
Vol.:(0123456789)1 3

Software and Systems Modeling (2021) 20:447–467
https://doi.org/10.1007/s10270-020-00810-9

REGULAR PAPER

Modeling cultures of the embedded software industry: feedback
from the field

Deniz Akdur1,2  · Bilge Say3  · Onur Demirörs4 

Received: 25 January 2019 / Revised: 29 April 2020 / Accepted: 30 May 2020 / Published online: 25 June 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
Engineering of modern embedded systems requires complex technical, managerial and operational processes. To cope with
the complexity, modeling is a commonly used approach in the embedded software industry. The modeling approaches in
embedded software vary since the characteristics of modeling such as purpose, medium type and life cycle phase differ
among systems and industrial sectors. The objective of this paper is to detail the use of a characterization model MAPforES
(“Modeling Approach Patterns for Embedded Software”). This paper presents the results of applying MAPforES in multiple
case studies. The applications are performed in three sectors of the embedded software industry: defense and aerospace,
automotive and transportation, and consumer electronics. A series of both structured and semi-structured interviews with 35
embedded software professionals were conducted as part of the case studies. The characterization model was successfully
applied to these cases. The results show that identifying individual patterns provides insight for improving both individual
behavior and the behavior of projects and organizations.

Keywords  Software modeling · Embedded software · Modeling patterns and cultures · Characterization model · Case study

1  Introduction

Analysis, design, implementation and testing of software for
modern embedded systems are constrained across different
dimensions of performance and quality [1, 2]. Moreover,
the increasing number of system components with different
functionalities incorporated into a single system requires
seamless integration of many hardware and software

systems, which makes the development of embedded soft-
ware more challenging [3]. Software modeling enables prac-
titioners to manage system complexity by helping engineers
work at higher levels of abstraction. It also facilitates com-
munication [4, 5].

The modeling approaches in embedded software vary
depending on many factors, including purpose, life cycle
phases, roles and sector [6]. At one extreme, some stake-
holders (e.g., project managers or systems engineers) use
software modeling informally. In this approach, diagrams
sketched on paper are used for purposes of communication.
In such cases, the emphasis is on communication rather than
formal specification. These diagrams may be either dis-
carded or become inaccurate since they are not kept along
with the source code up to date [7]. At the other extreme, a
model may be transformed into a program using automated
generation of code from models. In such cases, the models
have a longer lifespan and should be archived. It is also fre-
quently observed that different departments within the same
company might use different modeling approaches for differ-
ent purposes in different phases of the software development
life cycle (SDLC) [8].

For software teams in an embedded software development
project, deciding when to model, at what level of abstraction

Communicated by Constance Heitmeyer.

 *	 Deniz Akdur
	 denizakdur@aselsan.com.tr

	 Bilge Say
	 bilge.say@atilim.edu.tr

	 Onur Demirörs
	 onurdemirors@iyte.edu.tr

1	 ASELSAN Inc., Ankara, Turkey
2	 Department of Information Systems, Informatics Institute,

Middle East Technical University (METU), Ankara, Turkey
3	 Department of Software Engineering, Atilim University,

Ankara, Turkey
4	 Department of Computer Engineering, İzmir Institute

of Technology, Izmir, Turkey

http://orcid.org/0000-0001-8966-2649
https://orcid.org/0000-0001-9276-729X
https://orcid.org/0000-0001-6601-3937
http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00810-9&domain=pdf

448	 D. Akdur et al.

1 3

and with how much modeling rigor1 are challenging and
frequently asked questions. Moreover, different modeling
stakeholders might spend time and money to investigate dif-
ferent modeling practices that present choices in modeling
processes, notations and modeling tools. Hence, projects
frequently waste resources while trying out unfit or not
yet mature modeling practices, which potentially increases
costs.

The current literature lacks an approach that provides
systematic modeling guidance for different stakeholders
in embedded software development projects. Our view is
that there is a need to identify the relations between the
characteristics of modeling (e.g., modeling rigor, purpose,
medium type used and SDLC phase) to fill this gap. Once
these relations are known, a potential approach to address
this gap is to identify, define and use “modeling patterns
and cultures.” Such an approach is analogous to the charac-
terization model, defined and tailored for Software Process
Improvement (SPI) (e.g., Software Sub-Cultures [9]). We
propose a “characterization model,” which describes how
software modeling characteristics in an embedded software
development project can assist stakeholders in identifying a
suitable modeling approach based on these characteristics.
The characterization model may also allow a stakeholder
to compare and contrast their modeling approach with the
approaches of other embedded software professionals with
the similar profiles (e.g., role, industrial sector).

Accordingly, we identify and define modeling patterns
and cultures in the embedded software industry using a char-
acterization model called MAPforES (Modeling Approach
Patterns for Embedded Software). The model enables a
stakeholder to identify a commonsense modeling approach,
by utilizing the modeling community’s experiences. This
characterization model not only identifies patterns and cul-
tures of the modeling stakeholder, but also guides process
and tool improvements for modeling by describing a set of
commonsense industrial practices in embedded software
development [10].

The objective of this paper is to report the results of
applying our characterization model in different settings.
The empirical study reported here is based on three case
studies. In the case studies, we applied the model and con-
ducted a series of both structured and semi-structured inter-
views. The conducted case studies operate in different sec-
tors of the embedded software industry. The first study took
place in a defense and aerospace organization, which is a
global provider of advanced radar systems. The second study
took place in an automotive and transportation organization,

which develops components for railways and roads. Finally,
the third study took place in a consumer electronics organi-
zation, which focuses on TV products. The case studies took
place over two months and involved 35 embedded software
professionals with different software engineering (SE) roles
(e.g., from software developer to tester and systems engineer
to project manager).

The remainder of this paper is organized as follows:
Sect. 2 presents background information by summarizing
the existing literature on software modeling patterns and by
introducing the characterization model. Section 3 discusses
the application of MAPforES by presenting our research pro-
cess, findings and the potential threats to the studies’ valid-
ity. Finally, Sect. 4 presents an overall conclusion and states
future work directions.

2 � Background

This section first summarizes the existing literature on soft-
ware modeling patterns and categories. Then, as a precursor
to its application, we introduce our characterization model.

2.1 � Existing literature on software modeling
patterns

Different definitions of “pattern” appear in the literature. It
is defined as a “consistent and recurring characteristic that
helps in the identification of a phenomenon or problem”
[11]. In the software engineering literature, the “pattern”
concept refers to proven solutions to recurrent design chal-
lenges, e.g., “software design patterns” [12, 13]. In contrast,
Weinberg defines “culture” as a shared set of beliefs and
goals, which shapes behaviors and activities [9]. In this
study, a “modeling pattern” consists of specific characteris-
tics of modeling (e.g., purpose, medium type used, modeling
language type, SDLC phase, etc.), which helps identify the
stakeholder’s modeling practices, whereas a “modeling cul-
ture” is viewed as a particular group of “modeling patterns”
and consists of frequently observed grouping of these char-
acteristics in practice.

Software Process Improvement maturity models such as
Capability Maturity Model Integration (CMMI) and Soft-
ware Process Improvement and Capability dEtermination
(SPICE) are based on similar underlying concepts that focus
on organizational change [14, 15]. These models, however,
do not directly provide an evaluation of modeling charac-
teristics, and they target organizations, not individuals, for
improvement.

In the literature, there are few research studies on the
modeling patterns and categories. Kleppe, Warmer and Bast
classify modeling usage as maturity levels by focusing on
one characteristic of modeling (i.e., “modeling formality”)

1  Modeling rigor is the formality of modeling language (e.g., infor-
mal or formalized), which affects software modeling usage in varying
degrees.

449Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

[16]. According to Kleppe et al., there are six Modeling
Maturity Levels (MMLs) in software development projects;
in each there are different types of modeling usage based on
“modeling rigor.” However, our empirical evidence shows
that different characteristics of the modeling process need
not force modeling stakeholders raise the maturity level
based on a single dimension such as rigor. Instead, different
modeling characteristics (such as purpose or SDLC phase)
are related to different notations, tasks and roles.

In the second study, Petre focused solely on Unified
Modeling Language (UML) usage categories for software
developers [17]. The results showed that there are differ-
ent models of what “using UML” means in practice. Five
categories were identified ranging from “No UML use” to
“Wholehearted use.” In addition, they found that top-down
UML usage is organizational (e.g., tools and culture change)
and deeply embedded in all phases of the SDLC. According
to the results, the majority of those interviewed in the study
do not use UML at all (i.e., 70%), and those who do, use
UML selectively and often informally (i.e., 22%) [17]. How-
ever, in embedded software development, many stakeholders
(e.g., from software developer to tester and systems engineer
to project manager) use Domain-Specific Languages (DSL),
which are claimed to have more potential for model-driven
development (MDD) and model-driven engineering (MDE)
than UML, since UML, a graphical modeling language, is
designed for documentation—not for implementation [18].

To summarize, no study exists that assigns modeling
patterns of individuals and/or projects multiple dimensions
independent of modeling notations. MAPforES was devel-
oped to satisfy this need. It is a complementary approach to
organizational Software Process Improvement approaches
and enables commonsense modeling approaches at all levels,
individual, project and organization.

2.2 � Overview of the characterization model:
MAPforES

The MAPforES model describes software modeling char-
acteristics for embedded software development. The char-
acteristics include attributes such as “purpose,” “medium
type,” “archivability,” “modeling language, if any,” “SDLC
phase” and are organized into modeling approach patterns
and cultures. MAPforES defines the characteristics in an
embedded software development project and helps modeling
stakeholders select a suitable modeling approach. It also
allows a stakeholder to compare and contrast how he or she
uses models with how embedded software professionals with
similar profiles (e.g., role, industrial sector) use models [10].
The construction of the MAPforES model is described next.

The MAPforES model was constructed in a three-phase
study. As a first step, a global survey was conducted to
understand the state of practice of modeling in the embedded

software industry [19]. The survey showed that embedded
software professionals use modeling approaches to varying
degrees (e.g., either as an informal sketch or a formalized
model) with different modeling characteristics in different
embedded software development projects. Based on the
results of the survey [20, 21], the relations between mod-
eling characteristics were investigated [6], and the prelimi-
nary version of the modeling approach pattern set was cre-
ated [22]. Since some hidden patterns2 might emerge, which
could not be found out from an analysis of survey data, there
was a need to validate and improve this preliminary version.
Then, a series of semi-structured interviews were conducted
over 8 months with 53 embedded software professionals
across a variety of target industrial sectors and roles [23].
As a result, the number of patterns was increased to 12, as
shown in Table 1.

After defining modeling approach patterns, six modeling
cultures in embedded software development projects were
identified: None, Performed, Formalized, Archived, Pre-
scripted and Auto-generated [10]. Thus, a modeling culture
(i.e., a particular group of modeling approach patterns) con-
sists of different characteristics of software modeling. In this
categorization, a “higher” culture can use the characteristics
of the “lower” cultures, and the modeling stakeholder might,
if necessary, apply the modeling practices of the stakehold-
ers’ lower-level patterns, but not vice versa. For example,
a modeling stakeholder, who is at pattern 3.3, can use a
medium type such as paper along with digital ones (e.g.,
modeling tools on a personal computer (PC)), and sketches
without any modeling rigor as if being at pattern 1.1. There-
fore, a “higher” culture does not necessarily entail a more
“correct” or more “mature” use of modeling although a
change to a “higher” culture might allow the stakeholder
to more effectively use software modeling with possibly
some extra costs and challenges. Since the cultures shown
are based on all modeling characteristics of the individual
stakeholder (e.g., purpose, task/responsibility, SDLC phase,
etc.), this approach also differs from maturity models based
on organizational concepts such as MML (Sect. 2.1) since
it focuses on individual practices. For more details on the
derived cultures, see [10].

After identifying the patterns and cultures with their charac-
teristics, we started to create MAPforES. The characterization
model has two main components: (1) the decision tree, which
helps the stakeholder walk through the stakeholder’s pattern
and culture, and (2) the recommendation component, which

2  “Hidden patterns” are the patterns of the participants, who do not
know exactly their software modeling characteristics (especially their
modeling rigor); hence their modeling patterns could not be identi-
fied by only survey data analysis. These participants are unaware as to
whether they use software modeling or MDE (e.g., unaware of mod-
eling or unaware of MDE as depicted in Table 1).

450	 D. Akdur et al.

1 3

Table 1   Modeling approach patterns

“With DSL-like” means that the modeling language set of the stakeholder includes any kind of Domain-Specific Language (DSL) (e.g., any DSL
[provided by tool provider or their own design] such as AUTOSAR, AADL, EAST-ADL or any UML profiles, which provides a generic exten-
sion mechanism for customizing UML diagrams such as MARTE, SysML, SoaML, any BPML or MATLAB Modeling Utilities, etc.)
As terminology, “bad experienced” pattern indicates the embedded software professionals, who don’t use any kind of modeling due to disap-
pointing and insufficient experiences of software modeling

Main pattern Modeling approach patterns

Model driven 3.3 With DSL-like Purpose of the modeling includes “code generation” or “test case generation
(e.g., model-based testing (MBT))”3.2 Without DSL-like

3.1 Limited Only with “documentation generation,” “model simulation” or “model to model
transformation” purpose

3.x Unaware of MDE Purpose of the modeling includes any MDE-specific purpose, but the stake-
holder is unaware of MDE usage

Model based 2.2 Prescriptive SDLC phase where modeling is used includes “implementation” or “testing”
2.1 Descriptive SDLC phase does not include “implementation or testing”

Sketching 1.3 Archived Purpose of the modeling includes “documenting analysis and design”
Media type used: “analog media” such as paper/whiteboard used more often

than “digital media”
1.2 Selective Casually and informally with some formalized modeling language (most prob-

ably, UML elements)
Modeling Language set includes sketch and any formalized modeling language

(e.g., UML or DSL-like)
1.1 Ad hoc Purpose of the modeling includes only “understanding” or “communication”

Only pen and paper/free format (e.g., without any formalized modeling lan-
guage, e.g., UML)

Medium type used while modeling is only paper or whiteboard
1.x Unaware of modeling The stakeholder is unaware of modeling although there is some kind of mod-

eling (especially sketching)
None 0.1 Bad experienced Not using any modeling approach

0.0 Not experienced

describes what stakeholders with similar profiles in the embed-
ded domain are doing while modeling. During this creation
process, we first derived a decision tree mechanism, excluding
“hidden patterns” ([10] for a detailed derivation of the tree).
Feedback from 14 expert software professionals was analyzed
prior to finalizing the decision tree. Accordingly, first, MAP-
forES takes the modeling characteristics of the stakeholder as
input. Depending on these characteristics, the current modeling
pattern and culture are identified. Moreover, based on these
characteristics, MAPforES presents what other stakeholders
with similar profiles are doing while modeling as a set of com-
monsense industrial practices (the data used here were from
the database constructed with survey data and with findings
of semi-structured interviews [24]). By comparing the similar
profiles in the database with her or his input, the stakeholder
learns what their competitors do in similar situations. During
this process, the stakeholder gets answers to strategically impor-
tant questions such as the necessary modeling approaches,
languages, tools, etc. [10]. Therefore, besides identifying and
defining the current pattern and culture, MAPforES captures
widespread modeling practices in the embedded software
industry and refers to them as commonsense practices.

The application of the characterization model, the main
objective of this study, is presented next.

3 � Application of MAPforES

In this section, we describe the research methodology as well
as the potential threats to validity and discuss our findings.
To determine the benefits of MAPforES model in practice,
we performed three case studies in two different companies.
One company includes two different organizations, each
operating in a different subsector of the embedded software
industry. Most data were gathered in applying the model
and by conducting a series of structured and semi-structured
one-to-one interviews to capture detailed context informa-
tion and observations. The interviews were conducted over
2 months with 35 embedded software professionals. The first
section describes the research methodology, and the second
presents the research process and findings. The data for each
case study with participants’ answers are available in [25],
which includes the actual documents and all other collected
evidence.

451Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

3.1 � Research methodology

The research methodology undertaken in the case studies
provides triangulation of both quantitative and qualita-
tive data in accordance with empirical research principles
[26–29].

The goal of these case studies is to apply and evaluate the
usefulness of the MAPforES model by identifying stake-
holder’s modeling processes and commonsense practices
of embedded software development in different industrial
sectors. “Applying” the MAPforES model refers to the
actual methodology used to carry out the case studies, that
is, the characterization of each relevant individual’s mod-
eling experience with respect to MAPforES using a series of
meetings, questionnaires and interviews in an organization
developing embedded software. This process makes each
modeling stakeholder aware of where she or he stands in
terms of the MAPforES and what else exists in MAPforES
that might have possible benefits.

The interviewer acts as an evaluator, who analyzes the
participants’ modeling characteristics and derived recom-
mendations (e.g., commonsense and popular modeling prac-
tices like languages, tools, etc.) based on matching demo-
graphics. Based on the above goal, the following research
questions (RQs) are raised to test the hypotheses in practice:

RQ1 In what ways does MAPforES reflect or fail to reflect
a stakeholder’s current modeling pattern and culture?
RQ2 How does the stakeholder evaluate MAPforES’s
usefulness and conceptual insightfulness?

To address these RQs, an evaluation form (Appendix of
[10]) is used to evaluate the result of the model based on a
set of validation criteria [30].

3.2 � Research process

The following main phases are applied and explained in
more detail in the corresponding sections shown in Table 2.

3.2.1 � Design

The case study protocol is “flexible” since it includes both
structured and semi-structured parts [28]. We use inter-
views as a main source of evidence for two reasons: (1) to
observe stakeholder’s demographics and modeling prac-
tices to understand the characteristics of software modeling
(i.e., the structured part) and (2) to understand the personal
experience of stakeholders and confirm them by face-to-face
in-depth analysis and by direct observations (i.e., the semi-
structured part).

To prevent misinterpretation during data collection, a
presentation on the MAPforES model was given on-site as

the first step of the study. The presentation included informa-
tion about the study, the model and the terminology used.
In compliance with multiple case study methodology in
industry [31], we used several sources of data, created a case
study database and validated our data as explained below.

Questionnaires were created and used for the structured
part of the research. Before the company visits, the data to
be gathered are summarized on a questionnaire (Appendix of
[10]) and a set of “evaluator notes” are prepared. The ques-
tionnaire is filled out after the first round of the interview.
The evaluator takes notes on all given responses. Thus, the
interview elicits both closed-ended and open-ended answers.
During the first round of the interview, the questionnaire
obtains all necessary inputs to MAPforES by eliciting nec-
essary modeling characteristics such as purpose, medium
type, modeling language, SDLC phase and stakeholder pro-
file (e.g., university degree, role, target sector of the product)
[10]. The participant answers this first part without any inter-
action with the evaluator. During the second part, which is
conducted face to face, the responses of each participant to
the questionnaire are checked to identify any misunderstand-
ing or any missing critical information (e.g., wrong data for
modeling practices caused by “unawareness” of modeling
characteristics). The plan is to complete the interview pro-
cess (e.g., data collection) during the first 2 days on the site.

After data collection, all answers are analyzed and MAP-
forES is applied to the participant’s characteristics of soft-
ware modeling. After this stage, the evaluator sends two
forms to the participants via email. The first form sum-
marizes the interview results (Appendix of [10], evaluator
notes), and the second form is used to evaluate the model’s
usefulness to each participant (Appendix of [10], evalua-
tion form). The evaluation form is based on the evaluation
criteria given in Table 3, which was adopted from [30, 32].
This evaluation form, which contains five RQs, is shown in
Table 4.

The last day on the site starts with a face-to-face meet-
ing with the participants, who want to elaborate on the
results of the model and suggestions sent by email. The
availability of such an interview slot is announced to
all participants and is performed optionally upon their
request. After this session, all participants are gathered
together in the meeting room for the closing meeting.
In that session, all general results on the charts, which
include all participants’ modeling patterns and cultures,
with general recommendations (e.g., the set of common
industrial practices), are presented. The agenda template
for these activities is presented in Table 5.

3.2.2 � Selecting the cases and data

Our plan was to organize the data based on different
target domains (e.g., consumer electronics, defense and

452	 D. Akdur et al.

1 3

aerospace), different business models (e.g., market or con-
tract driven) and different customers (e.g., private, public,
internal) [28]. Therefore, based on differences instead of
similarities, we selected our three cases and the data in
Table 6. Notice that the participants in each case study
work in the same software development project but have
different software engineering roles.

Org 1 and Org 2 operate independently but within the
umbrella of a larger organization in the same company,
whose product portfolio includes radar and electronic
warfare systems, weapon systems, air defense and missile
systems, transportation, traffic and automation. The total
number of employees working in research and development
(R&D) engineering roles in this company is more than 3500.
Org1 and Org2 develop products with state of the art soft-
ware development techniques like agile methods, software

product lines and reusable components. These organizations
have been assessed to be at CMMI level 3.

Org 1 is a global provider of advanced radar systems serv-
ing both military and civilian markets. For this study, a radar
software project was chosen for Case Study A (e.g., from
defense and aerospace target sector). The size of a typical
software development team in Org 1, which includes dif-
ferent software engineering roles, is 15–25 people. In Case
Study A, 17 participants were interviewed. The participants
covered all roles used in this project.

The second case study, Case Study B, included partici-
pants from the same organization, but from a different tar-
get sector: automotive and transportation. Org 2 designs,
develops and builds custom solutions, subsystems and criti-
cal components for the mobility of vehicles on railways,
roads and public networks. The size of a typical software

Table 2   Multiple case study research process

According to [27] According to [28] In this study

Design Find/develop theory High-level design
Goal, RQs and model

Section 3.1 & theo-
retical framework and
findings

Design data collection process Detailed design
Preparation for data collection

Section 3.2.1

Select cases Section 3.2.2
Plan, collect Conduct case study Plan

Data collection
Section 3.2.3

Analyze, report Analysis/modify the model, if necessary Section 3.3
Reporting

Table 3   Validation criteria used in the evaluation strategy

Result validation “This criterion investigates the opinion of the potential stakeholders about the model.” Does the model produce
expected and relevant results? It is concerned with the quality of the model with respect to its benefits

Utility validation “This criterion investigates whether the model is useful.” Does the model produce helpful results so that the model
becomes useful?

Comparison validation “This criterion investigates whether the model provides new insight and is better than what was available before.” It is
related to comparing with alternative approaches (if any)

Table 4   Evaluation questions to achieve validation criteria

Question Addressed RQ Validation

1 When you think about the presentation about “modeling patterns and cultures of embedded software
development project,” does the model really reflect your current modeling pattern and culture? Did this
model produce expected and relevant results for you?

RQ1 Result

2 Do you think that the model is helpful? Please elaborate your answer RQ1 and RQ2 Result and utility
3 Have you ever experienced or used such a model before? Do you think that this model is better than what

was available before? Please elaborate your answer
RQ2 Comparison

4 Do you think that learning what your competitors (e.g., similar demographics) are doing while modeling
might affect your future modeling practices? Please elaborate your answer

RQ2 Utility

5 Do you think that the recommendations, which the model gave you, are useful or not? Please elaborate
your answer

RQ2 Utility

453Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

development team in Org 2 is 5–10 people, and our case
study (i.e., bus software application project) includes 10
practitioners, who covered all software engineering roles
in the project. As stated above, both Case Studies A and B
belong at the same company, but with different target sec-
tors, a different business model, and different software mod-
eling approaches and practices.

Org 3, a subgroup of one of the largest manufacturing
companies in Turkey, operates in the consumer electron-
ics sector and is a member of a consortium for several

international R&D projects. The number of employees work-
ing in R&D roles in this company is about 800. For this
study, a TV software project, which produced one of the
Org 3’s well-known products, was chosen for Case Study C.
The size of a typical software development team in Org 3 is
5–10 people. In Case Study C, eight participants were inter-
viewed, which covered all software engineering roles in the
project. This software group’s main specialty is developing
innovative and popular products using agile programming.

Table 5   Agenda for data collection, analysis and reporting process on the organization visit

2 days ~ 1 h Acquaintance and give a presentation about MAPforES and terminology used
~ 30 min Give the questionnaire separately, let them answer this structured part individually,

but after completion do not collect the forms
~ *hours (30 min per participant) Collect the forms by validating/confirming what each

participant gives as answers in the questionnaire.
Take notes in the questionnaire form, collect evidence
(In this semi-structured part, direct observations and improvization play a critical role)

*For case study A: (17 participants) → 8,5 h
 For case study B: (10 participants) → 5 h
 For case study C: (8 participants) → 4 h

Break
Aim Analyze the answers, evaluate them and apply the model
Subtask1 Investigate the actual modeling pattern and culture of the stakeholder (via observation and interview) and according to the model (via

model inputs)
Subtask2 Present what the stakeholders with similar profiles are doing while modeling
Subtask3 Give recommendations for commonsense modeling practices
Subtask4 Email the results and evaluation form to the participants to evaluate the model

3rd day ~ 2 h Interview with the participants, who want to meet individually about the results
~ 2 h Show the general results on the chart. Repeat validatory questions about the model and

make them elaborate their answers for both individual and project results
~ 10 min Thank the participants and complete the session

Table 6   Case and data selection in multiple case study

Case Organization Target sector Project type Business model/customer Interviewee size (software
project team distribution)

A Org1 Defense & aerospace Radar software Contract driven/public &
private

17 10 software developers |
designers | architects

3 software testers
2 systems engineers
1 project manager
1 quality assurance engineer

B Org2 Automotive & transportation Bus software application Contract-driven market/pub-
lic & private

10 6 software developers |
designers | architects

2 software testers
1 systems engineer
1 project manager

C Org3 Consumer electronics TV software Market/private 8 5 software developers |
designers | architects

2 software testers
1 project manager

454	 D. Akdur et al.

1 3

3.2.3 � Collecting evidence

The agenda template (Table 5) was applied in all three case
studies. First, to introduce MAPforES, a presentation on
“Modeling approach patterns and cultures of embedded soft-
ware development projects” was given to all participants.
Moreover, the evaluator informed all interviewees about the
research before the interviews to obtain initial trust and to
avoid unethical issues such as disclosing possible industrial
secrets. This session took approximately 1 h 15 min and
included a question and answer session.

Then, the questionnaire, the main data source for the first
part of the interview, was distributed to the participants to
obtain individual answers. The participants filled out the
questionnaire alone, which took about 30 min. Then, one
by one, the semi-structured, face-to-face part of this study
was carried out. The aim of this session was to validate the
participants’ answers. To increase data consistency, besides
the interviews, any extra source of information about mod-
eling practices (e.g., any written material, medium used) is
analyzed during this process. Direct observation of modeling
practices also helped us understand a participant’s daily use
of modeling and to capture the details, which were not taken
or clarified in the first round. Note that the interviews were
performed without any voice recorder since there are some
confidentiality regulations for Org 1 and Org 2; nor did the
participants in Org 3 want a data recorder used. However,
during this session, the evaluator took notes on the question-
naire to collect evidence and detected some hidden charac-
teristics such as Domain-Specific Language (DSL) usage or
sketching as ad hoc ([25] for the evaluator notes on the origi-
nal questionnaire). Thus, several sources and cross-checking
these data with the questionnaire (e.g., what the evaluator
observed and learned during this semi-structured session)
compensated for the lack of voice recording, thus improving
the studies’ conclusions.

For Case Study A, the first case study, after the analysis
of collected data and reporting the results, the evaluator sent
the evaluation form (Appendix of [10]) to participants to
evaluate the model usefulness. In the email, which gave the
results (e.g., the identification of modeling patterns and cul-
tures and the suggestions), the participants were asked to fill
out these forms before the closing meeting. However, since
not all participants completed this form before the session, in
the second and third case studies, besides sending the form
in the results email, these forms were distributed in hard
copy after the completion of the interview. Therefore, the
evaluation form distribution and collection procedure varied:
The majority of the participants (i.e., 72%) completed the
forms with their handwriting (e.g., manually) and then sub-
mitted them before the closing meeting. Five of them (i.e.,
14%) completed the forms online and sent them to the evalu-
ator via email before the closing meeting. A minority of the

participants (i.e., 14%), who did not have enough time to
complete the forms until the closing meeting, evaluated the
model during the closing session. However, this difference
did not affect the overall evaluation for these participants
since they elaborated on their answers based on results sent
via email during the closing meetings.

The analyses were performed on all collected evidence
([25]) during the break session before the closing meeting
(for Case Study A, it took 2 days, for the other case studies,
it took 1 day). During the analysis, MAPforES was applied
with the modeling stakeholder’s characteristics to identify
the modeling patterns and cultures both from the interview
and from the observations and also according to what the
model predicted. Moreover, by querying these character-
istics in the database constructed by survey and interview
results, MAPforES presented what practitioners with the
similar demographics do in commonsense industrial mod-
eling practices (for example, based on their role, the target
sector, project size, etc., MAPforES increased the awareness
of commonsense practices, such as the modeling languages
specific to the target sector, e.g., Architecture Analysis and
Design Language (AADL), Markov Chain Modeling Lan-
guage, etc.) [10].

3.3 � Results and discussion

In this section, we first provide the results of the case studies.
Next, we provide the participants’ feedback on MAPforES
and lessons learned from the results.

3.3.1 � Results

In the following tables, all three case study results are pre-
sented in individual tables, in which the “unaware”3 partici-
pants of modeling or MDE are also presented. The follow-
ing tables are arranged and sorted according to descending
values of modeling patterns in the “Modeling Pattern
According to Model” column (e.g., 3.3, 3.2, 3.1 → 2.2, 2.1,
etc.) so the way modeling languages (e.g., DSL, UML and
sketches) are grouped is clear. However, online versions of
these tables, in which other attributes can be chosen as sort-
ing/filtering criteria to observe distributions of the rest, are
also available [33] (Note that the abbreviations used in the
tables are given in Table 7).

The results of Case Study A are depicted in Table 8.
The results show that there is a difference in mod-

eling approach patterns for different project and software

3  As terminology, “unaware” patterns indicate the embedded soft-
ware professionals, who do not know exactly their software modeling
characteristics (especially their modeling rigor); in fact, they are “hid-
den patterns,” which could not be identified by only quantitative data
analysis.

455Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

engineering roles (This was expected and is consistent with
the results of earlier studies [19, 23]); however, it is also
shown that this difference is related to the tasks and respon-
sibilities of modeling stakeholder and her/his formal educa-
tion (e.g., university degree). We present different profile
details from different modeling approach patterns observed
in Case Study A to support this conclusion.

Participant#11 tests the UI (User Interface) modules of
the radar software project and mainly writes UI test simula-
tors in Java or C++. He described the developed simula-
tors as “low” in terms of hardware closeness.4 He has also
used their own MDE tool (which is based on their own
DSL design) to generate test cases as model-based testing
(MBT). Therefore, he benefits from both UML diagrams and
DSL-like diagrams during analysis, design and test phases
of SDLC. Participant#12 tests the communication protocol
and message interfaces between middleware and digital sig-
nal processing (DSP) modules of the radar software, which
are deployed in the main processor card (not in PC). She
described the simulators she developed as “medium” in
terms of hardware closeness. She does not use any model-
driven techniques although she studied modeling languages
in earning her MSc in computer engineering (CENG). She
benefits from sequence diagrams, use case diagrams and
communication diagrams during the analysis and test phases
of SDLC. On the other hand, participant#13, whose aca-
demic background is different from other testers (i.e., he is
an electrical/electronics engineering (EE) graduate and did
not take any software engineering courses on modeling),
tests DSP algorithms and does not use any programming
language related to modeling. Besides, he never uses any
digital medium (e.g., a personal computer) while modeling
although he uses some use case or sequence diagrams to
communicate with other colleagues without archiving
them (e.g., these diagrams are discarded shortly after the
conversation).

As stated above, although participant#11, participant#12
and participant#13 are in the same project with the same
role, since their responsibilities are different (e.g., testing
different modules of the same software), their modeling
approach patterns are different. The formal education (e.g.,
university degree) of these practitioners is also different.
We encountered similar situations in which the responsi-
bilities and university degrees influence the developers’
modeling approach patterns (as shown in Table 8 for par-
ticipant#6, participant#3, participant#9, participant#7 and
participant#4).

Moreover, in Case Study A, during the first round of the
interview (based on the questionnaire), participant#8 follows
pattern 3.3 (i.e., “With DSL-like” pattern, see Table 1), but
during the second round of the interview, face-to-face con-
versation revealed that he is a modeling stakeholder, who
was “unaware” of MDE (as participant#28 in Case Study C).
The professionals, who were “unaware” of MDE, completed
the questionnaire as if they have benefitted from automatic
code generation or documentation generation with sketch
and UML usage. However, we observed that they actually
used DSL-like modeling languages, which categorizes them
as pattern 3.x. For further details of participants’ responses,
see [25].

In Case Study B, almost all results after observation and
interviews are compatible with what MAPforES predicted
except participant#21 (Table 9). This participant (i.e., project
manager (PM), whose university degree is mechanical engi-
neering (ME) and who did not take any software engineering
courses related to modeling) completed the questionnaire by
describing his modeling experience as “0” and as “never”
using software modeling. However, after a face-to-face inter-
view and observation, we noticed that he understood mod-
eling limitedly as consisting of formal UML diagrams, but,
in fact, he used sketches on paper and whiteboard during
meetings with the systems and software engineering teams.
He mentioned that he used some sketches (boxes and lines)
to understand a problem or process at an abstract level (our
“ad hoc” pattern). Therefore, he is a modeling stakeholder,
who is “unaware” of modeling with a hidden pattern (i.e.,
pattern 1.x, “unaware of modeling”) [25].

Table 7   Abbreviations used in the article

Position University degree

Software developer/programmer Dev Computer science CS
Software designer Desg Electrical/electronics engineering EE
Software architect Arch Computer engineering CENG
Systems engineer Sys Information systems IS
Software tester Tstr Software engineering SE
Project manager PM Mechanical engineering ME
Quality assurance engineer QA

4  Regarding “hardware closeness,” firmware or digital signal process-
ing (DSP) software is closer to hardware than user interface (UI) or
middleware software.

456	 D. Akdur et al.

1 3

Ta
bl

e 
8  

C
as

e
St

ud
y

A
 re

su
lts

, d
ef

en
se

 a
nd

 a
er

os
pa

ce
 se

ct
or

, r
ad

ar
 so

ftw
ar

e
pr

oj
ec

t

To
ta

lly
, 2

04
 y

ea
rs

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t e

xp
er

ie
nc

e
*T

hi
s i

nf
or

m
at

io
n

w
as

 o
bt

ai
ne

d
du

rin
g

th
e

in
te

rv
ie

w
 o

r d
ire

ct
 o

bs
er

va
tio

n
af

te
r t

he
 p

ar
tic

ip
an

t’s
 c

om
pl

et
io

n
of

 th
e

qu
es

tio
nn

ai
re

Pa
rti

ci
pa

nt
#

Po
si

tio
n

D
eg

re
e

Ex
pe

rie
nc

e
(in

ye

ar
s)

PL
 &

 H
W

 c
lo

se
-

ne
ss

M
od

el
in

g
la

ng
ua

ge
(s

)
M

od
el

in
g

pa
tte

rn
M

od
el

in
g

cu
ltu

re

A
ca

de
m

ic
U

ni
ve

rs
ity

W
or

k
M

od
el

in
g

O
bs

er
va

tio
n/

in
te

rv
ie

w
A

cc
or

di
ng

 to

m
od

el
O

bs
er

va
tio

n/
in

te
rv

ie
w

A
cc

or
di

ng
 to

m

od
el

6
D

ev
, D

es
g,

 A
rc

h
M

Sc
C

S,
 IS

10
 +

10
 +

C
, C

+
+

, J
av

a
m

ed
iu

m
Sk

et
ch

, U
M

L,

U
M

L
pr

ofi
le

s,
D

SL

3.
3

w
ith

 D
SL

-
lik

e
3.

3
w

ith
 D

SL
-

lik
e

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

11
Ts

tr
M

Sc
C

EN
G

10
 +

10
 +

Ja
va

, C
+

+
 lo

w
Sk

et
ch

, U
M

L,

D
SL

3.
3

w
ith

 D
SL

-
lik

e
3.

3
w

ith
 D

SL
-

lik
e

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

3
D

ev
, D

es
g,

 A
rc

h
M

Ss
EE

, C
EN

G
10

 +
10

 +
C

, C
+

+
 m

ed
iu

m
Sk

et
ch

, U
M

L
3.

2
w

ith
ou

t D
SL

-
lik

e
3.

2
w

ith
ou

t D
SL

-
lik

e
A

ut
o-

ge
ne

ra
te

d
A

ut
o-

ge
ne

ra
te

d

9
D

ev
M

Sc
EE

10
 +

6–
10

C
, M

A
TL

A
B

hi

gh
Sk

et
ch

, U
M

L,

M
A

TL
A

B
3.

1
lim

ite
d

3.
1

lim
ite

d
A

ut
o-

ge
ne

ra
te

d
A

ut
o-

ge
ne

ra
te

d

14
Sy

s
M

Sc
EE

, S
E

6–
10

6–
10

M
A

TL
A

B
 lo

w
Sk

et
ch

, U
M

L,

M
A

TL
A

B
,

Sy
sM

L

3.
1

lim
ite

d
3.

1
lim

ite
d

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

8
D

ev
, D

es
g

M
Sc

EE
, C

EN
G

10
 +

10
 +

C
, C

+
+

 m
ed

iu
m

Sk
et

ch
, U

M
L,

D

SL
*

3.
x

un
aw

ar
e

of

M
D

E
3.

3
w

ith
 D

SL
-

lik
e

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

1
D

ev
, D

es
g

M
Sc

EE
, I

S
10

 +
10

 +
C

+
+

 m
ed

iu
m

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

7
D

ev
B

Sc
EE

10
 +

10
 +

C
, C

+
+

 m
ed

iu
m

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

10
D

ev
B

Sc
EE

6–
10

6–
10

C
 h

ig
h

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

12
Ts

tr
M

Sc
EE

, C
EN

G
10

 +
10

 +
C

+
+

 m
ed

iu
m

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

17
Q

A
M

Sc
C

EN
G

10
 +

10
 +

B
PE

L
no

t a
pp

li-
ca

bl
e

Sk
et

ch
, U

M
L,

B

PM
L

2.
1

de
sc

rip
tiv

e
2.

1
de

sc
rip

tiv
e

A
rc

hi
ve

d
A

rc
hi

ve
d

2
D

ev
B

Sc
EE

6–
10

2–
5

C
 h

ig
h

Sk
et

ch
, U

M
L

1.
3

ar
ch

iv
ed

1.
3

ar
ch

iv
ed

A
rc

hi
ve

d
A

rc
hi

ve
d

16
PM

M
Sc

M
E

10
 +

10
 +

N
ot

 a
pp

lic
ab

le
Sk

et
ch

, U
M

L
1.

3
ar

ch
iv

ed
1.

3
ar

ch
iv

ed
A

rc
hi

ve
d

A
rc

hi
ve

d
4

D
ev

B
Sc

EE
2–

5
2–

5
C

 h
ig

h
Sk

et
ch

, U
M

L
1.

2
se

le
ct

iv
e

1.
2

se
le

ct
iv

e
Fo

rm
al

iz
ed

Fo
rm

al
iz

ed
13

Ts
tr

B
Sc

EE
6–

10
2–

5
N

ot
 a

pp
lic

ab
le

Sk
et

ch
, U

M
L

1.
2

se
le

ct
iv

e
1.

2
se

le
ct

iv
e

Fo
rm

al
iz

ed
Fo

rm
al

iz
ed

15
Sy

s
B

sc
EE

10
 +

6–
10

N
ot

 a
pp

lic
ab

le
Sk

et
ch

1.
1

ad
 h

oc
1.

1
ad

 h
oc

Pe
rfo

rm
ed

Pe
rfo

rm
ed

5
D

ev
M

Sc
EE

10
 +

10
 +

C
 v

er
y

hi
gh

–
0.

1
ba

d
ex

pe
ri-

en
ce

d
0.

1
ba

d
ex

pe
ri-

en
ce

d
N

on
e

N
on

e

457Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

The same “unawareness” of modeling occurred in Case
Study C, for participant#32, who also played PM role
(Table 10). After the interview, we realized that he indeed
uses sketching on whiteboard in an ad hoc manner during
the analysis phase of the SDLC [25].

A notable finding from all of our case studies is that
whenever a programming language used for modeling (i.e.,
“PL & HW closeness” column) goes from high level to low
level (e.g., from Java, C++ to C, or to the case where the
participant does not use a programming language), the use
of modeling decreases (i.e., “Modeling Patterns” column).
Note that some embedded software professionals in indus-
try think that the programming language and correspond-
ing toolset restrict them while modeling (e.g., because of
the limited number of embedded modeling environments,
which provides code generation facility for C, or because
the number of modeling tools for high-level programming
languages, such as C++ or Java, is greater than the num-
ber for lower-level programming languages such as C) [23].
Moreover, in various software development projects, differ-
ent layers of the same software might use different program-
ming languages (e.g., the DSP team uses “C,” the middle-
ware team uses “C++” and the UI team uses “Java”), and
the modeling practices of different teams might differ due
to differing project characteristics [34]. Although the Plat-
form Independent Modeling (PIM) concept might achieve
modeling independent from programming language [35], in
some cases, the programming language choice affects both
attitudes on modeling and the development and modeling
process followed which depends on tool support.

Regarding the relationship between university degrees
and modeling cultures, in our case studies, there were no
participants in the “Auto-generated” culture, whose univer-
sity degree did not include some combination of Comput-
ing Disciplines (e.g., Computer Science (CS), CENG, SE
or Information Systems (IS)) except participant#9 and par-
ticipant#28, who use limited MDE (e.g., without code gen-
eration or MBT) and who graduated with EE degree (e.g.,
participant#9 uses MATLAB for model simulation, and par-
ticipant#28 uses MDE for documentation generation [25]).

Table 11 summarizes the applications of MAPforES to
the line of research work that led to its construction. The
percentage of identified patterns and cultures is computed
comparatively for our international survey of embedded soft-
ware development professionals [19], the report on inter-
views with a sample of embedded software development
professionals [23] and finally the three case studies given in
the present article.

The use of model-driven approaches is more significant
in some sectors than in others. For example, in Case Study
A, where participants worked in the defense and aero-
space sector, we found that model-driven approaches were
widely used. This result is consistent with earlier studies.

According to [36], defense and aerospace is the sector,
in which model-driven approaches are the most popular
among all other sectors, and automotive and transporta-
tion was in second place. Moreover, although the research
methodologies (i.e., survey, interview and case studies)
and participant numbers are different (i.e., 657, 53 and 35,
respectively), the percentages in the patterns are similar
and compatible with one other. As shown in Fig. 1, the
percentage of “Auto-generated” and “Performed” cultures
in the case studies (i.e., 31.4% and 8.6%) is higher than the
percentages in the survey (i.e., 29.5% and 4.5%), whereas
the percentage of the “None” culture in the case studies
(i.e., 5.7%) is lower than that in the survey (i.e., 11%).
The reason is “hidden patterns” (e.g., participants were
unaware of MDE and modeling), something that could
not be identified by survey data. In fact, the participants
in both studies, who do not know whether they use MDE
or software modeling, might cause changes in descriptive
categorization and their percentages in different research
methodologies, i.e., the percentage for “unaware of mode-
ling” pattern in the survey, might be distributed into either
in “performed” or “formalized” culture, but in the quali-
tative interview data (e.g., face-to-face, direct observa-
tions, etc.) more robust information about “unawareness”
of modeling characteristics were provided, hence a more
correct categorization.

By no means, these percentages present the exact distri-
bution of the modeling patterns and cultures in the embed-
ded software industry, but, this result gives insight and
confirms the distribution of these patterns that MAPforES
identified, along with further insights as detailed below. We
must also emphasize that using a single embedded profes-
sional as the unit of analysis is generally considered accept-
able in the literature (e.g., [37]).

Analysis of the evaluation forms is presented next. This
analysis shows how participants evaluated the utility and
comparative value of MAPforES.

3.3.2 � Evaluations by individual qualitative evidence

Analysis of the evaluation forms shown in Table 12 (Appen-
dix of [10]) shows that MAPforES reflected the expected
results based on validation criteria in Table 3. Note that
every participant except few (Table 12) elaborated on each
affirmative answer. Details of this elaboration are presented
next.

All qualitative and quantitative data gathered through
these forms (which we discuss below) and the attitudes of
the participants during the closing meeting demonstrate that
the model was useful:

•	 in creating and increasing the awareness of what mod-
eling stakeholders do,

458	 D. Akdur et al.

1 3

Ta
bl

e 
9  

C
as

e
St

ud
y

B
 re

su
lts

, a
ut

om
ot

iv
e

an
d

tra
ns

po
rta

tio
n

se
ct

or
, b

us
 so

ftw
ar

e
ap

pl
ic

at
io

n
pr

oj
ec

t

To
ta

lly
, 1

13
 y

ea
rs

 o
f s

of
tw

ar
e

de
ve

lo
pm

en
t e

xp
er

ie
nc

e
*T

hi
s i

nf
or

m
at

io
n

w
as

 o
bt

ai
ne

d
du

rin
g

th
e

in
te

rv
ie

w
 o

r d
ire

ct
 o

bs
er

va
tio

n
af

te
r t

he
 p

ar
tic

ip
an

t’s
 c

om
pl

et
io

n
of

 th
e

qu
es

tio
nn

ai
re

Pa
rti

ci
pa

nt
#

Po
si

tio
n

D
eg

re
e

Ex
pe

rie
nc

e
(in

ye

ar
s)

PL
 &

 H
W

 c
lo

se
-

ne
ss

M
od

el
in

g
la

ng
ua

ge
(s

)
M

od
el

in
g

pa
tte

rn
M

od
el

in
g

cu
ltu

re

A
ca

de
m

ic
U

ni
ve

rs
ity

W
or

k
M

od
el

in
g

O
bs

er
va

tio
n/

in
te

rv
ie

w
A

cc
or

di
ng

 to

m
od

el
O

bs
er

va
tio

n/
in

te
rv

ie
w

A
cc

or
di

ng
 to

m

od
el

23
D

ev
, D

es
M

Sc
C

EN
G

10
 +

10
 +

C
+

+
 m

ed
iu

m
Sk

et
ch

, U
M

L,

D
SL

, (
A

U
TO

-
SA

R
)

3.
3

w
ith

 D
SL

-
lik

e
3.

3
w

ith
 D

SL
-

lik
e

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

20
D

ev
, D

es
, A

rc
h

M
Sc

C
S,

 S
E

10
 +

10
 +

C
, C

+
+

 m
ed

iu
m

Sk
et

ch
, U

M
L,

D

SL
, (

A
U

TO
-

SA
R

)

3.
3

w
ith

 D
SL

-
lik

e
3.

3
w

ith
 D

SL
-

lik
e

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

18
D

ev
, A

rc
h

Ph
D

EE
, C

EN
G

10
 +

10
 +

C
+

+
 lo

w
Sk

et
ch

, U
M

L
3.

2
w

ith
ou

t D
SL

-
lik

e
3.

2
w

ith
ou

t D
SL

-
lik

e
A

ut
o-

ge
ne

ra
te

d
A

ut
o-

ge
ne

ra
te

d

27
D

ev
, A

rc
h

M
Sc

C
EN

G
10

 +
10

 +
C

, C
+

+
 m

ed
iu

m
Sk

et
ch

, U
M

L
2.

2
pr

es
cr

ip
tiv

e
2.

2
pr

es
cr

ip
tiv

e
Pr

es
cr

ip
te

d
Pr

es
cr

ip
te

d
22

Ts
tr

B
Sc

C
EN

G
6–

10
6–

10
C

+
+

, J
av

a
m

ed
iu

m
Sk

et
ch

, U
M

L
2.

2
pr

es
cr

ip
tiv

e
2.

2
pr

es
cr

ip
tiv

e
Pr

es
cr

ip
te

d
Pr

es
cr

ip
te

d

19
Sy

s
M

Sc
EE

, C
EN

G
6–

10
2–

5
N

ot
 a

pp
lic

ab
le

Sk
et

ch
, U

M
L

2.
1

de
sc

rip
tiv

e
2.

1
de

sc
rip

tiv
e

A
rc

hi
ve

d
A

rc
hi

ve
d

26
D

ev
B

Sc
EE

6–
10

2–
5

C
 h

ig
h

Sk
et

ch
, U

M
L

1.
3

ar
ch

iv
ed

1.
3

ar
ch

iv
ed

A
rc

hi
ve

d
A

rc
hi

ve
d

24
D

ev
B

Sc
EE

10
 +

6–
10

C
 h

ig
h

Sk
et

ch
, U

M
L

1.
2

se
le

ct
iv

e
1.

2
se

le
ct

iv
e

Fo
rm

al
iz

ed
Fo

rm
al

iz
ed

21
PM

B
Sc

M
E

10
 +

>
 0*

N
ot

 a
pp

lic
ab

le
Sk

et
ch

*
1.

x
un

aw
ar

e
of

m

od
el

in
g

1.
1

ad
 h

oc
Pe

rfo
rm

ed
Pe

rfo
rm

ed

25
Ts

tr
B

Sc
EE

2–
5

–
C

 v
er

y
hi

gh
–

0.
0

no
t e

xp
er

i-
en

ce
d

0.
0

no
t e

xp
er

i-
en

ce
d

N
on

e
N

on
e

459Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

Ta
bl

e 
10

  
C

as
e

St
ud

y
C

 re
su

lts
, c

on
su

m
er

 e
le

ct
ro

ni
cs

 se
ct

or
, T

V
 so

ftw
ar

e
pr

oj
ec

t

To
ta

lly
, 9

5
ye

ar
s o

f s
of

tw
ar

e
de

ve
lo

pm
en

t e
xp

er
ie

nc
e

*T
hi

s i
nf

or
m

at
io

n
w

as
 o

bt
ai

ne
d

du
rin

g
th

e
in

te
rv

ie
w

 o
r d

ire
ct

 o
bs

er
va

tio
n

af
te

r t
he

 p
ar

tic
ip

an
t’s

 c
om

pl
et

io
n

of
 th

e
qu

es
tio

nn
ai

re

Pa
rti

ci
pa

nt
#

Po
si

tio
n

D
eg

re
e

Ex
pe

rie
nc

e
(in

ye

ar
s)

PL
 &

 H
W

 c
lo

se
-

ne
ss

M
od

el
in

g
la

ng
ua

ge
(s

)
M

od
el

in
g

pa
tte

rn
M

od
el

in
g

cu
ltu

re

A
ca

de
m

ic
U

ni
ve

rs
ity

W
or

k
M

od
el

in
g

O
bs

er
va

tio
n/

in
te

r-
vi

ew
A

cc
or

di
ng

 to

m
od

el
O

bs
er

va
tio

n/
in

te
r-

vi
ew

A
cc

or
di

ng
 to

 m
od

el

30
Ts

tr
M

Sc
C

S,
 C

EN
G

10
 +

10
 +

C
, C

+
+

, P
yt

ho
n

m
ed

iu
m

Sk
et

ch
, U

M
L,

D

SL
 (M

ar
ko

v
C

ha
in

)

3.
3

w
ith

 D
SL

-li
ke

3.
3

w
ith

 D
SL

-li
ke

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

28
D

ev
, A

rc
h

M
Sc

EE
10

 +
10

 +
C

+
+

, P
yt

ho
n

m
ed

iu
m

Sk
et

ch
, U

M
L,

D

SL
 (o

w
n,

D

ox
yg

en
)*

3.
x

un
aw

ar
e

of

M
D

E
3.

1
lim

ite
d

A
ut

o-
ge

ne
ra

te
d

A
ut

o-
ge

ne
ra

te
d

35
D

ev
, A

rc
h

M
Sc

C
S,

 C
EN

G
10

 +
10

 +
C

+
+

, m
ed

iu
m

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

29
D

ev
M

Sc
EE

, C
EN

G
10

 +
6–

10
C

+
+

, m
ed

iu
m

Sk
et

ch
, U

M
L

2.
2

pr
es

cr
ip

tiv
e

2.
2

pr
es

cr
ip

tiv
e

Pr
es

cr
ip

te
d

Pr
es

cr
ip

te
d

31
D

ev
B

Sc
EE

6–
10

6–
10

C
 h

ig
h

Sk
et

ch
, U

M
L

2.
1

de
sc

rip
tiv

e
2.

1
de

sc
rip

tiv
e

A
rc

hi
ve

d
A

rc
hi

ve
d

34
Ts

tr
B

Sc
EE

6–
10

2–
5

N
ot

 a
pp

lic
ab

le
Sk

et
ch

, U
M

L
1.

3
ar

ch
iv

ed
1.

3
ar

ch
iv

ed
A

rc
hi

ve
d

A
rc

hi
ve

d
33

D
ev

B
Sc

EE
6–

10
2–

5
C

 v
er

y
hi

gh
Sk

et
ch

, U
M

L
1.

2
se

le
ct

iv
e

1.
2

se
le

ct
iv

e
Fo

rm
al

iz
ed

Fo
rm

al
iz

ed
32

PM
B

Sc
EE

10
 +

>
 0*

N
ot

 a
pp

lic
ab

le
Sk

et
ch

*
1.

x
un

aw
ar

e
of

m

od
el

in
g

1.
1

ad
 h

oc
Pe

rfo
rm

ed
Pe

rfo
rm

ed

460	 D. Akdur et al.

1 3

•	 in giving an opportunity to the stakeholder to compare
how software engineer with similar profiles model and
also

•	 in suggesting useful software modeling practices [25].

Although the evaluation form is in English, four partici-
pants (~ 11%) answered in Turkish. Note that if the partici-
pant’s answer is in English, the phrase is not corrected even
if it might be grammatically incorrect on the original forms
[25]. However, we have corrected these sentences in this
paper to improve their understandability (with additional

words added for clarity shown in brackets). Due to space
constraints, selected evaluations to each question in Table 4
with verbatim quotes taken from the original evaluation
forms are given below. All remaining qualitative data are
available in [25].

3.3.2.1  Evaluations on relevancy and insightfulness of MAP-
forES (question 1 and question 3 of Table 4)  All responses
to the first question mentioned that the model produced
relevant results, which addresses the “result” criterion in
Table 3 (e.g., the quality of the model with respect to its

Table 11   Case study results summary: comparison with survey and interview with respect to pattern & culture percentages

*1.x pattern might be either 1.1 or 1.2; hence, its value makes “performed” and “formalized” culture increase
**3.x pattern might be either 3.1, 3.2 or 3.3; but since all of them are in “auto-generated,” no need for further analysis as in 1.x pattern

Patterns Cultures % in survey
results (657)

% in interview
results (53)

% in case A
(17) radar sw
project

% in case
B (10) bus
sw project

% in case C (8)
TV sw project

% in case
studies
(35)

Model-driven
3.3 With DSL/DSML Auto-generated 15.4 29.5 15.1 32.1 11.8 35.2 20 30 12.5 25 14.3 31.4
3.2 Without DSL/DSML 6.5 7.5 5.8 10 – 5.7
3.1 Limited 7.6 5.6 11.8 – – 5.7
3.x Unaware of MDE** – 3.7** 5.8** – 12.5** 5.7
Model-based
2.2 Prescriptive Prescripted 25.2 18.9 23.5 20 25 22.9
2.1 Descriptive Archived 12.7 16.2 11.3 15 5.8 17.6 10 20 12.5 25 8.6 20
1.3 Archived 3.5 3.7 11.8 10 12.5 11.5
1.2 Selective Formalized 13.6 13.2* 11.8 10 12.5 11.5
1.1 Ad hoc Performed 4.5 3.7* 9.4 5.8 5.8 – 10 – 12.5 2.9 8.6
Sketching
1.x Unaware of modeling* – 5.6 – 10 12.5 5.7
None
0.1 Bad experienced None 11 7.5 11.2 5.8 5.8 – 10 – – 2.9 5.7
0.0 Not experienced 3.7 – 10 – 2.9

Fig. 1   Case study results: the
percentage of participants in the
modeling culture discussed in
Sect. 2.2

11.0%

4.5%

13.6%

16.2%

25.2%

29.5%

11.2%

3.7%

13.2%

15.0%

18.9%

32.1%

5.7%

8.6%

11.5%

20.0%

22.9%

31.4%

0% 5% 10% 15% 20% 25% 30% 35%

None

Performed

Formalized

Archived

Prescripted

Auto-generated

Case Studies (35 practitioners) Interview (53 practitioners) Survey (657 practitioners)

461Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

benefits). One participant stated on the evaluation forms:
“In fact, I really did not know whether I have been mod-
eling; but in fact, I now realize that I have been a sketcher
for more than 10 years; yes I am a modeler but part of a ‘per-
formed’” [culture]. A project manager indicated the bene-
fits of the presentation as “Before [the] presentation, I didn’t
think that modeling was important for me; but now I can say
that at least I will try to investigate these recommendations
[further].” All participants explicitly affirmed the proposed
benefits of the model [25]. All answers to the third question
in Table 4 revealed that no participant has experienced such
a characterization model before [25]. Two evaluation forms
suggest an improvement (also discussed during the closing
meetings): “While getting the modeling characteristics of
the stakeholder [as a structured questionnaire], why do not
you use any automated tool so that both filling the form and
the analysis would be easier?” A positive result of manual
application was the possibility of identifying unaware pat-
terns during direct observations and face-to-face meetings.
This suggestion can be implemented by dividing the process
into two stages: (1) obtain the inputs with a tool and (2)
evaluate and observe the stakeholder’s characteristics (e.g.,
using the questionnaire results form). Via an automated
tool, the questionnaire can be sent to several companies
before the visit. This would save time (although the semi-
structured part is still crucial).

3.3.2.2  Evaluations on usefulness of MAPforES (question
2, question 4 and question 5 of Table 4)  The objective of
the second question on the evaluation form, which affects
both the “result” and “utility” criteria listed in Table 3, was
to evaluate the benefits of MAPforES. Almost every par-
ticipant (~ 94%) explicitly mentioned the need to understand
different modeling patterns and cultures so that a model
might help the stakeholder to follow commonsense mod-
eling practices. According to participants, the model pro-
vides a common language for a stakeholder to share her/his
modeling experience with the others in the embedded soft-
ware modeling community. Note that 5.8% of participants
did not elaborate their answer on the second question, i.e.,

“Do you think that the model is helpful? Please elaborate
your answer.” They just wrote “Yes” without elaborating.
However, we think that this ratio (e.g., ~ 6%) is negligible
and not a threat to validity.

Depending on the modeling stakeholder role, the evalu-
ations varied. For example, one software developer in the
first case study stated that “knowing the characteristics of
what I am modeling is helpful for categorizing my modeling
approach. Learning the importance of DSL in embedded
software industry pushes me to investigate further a cost-
effective and domain-specific (defense) solution.” Another
participant (i.e., systems engineer) wrote on the evaluation
form: “the model is helpful to understand different modeling
approaches [of different roles] such as software develop-
ers, systems engineers (such as me) and even PMs [Project
Managers]. As far as I understood, all of their approaches
might be the ‘best’ according to some criteria, so there is no
just one ‘best’!”

One benefit of the MAPforES model is making stake-
holders aware of their modeling practices. One software
developer in the third case study said: “We now know that
we are using DSL in fact:).” There are many participants
(83%), who mentioned that the presentation given before
the interview was also beneficial since knowing the relations
between the modeling characteristics has practical benefits
for the modeling stakeholder.

As mentioned, MAPforES uses the results of survey and
interview data to describe the modeling practices of stake-
holders with similar profiles. For example, a participant
presented his/her characteristics of modeling (e.g., role or
target sector), and the evaluator reported the similar profiles’
modeling practices to increase modeling awareness (e.g.,
the modeling languages specific to the target sectors such as
AADL for defense and aerospace, the Markov Chain Mod-
eling Language for consumer electronics or modeling tools).
In this way, MAPforES guided process and tool improve-
ments for modeling by describing a set of commonsense
industrial practices [25]. According to the majority of par-
ticipants (i.e., 74.2% of participants used “useful” explic-
itly in their evaluation forms for the fourth question), this

Table 12   Percentage of respondents that replied affirmatively to validity criteria

*All participant (i.e., 100%) satisfied related criteria for this question; however, two participants (i.e., 5.8%) did not elaborate their answers and
just wrote “Yes” in the forms without explicitly mentioning about the benefits of the model

Question # Addressed RQ # Validation criteria Case Study A (%) Case Study
B (%)

Case Study C (%) Total (%)

1 RQ1 Result 100 100 100 100
2 RQ1 and RQ2 Result & utility 94.1* 100 87.5* 94.2*
3 RQ2 Comparison 100 100 100 100
4 RQ2 Utility 100 100 100 100
5 RQ2 Utility 88.2 90 100 91.5

462	 D. Akdur et al.

1 3

set of commonsense practices is useful because their mod-
eling practices might be affected based on the suggestions.
“Learning what the similarly profiled [embedded software
practitioners] are doing is useful to analyze the approaches
[before embarking on a project with modeling]; it will save
time” or “Knowing alternative practices (for example mode-
ling tools) might affect our practices. If they are cheaper than
what we use, we, of course, will use and apply these prac-
tices in future” are some example quotes from participants.

Although the attitudes toward these suggestions were
always positive, some participants mentioned some organi-
zational and managerial issues. One software developer
in the first case study stated: “We have an organizational
decision to use a modeling tool, I don’t know whether we
can change this; but the managerial decision on that tool
might be affected if there are cheaper alternatives.” Another
software architect in the same software development team
wrote in the evaluation form as “Of course, ‘stand on the
shoulders of giants’:). If some of their choices [in modeling
approaches and tools] fit our organization, why not?.” One
participant stated: “Yes, I believe that our competitors’ mod-
eling ways could be a source for inspiration about future
projects, but I am not sure about my managers’ possible
concerns about what our competitors are doing; and they
have the last word.”

The set of modeling languages used based on the stake-
holder role was also appreciated by the participants. One of
the systems engineers stated: “In fact, there are not many
systems engineers in the industry, therefore it is very inter-
esting to learn what they do. Specifically, I want to learn
more about SysML.” A software developer in the first case
study also stated: “I don’t know about DSL usage in our
industry; I should analyze some of them like MARTE and
EAST-ADL.” One of the project managers commented that
“Being the PM, learning the other PMs’ modeling usage is
very interesting; perhaps I should analyze some BPM [Busi-
ness Process Modeling] diagrams to get some benefits.”

Almost every participant’s answers to the fifth question
(~ 91.5%) satisfied utility validation criteria for this question,
which finds out whether the model is useful or not. By using
the chart for the modeling patterns and cultures with the
corresponding characteristics of modeling [10], the recom-
mendations are useful for commonsense modeling practices
depending on the specific characteristics (e.g., motivation
and purpose).

One test engineer stated: “Developing a company-specific
[domain-specific] tool according to our needs is always a
planned action for our test department. Perhaps, [based on
the feedback] from this study we can accelerate this process
and fully automate all our testing procedure. By this way,
all testers might be in the same pattern according to your
model.” One of the software developers, whose pattern is
2.2 (i.e., using prescriptive modeling but not model-driven

techniques), said: “The recommendations are useful with
respect to [being aware of] DSL and having own modeling
tool. Perhaps, we can try model-driven techniques by com-
paring pros and cons.” A software developer in the second
case study said: “I think they [the recommendations] will
be useful after analyzing the suggested modeling tools and
DSLs further (mainly Papyrus, Eclipse-based tools and auto-
motive domain-specific DSLs).”

Moreover, giving these recommendations explicitly (i.e.,
in a written format) made some participants aware of an easy
and straightforward modeling task to get practical benefits.
A project manager stated: “Just taking a photo of the white-
board screen and archiving it is a very easy and effective
solution. I am wondering why I did not do that until now.”

The same situation encountered in the answers to the
fourth questions’ responses about organizational decision-
making issues was also encountered here. “Yes, [the recom-
mendations are useful] but since I am not a decision maker,
I will also forward your email to my manager” or “After try-
ing and experiencing the suggestions, I can [personally] use
them, therefore it might affect [how we work] based on the
results of their feasibility analysis; but for my team, I should
inform my technical lead” are some example quotes about
this challenge. Amorim et al. claimed that managers should
understand which modeling tools, languages and approaches
are best fitted for their organization through experimenting
as the best way to introduce model-based systems engineer-
ing (MBSE) [38]. In that sense, MAPforES may help to
overcome organizational issues since it provides experiences
of embedded software modeling community in an abstracted
and compact form.

The common concern of the participants, who thought
that there might be some organizational and managerial
issues against a straightforward application of the recom-
mendations (~ 5.8% of participants), is that MAPforES has
not been a “proven” or “accepted” model in the industry yet.
One software developer stated: “As in all changes here [in
our company], there is always the need for a “champion” to
promote this model [and its recommendations].” He contin-
ued that in order to adopt this model without any organiza-
tional resistance, the management must either see the results
of this model in their own projects or learn about any suc-
cess story about MAPforES. Another developer said that
since MAPforES is a new model for the industry, there is a
need to evaluate its recommendations in the long term for an
effective adoption of MAPforES. These comments actually
state the need and provide a cue for the future development
of MAPforES to be a more adoptable model as detailed in
concluding remarks in Sect. 4.

Qualitative data gathered through the evaluations have
shown that the MAPforES model has been useful in creating
awareness and guidance on software modeling in embedded
software practitioners.

463Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

3.3.3 � Discussion and lessons learned

The results have organizational implications since it is ben-
eficial to identify common techniques for different modeling
purposes while pinpointing the potential challenges. For
example, the results showed that even stakeholders in the
same software engineering roles within the same projects
might have different modeling practices (e.g., in Case Study
A, participant#11, participant#12 and participant#13 as
being software tester). On the other hand, we also observed
that different modeling stakeholders (e.g., systems engineers,
test engineers and software engineers) might have common
modeling approaches and they might be in the same pattern
(as participant#1, participant#7, participant#10 and partici-
pant#12 are in “Descriptive” pattern although their software
engineering roles are different). Such findings have organi-
zational implications such as the need for further training
in modeling or implementing practices of effective use of
modeling in an organizational unit that might change from
case to case. In other words, MAPforES can be utilized to
decide the common approaches and practices for different
software modeling characteristics such as purpose, medium
type (e.g., modeling environment/tool), SDLC phases or
modeling languages. For example, those stakeholders, who
find UML too general or vague for their purposes [23], might
actually benefit from DSL-like approaches in their choices
of modeling languages depending on the sector to carry out
effective MDE. A study, which presented a list of recom-
mended practices that contribute to the increased effective-
ness of modeling (e.g., with UML), showed that the use
of software modeling is considered beneficial for software
maintenance (as a specific SDLC activity), but needs to be
tailored to its context since various practices are commonly
overlooked [39]. The detection of necessary modeling pat-
terns, corresponding practices and further training in the
organization (e.g., in a specific context), can be made via
MAPforES characteristics [33].

The results of another study conducted in the embedded
domain which investigated the barriers when adopting soft-
ware modeling showed that “the lack of supporting tools”
is the most possible problem preventing adoption of mod-
eling techniques [40]. Similarly, a survey, which assessed the
state of practice of model-driven approaches, showed that
the main shortcomings to introduce and use these techniques
are related to modeling tools and high training efforts [41].
In that sense, MAPforES might help stakeholders to find
out the “right” modeling tool according to their needs by
referencing to a set of commonsense industrial practices.

Modeling stakeholders are less likely to resist the chal-
lenges of modeling adoption if they can perceive its benefits.
As reported in [38], the most important best practice for

Model-Based Systems Engineering (MBSE)5 adoption in
the embedded software industry is related to increasing the
stakeholders’ motivation by making them aware of the ben-
efits. As reported by various participants in our case studies,
MAPforES increased the awareness of modeling benefits;
hence, it will help overcome the challenges of modeling
adoption.

Based on our results, the difference on modeling pat-
terns might be related not only to project characteristics or
software engineering roles in the project but also the tasks
and responsibilities of that particular participant in that role
besides formal education (e.g., university degree) of the
stakeholder (as in the case of software tester roles in Case
Study A).

We have already found out that educational skill set
affects where/how the stakeholder learned software mod-
eling, hence modeling approaches and its relevant practices
through modeling experience [6]. For example, a stake-
holder, who graduated from EE, most probably has learned
software modeling after graduation with formal corporate
training, or on his/her own; however, any stakeholder who
graduated from a Computing Discipline has learned soft-
ware modeling at the university from software engineering
courses. On the other hand, for the participant, who learned
software modeling at the university, a typical university soft-
ware engineering course teaches in a top-down fashion, in
which diagrams are first developed for analysis and then iter-
atively refined into design, implementation and test phases
of SDLC. In most software modeling courses, the students
study how to design and develop a software system using
software modeling techniques, but the focus is generally on
the analysis and the design phases and there is a missing
part while translating these diagrams into executable code.
Extensions of these courses could focus on the important
concepts in model-driven approaches, which might increase
the percentage of “Auto-generated” culture (Note that there
is an increasing number of universities, which use “Model-
driven software engineering in practice” as a software
engineering course book, which covers more model-driven
practices [35]). Therefore, we believe that the awareness of
different modeling approaches is correlated with the dis-
cipline of university degree of the stakeholder. These case
studies also showed there is a relation between the aca-
demic background and the modeling approaches if the task/
responsibility of the stakeholders does not force him/her to
do specific modeling practices. If the given courses on mod-
eling might be updated or enhanced to make the embedded
software professionals aware of different approaches and if

5  Model-based systems engineering (MBSE) is one of the systems
engineering methodologies that focuses on modeling as the primary
means of information exchange between engineers to support analy-
sis, design, verification and validation of the system (including soft-
ware part).

464	 D. Akdur et al.

1 3

the curriculum of non-Computing Disciplines (e.g., EE or
ME curriculum) might be updated by including new courses
about software modeling, we believe that this relationship
might vary in the future.

The results also showed that there is a noticeable percent-
age of “unaware” participants of modeling or MDE (i.e.,
pattern 1.x and pattern 3.x, ~ 11%) in our embedded software
community sample, which are identified during the direct
observation or face-to-face semi-structured interview via a
question and answer session (i.e., after the completion of
structured part of the questionnaire). That is, although they
practice a certain pattern in modeling, those participants are
not metacognitively aware that they are using this particular
pattern. According to our results, this “unawareness” related
to software modeling is mainly based on stakeholder’s pro-
file (e.g., university degree, modeling experience, etc.). In
other words, without a background and common terminol-
ogy in modeling, the stakeholder may not be aware that she
is actually using modeling in SDLC. An organization might
use such outputs of MAPforES to fulfill any training need
to create and increase the awareness of what their modeling
stakeholders do.

3.4 � Threats to validity

In our case, we should note that these case studies do not
include any hardware, which is at architectural design or
development stage (e.g., the hardware is robust). Thus, we
assumed that hardware design and maturity problems did
not present challenges to the scope of the study as the rela-
tion between software and the hardware which this soft-
ware is running on is important in the embedded software
development.

In our study, the following aspects are addressed [28]:
Construct validity Construct validity is concerned with

the correctness of the interpretation and the theoretical con-
structs [42]. In this research, multiple sources of evidence
were used in our case study strategy. All evidence was col-
lected in questionnaires, written notes after interviews and
direct observations and then kept in a technical report [25].
During the second round of the interview, the evaluator
confirmed what the interviewee gave as responses in the
questionnaire to ensure the validity of the collected data. By
this way, cross-checking of what the questionnaire gave in
the first round and what the evaluator observed during the
second round provided more robust conclusions.

Internal validity In order to mitigate this threat [42], we
focused on the study design and checked whether the results
are consistent with the data. The case studies reported here are
not controlled experiments; however, the stakeholders with
similar profiles and modeling characteristics might be used
for pattern matching with further case studies to eliminate any
bias. During the first part of the interview, all participants filled

out the questionnaire individually and separately so that the
interviewer prevented answers of a participant to be influenced
by others [43]. By this way, the interviewer avoided any infor-
mation sharing between interviewees. Note that awareness of
modeling or MDE is critical to feed the model with correct
data. Since there is no culture difference in case of “pattern
3.x” (i.e., “pattern 3.x” might be “pattern 3.1” or “pattern 3.3”
in practice, but all of them are in “auto-generated” culture),
the model gives the relevant result for the corresponding cul-
ture. However, in the case of “pattern 1.x,” if the input is “no
modeling,” the corresponding pattern would be incorrect. As
seen, awareness of modeling approach (if available), hence
data quality, is critical to have relevant results. Moreover, note
that none of these software professionals in multiple case stud-
ies participated in the previous interviews; however, it cannot
be guaranteed whether any of them participated in the survey
or not. Nevertheless, note that even if they have participated in
the survey, when the number of case study participants is com-
pared to the number of participants in the survey (e.g., ~ 5.5%),
a threat to internal validity would be limited.

External validity The generalizability of the results is
focused to mitigate this threat [42]. Three cases and partici-
pants were selected intentionally (Sect. 3.2.2) with variation
points (e.g., target domain, position, academic background,
experience, hardware closeness). We cannot state that the
selection is representative of all embedded software develop-
ment projects. However, all three cases have similar results,
and by applying the model in more case studies and projects,
the generalizability shall be improved.

Reliability Reliability focuses on the replicability of the
results by other researchers. This study has a case study pro-
tocol and database, which were documented and archived
systematically so that the replicability and repeatability of
the operation of the case study have been ensured. Note that
both the questionnaires with the evaluator’s notes and the
evaluation form of participants were saved in case study
database as a paper repository and then were digitized dur-
ing the analysis when transcribed by taking the photo of
each page [25]. Moreover, the draft case study design was
reviewed by two academicians and three embedded software
professionals. By this way, Table 5 is modified, and before
the company visit, the agenda template was finalized. Dur-
ing the interviews, the actual (performed) progress of the
case study against the planned progress (i.e., the agenda)
was reviewed to determine if there are any significant differ-
ences. Moreover, the evaluator (during the second round of
the interview) asked the interviewee to confirm and validate
what she or he gave as responses in the questionnaire. This
helped to ensure that the interview data provides a fair repre-
sentation of the interviewee’s opinions with correct answers.

Although the general validity of the conclusions was
restricted by the limited number of case studies (i.e., three),
we believe that MAPforES can be applied in different

465Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

subsectors of the embedded software industry and can be
enriched with more case studies. Such a further study could
strengthen the validity of the model.

4 � Conclusions

In this study, we present the MAPforES model to identify
and define modeling approach patterns and cultures used in
embedded software development projects. We observed that
the industrial context reflects what we presented for mod-
eling approach patterns.

We noticed that organizations may need different mod-
eling approach patterns for different projects or even for dif-
ferent individual software engineering roles within projects.
Applying MAPforES provides feedback to modeling stake-
holders and creates insight for individuals. The usage of the
characterization model has the potential to overcome one of
the most significant difficulties of top-down organizational
process improvement model by enabling everyone to con-
tribute [44, 45]. As also depicted in Heldal et al., different
units within the same company might use different modeling
approaches [8]. Moreover, we found that even in the same
software development project, the same software engineer-
ing roles might use different modeling practices depending
on their tasks and responsibilities for different modeling
characteristics such as different purposes in different phases
of SDLC besides formal education of the stakeholder.

We found out that MAPforES is useful since the partici-
pants explicitly mentioned their satisfaction [10] in creating
awareness and referencing to a set of commonsense indus-
trial modeling practices. Qualitative data gathered through
the evaluations have shown that all participants thought that
the MAPforES is conceptually insightful and the majority
(i.e., 74.2%) used “useful” explicitly on their evaluation
forms.

MAPforES can be applied with a moderate amount of
effort (i.e., about 2 h per modeling stakeholder), and its
benefits easily outweigh its costs as the improvements in
individual processes are accumulated in all projects to be
implemented after that point in time.

MAPforES is a complementary model for process
improvement approaches such as CMMI and SPICE [14,
15]. Identifying modeling patterns of individuals and/or pro-
jects before an organizational assessment of software mod-
eling practices may be useful in pinpointing the potential
threats for institutionalization such as the diversity of tech-
niques utilized. The results can also be beneficial for iden-
tifying the common techniques for different purposes used,
thereby for determining the best standardization approaches.
Two organizations in the case studies have CMMI certifica-
tions and the participants found the model useful, which

has increased both their awareness of their own and similar
demographics’ modeling practices.

Our validation of MAPforES does not currently entail
whether the awareness and new information acknowledged
by the participants have short- and long-term positive effects
in their modeling practices in embedded software develop-
ment. Thus, to evaluate both the individual and organiza-
tional benefits of MAPforES, we have planned a systematic
study, in which we will investigate the changes of software
modeling practices in time, of the participants, via various
interviews (e.g., if there is an improvement, which practices
are affected and what are their consequences; if there is no
change, what are the challenges of not applying MAPforES,
etc.). We also plan to conduct such a study on another con-
trol group, who have not applied MAPforES. These stud-
ies will enable us to reveal the effect of MAPforES on the
changes for software modeling practices.

In the multiple case studies, to take the modeling charac-
teristics of the participant, a questionnaire was used. A rec-
ommendation system using artificial intelligence techniques
might transform a more costly to implement technique such
as a questionnaire into a virtual assistant for project and
program managers implementing policies on software mod-
eling based on a model such as MAPforES of community
experience.

We also plan a study of technical and social factors that
influence the adoption of various modeling patterns, spe-
cifically the effect of understandability and organizational
resistance [46].

MAPforES is the first wide-coverage model of modeling
characteristics for the embedded software sector built on
extensive input from industry. The work presented in this
article complements the model development effort by apply-
ing the MAPforES model successfully in three embedded
software projects from two organizations. We hope that
MAPforES and its applications in the field will establish a
useful baseline for future individual and organizational pro-
cess improvement studies in embedded systems modeling.

Acknowledgements  The authors would like to thank all embedded
software professionals, who contributed to this study.

References

	 1.	 Graaf, B., Lormans, M., Toetenel, H.: Embedded software engi-
neering: the state of the practice. Softw. IEEE 20, 61–69 (2003)

	 2.	 Walls, C.: Embedded Software, 2nd edn. Newnes, Oxford (2012)
	 3.	 Arcelli, D., Cortellessa, V.: Assisting software designers to

identify and solve performance problems. In: Presented at the
ACM International Workshop on Future of Software Architecture
Design Assistants (2015)

	 4.	 Thomas, D.: MDA: revenge of the modelers or UML utopia?
Softw. IEEE 21, 15–17 (2004)

466	 D. Akdur et al.

1 3

	 5.	 Ross, J.A., Murashkin, A., Liang, J.H., Antkiewicz, M., Czar-
necki, K.: Synthesis and exploration of multi-level, multi-perspec-
tive architectures of automotive embedded systems. Softw. Syst.
Model. 18, 739–767 (2017)

	 6.	 Akdur, D., Demirörs, O., Garousi, V.: Characterizing the devel-
opment and usage of diagrams in embedded software systems.
In: 43rd Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Vienna, Austria (2017)

	 7.	 Dzidek, W.J., Arisholm, E., Briand, L.C.: A realistic empirical
evaluation of the costs and benefits of UML in software mainte-
nance. IEEE Trans. Softw. Eng. 34, 407–432 (2008)

	 8.	 Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag, J.,
Whittle, J.: Descriptive vs prescriptive models in industry. In:
ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems, France (2016)

	 9.	 Weinberg, G.M.: Quality Software Management (Vol. 1): Sys-
tems Thinking. Dorset House Publishing, New York (1992)

	10.	 Akdur, D.: Modeling patterns and cultures of embedded soft-
ware development projects. Thesis, Doctor of Philosophy
(Ph.D.). Information Systems, Middle East Technical University
(METU). www.resea​rchga​te.net/publi​catio​n/32270​1453_Model​
ing_Patte​rns_and_Cultu​res_of_Embed​ded_Softw​are_Devel​
opmen​t_Proje​cts (2018)

	11.	 Pattern ed Cambridge Dictionary (2017). https​://dicti​onary​
.cambr​idge.org/

	12.	 Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addi-
son-Wesley, Boston (1998)

	13.	 Douglass, B.P.: Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley, Boston
(2003)

	14.	 Dorling, A.: SPICE: software process improvement and capabil-
ity determination. Inf. Softw. Technol. 35, 404–406 (1993)

	15.	 CMMI Institute. Available: http://cmmii​nstit​ute.com/ (2018)
	16.	 Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The

Model Driven Architecture: Practice and Promise. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

	17.	 Petre, M.: UML in practice. In: 35th International Conference
on Software Engineering (ICSE), pp. 722–731 (2013)

	18.	 Greenfield, J., Short, K., Cook, S., Kent, S.: Software Facto-
ries—Assembling Application with Patterns, Models, Frame-
works and Tools. Wiley Publishing, New York (2004)

	19.	 Akdur, D., Garousi, V., Demirörs, O.: A survey on modeling and
model-driven engineering practices in the embedded software
industry. J. Syst. Arch. 91, 62–82 (2018)

	20.	 Cabot, J.: Clarifying concepts: MBE vs MDE vs MDD vs MDA.
Available: http://model​ing-langu​ages.com/clari​fying​-conce​pts-
mbe-vs-mde-vs-mdd-vs-mda (2018)

	21.	 Karagoz, N.A., Demirors, O.: Conceptual modeling notations
and techniques. In: Robinson, S., Brooks, R., Kotiadis, K., Van
Der Zee, D.J. (eds.) Conceptual Modeling for Discrete-Event
Simulation. CRC Press, Boca Raton (2010)

	22.	 Akdur, D., Demirors, O.: Modeling patterns and cultures of
embedded software development projects: towards preliminary
characterization model. In 12nd Turkish National Software Engi-
neering Symposium (In Turkish: Ulusal Yazılım Mühendisliği
Sempozyumu (UYMS)), İstanbul, Turkey (2018)

	23.	 Akdur, D., Demirörs, O., Say, B.: Towards modeling patterns for
embedded software industry: feedback from the field. In: 44th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), Prag, Czech Republic (2018)

	24.	 Akdur, D., Garousi, V., Demirörs, O.: MDE in embedded SW
industry-raw survey data. https​://dx.doi.org/10.6084/m9.figsh​
are.42629​72 (2015). Accessed 27 Nov 2016

	25.	 Akdur, D., Demirörs, O.: Multiple case studies to validate mod-
eling patterns and cultures of embedded software development
projects, technical report. METU, METU/II-TR-2017-90 (2017)

	26.	 Robson, C.: Real World Research, 2nd edn. Wiley, New York
(2002)

	27.	 Yin, R.K.: Case Study Research: Design and Methods. SAGE
Publications, Thousand Oaks (2003)

	28.	 Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study
Research in Software Engineering: Guidelines and Examples.
Wiley Publishing, New York (2012)

	29.	 Bratthall, L., Jørgensen, M.: Can you trust a single data source
exploratory software engineering case study? Empir. Softw.
Eng. 7(1), 9–26 (2002)

	30.	 Kitchenham, B.A., Linkman, S., Law, D.: DESMET: a method-
ology for evaluating software engineering methods and tools.
Comput. Control Eng. J. 8, 120–126 (1997)

	31.	 Verner, J.M., Sampson, J., Tosic, V., Bakar, N.A.A., Kitchenham,
B.A.: Guidelines for industrially-based multiple case studies in
software engineering. In: Presented at the Third International
Conference on Research Challenges in Information Science,
Morocco (2009)

	32.	 Kahraman, G., Bilgen, S.: A framework for qualitative assessment
of domain-specific languages. Softw. Syst. Model. 14, 1505–1526
(2015)

	33.	 Akdur, D.: Online dataset: multiple case study results. Availa-
ble: https​://www.resea​rchga​te.net/publi​catio​n/32381​0535_Multi​
ple_Case_Study​_Resul​ts_-_Appli​catio​ns_of_the_Model​ing_Patte​
rns_for_Embed​ded_Softw​are_Devel​opmen​t (2017). Accessed 16
Sept 2018

	34.	 Akdur, D., Garousi, V.: Model-driven engineering in support of
development, test and maintenance of communication middle-
ware: an industrial case-study. In: International Conference on
Model-Driven Engineering and Software Development (MOD-
ELSWARD), France (2015)

	35.	 Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software
engineering in practice. In: Baresi, L. (ed.) Synthesis Lectures
on Software Engineering, vol. 1. Morgan & Claypool, San Rafael
(2012)

	36.	 Akdur, D., Garousi, V., Demirörs, O.: Cross-factor analysis of
software modeling practices versus practitioner demographics in
the embedded software industry. In: 6th Mediterranean Confer-
ence on Embedded Computing (MECO), Montenegro (2017)

	37.	 Wallace, L., Keil, M., Rai, A.: Understanding software project
risk: a cluster analysis. Inf. Manag. 42, 115–125 (2004)

	38.	 Amorim, T., Vogelsang, A., Pudlitz, F., Gersing, P., Philipps, J.:
Strategies and best practices for model-based systems engineer-
ing adoption in embedded systems industry. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 203–212 (2019)

	39.	 Fernández-Sáez, A.M., Chaudron, M.R.V., Genero, M.: An indus-
trial case study on the use of UML in software maintenance and its
perceived benefits and hurdles. Empir. Softw. Eng. 23, 3281–3345
(2018)

	40.	 Vetro, A., Bohm, W., Torchiano, M.: On the benefits and barriers
when adopting software modelling and model driven techniques—
an external, differentiated replication. In: 2015 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1–4 (2015)

	41.	 Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-
based engineering in the embedded systems domain: an industrial
survey on the state-of-practice. Softw. Syst. Model. 17, 91–113
(2018)

	42.	 Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.,
Wesslén, A.: Experimentation in Software Engineering. Springer,
Berlin (2012)

http://www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cultures_of_Embedded_Software_Development_Projects
http://www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cultures_of_Embedded_Software_Development_Projects
http://www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cultures_of_Embedded_Software_Development_Projects
https://dictionary.cambridge.org/
https://dictionary.cambridge.org/
http://cmmiinstitute.com/
http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda
http://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-vs-mda
https://dx.doi.org/10.6084/m9.figshare.4262972
https://dx.doi.org/10.6084/m9.figshare.4262972
https://www.researchgate.net/publication/323810535_Multiple_Case_Study_Results_-_Applications_of_the_Modeling_Patterns_for_Embedded_Software_Development
https://www.researchgate.net/publication/323810535_Multiple_Case_Study_Results_-_Applications_of_the_Modeling_Patterns_for_Embedded_Software_Development
https://www.researchgate.net/publication/323810535_Multiple_Case_Study_Results_-_Applications_of_the_Modeling_Patterns_for_Embedded_Software_Development

467Modeling cultures of the embedded software industry: feedback from the field﻿	

1 3

	43.	 Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoa-
glin, D., El Emam, K., et al.: Preliminary guidelines for empirical
research in software engineering. IEEE Trans. Softw. Eng. 28,
721–734 (2002)

	44.	 Uskarcı, A., Demirörs, O.: Do staged maturity models result in
organization-wide continuous process improvement? Insight from
employees. Comput. Stand. Interfaces 52, 25–40 (2017)

	45.	 Dikici, A., Turetken, O., Demirors, O.: Factors influencing the
understandability of process models: a systematic literature
review. Inf. Softw. Technol. 93, 112–129 (2018)

	46.	 Kılıç, Ö., Say, B., Demirörs, O.: An experimental study on the
cognitive characteristics of modeling notations. In: Cipolla-
Ficarra, F., Kratky, A., Pérez, M., Cipolla-Ficarra, M., Castro,
C., Nicol, E. (eds.) Advances in Dynamic and Static Media for
Interactive Systems: Communicability, Computer Science and
Design. Blue Herons Editions, Bergamo (2011)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Deniz Akdur  is a lead software
engineer at ASELSAN, Inc.,
which is the largest defense &
aerospace company of Turkey.
Prior to that, he worked as a soft-
ware architect for different com-
panies in both Turkey and the
UK in consumer electronics sec-
tor. He received his BSc degree
in computer science from Bilk-
ent University and MSc & Ph.D.
degrees in information systems
from Middle East Technical Uni-
versity (METU), Ankara, Tur-
key. His specialties and research
interests include software-inten-

sive embedded systems, software modeling, model-driven engineering,
software engineer ing education and industry–academia
collaborations.

Bilge Say  is an assistant professor
of software engineering in
Atilim University, Turkey. She
was previously a full-time fac-
ulty member in cognitive science
department of Middle East Tech-
nical University, Turkey. She
received her Ph.D. in computer

engineering in 1998 from Bilkent University, Turkey. Her research
interests are mainly focused on empirical cognitive studies in business
process and software modeling, cognitive modeling and computational
linguistics.

Onur Demirörs  is a professor of
computer engineering at the
Izmir Institute of Technology
(ceng.iyte.edu.tr) and the strat-
egy director of Bilgi Grubu Ltd.
(www.bg.com.tr). His current
research focuses on decentral-
ized modeling and organiza-
tional change, software measure-
ment and management. He has
leaded major research and appli-
cation projects on developing
improvement and modeling tech-
niques, on establishing and
i m p l e m e n t i n g m o d e l i n g
approaches for organizations and

on establishing measurement infrastructures for software organizations.
He has leaded application projects for dozens of companies to improve
their processes, to establish their measurement infrastructures, to create
organizational knowledge structures and to identify their software
needs. He continues to teach on decentralized modeling, event-based
systems, software project and quality management, software measure-
ment and innovative software development approaches.

http://ceng.iyte.edu.tr
http://www.bg.com.tr

	Modeling cultures of the embedded software industry: feedback from the field
	Abstract
	1 Introduction
	2 Background
	2.1 Existing literature on software modeling patterns
	2.2 Overview of the characterization model: MAPforES

	3 Application of MAPforES
	3.1 Research methodology
	3.2 Research process
	3.2.1 Design
	3.2.2 Selecting the cases and data
	3.2.3 Collecting evidence

	3.3 Results and discussion
	3.3.1 Results
	3.3.2 Evaluations by individual qualitative evidence
	3.3.2.1 Evaluations on relevancy and insightfulness of MAPforES (question 1 and question 3 of Table 4)
	3.3.2.2 Evaluations on usefulness of MAPforES (question 2, question 4 and question 5 of Table 4)

	3.3.3 Discussion and lessons learned

	3.4 Threats to validity

	4 Conclusions
	Acknowledgements
	References

