetic susceptibility.

In the Fig.(5.27) for the AA sublattice and C'hain11 that is located on edge of the
ZGNR, the dashed lines belong to MFA results and the solid lines belong to QMC results.
Significantly, MFA and QMC results are consistent with each other. Also, the static mag-
netic susceptibilities show same FM behaviour. Besides, Fermi oscillation for MFA and
QMC results disappear. Moreover, at short R distance, magnitude of each correlations are
dramatically decreased. After R/b = 4 distance, MFA and QMC results start to be sepa-
rated from each other. Additionally, MFA results is decreased, gradually. Consequently,
we need to observe magnetization of MFA and QMC in order to comprehend very well.

As seen in the Fig.(5.28), the solid blue and solid black line are MFA and QMC
results, respectively, at different inverse temperature 3 for the AA and Chainll. Strik-
ingly, results of QMC is still solid like magnetization result of C'hainl. Moreover, results
of the MFA are dramatically decreased at each different inverse temperature. Besides,
magnetization of MFA apparently disappear. Furthermore, blue solid line remains same
for each inverse temperature at vicinity of zero.

As seen in the Fig.(5.29), we focus on the A B sublattice for Chainl and Chainll.

Moreover, we compare both MFA and QMC results at given inverse temperature. As seen
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Figure 5.26. The magnetization of QMC results and MFA results as a function of in-
verse temperature for the AA sublattice, Chainl and 1st adatom. The
blue solid line, the black solid line and the red dashed line belong to MFA
results, QMC results and curve fitting of the MFA results, respectively.

in the Fig.(5.29), dashed and solid lines shows MFA and QMC results, respectively. Also,
the correlations have AFM behaviour for the AB configuration (impurities on opposite
sublattice). At inverse temperature 5 = 16 and short R distance, results of MFA and
QMC simulations are similar with each other. Moreover, when blue solid line indicate
expected Fermi oscillations at long range, dashed blue line oscillation are damped and
become stable. On the other hand, there are order of magnitude between results of MFA
and QMC. Moreover, results of MFA is stronger than QMC results. On the other hand,
at R/b = 1, magnitude of first correlations of all MFA results stays under QMC results.
So, as seen in the inset, two adatoms stand closest position to each other and they are
affecting each other directly. Thus, this situation is frustrating the magnetic susceptibility
between two adatoms.

In the Fig.(5.30), we calculated the static magnetic susceptibility between two
adatoms that are located on edges of ZGNR. MFA and QMC results show same AFM
behaviour. Significantly, all evidences of the Fermi oscillations are gone. Because of
that, two different results are consistent with each other. Especially, at short 12 distance,
all MFA and QMC results show same behaviour at short range and decrease, gradually.

Clearly, after a certaine distance R/b = 3, blue dashed line is separated from all other
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Figure 5.27. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainll is located on the edge of ZGNRs.. The solid lines and dashed
lines are obtained by QMC and MFA calculations for different inverse tem-
perature (3, respectively. All results show same ferromagnetic behaviour.

MFA results at low inverse temperature § = 16. On the other hand, we focus on specific
that are 5 = 32,64 and 128. Apparently, all MFA results move together with minor
deviations. Besides, QMC results that are solid curves, are distinctly separated from MFA

results. Moreover, the corrrelations of QMC results disappear at some certain points.

5.2.1. Results of Different Electron-Electron Interaction Values for

the Host Atoms (U},,.;)

In this section, we will use mean-field Anderson Hamiltonian given Eq.(4.78)
by adding the on-site Coulomb interaction term for host electrons. So, when electron-
electron interactions are taken into account as Uy, = 0,1, 1.5 and 2 in units of ¢! for
the host atoms, we will examine that how system will be affected for the AA and AB
sublattice at specific inverse temperature 8 = 32 and 128.

In the Fig.(5.31), we have shown the effects of the el-el interaction on the system
for the AA sublattice, § = 32, 128 and C'hainl is located on the edge of the ZGNR.
Both separated straight line still show FM behaviour. As seen in the graph, we thought
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Figure 5.28. The magnetization of QMC results and MFA results as a function of in-
verse temperature for the AA sublattice, Chainll and 1st adatom. The

blue solid line and the black solid line belong to MFA results and QMC
results, respectively.

as if there were no difference between different el-el interaction values. However, when
zoomed in the specific correlations for the 3 = 32 as shown in the below inset, all mag-
netic correlations corresponding to U values, are separated with minor deviations from
each other as seen in the below inset. While number of U value is increased, the static
magnetic susceptibility is individually raised corresponding to U values. At short dis-
tance, they also denote pronounced oscillations. Furthermore, at long range, there are no
oscillatory R dependence for all results.On the other hand, there are order of magnitude
between these two inverse temperatures, so, at low temperature for 5 = 128, the magni-
tude of the correlations are so strong than § = 32. However, the results of § = 128 are
literally similar to the 5 = 32 results. As seen in the above inset for § = 128, the blue
dashed line for U = 0 diverge a little bit from the other results, and at short R distance, all
correlations act as group and show same Fermi oscillations. At the long range, they are
separated from the each other. Moreover, all correlations behave same and all oscillations
are gone, eventually.

In the Fig.(5.32), the results of the magnetic susceptibilities as a function of dis-
tance for the A A sublattice, Chainll is located on the edge of the ZGNR at given differ-

ent inverse temperature 5 = 32 and 128, are shown by solid and dashed lines that show
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Figure 5.29. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainl is located on the middle of ZGNRs. . The solid lines and dashed
lines are obtained by QMC and MFA calculations for different inverse
temperature (3, respectively. All results show same antiferromagnetic be-
haviour.

B = 32 and 128 results, respectively. When two magnetic impurities are located on the
edge, the effect of el-el interaction for the host atoms, starts to occur at different U values
unlike C'hainl results, clearly. To begin with U = 0, both blue solid and dashed lines
move together at even different inverse temperature 5 = 32 and 128, and their magnitude
is decreased, gradually. Moreover, there are no fermi oscillations at every R distance. On
the other hand, when U is taken as 1, these both red curves differ from the both blue lines.
In the beginning, both correlations start as one and after R/b = 2, they diverge from each
other. So, at long range, the order of magnitude occurs between these red curves, and
there is no Fermi oscillations. In addition, when U term is increased to next level, there
are magnitude difference for the both black curves at short distance unlike the both red
curves, and the stable magnitude difference of the correlations remain same, obviously.
The last one is both green curves which belong to U = 2 value, and these curves behave
same as the behaviours of both black curves, exactly. Also, there are no Fermi oscillations
at long range.

Here, we turn into the AB configurations for Chainl, C'hainl11 at different in-
verse temperature § = 32 and 128. As seen in the Fig.(5.33), the first magnetic suscepti-

bility is apparently frustrated due to position of two magnetic adatoms which are located
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Figure 5.30. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainll is located on the edge of ZGNRs. The solid lines and dashed
lines are obtained by QMC and MFA calculations for different inverse
temperature (3, respectively. All results show same antiferromagnetic be-
haviour.

on the closest opposite sublattice at 2/b = 1. On the other hand, as seen in the Fig.(5.33),
the static magnetic susceptibilities between two adatoms, have AFM behaviour and have
no oscillatory R dependence, when el-el interactions for host electrons are taken into ac-
count. Moreover, after particular R/b = 2 distance, the magnetic susceptibility is constant
in the range of R. As a results of this, there is no el-el interaction dependency for the AB
configuration and C'hainl.

In the Fig.(5.34), the static susceptibility are shown for the AB configuration and
Chainll that is located on the edges. Evidently, these results are different from the
results shown in the Fig.(5.33) due to the edge effect. On the other hand, both solid
and dashed blue curves act same behaviour at different magnitude for U = 0 value and
different inverse temperatures that are 5 = 32 and 128. Moreover, the correlations are
dramatically decreased until a certain distance R/b = 4. Additionally, Fermi oscillations
vanish at all R distance. Secondly, when U term is taken as 1, solid and dashed red curves
have no oscillatory at all R distance. Also, the correlations are completely straight line as
can be seen in the Fig.(5.34). Additionally, both solid and dashed black curves have same

magnitude at all distance. Moreover, magnitude of the correlations is slightly increased
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Figure 5.31. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AA sublattice and
Chainl is located on the middle of ZGNR. The solid lines and dashed
lines are obtained by MFA calculations for different inverse temperature
£ = 32 and § = 128, respectively. All results show same ferromagnetic
behaviour. All calculation is done for different on-site Coulomb repulsion
of the host carbon atoms taken as U = 0,1, 1.5 and 2 in units of ¢t .

and constant at long range. Furthermore green solid and dashed curves act same like
black curves. Their magnitude of susceptibilities is lightly rised and remain constant at
long range, distinctly.

To sum up, we have observed, examined and interpreted all results that are ob-
tained by using the quantum Monte Carlo algorithm and the mean-field approximation
for two magnetic adatoms on zigzag graphene nanoribbons. When the impurity adatoms
are located far from edges, the results we obtained are consistent with the bulk graphene
results in the literature for QMC results. Moreover, the specific location and orientation of
adatoms on the sublattices, significantly affect the spin-spin correlations of the two impu-
rities. Besides, we observe that phase transition can be controlled by changing chemical
potential. On the other hand, results of mean-field approximation significantly differ from
quantum Monte Carlo results. Furthermore, when the electron-electron interactions of the
host atoms are considered, significant differences are obtained. In the conclusion, we will

discuss again briefly.
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Figure 5.32. The static magnetic susceptibility between two magnetic impurities along

"X12

the zigzag direction as a function of distance for the AA sublattice and
Chainl1 is located on the edge of ZGNR. The solid lines and dashed lines
are obtained by MFA calculations for different inverse temperature 5 = 32
and 3 = 128, respectively. All results show same ferromagnetic behaviour.
All calculation is done for different on-site Coulomb repulsion of the host
carbon atoms taken as U,y = 0,1, 1.5 and 2 in units of ¢ 1.
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Figure 5.33. The static magnetic susceptibility between two magnetic impurities along

the zigzag direction as a function of distance for the AB sublattice and
Chainll is located on the edge of ZGNRs. The solid lines and dashed
lines are obtained by MFA calculations for different inverse temperature
8 = 32 and § = 128, respectively. All results show same antiferromag-
netic behaviour. All calculation is done for different on-site Coulomb re-
pulsion of the host carbon atoms taken as Uj,s; = 0,1, 1.5 and 2 in units
of t71,
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Figure 5.34. The static magnetic susceptibility between two magnetic impurities along
the zigzag direction as a function of distance for the AB sublattice and
Chainl is located on the middle of ZGNRs. The solid lines and dashed
lines are obtained by MFA calculations for different inverse temperature
b = 32 and § = 128, respectively. All results show same antiferromag-
netic behaviour. All calculation is done for different on-site Coulomb re-
pulsion of the host carbon atoms taken as Uj,s; = 0,1, 1.5 and 2 in units
of t71.
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CHAPTER 6

CONCLUSION

In this thesis, we have studied the static magnetic susceptibility between the two
magnetic impurities in the zigzag graphene nanoribbons with the periodic boundary con-
dition. The two-impurity Anderson model and mean-field Anderson model are numer-
ically solved by using the Hirsch-Fye quantum Monte Carlo simulation and mean-field
approximation, respectively. According to obtained results, when two magnetic impuri-
ties are located far from the edge sites, the static magnetic susceptibility in ZGNR with
PBC is found to be strikingly consistent with the bulk graphene results in the literature
despite finite system size. Moreover, our results provides the same magnetic behaviour
and Fermi oscillations for the AA, BB and AB configurations like obtained RKKY re-
sults at high temperature. However, the magnetic susceptibilities are strongly enhanced
and diverged from the RKKY results at low temperature. Also, we need to explain the
remarkable feature of the edge effect of ZGNR. Namely, there are zero energy states at
the Fermi level. Moreover, their probability distributions are only spread to upper half of
ZGNR on the A sublattice. Thus, while two adatoms on the A A sublattice is approached
to the edge sites, the states of the two adatoms hybridize with the zero energy edge states.
Because of that, strength of the correlation is getting increased, gradually. However, when
two adatoms are located on the edge sites, the states of two impurities are split from the
degeneracy edge states. Consequently, magnitude of the correlations between the two
impurities suddenly is decreased on the edge. On the other hand, we observed that the
spin-spin correlations of two magnetic adatoms are slowly and monotonically decreased
for the BB and AB sublattice configurations due to the edge effect because probability
distribution of these edge states are extended on the A sublattice.

In addition, we investigated the changing effect of the chemical potential ;4 be-
tween the two magnetic impurities which are closest position to each other at R/b = 1.
Also, these two adatoms are located far from edges for the AA and AB configurations at
B = 32. We observed that the magnitude of the correlations between adatoms can be con-
trolled by ejecting electrons from the system. Moreover, controllable phase transitions are
occurred between two impurities from ferromagnetic to antiferromagnetic or vice versa.
Furthermore, we repeated all calculations for two magnetic impurities which are located

on edge sites.
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Another part is that different width of the zigzag graphene nanoribbons with pe-
riodic boundary condition was investigated. We found that when width of the ZGNR is
decreased, the correlations of the adatoms that are located far from the edges are affected
due to hybridization between the adatoms and zero edge states. When width of the system
is W = 12, minima and maxima points of the expected Fermi oscillations are surprisingly
changed for both AA and AB configurations. On the other hand, when two impurity are
located on the edge sites, the correlations behave same at every width of the system due
to the fact that adatom states and zero energy edge states are separated from each other as
we expected.

On the other hand, the mean-field Anderson model was examined by using the
mean-field approximation. Moreover, MFA results was compared with QMC results.
Strikingly, there are orders of magnitude between the mean-field approximation and qua-
tum Monte Carlo results, when two magnetic adatom are located far from the edges.
Because of that, we examined magnetization of the MFA and QMC results and faced
with unexpected results. As a results of this, MFA overestimates calculations of the static
magnetic susceptibility. Furthermore, we observed effect of electron-electron interactions
for the host electrons. When two adatom are located far from the edge sites, there are no
differences between the static magnetic susceptibilities at each inverse temperature. How-
ever, when strength of on-site Coulomb term for the host carbon atoms is progressively
increased, the correlations between two magnetic impurities that are located on edge sites

are significantly deviated from each other due to el-el interactions of host atoms.
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