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In this paper, seepage of Sattarkhan earthen dam in northwest Iran was simulated using various artificial
intelligence (AI) models (e.g., Feed forward neural network, Adaptive neural fuzzy inference system and
Support vector regression) and linear ARIMA model based on different input combinations. Both jittering
pre-processing and ensembling post-processing methods were also used in order to enhance the perfor-
mance of the used AI-based data driven methods. For this purpose, various jittered datasets were pro-
duced by imposing noises (at different levels) to the original time series to enlarge the training data
sample space. Further, three techniques of simple linear, weighted linear and nonlinear neural averaging
were considered for pre-post processing purpose. The obtained results indicated that using both jittering
and ensembling (especially neural ensemble) enhanced the modeling performance by almost 30% in the
testing phase.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction Due to the complexity and uncertainty involved in the seepage
Seepage analysis plays a principle role in different hydraulic,
environmental and civil engineering problems. Particularly for
earthen dams and embankments, the failure of structure is signif-
icantly affected by seepage and therefore, the dam safety draws
increasing attention of engineers to accurate and reliable modeling
of seepage [1].

Not long ago, Artificial Intelligence (AI) methods have shown
significant potential in predicting and simulating nonlinear
hydro-environmental time series. AI methods provide efficient
approaches for dealing with large numbers of dynamic, nonlinear
and noisy data, particularly when the essential physical relations
are not exactly comprehended.
process, application of AI approaches to model this process may
lead to appropriate outcomes. AI models such as Feed Forward
Neural Network (FFNN), Adaptive Neural Fuzzy Inference System
(ANFIS) and Support Vector Regression (SVR), are black box tech-
niques that have been employed at different fields (e.g. see [2,3]).
In the subject of analysis of seepage through earthen dams, Tayfur
et al. [4] used the FFNN type of Artificial Neural Network (ANN) for
simulating the water heads of piezometers of an earthen dam in
Poland. An ANN based temporal modeling tool was connected to
a spatial estimator by Nourani and Babakhani [5] to model piezo-
metric heads of an earthen dam. Single, and multi output ANN
models were developed by Nourani et al. [6] such that; in the sole
case, for the each of piezometers a sole ANN was generated, whilst
in the integrated case, just one ANNmodel should be developed for
piezometers at different sections of the earthen dam. In modeling
by ANFIS and SVR (nonlinear regression form of the Support Vector
Machine-SVM) predictors, which are some other types of AI tech-
niques, a few researches might be perceived when surveying the
literature. Novaković et al. [7] employed ANFIS method for predict-
ing of piezometric heads in a dam employing the downstream
water heights as input and the piezometric heads as outputs.
Finally, Yongbiao [8] used an SVR for analysis of water movement
through an earthen dam.
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For almost all practical issues with the time series, one observa-
tion is recorded at any given time. Thus, despite the fact that it may
be feasible to enlarge the sample size by differing the length of the
observed time series, due to the limited facilities, cost and time
saving, there will only be a sole observation on the basic random
variable at a time step [9]. For example, for a daily discharge time
series, in one day a sample is taken or the average of a few taken
samples is reported. In this case, the amount of discharge taken
at a given time in one day may vary somewhat with the amount
of discharge at other times of the same day. In the training process
of the AI models, since each training dataset has a limited sample
of all available data, a single dataset cannot represent all patterns
of the phenomenon. Due to the limited possibilities and lack of
access, there is no possibility to sample large amounts of data to
cover different patterns of the phenomena. As such, size of training
data can be increased by adding artificial data. Increasing size of
dataset using artificial data, which has a pattern similar to the orig-
inal data, can be considered as a pre-process method to improve
training performance of the AI models. The proposed data pre-
processing method in this paper is based on the idea that many
possible observations may be made at each time. Therefore, for
each time series, if sets of noises are created and added to the main
time series with the overall pattern similar to the original dataset,
samples would be increased. Then, these time series can be used to
train AI models. It is possible that training via such data may create
more constraints in the training process, which may prevent the
network from overtraining [9,10]. The appropriate noise level
which should be considered for imposing to the main dataset to
generate the jittered time series has not been yet discussed in
the previous studies. Jittered time series generated by high size
noise could disturb the overall pattern of the time series. But then,
low size noise might not lead to an efficient jittering process [11].
Some of scholars have already investigated impact of generating
extra training dataset by appending noises to the input data in
neural network modeling and its generalization efficiency [9,11–
13].

On the other hand, data-driven methods (such as ANN, ANFIS,
and SVR) solely or linked to a data pre-processing method may
result comparatively dependable outcomes, it is obvious that for
an issue at hand various models may result distinct outcomes.
Hence, compounding various models employing an ensemble
operation tool, various features of the fundamental patterns may
be taken more exactly. In the proposed post-processing method
in this study as an ensembling approach, classic linear time series
modeling tool of ARIMA (autoregressive integrated moving aver-
age) was employed in addition to AI methods. The basic object of
model combination can be summarized as: Firstly, it is generally
complicated in real issues to recognize if the intended time series
is following linear or nonlinear pattern or if one special technique
is more accurate than other models. In other words, none of the
models are the best predictors for all conditions and time intervals,
so, by integrating different models, difficulty of opting proper pre-
dictor can be overcoming and the unique ability and feature of
each model could be employed in more accurate predicting process
[14,15]. However linear methods sometimes couldn’t lead to accu-
rate outcomes according to their restrictions to manipulate non-
stationary and nonlinear behaviors, such methods are yet
employed since, i) a linear method is cost-effective, uncomplicated,
and the superposition principle holds true via these methods, ii)
existing error in the employed dataset (or utilized computational
method) rises in a linear manner in such linear method, however
it is enlarged nonlinearly in the next steps in nonlinear methods.
Therefore, it may be suggested to use a linear modeling tool for
the linear sections of a natural phenomenon. Secondly, the natural
phenomenon may contain patterns from each of linear and nonlin-
ear behaviors. In this state, neither ARIMA nor AI models can be
proper for modeling and simulating the process because the
ARIMA cannot handle the nonlinear behavior while an AIs may
enlarge the error of linear characteristics. Accordingly, by ensem-
bling ARIMA and AIs, intricate autocorrelation patterns in the time
series can be identified more accurately. Thirdly, it has been con-
firmed in most of prior research that no specific model can probe
the phenomenon excellently [14–16]. Since often a natural process
is naturally complex and each specific method cannot detect the
various patterns of the phenomenon. The concept of such model
ensembling has been employed at various engineering subjects
(e.g., [17,18]).

Although the effect of adding good noise (jittering) and using
model ensembling on increasing the accuracy of AI-modeling at
different engineering fields has been separately examined, as far
as the authors are aware, they have not been discussed in the field
of seepage analysis in general and specifically at studying of
earthen dams. It should be noticed that utilizing model ensemble
was performed by authors of this paper for analysis of seepage of
earthen dams [19]; but employing of jittering method individually
and linked to model combination did not examined. Thus, it is the
main objective of this study to close this gap. Furthermore, it is
clear that according to Darcy equation, obtaining piezometric
heads, seepage can be achieved. So in this paper it is tried to pre-
dict the piezometric heads of 2 piezometers in the core of dam.
In this regard it is tried to answer the research questions of (1)
how the jittering pre-processing affects the models accuracy. (2)
how much is the models’ output ensembling effect on improving
modeling performance. (3) what is the impact of applying the both
of jittering and ensembling on modeling of piezometers’ head. In
this way; different black box methods including the FFNN (a com-
monly employed AI method), ANFIS (which can handle the uncer-
tainty of phenomenon employing fuzzy theory) and SVR (more
recently used AI model) as well as linear ARIMA models created
and trained for modeling seepage in Sattarkhan earthen dam, via
three scenarios with different input combinations that mutual
information (MI) was employed for proper input selection of AI
models. Next different artificially generated datasets patterned
similar to the observed time series are generated, then generated
time series are fed to the AI models Then, the ensemble model is
created using outcomes of the noted models for each scenario for
evaluation of the predicting performance. For this purpose, three
combination techniques as linear simple and weighted averaging
and nonlinear neural averaging methods are applied to the both
scenarios.
2. Materials and methods

2.1. Sattarkhan earthen dam and data

Sattarkhan earthen dam is a reservoir dam impounded on the
Ahar Chai River in 15 km southwest of Ahar city in East Azerbaijan
Province of Iran. This 78 m high dam’s crest is 340 mwith reservoir
capacity of about 131.5 � 106 m3. Fig. 1(a) presents a view of the
dam. Various automatic piezometers were installed at 4 sections
through dam. Water heads in the piezometers were recorded
monthly since 20-Apr-99 to 19-Jan-13. As well, the water levels
of dam’s reservoir were monitored every day but water level in
the downstream reservoir is generally negligible.

In current research, measured piezometric heads from
piezometers # 207, 212, 216 and 217 at section # 2 (see Fig. 1
(b)) were used for the modeling purpose. Because most head losses
occur through the dam’s core, most instrument installations and
monitoring programs were focused in core of the dams. Therefore,
in this paper, the core of the dam was chosen as the study area. The
statistics of the employed data tabulated in Table 1 and Fig. 2 as



Fig. 1. (a) Sattarkhan earthen dam, (b) Piezometers’ positions of cross section # 2.
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example, demonstrates the observed heads in piezometers # 207,
217 and dam’s reservoir for the considered period. For the training
and testing purposes, dataset was spat up to two parts. The first
portion of 75% were utilized as training dataset and the second
portion of 25% were utilized as the testing dataset.
2.2. Proposed methodology

First, FFNN, SVR, ANFIS and ARIMA methods were individually
developed, according to three scenarios. It should be noted that
the dominant inputs of AI models were selected by employing
MI, as a nonlinear correlation measure. Then, noise time series
with various standard deviations were produced and added to
the observed time series to generate jittered datasets. The original
and jittered time series were used to train the AI models. Finally,
the ensemble model was created employing outcomes of the sole
models.

The objective of the developed method here was to estimate the
heads of piezometers in an earthen dam employing the water level
Table 1
Statistical information of recorded water levels for piezometers of section # 2.

Reservoir Piezometer #

207

Maximum (m) 1447.21 1439.57
Minimum (m) 1424.47 1424.83
Average (m) 1432.40 1431.27
Standard Deviation (m) 4.44 3.42
in upstream reservoir as well as piezometric head measured in the
piezometers as inputs of the predictors. To end this, 3 various input
scenarios, each of which can be used in a particular operation con-
dition, were considered in this study.

i) Scenario 1

For modeling via the first scenario, it was tried to simulate the
piezometric heads of each piezometer employing the prior data in
addition to water heads at upstream reservoir of the dam. There-
fore, the prediction of ith piezometer’s water levels can be formu-
lated as:

Pi
t ¼ f Pi

t�1; P
i
t�2; :::; P

i
t�n; ht ;ht�1; :::; ht�m

� �
ð1Þ

where i th piezometer’s water level in time t supposes to be a func-
tion of i th piezometer’s water level at prior time increments (t-1, t-
2, . . ., t-n) and upstream’s reservoir water head in t th time step and
prior time increments (t-1, t-2, . . ., t-m). Predominant lag steps (m,
n) are detected via trial and error process or a reliable input selec-
tion method (in this study MI).

ii) Scenario 2

In scenario 2, levels at the adjacent piezometers are used to pre-
dict water level of each piezometer by means that water level of i
th piezometer depends on the adjacent piezometers data by:

Pi
t ¼ f ðPj

t ; P
j
t�1; :::; P

j
t�o; P

k
t ; P

k
t�1; :::; P

k
t�rÞ ð2Þ

in which Pjt-o, Pkt-r show respectively time series of j th, k th piezome-
ters corresponding to o and r months ago, respectively. MI could be
used for recognizing the appropriate related piezometers. In sce-
nario 2 similar to the first scenario, the lags of o and r could be
detected by MI. by comparison of Eqs. (1) and (2) it is clear that
in the second scenario to simulate the piezometric heads of
piezometers, the piezometric heads from other piezometers with
dependable relation to the pointed piezometer can be employed
in the absence of prior recorded dataset of that piezometer. Hence,
this scenario could be a beneficial strategy in the case of technical
issues for the operation of the piezometers, so that the dataset from
neighboring piezometers could be used to model and estimate the
heads of the pointed piezometers.

iii) Scenario 3

In third scenario, it is tried to estimate the water heads in
piezometers employing two another piezometers dataset and also
upstream water head data. So, the overall function of scenario 3
was patterned as:

Pi
t ¼ f ðPj

t ; P
j
t�1; :::; P

j
t�o; P

k
t ; P

k
t�1; :::; P

k
t�r ;ht ;ht�1; :::; ht�mÞ ð3Þ

Predominant piezometers and m, n (defined in scenarios 1 and
2) could be employed at scenario 3. Since in scenario 3, the model
uses two adjacent piezometers dataset and also upstream reservoir
water head time series, it is supposed to scenario 3 results more
accurate outputs in comparison to the scenario 2.
212 216 217

1439.35 1442.73 1438.25
1424.89 1429.63 1430.00
1431.51 1434.80 1432.74
3.39 3.54 2.14



Fig. 2. The recorded water head in piezometer # 207 and piezometer # 217 and upstream water heads.
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The purpose of scenarios 2 and 3 is to apply it when some
piezometers get out of service or to stimulate the water head
where there is no installed piezometer, and the other and more
important purpose of scenario 3 is to enhance the modeling perfor-
mance by utilizing the data of other piezometers and upstream
reservoir.

In the following sub-sections, each component of the proposed
framework (Fig. 3) is briefly described.

2.2.1. Mutual information (MI)
Information content (I) of a time series Y binned in M bins with

probability of pi for each bin (i = 1, 2, . . ., M) is defined as [20]:

IðYÞ ¼ IðpÞ ¼ �
XM
i¼1

pi logpi ð4Þ

The MI value between two-time series of A and B can be com-
puted as [21]:

MIðA;BÞ ¼ IðAÞ þ IðBÞ � IðA;BÞ ð5Þ

where I(A) and I(B) respectively show the information contents of A
and B, and I(A,B) stands for their joint information content as:

IðA;BÞ ¼ �
X
A

X
B

pABlogpAB ð6Þ
Fig. 3. Schematic of the pr
2.2.2. Feed forward neural network (FFNN)
ANN as an AI-based model is a mathematical model aims to

handle nonlinear relationship of input-output dataset [22]. Among
the different ANN algorithms, FFNN with Back propagation (BP)
training is widely applied at different fields of water resources
engineering and is the most common class of ANNs (For details
see [3,23,24]).

2.2.3. Adaptive neural fuzzy inference system (ANFIS)
Neuro-fuzzy simulation points to the techniques of employing

various learning algorithm to fuzzy modeling in the neural net-
work or fuzzy inference system. Every fuzzy system is comprised
of three main parts; fuzzy data base, fuzzifier, and defuzzifier
[25]. Inference engine and fuzzy rule base are the two main parts
of fuzzy data base. Fuzzy rule base involves rules that are related
to fuzzy propositions as illustrated by Jang et al. [26]. Conse-
quently, fuzzy inference applied operation analysis. Among many
fuzzy inference engines that can be used to achieve this purpose,
the Sugeno FIS utilized here [27].

2.2.4. Support vector regression (SVR)
Learning in the context of SVMwas proposed and introduced by

Cortes and Vapnik [28], which provides a satisfactory approach to
the problems of prediction, classification, regression and pattern
recognitions. SVM is based on the concept of machine learning
oposed methodology.



Fig. 4. Schematic of proposed neural ensemble model.
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comprises of data driven model. The structural risk minimization
and statistical learning theory are two useful functions of SVM, this
makes it different from ANN. SVR is a form of SVM in which first by
a linear function fits to dataset then a nonlinear kernel is applied to
the pervious results to obtain the nonlinear simulation of the tar-
get data. For more details, the readers are referred to Wang et al.
[29] and Raghavendra and Deka [30].

2.2.5. Auto regressive integrated moving average (ARIMA)
ARIMA is a classic linear predicting and forecasting model, gen-

erally employed for experimental problems. The general formula
for the of ARIMA can be presented by (p, d, q) that p refers to
autoregressive degree, d shows differencing rank, q stands for the
degree of moving average (readers are referred to [31]).

2.2.6. Jittered data generation
Typically, generation of a dataset which obeys a desired proba-

bility density function (PDF) involves 2 stages. Firstly, a random
dataset with uniform PDF is produced. Secondly, the generated
random dataset is employed to create the dataset which obeys
the desired PDF (e.g. normal PDF). In the second stage, reverse con-
version technique can be employed (among some others) for gen-
erating random dataset which obeys desired PDF. According to this
method, if x obeys cumulative distribution function (CDF) of F(x),
then u = F(x) will obey uniform PDF of u(0,1). Inversely for u � u
(0,1), x = F�1(u) will obey CDF of F. Thus, for generating y as a ran-
dom variable with desired CDF of G the following Eq. can be used
[32]:

y ¼ G�1ð FðxÞ|ffl{zffl}uniform�distribution
Þ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{includes�G�cumulative�distribution

ð7Þ

In this study, MATLAB software was employed for generating
the random numbers of noises with a desired PDF (with mean of
zero and a few small standard deviation values). Also ANN and
ANFIS toolbox of MATLAB were used to develop single models of
ANN and ANFIS but for SVR a code was developed in MATLAB
software.

2.2.7. Ensembling unit
Model ensembling technique is a method to integrate the

approach of predictors to improve the final performance [33]. Var-
ious studies at different fields suggested to ensemble outcomes of
several methods as an effective approach to improve the perfor-
mance of time series predictions [34].

In this paper, two techniques were utilized for ensembling of
the employed models’ outcomes to enhance modeling perfor-
mance as (i) linear ensemble technique; which includes linear
ensemble by simple averaging and linear ensemble by weighted
averaging. (ii) neural ensemble technique; unlike linear ensemble
techniques (Eqs. (8) and (9)), in nonlinear ensemble technique
another FFNN is trained to obtain an ensemble output.

Simple averaging is done as:

f
�
ðtÞ ¼ 1

N

XN
i¼1

f iðtÞ ð8Þ

where f
�
ðtÞ is outcome of simple ensemble technique, N shows the

number of single models (in this study, N = 4) and f iðtÞ stands for
the outcome of the ith method (i.e. ANN, ANFIS, SVR and ARIMA).

The weighted averaging technique is formulated as:

f
�
ðtÞ ¼

XN
i¼1

wif iðtÞ ð9Þ
where wi shows imposed weight on the output of ith method that
may be computed on the basis of the performance measure of ith
method as:

wi ¼ R2
iPN

i¼1R
2
i

ð10Þ

where R2i measures the ith model performance (such as determina-
tion coefficient).

In the nonlinear neural combination technique, the outputs
obtained by sole models (FFNN, ANFIS, SVR and ARIMA) are inte-
grated together as inputs to create a new model and train via FFNN
technique to produce the ensemble output (see Fig. 4).

2.3. Performance criteria

To analyze and determine the performance of the models pro-
posed, the Coefficient of Determination (R2) and Root Mean Square
Error (RMSE) utilized in this paper to check the performance of the
methods. The Equations for R2 and RMSE are given by [23]:

R2 ¼ 1�
Pn

i¼1 oobsi � ocomi

� �2
Pn

i¼1 oobsi � o
�
obs

� �2 ð11Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

oobsi � ocomi

� �2

n

vuuut ð12Þ

where n, oobsi , o
�
obs and ocomi

are respectively the number of records,
recorded data, mean of the recorded values, and predicted values.
R2 is among – 1 and 1, with best grade of 1.

3. Results and discussion

In this section, first results of individual models without any
data processing are presented. Then the results of single models
employing jittered data following the results of ensembling models
without pre-processing method are summarized. Finally results of
employing both pre-post processing methods are described and
evaluated.

3.1. Results of individual models without data processing

At first, FFNN, ANFIS, SVR and ARIMA models without any data
processing were employed to model the heads of piezometers 207
and 217 according to scenario 1. In scenario 1, MI was used to
detect the appropriate input data. Water levels of piezometers at
any time (t) is related to the water levels at previous time step
as well as the water levels in dam’s reservoir at both t and t-1. Each
FFNNwas trained with scheme of scaled conjugate gradient of back
propagation approach which is fast and avoids a time consuming
search [35,36]. Furthermore, there are some kinds of popular trans-
fer functions can be used in BP network. In real problems, the
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transfer function is usually selected to be a bounded, continuous,
and non-constant function. In this research tan-sig transfer func-
tion was applied for both intermediate and target layers of FFNN
models. Because their nonlinearity in combination with each other
can be able to identify far more complex patterns [37,38]. The
obtained results of the best structures (obtained by trial and error)
for piezometer 207 and piezometer 217 are tabulated in Table 2.

For the ANFIS modeling Sugeno FIS engine used in the modeling
framework. In this paper, Gaussian and Trapezoidal-shaped mem-
bership functions could lead to reliable outcomes in modeling of
piezometric heads for piezometers # 207 and 217, respectively.
Because PDF of piezometers # 207 and 217’s dataset follows Gaus-
sian or/and semi-Gaussian distribution thus, Gaussian and Trape-
zoidal MFs showed higher performance in modeling these
piezometers. The number of training iteration epoch as well as
the No. of MFs were examined to determine the best ANFIS archi-
tecture. (see Table 2).

Furthermore, SVR model was developed on the basis of RBF
(Radial Basis Function) kernel function for both noted piezometers.
Several studies have already reported more reliable results of SVR
model using RBF kernel with regard to using other kernels maybe
due to its smoothness assumption [39]. The SVR parameters were
obtained by direct search method [40] (see Table 2).

At last, ARIMA method developed for piezometers # 207 and
217. Trial and error procedure was employed to define the ARIMA
models’ parameters with best performance, for both piezometers #
207 and 217 (see Table 2).

Between different models created, AI models’ results were more
precise than the linear ARIMA model. As it is obvious, despite of
utilizing 5 lag times in training of the ARIMA method, the AI meth-
ods using 3 input variables led to better performance with regard
to the ARIMA method. The lower performance of the classic ARIMA
method in comparison with AI-based models could be connected
with the linear nature of the ARIMA and its shortcoming in model-
ing nonlinear phenomenon like seepage. Among AI models, the
performance of FFNN and SVR models was a bit better than ANFIS
model in testing step.

Piezometer 207 is the nearest piezometer to the reservoir of the
dam and is effected mainly by the fluctuations of the upstream
water heads, while piezometer # 217 located in topmost elevation
of the core and mid-section and it is far from reservoir of the dam
Table 2
Sole models’ results for scenarios 1, 2 and 3.

Scenario # Piezometer # Model Model structurea

1 207 FFNN 3-8-1
ANFIS Gaussian-3
SVR 0.333, 0.01, 15
ARIMA (5,2,4)

217 FFNN 3-5-1
ANFIS Trapezoidal-2
SVR 0.333, 0.1, 30
ARIMA (5,2,4)

2 207 FFNN 4-2-1
ANFIS Gaussian-2
SVR 0.5, 0.01, 15

217 FFNN 4-10-1
ANFIS Trapezoidal-2
SVR 0.33, 0.01, 15

3 207 FFNN 4-5-1
ANFIS Gaussian-2
SVR 0.333, 0.01, 15

217 FFNN 4-2-1
ANFIS Trapezoidal-2
SVR 0.25, 0.2, 5

a The result has been presented for the best structure.
to parallel with the variation of the dam’s reservoir water head
instantly. Furthermore, because of soil friction the variations might
be disappeared within the dam, and oscillations of water levels of
the dam’s reservoir don’t significantly impact this piezometer’s
water levels. Due to using reservoir water heads time series for
training of AI models and because of the noted reasoning, the per-
formance of AI models for piezometer 217 was less precise than
piezometer # 207 (see Table 2).

At second scenario, MI employed to find the effective piezome-
ters among piezometers of Sec. 2 and piezometers # 207, 217.
Thus, piezometer # 212, piezometer # 216 utilized in modeling
of piezometer # 207. For modeling piezometer # 217 the data of
piezometer # 212 and piezometer # 216 were employed. Hence,
data of two piezometers at time steps t and t-1 were utilized as
4 input data to calibrate AI models.

The modeling by third scenario is similar to Scenario 2, but a lit-
tle more complicated. In scenario three for modeling the piezome-
ters at time t, reservoir water head in time steps t and t-1 as well as
two other piezometers’ heads in step t utilized to develop AI meth-
ods. The outputs of FFNN, ANFIS, SVR and ARIMA models of
piezometer 207, piezometer 217 obtained in scenario two and sce-
nario three have been presented in Table 2. In this Table, the out-
puts of models with optimum performance have been tabulated. a-
b-c in architecture of an FFNN denotes to the number of input neu-
rons (a), intermediate neurons (b) and of target neurons (c). At
ANFIS architecture, MF-a denotes to applied MFs and number of
MFs (a). On the other hand, a,b,c in SVR model indicate the kernel
parameter (a), approximation accuracy (b) and constant parameter
(c), finally numbers of (a, b, c) in ARIMA model refer to order of
autoregressive component (a), the number of differencing opera-
tion (b) and order of moving average component (c). It should be
noticed that since in ARIMA model just the prior data of each
piezometer were utilized in the modeling so, scenarios 2 and 3
couldn’t be defined for ARIMA model.

Regarding results of three considered scenarios, for scenario two
dataset of each piezometer was not utilized as input parameters,
performance of scenario two because of using synchronic data with
targets and employing the datasets of 2 other piezometers for mod-
eling is a bit more accurate than scenario 1. In scenario 3 due to uti-
lizing synchronous data with targets and using 2 other piezometers
as well as dam’s reservoir water head datasets, the performance is
R2 RMSE (normalized)

Training Testing Training Testing

0.8588 0.7166 0.0612 0.0357
0.8859 0.6758 0.0534 0.0373
0.8453 0.6935 0.0669 0.0382
0.7205 0.5440 0.0741 0.0558
0.7566 0.6865 0.1098 0.1045
0.7856 0.6101 0.1002 0.1180
0.7229 0.6467 0.0944 0.1212
0.6702 0.5115 0.1172 0.1363

0.8597 0.7645 0.0460 0.0492
0.8718 0.7319 0.0385 0.0549
0.8500 0.7286 0.0422 0.0583
0.7852 0.6906 0.1003 0.1216
0.7752 0.6533 0.0558 0.1351
0.7890 0.6807 0.0654 0.1186

0.8709 0.7800 0.0391 0.0286
0.8657 0.7211 0.0425 0.047
0.8571 0.7700 0.0476 0.038
0.7909 0.7100 0.0658 0.0967
0.7700 0.6707 0.0787 0.1169
0.8080 0.6901 0.0647 0.1077
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more accurate than both scenarios 1 and 2. Therefor generally, for
modeling the seepage scenario 1 could be employed and whenever
some piezometers get out of service, scenario 2 could be helpful. In
addition, scenario 3 could be utilized to obtain better outcomeswith
more complicated modeling structure.

As it can be seen from the results presented in Table 2, the out-
comes of the models are not quite so accurate, and the results are
somehow overtrained that it can be due to lack of data. This issue
may be solved by jittering method that generates artificial data and
produces more data patterns artificially.

According to the outputs of sole models (for example see Fig. 5),
it is obvious that in different parts of time series, some of models
led to overestimates and others down estimations of the recorded
values. Therefore, it is deducible that each method has some
restrictions and superiority in predicting by various scenarios for
various piezometers. Therefore, by ensembling various models,
modeling performance could be enhanced over sole models. In
the next step, jittering data pre-processing and three ensembling
post-processing methods (described in Section 2.2.7) were used
to train and combine the outcomes of sole models to enhance
the prediction performance for each scenario.

Because of myriad number of parameters of ANFIS model and a
bit less accuracy with regard to the other AI models, this model
was not used in the data pre-processing step.

3.2. Results of models linked to jittering data pre-processing

To create jittered dataset with an overall pattern like to the
main data, firstly the PDFs of data for the considered piezometers
were investigated. Upstream reservoir water level and water levels
in piezometers # 207 and 212 obey normal PDF but water levels in
piezometers # 216 and 217 obey semi-normal PDF because they
are located at the highest elevation of the dam and are not affected
by low levels of upstream water levels. Hence, various noise time
series were generated with zero mean and different standard devi-
ations with normal distribution for upstream reservoir water level,
piezometers # 207 and 212 and with semi- normal distribution for
piezometers # 216 and 217. Then the generated noise series were
added to their corresponding values in original time series so that
more time series with the properties and patterns similar to the
original time series were produced. It should be noted that noises
with mean of zero and standard deviation values of 0.005, 0.01,
0.05 and 0.1 (normalized value) were produced. Then for each time
series with specified standard deviation, 3 data series were pro-
duced. For instance, three jittered time series produced for
piezometer 207 by noises with standard deviation value of 0.01
Fig. 5. Sole models’ results without any data processing f
and three jittered time series produced for piezometer 217 by
noises with standard deviation value of 0.1 are presented in
Fig. 6(a) and (b), respectively.

Then the generated time series and original time series were
employed as inputs to train the AI models. Given that the FFNN
and SVR models had better results in the testing step in almost
all cases of the first step, and because of myriad number of param-
eters of ANFIS model and its low performance with the large num-
ber of inputs, in this step the generated and main time series were
utilized as inputs of the FFNN and SVR models. Thus firstly FFNN
and SVR models designed based on scenario 1. Since scenario 1
has 3 original input time series, so in this step AI models have 12
inputs. In FFNNmodel like first step, applying tan-sig transfer func-
tion for both intermediate and target layers, the framework was
calibrated employing scaled conjugate gradient method of the BP
approach to find the optimum architecture and training iteration
epoch. Also in SVR model like first step, the RBF kernel was used
and by tuning the corresponding parameters, a model with optimal
performance was obtained. Results of this step for both piezome-
ters 207 and 217 via scenario 1 for FFNN and SVR models are pre-
sented in Table 3.

By comparing the results of ANN and SVR models using jittered
data and the results of single models of first step, it is clear that the
jittered data produced by noise series with standard deviation
value of 0.005 had no effect on the performance of the models. This
result indicates that noises with lower standard deviation values
could not lead to an effective modeling. But by increasing the noise
levels up to 0.01 and 0.05, the performance of models improved
and in the standard deviation of 0.05 the optimal models were
obtained. However, increasing the noise levels up to 0.1 reduced
the performance of the models, which indicates that when the
noise series with high standard deviation are selected, it can dis-
rupt the patterns between the data.

In the following, according to results of scenario 1, FFNN and
SVR models created and trained based on scenarios 2 and 3 using
the jittered data produced by noise series with standard deviation
value of 0.05 which had the best results. The results obtained from
the FFNN and SVR models for the best standard deviation for sce-
narios 2 and 3 are presented in Table 4.

According to Table 4, in scenarios 2 and 3 similar results to sce-
nario 1 have been obtained. In other words, in scenarios 2 and 3,
the jittered data produced by noise with standard deviation value
of 0.05 increased the accuracy and performance of modeling
because of the mentioned reasons.

Overall, employing jittered data that produced by adding noises
with standard deviation value of 0.05 improved the performance of
or testing phase for piezometer 207 using scenario 3.



Fig. 6. 3 samples of generated jittered time series for (a) piezometer 207 with noise standard deviation of 0.01, (b) piezometer 217 with noise standard deviation of 0.1.

Table 3
Sole FFNN and SVR models’ results using jittered data for scenario 1.

Model Piezometer # Standard deviation R2 RMSE (normalized)

Training Testing Training Testing

FFNN 207 0.005 0.9123 0.7186 0.0597 0.0356
0.01 0.9125 0.7794 0.0596 0.0336
0.05 0.9144 0.8169 0.0588 0.0327
0.1 0.8303 0.7000 0.0826 0.0414

217 0.005 0.8166 0.7221 0.1129 0.1117
0.01 0.8763 0.7528 0.0927 0.1135
0.05 0.8371 0.8235 0.1064 0.1058
0.1 0.8001 0.6347 0.0850 0.1280

SVR 207 0.005 0.9110 0.7104 0.0646 0.0370
0.01 0.9180 0.7721 0.0617 0.0367
0.05 0.9264 0.7960 0.0629 0.0356
0.1 0.8173 0.6654 0.0661 0.0410

217 0.005 0.8104 0.6526 0.0953 0.1237
0.01 0.8739 0.6630 0.0940 0.1219
0.05 0.8332 0.7015 0.0824 0.1147
0.1 0.8040 0.5546 0.0901 0.1401
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AI modeling for piezometers 207 and 217 respectively by about
10%, 15% for training step and 15%, 20% for the testing step. In other
words, by comparing the results of first step and results of model-
ing employing jittering, it’s clear that this method could improve
the modeling performance. Furthermore, according to Tables 2–4,
employing jittering in this study could reduce the overtraining
issue in some cases such as FFNN models for piezometers # 207
and 217 via scenario 1 and SVR model for piezometer # 207 via



Table 4
Sole AI models’ results using jittered data for scenarios 2 and 3 for standard deviation 0.05.

Scenario # Piezometer # Model R2 RMSE (normalized)

Training Testing Training Testing

2 207 FFNN 0.9164 0.8354 0.0479 0.0396
SVR 0.9364 0.8107 0.0362 0.0446

217 FFNN 0.8638 0.7262 0.0501 0.0979
SVR 0.8541 0.7078 0.0566 0.1147

3 207 FFNN 0.9205 0.8400 0.0320 0.0392
SVR 0.9004 0.8307 0.0427 0.0423

217 FFNN 0.9080 0.7400 0.0510 0.1121
SVR 0.9050 0.6922 0.0585 0.1175
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scenario 3 and in some other cases it could not decrease overtrain-
ing problem like SVR model for piezometer # 217 via scenario 1
and FFNNmodel for piezometer # 207 via scenario 3. By comparing
the outcomes of two piezometers, it is clear that employing the jit-
tering pre-processing method had a higher impact on piezometer
217 and improved its performance more than piezometer 207. In
other words, pre-processing method improved the performance
of the piezometer with lower performance more than other and
the reason of this can be due to following statements. As men-
tioned in Section 3.1 piezometer # 217 situated in topmost eleva-
tion of the core and mid-section so it is not affected by the
variation of the dam’s reservoir water head as much as piezometer
#207. So modeling piezometric head of piezometer #217 using
dam’s reservoir water head and other piezometers’ water heads
cannot discover much patterns of data and is less efficient than
piezometer# 207. But, since that jittering pre-processing method
generates more artificial data patterns, so more uncovered data
patterns of piezometer #217 can be handled. Hence pre-process
method of jittering is more efficient, when the quality of original
dataset is not suitable due to some problems. Employing jittering
data pre-processing method improved the performance of the
models, because models are trained by various patterns during
the training step, so the accuracy of modeling increases in the test-
ing step.

3.3. Results of models linked to ensemble data post-processing

In the third step, outputs of single models that obtained in the
first step were combined employing three ensembling post-
processing methods. In this step just the training dataset was
employed to determine the parameters of both weighted linear
Table 5
Ensemble methods’ results for scenarios 1, 2 and 3.

Scenario # Piezometer # Ensemble method Model structure

1 207 Simple averaging –
Weighted averaging 0.2594, 0.2676,
Neural averaging 4-7-1

217 Simple averaging –
Weighted averaging 0.2578, 0.2676,
Neural averaging 4-5-1

2 207 Simple averaging –
Weighted averaging 0.2510, 0.2541,
Neural averaging 4-6-1

217 Simple averaging –
Weighted averaging 0.2363, 0.2639,
Neural averaging 4-1-1

3 207 Simple averaging –
Weighted averaging 0.2628, 0.2612,
Neural averaging 4-2-1

217 Simple averaging –
Weighted averaging 0.2602, 0.2534,
Neural averaging 4-7-1
and nonlinear averaging techniques. In nonlinear averaging tech-
nique similar to sole FFNN, applying tan-sig transfer function for
both intermediate and target layers, the model was calibrated uti-
lizing scaled conjugate gradient method of the BP approach. Also
trial-error procedure employed to find the optimum architecture
and training iteration epoch.

The outputs of the ensemble techniques for piezometers 207
and 217 via scenarios 1, 2 and 3 have been presented in Table 5.
It should be noticed that numbers of a,b,c,k in the weighted ensem-
ble refer to the constants applied to the outputs of the FFNN (a),
ANFIS (b), SVR (c) and ARIMA (k) approaches. For example, Fig. 7
depicts the recorded and obtained water level time series of
piezometers # 207 and 217 obtained by the neural ensemble
method for the testing phase. Furthermore, scatter plot of testing
phase for scenarios 1,2 and 3 for piezometer 207 and piezometer
217 have been respectively illustrated by Figs. 8 and 9.

The obtained outcomes of ensemble techniques evidenced that
pretty all of the ensemble models provide more accurate results
regarding to the sole models. Therefore, simple, weighted and non-
linear averaging techniques improved the performance of AI mod-
els in piezometer 207 and piezometer 217 respectively by about
7%, 7%, 10% and 15%, 15%, 22% for training step and 16%, 16%,
18% and 17%, 17%, 24% in the testing step. It is clear that increment
of R2s in the training step was not considerable almost for all meth-
ods, but the performance betterments are significant in the testing
step that is the essential objective of this study. As discoursed
before, some of the methods resulted over and some others
resulted lower estimates because each method has its own perks
and drawbacks. However, ensemble models, due to utilizing each
method’s unique potency, predict the issue more accurate than
sole models. It should be noticed that since the outputs of the sole
R2 RMSE (normalized)

Training Testing Training Testing

0.9009 0.7704 0.0550 0.0348
0.2553, 0.2176 0.9050 0.7810 0.0549 0.0348

0.9102 0.8000 0.0543 0.0348
0.8108 0.7157 0.0907 0.1130

0.2463, 0.2283 0.8252 0.7146 0.0905 0.1132
0.8809 0.7565 0.1052 0.1045

0.9108 0.7810 0.0390 0.0366
0.2527, 0.2422 0.9108 0.7806 0.0390 0.0366

0.9387 0.8220 0.0333 0.0296
0.8504 0.7284 0.0587 0.1099

0.2594, 0.2404 0.8515 0.7310 0.0581 0.1104
0.9081 0.7851 0.0882 0.0982

0.911 0.8360 0.0374 0.0271
0.2586, 0.2174 0.9150 0.8366 0.0374 0.0270

0.9401 0.8430 0.0364 0.0240
0.8850 0.7884 0.0556 0.0975

0.2659, 0.2205 0.8870 0.7878 0.0557 0.0976
0.9201 0.8087 0.0598 0.0927



Fig. 7. Neural ensemble method’s results for testing step (a) piezometer 207, (b) piezometer 217.

Fig. 8. Scatter plots of neural ensemble methods of piezometer 207 for scenarios (a) one, (b) two, (c) three for the testing phase.

Fig. 9. Scatter plots of neural ensemble methods of piezometer 217 for scenarios (a) one, (b) two, (c) three for the testing phase.
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methods are close together (see Table 2), and because the perfor-
mance of simple and weighted averaging ensemble techniques
are in the same directs with the sole methods, outcomes of simple
and weighted ensemble techniques are quite same.

The performance of the nonlinear averaging method was higher
than two linear averaging techniques. In nonlinear averaging
because of using FFNN, modeling of the nonlinear pattern of the
problem can be more precise than linear averaging models. On
the other hand, because the outputs of linear averaging methods
are in the same directs with the sole methods, if the performance
of an AI model is weak, the achieved outcomes of averaging will
be weak as well; in such condition the nonlinear neural averaging
using will be much beneficial.
Fig. 10. The results of neural ensemble method linked to jittering data pr

Table 6
Results of ensemble methods linked to jittering data pre-processing for scenarios 1, 2, 3.

Scenario # Piezometer # Ensemble method Model stru

1 207 Neural averaging 2-7-1
217 Neural averaging 2-6-1

2 207 Neural averaging 2-5-1
217 Neural averaging 2-6-1

3 207 Neural averaging 2-9-1
217 Neural averaging 2-10-1
3.4. Results of models linked to both pre-post processing methods

Based on the previous step, the performance of the neural
ensemble method was more accurate than two linear ensemble
models. Therefor in the fourth step, the outputs of AI models using
jittered data generated by the best standard deviation (r = 0.05)
were combined using neural ensemble method. Same as the third
step, employing tan-sig transfer function for both intermediate and
target layers, the neural ensemble model was calibrated employing
scaled conjugate gradient method of the BP approach to find the
optimum architecture and training iteration epoch and only the
training dataset was employed to determine the parameters of
the neural ensemble method.
e-processing for testing step (a) piezometer 207, (b) piezometer 217.

cture R2 RMSE (normalized)

Training Testing Training Testing

0.9397 0.9153 0.0564 0.0308
0.8553 0.800 0.1003 0.0997

0.9462 0.8661 0.0422 0.0388
0.8614 0.8038 0.0518 0.0938

0.939 0.8811 0.0290 0.0365
0.9117 0.8100 0.0867 0.0854
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The obtained results for the piezometers 207 and 217 via sce-
narios 1, 2 and 3 are presented in Table 6. Fig. 10 depicts the
observed and estimated water level time series by the neural
ensemble method for the piezometer 207 and piezometer 217 in
the testing phase. Moreover, the scatter plots of the testing phase
for all scenarios and piezometer 207 and piezometer 217 have
been respectively presented in Figs. 11 and 12. Besides, the best
results (R2) of testing phase for FFNN model for different stages
of modeling of piezometers # 207 and # 217 for scenarios 1,2,3
are tabulated in Table 7 for better comparison of modeling perfor-
mance in 4 different stages of modeling.

According to Table 6, at this step of modeling, in almost all
cases, the neural ensemble model increases the accuracy and per-
formance of the modeling. In addition, employing both jittering
and neural ensemble techniques could reduce overtraining prob-
lem slightly in all cases except the neural averaging method for
piezometer # 217 via scenario 3 (see Tables 2 and 6).

Overall, employing both pre-processing (jittering) and post-
processing (neural ensemble) techniques improved the perfor-
mance of AI modeling for piezometers # 207 and 217 by 18% for
training step and 32% for the testing step. It should be noted that
using the jittering data pre-processing and ensemble post-
processing methods simultaneously improved the modeling per-
Table 7
The best results (R2) of testing phase for FFNN model for different stages of modeling of p

Scenario # Piezometer # Without pre-post processing With

1 207 0.7166 0.816
217 0.6865 0.823

2 207 0.7645 0.835
217 0.6906 0.726

3 207 0.7800 0.840
217 0.7100 0.740

Fig. 12. Scatter plots of neural ensemble methods linked to jittering data pre-processin

Fig. 11. Scatter plots of neural ensemble methods linked to jittering data pre-processin
formance more than using of each pre-processing or post-
processing alone.
4. Conclusions

This paper deals with the performance of data pre and post pro-
cessing techniques for seepage modeling. The available historic
data of piezometric heads from Sattarkhan earthen dam, situated
in northwest of Iran were employed to develop AI models. For this
purpose, as the first step of modeling, the original dataset without
any processing was employed to create AI models. In the second
step of modeling, jittering pre-processing method was used. In this
way, the noise time series with mean of zero and different standard
deviation values were produced and added to the observed data. In
the last stage, to improve the performance of modeling, the ensem-
ble post-processing method was employed using linear simple and
weighted averaging as well as nonlinear neural ensemble
approaches to integrate outputs from single methods of first step
(outputs of single models without any data pre-processing).
Finally, in the fourth step of modeling, the obtained outputs of sec-
ond step (outputs of single models linked to data pre-processing)
were combined using ensemble post-processing method.
iezometers # 207 and # 217 for scenarios 1, 2, 3.

pre-processing With post-processing With pre-post processing

9 0.8000 0.9153
5 0.7565 0.800

4 0.8220 0.8661
2 0.7851 0.8038

0 0.8430 0.8811
0 0.8087 0.8100

g of piezometer 217 for scenarios (a) one, (b) two, (c) three for the testing phase.

g of piezometer 207 for scenarios (a) one, (b) two, (c) three for the testing phase.
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The comparison of proposed scenarios indicated that using syn-
chronic data with outputs can enhance modeling performance by
10%. In addition, it was examined and confirmed that if one of
piezometers gets out of service, other piezometers could be utiliz-
ing in simulating via scenarios 2 or 3.

Comparing the obtained results by employing jittering based
pre-process method with regard to results of the modeling by orig-
inal time series shows that the proposed method is efficient
because of identifying the intermediate patterns in the data. Jitter-
ing could enhance the AI modeling performance for the testing
phase by about 20% compared to the modeling with unprocessed
data.

Ensemble models provided more accurate estimations than the
sole methods and model ensembling enhanced the predicting per-
formance by 25%. Expectedly, the neural ensemble method was
found to be more potent and effective technique of model ensem-
bling and this technique could enhance the performance of the AI
based modeling in the testing stage by 25%.

The best outcomes were achieved by employing both of the pre-
processing and post-processing methods together, so that the used
pre-post processing methods improved the performance of AI
modeling by about 30% in the testing phase.

Generally, the results of this paper proved the performance and
effectiveness of jittering and ensembling data processing.

Two methods of pre-post processing examined in this research,
but other methods and techniques can be applied to overcome the
modeling deficiency such as Wavelet-Entropy and Self-Organizing
Map (SOM) pre-processing methods [41–43]. Furthermore, it is
suggested to utilize Genetic Algorithm (GA) to select the main
inputs of AI models in future studies [44,45].
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