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H I G H L I G H T S

• A novel automated diagnostic tool for anosmia is proposed.

• Entropy based approach to detect chemosensory responses for identifying anosmia.

• This method can guide the clinicians and researchers in chemosensory field.

• Anosmic patients can be correctly (over 75%) diagnosed using this tool.
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A B S T R A C T

Objective: Methods based on electroencephalography (EEG) are used to evaluate brain responses to odors which
is challenging due to the relatively low signal-to-noise ratio. This is especially difficult in patients with olfactory
loss. In the present study, we aim to establish a method to separate functionally anosmic and normosmic in-
dividuals by means of recordings of olfactory event-related potentials (OERP) using an automated tool.
Therefore, Shannon entropy was adopted to examine the complexity of the averaged electrophysiological re-
sponses.
Methods: A total of 102 participants received 60 rose-like odorous stimuli at an inter-stimulus interval of 10 s.
Olfactory-related brain activity was investigated within three time-windows of equal length; pre-, during-, and
post-stimulus.
Results: Based on entropy analysis, patients were correctly diagnosed for anosmia with a 75% success rate.
Conclusion: This novel approach can be expected to help clinicians to identify patients with anosmia or patients
with early symptoms of neurodegenerative disorders.
Significance: There is no automated diagnostic tool for anosmic and normosmic patients using OERP. However,
detectability of OERP in patients with functional anosmia has been reported to be in the range of 50%.

1. Introduction

EEG-based brain responsiveness is traditionally evaluated using
methods such as temporal averaging and peak measurement of event-
related potentials (ERP). Despite the advantages of classical electro-
physiological analysis methods, these methods have limitations in some
of the sensory modalities, especially in olfaction. One of the biggest
limitations in the electrophysiological exploration of olfactory re-
sponses is the low signal-to-noise ratio (SNR) due to heterotopic gen-
eration of the signal (Boesveldt et al., 2007). Other issues refer to
sensory transduction/environmental factors resulting in temporal jitter

(Boesveldt et al., 2007; Huart et al., 2012). To overcome these limita-
tions, novel data analyzing methods (e.g. nonlinear data analysis
techniques) have been proposed (Guducu et al., 2015; Huart et al.,
2013; Lanata et al., 2016; McBride et al., 2013; Olcay, 2014; Quiroga
et al., 2001), including entropy analyses (Olcay, 2014, 2017). In theory,
entropy is a measure that quantifies the uncertainty of the system be-
havior (Carhart-Harris et al., 2014; Cover and Thomas, 2006) and has
been used in neuroscience to uncover the response characteristics of the
brain to internal and external events. For example, Tsallis entropy of
the brain activity allows to discriminate healthy people from patients
with traumatic brain injuries (TBI) (McBride et al., 2013). Also, visual
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and somatosensory stimulus-induced brain activity has been char-
acterized by means of entropy-based methods (Cao et al., 2017; Olcay
et al., 2017). Using the coupling characteristics of the EEG channels
yields a rate of 88% activity recognition performance. In one study,
1500 and 1600 Hz auditory stimuli and, in a different study, olfactory
stimuli were presented to analyze brain responses using the entropy
evaluation of the wavelet energies of the event-related brain signals
(Cek et al., 2010; Guducu et al., 2015). Also, olfactory stimuli induce
different functional connectivity patterns in Parkinson’s disease
(Guducu et al., 2015). An additional entropy-based method, so-called
mutual information, has been used to capture alterations in the brain
connectivity patterns of Alzheimer’s Disease (Jeong et al., 2001).

Although there is a relatively large body of literature on olfactory-
related brain responses, clinicians still struggle with the diagnosis of
olfactory disorders based on electrophysiological recordings. This is
especially noted in the discrimination/diagnosis of anosmic and hy-
posmic patients with special consideration of medico-legal cases. Since
olfactory brain responses are not always found in normosmic people
due to the low SNR (Gudziol et al., 2006) clinicians are looking for a
more precise approach to evaluate the electrophysiological data. There
are numerous promising studies that evaluate the response character-
istics in the time-frequency domain (Huart et al., 2013; Lanata et al.,
2016). One of these studies investigated differences between trigeminal
and olfactory stimuli (Huart et al., 2013) while others investigated the
pleasantness of odors (Lanata et al., 2016). However, to our knowledge,
none of these methods allows to classify the patients with satisfactory
precision.

Aim of the current study was to evaluate the smell performance of
the participants with or without olfactory loss by utilizing the entropy-
based method. The entropy of the averaged signal taken from pre-,
during, and post-stimulus frames was calculated for both groups. It is
shown that the complexity of the EEG would increase significantly
during stimulus processing (Cao et al., 2017). Therefore, it is expected
that, during the olfactory stimulation, the complexity of the EEG would
increase in normosmic participants, but not in anosmic participants.

2. Results

The entropy values were calculated for all normosmic and anosmic
patients. The grand averages of normosmic and anosmic participants

are given in Fig. 1. Also, mean entropy scores (EM) for each time
window are given in Table 1. For simplifying the statistical analysis, EM
values before the stimulation (TW1) were assumed to be similar for
both groups. Therefore, ΔEM values for the difference between TW1 and
TW2 (ΔEM21), and TW1 and TW3 (ΔEM31) were calculated to show the
real change after the stimulus based on that assumption. According to
the Rm-ANOVA, there were significant main effects and interactions.
First of all, rm-ANOVA showed a significant main effect for group
(F1,100= 4.27, p < 0.05, ηp

2 =0.041). Entropy values of the anosmic
and normosmic subjects were significantly different. Additionally, rm-
ANOVA showed a significant time effect (F1,100= 21.99, p < 0.001,
ηp

2=0.18). ΔEM values were significantly different between the ΔEM21

and ΔEM31 within both groups. Apart from these differences, there was
also a significant interaction between the factors group and time
window (F1,100= 38.21, p < 0.001, ηp

2=0.28). While there was a
significant difference in the normosmic group between the time win-
dows (p < 0.001), there were no significant changes in the anosmic
group (p > 0.05). Also, Rm-ANOVA showed a significant interaction
between the factors time window, nostrils and group (F1,100= 4.96,
p=0.028, ηp

2=0.047). Specifically, there were significant entropy
changes between the time windows for both nostrils in the normosmic
group (all ps < 0.001), but there were no significant differences in the
anosmic group (all ps > 0.05).

Hence, for both sides of stimulation entropy values increased during
stimulus processing (TW2-TW1) and decreased after initial stimulus
processing (TW3-TW1). Therefore ΔEM21 is significantly higher than the
ΔEM31 in the normosmic group but not in the anosmic group.

Furthermore, we observed that there were significant differences in
entropy changes between the groups. Entropy values did not differ
during TW1 (p > 0.05). In TW2, for both nostrils, the normosmic
group exhibited higher entropy values than the anosmic group (for the
left and right nostril, p < 0.001; see Table 1). For TW3, the anosmic
group had higher entropy values than the normosmic group for right
nostril stimulation (p=0.038), whereas there was no significant dif-
ference for left nostril stimulation (p > 0.05). The boxplot demon-
stration of these values can be found in Fig. 2.

In addition to the statistical analysis, we additionally examined the
validity of the proposed method with a classification scheme. Status of
olfactory function (i.e. anosmic or normosmic) was tried to be identi-
fied by classifying the subjects with regard to the means of the entropy

Fig. 1. Grand averages of Olfactory Event-Related Potentials for anosmic (bottom row) and normosmic (top row) participants, separately for the left (left side) and
right nostrils (right side). Lines indicate stimulus onset, arrows are pointing at N1 peak, and stars indicate the late positivity. Responses in functionally anosmic
patients were delayed and exhibited smaller amplitudes.
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values obtained from right-sided and left-sided nostril stimulations se-
parately and combined (i.e. each subject was characterized by 3- or 6-
dimensional entropy vectors). For classification, Fisher’s linear dis-
criminant (FLD) analysis was used. To determine the overall perfor-
mance, a leave-one-out cross validation strategy was adopted. In this
scheme, at each validation step, one of 102 participants’ entropy vector
were picked out for testing and the classifier was trained with the re-
maining 101 participants’ entropy vectors, and, the 102 individual
performances were averaged. Results are presented in a confusion
matrix (Table 2); we found that pre-, during-, post- entropy values allow
to identify the status of the olfactory function with 83.3% accuracy for
the right nostril, 65.7% accuracy for the left nostril and 75.5% accuracy
for both nostrils.

We also tried to identify the anosmic and normosmic participants by
means of their entropy pattern manually. With the suggested method,
participants were correctly diagnosed in 73.5% for the right nostril data
and in 72.5% for the left nostril data (Table 3). According to these re-
sults, the currently proposed method seems to work slightly better in
the classification of the anosmic group than the normosmic one. While
the ratio of correct diagnosis for anosmic participants ranged between
77 and 79%, in normosmic participants this figure was 67%.

3. Discussion

In the current study, entropy estimation of distinct portions of
averaged EEG activity was used for identification of anosmic and nor-
mosmic people based on their OERP recordings.

The electrical activity of the brain has been described as nearly
chaotic (Beggs and Timme, 2012). Studies utilizing entropy analysis
revealed that the uncertainty in the frequency content of the oscillatory
activity of neural structures shifts towards a more ordered state during
processing of external stimuli, and returns to its complex nature shortly
after the completion of processing of the stimulus (Quiroga et al., 2001;
Rosso, 2007; Rosso et al., 2001). To observe the alteration of the en-
tropic behavior of the frequency content, wavelet-based methods are
among the most frequently adopted techniques. However, to obtain a
reliable entropy evolution, mother wavelet function should be selected
properly. Imprecise selection of the wavelet function may not uncover
hidden important dynamics embedded in the signal. As an example, the
wavelet denoising approach has been widely used to extract stimulus-
induced event-related oscillations from single trials activities. In such

studies (Ahmadi and Quian Quiroga, 2013; Quiroga and Garcia, 2003),
discrete wavelet transform was used to obtain the time-frequency do-
main energy coefficients. Then, a universal threshold was applied to
identify which coefficients on the post-stimulus period belong to sti-
mulus induced brain activity. In such studies, as in wavelet entropy
studies, selection of proper wavelet function is of great importance.
Apart from that, SNR of the analyzed signal greatly affects the filtering
performance.

The data-driven approach called empirical mode decomposition
(EMD) decomposes the signal into almost orthogonal basis and adaptive
filtering approach which utilizes inherent signal statistics. These ap-
proaches were applied to recover the event-related brain potentials
from the contaminated EEG activity (Lam et al., 2005; Wu et al., 2012).
In the EMD based study, the signal was decomposed into several in-
trinsic mode functions (IMF) by means of a sifting procedure. Then, by
using the averaged activity, the frequency of interest was calculated.
Based on these frequency band selections, IMFs were chosen so that
their mean frequency coincided with the frequency band of interest.
Also, in the adaptive filtering technique, selection of both, the channel
for noise cancellation and the proper target for signal enhancement is of
great importance.

In this study, we estimated the entropy using the nearest neigh-
borhood statistics of the averaged signals in pre-defined time windows.
We found significant entropy enhancement during the stimulus period
which is thought to be related to central processing of the chemosen-
sory information. It may be inferred that, during the stimulation period,
in addition to background brain processes, the raw chemosensory in-
formation is processed in neural ensembles to extract meaningful fea-
tures for identifying the odor within a specific frequency band.
Therefore, it is expected that entropy values return to their original
level after processing of this chemosensory information. In the current
experimental setup, we used three distinct periods to analyze the pre-
stimulus (TW1), stimulus (TW2) and, post-stimulus time windows
(TW3) of averaged EEG data. Instead of taking the whole signal for
analyzing the entropy change, we decided to analyze segments of equal-
length from the recordings. The reason of taking such portions is to
avoid the bias of entropy estimation due to the different lengths of the
signal. Chemosensory-induced brain potentials arise at around
250–320ms after the stimulus onset and last about 500–600ms (Huart
et al., 2013). To capture these changes, we restricted the analyzed
signal with time-windows taken from three different periods (pre-

Table 1
Mean entropy values (EM ± standard deviations) for all participants in each time window separately for the two nostrils.

Windows Group Pre-stimulus (TW1) (−400 to 0ms) During-stimulus (TW2) (400–800ms) Post-stimulus (TW3) (1100–1500ms)

Left Nostril Right Nostril Left Nostril Right Nostril Left Nostril Right Nostril

Anosmic (n= 56) 1.43 (± 0.47) 1.43 (±0.46) 1.40 (± 0.47) 1.39 (±0.48) 1.43 (± 0.47) 1.46 (±0.41)
Normosmic (n=46) 1.46 (± 0.39) 1.48 (±0.47) 1.72 (± 0.39) 1.72 (±0.42) 1.45 (± 0.43) 1.27 (±0.48)

Fig. 2. The boxplot demonstration of entropy values for pre-, during- and, post-stimulus areas in normosmic and anosmic participants.
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stimulus window as −400 to 0ms, during-stimulus window as
400–800ms, and post-stimulus window as 1100–1500ms).

According to the results of the current study, in the normosmic
group, entropy values increased during the stimulus (TW2) and de-
creased after the stimulation (TW3) period again to reach the baseline
level before stimulus-onset (TW1). With the additional analysis, it is
assumed that the pre-stimulus period of both groups was similar.
Analysis revealed significant entropy changes between the During-Pre-
stimulus period and the Post-Pre-stimulus period only for the nor-
mosmic group.

To our knowledge there are no similar studies aimed to classify
olfactory dysfunction patients by means of CSERP (both olfactory and
trigeminal event related potentials) related measurements. Until now,
entropy has been employed with spontaneous EEG to evaluate the
possible differences between patients with TBI and healthy controls
during a memory task (McBride et al., 2013). In two different studies,
entropy analyses were employed to capture the brain activity in re-
sponse to auditory (Cek et al., 2010) and somatosensory (Olcay et al.,
2017) stimulation in healthy people. Guducu et al. (2015) established
differences between healthy subjects and Parkinson’s disease (PD) pa-
tients. They showed that classical CSERP measurements revealed si-
milar results in both groups. However, there were significant entropy
changes between the time windows in the normosmic group but not in
the patient group in regard to OERP. In the current study, we also found
that the entropy values were significantly changing during the time
windows TW1-TW2 and TW2-TW3 in the normosmic but not in the
anosmic group.

Anosmic patients could be classified correctly at a rate of 77%, and
68% for the normosmic group, meaning that one out of four patients
with anosmia might be misclassified with the manual observations.
Furthermore, according to the Fisher’s LD classification this rate in-
creased to the 83% for the right nostril. In a previous study, it was
proposed that, the probability of detection of an OERP is about 50%
when the TDI score is about 22.6 which exceeds the level of functional
anosmia (Lötsch and Hummel, 2006). Also, in the same study, nearly
80% of the patients with functional anosmia did not show OERP. The
currently proposed method increases the probability of OERP detection
by at least 20%. The 73% ratio of correctly identified anosmic patients
could inform the diagnostic process especially in medico-legal cases. In
combination with other measures including physical examination,
psychophysical testing and standardized patient history, results from
entropy analyses can be excepted to be a very valuable contribution to
the clinical decision.

The current approach can be explored in other groups who have
similar olfactory dysfunction but different pathologies. Also, it would
be of high interest to investigate hyposmic patients. In conclusion, the

present method provides an opportunity to evaluate olfactory event-
related potentials in an automated manner which in turn would, for
example, enable larger studies across different centers.

4. Materials and methods

4.1. Patients, demographics, and behavioral analysis

A total of 102 participants (age 40.6 ± 18.7 years, 54 male) were
recruited. The local ethical committee approved the study
(EK251112006; EK115042013). All participants were in good mental
and physical health. None of the participants was diagnosed for any
form of hormonal, neurological or autoimmune diseases known to
significantly interfere with the sense of smell. Participants did not eat or
drink anything but water one hour prior to the test. They were also
asked not to wear any perfume or scented products before and during
testing. A figure of experimental procedure is given on Fig. 3.

At first, the sense of smell was tested psychophysically using the
Sniffin’ Sticks test battery (Hummel et al., 2007) (Burghart, Wedel,
Germany). The battery consists of three sections including olfactory
threshold, odor discrimination, and odor identification. The odorants
were presented to the participants bi-rhinally by means of felt-tip pens,
the so called “Sniffin’ Sticks”. During presentations of odorants, the
pens’ tip was placed approximately 2 cm beneath both nostrils. Olfac-
tory thresholds were determined for phenyl-ethyl-alcohol (PEA; a rose-
like odor) with 16 stepwise dilutions. When measuring the thresholds,
the single staircase technique based on a 3-alternative forced-choice
task was used. Then, odor discrimination was assessed over 16 trials. In
each trial, three pens were presented, two containing the same odorant
and the other containing the target odorant (3AFC task). Lastly, odor
identification was evaluated by presenting 16 odors. In this part, each
odor was presented with four verbal descriptors in a multiple forced-
choice format (three distractors and one target). A total score was
calculated by summing up the three test results. A total of 56 func-
tionally anosmic patients (31 male, age 46.8 ± 20.0 years) and 46
normosmic (23 male, age 33.2 ± 13.8 years) individuals were included
in the study.

4.2. Stimulus properties, electroencephalography recordings, and analysis

Odorants were delivered with a specifically designed and computer-
controlled air-dilution olfactometer (Om6b; Burghart MT, Germany).
This device allows to present odors without altering any thermal and
mechanic conditions inside the nasal cavity. Patients received a total of
60 phenyl-ethyl-alcohol (PEA; a rose-like odor) stimuli (30 at the right
and 30 at the left nostril). The concentration of the odorant was 50%

Table 2
Confusion Matrices (Entropy vector characterized by right, left nostril and both right and left nostrils).

Estimated

Right Nostril Left Nostril Both Nostrils

Anosmic Normosmic Anosmic Normosmic Anosmic Normosmic

Real Anosmic 49 7 44 12 45 11
Normosmic 10 36 23 23 14 32

Performance 83.3% 65.7% 75.5%

Table 3
Number of correctly diagnosed participants, separately for group and nostril.

Diagnosed By Normosmic (n=46) Anosmic (n=56) Total (n= 102)

Left Nostril Right Nostril Left Nostril Right Nostril Left Nostril Right Nostril

Entropy Analysis 31 31 43 44 74 75
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(v/v). The inter-stimulus interval (ISI) was set to 10 s (Whitcroft et al.,
2017). During the ISI, only odorless air (control) was delivered. While
participants were sitting, and receiving the PEA odorants, the electro-
encephalogram (EEG) was recorded from 5 locations (Fz, Cz, C3, C4,
and Pz, referenced against linked earlobes, A1+A2) on the scalp with
250 Hz sampling frequency using Ag/AgCl electrodes (Neurofax EEG
8314G amplifier from Nihon Kohden, Rosbach, Germany). Following
manual rejection of artifacts (blinks, eye movements, etc.) the signals
were applied to a band pass filter (0.5–30 Hz). After the filtering pro-
cess, all signals were corrected to baseline and averaged in the time
domain using Letswave software (http://www.nocions.org/letswave5/
). In the chemosensory research area, most of the studies present results
from the Cz and Pz electrodes (Boesveldt et al., 2007). Also, in the
clinical settings, these recording positions are widely used. In parallel of
the aims of the study, we primarily analyzed the Cz and Pz electrodes to
study midline activations. Also, at this level of investigations we were
not interested in possible lateralized activations. Therefore, we did not
analyze the C3 and C4 electrodes. Also, the Fz electrode was discarded

due to frequent muscular and blinking artifacts. The entropy estimation
was applied to the averaged data using MATLAB (The MathWorks Inc,
2007). Details of entropy analysis are given below.

4.3. Estimating the entropy and selection of time windows

Calculation of the entropy requires the probability density function
(pdf) information of the corresponding signal. However, obtaining the
marginal pdf from a finite number of samples is not straightforward. A
common approach to estimate the pdf is partitioning the histogram into
equal-sized/adaptively-sized bins. Alternatively, kernel-based density
estimation techniques have been widely used (Principe, 2010). Calcu-
lating distribution entropies of reconstructed state-space embedding
vectors is another entropy estimation technique (Li et al., 2015). Ap-
proximate entropy (Pincus, 1991) and Sample entropy (Richman and
Moorman, 2000) are some other approaches to quantify the complexity
of the observed signals. Unfortunately, these techniques do not provide
an accurate entropy estimation (Kraskov et al., 2004; Wibral et al.,
2014). In this study, we have employed an estimation technique that
uses the nearest neighborhood statistics of signal samples.

Suppose that X is a continuously distributed random variable. The
entropy of the random variable X is defined as (Shannon and Weaver,
1949),

∫= −
−∞

∞
H X f x f x dx( ) ( )log ( )X X (1)

where f x( )X is the marginal probability density function (pdf) of the
random variable X . To estimate the entropy from a limited number of
observations, Kozachenko and Leonenko (1987) proposed a novel
method given as,

∑= − + + + ∊
=

H X ψ k ψ N c d
N

j( ) ( ) ( ) log( ) ( )d
j

N

1


(2)

where ψ (.) is the digamma function, k is the number of neighbors, N
denotes the sample size of the signal, d represents the dimension of the
signal, the volume of d-dimensional unit ball is denoted by cd, and fi-
nally ∊ j( ) represents twice the distance between the jth sample and its k-
nearest neighbor. Detailed criteria for the selection of the k parameter
are currently lacking. In a study which carries out a performance
comparison of different mutual information estimators, Khan et al.
(2007) used “kNN-based” mutual information estimation method, and
they showed that k=3 yielded more accurate mutual information es-
timates. Therefore, we selected k as 3 in the current study as well. For
this entropy approximation, we calculated the Euclidean distance be-
tween signal samples.

Three different time windows were selected as follows: pre-stimulus
window (−400 to 0ms), during-stimulus window (400–800ms), and
post-stimulus window (1100–1500ms). This selection procedure of the
time windows was made according to the temporal pattern of the
classical ERP (Kobal and Hummel, 2001). To prevent bias, the lengths
of the time windows were equalized. For each time window, entropy
values were calculated for Cz and Pz electrodes. Then entropy values in
both electrodes were averaged for each time window to investigate
changes separately for the pre-processing, during-processing and, after-
processing period. It is assumed that during normal olfactory proces-
sing, entropy levels of the brain should appear in a low entropy-high
entropy-low entropy (LHL) pattern. Since periods of high information
(stimulus) processing the brain behaves in a more complex manner, its
entropy in during stimulus window is expected to be higher compared
to the pre- and post-stimulus periods. Therefore, the LHL pattern was
searched for the evaluation of the smell performance of the partici-
pants. Participants exhibiting the LHL entropy pattern were diagnosed
as having olfactory function (normosmic); participants who did not
exhibit the LHL pattern were diagnosed as functionally anosmic.

Fig. 3. The block diagram of experimental procedure.

C. Güdücü et al. Brain Research 1708 (2019) 78–83

82

http://www.nocions.org/letswave5/


4.4. Data analysis

For statistical analysis, the SPSS program package was employed
(vs. 21; SPSS Inc, Chicago, Ill, USA). To evaluate the possible differ-
ences between and within the two groups regarding the three-time
windows for both nostrils, repeated measures ANOVA was employed
with time windows (During-prestimulus and post-prestimulus time
windows) and nostril (right and left) as within-subject factors and
group (anosmic and normosmic) as between subject factor. Multiple
comparisons were adjusted according to Bonferroni and the level of
significance was set to 0.05. Additionally, to validate the method we
employed Fisher’s linear discriminant classifier for the cluster analysis.

In general, Fisher’s linear discriminant classifier finds a linear pro-
jection w that can separate two different kinds of pattern vectors in
lower dimensional space with minimum error. This projection vector
minimizes the intra-class scattering and maximizes the inter-class
scattering (Fisher, 1936).

The FLD classifier is formulated as,

= +f x sign w x w( ) ( )opt
T

0 (3)

where w denotes the projection vector that maximizes the criterion
function J w( )

=J w w S w
w S w

( )
T

B
T

w (4)

In above formulation, SB and SW denotes the inter-class and intra-
class scatter matrices respectively. The optimum projection wopt vector
is calculated using

= + −−w μ μ(Σ Σ ) ( )opt anosmic normosmic anosmic normosmic
1 (5)

where Σanosmic and Σnormosmic denote the covariance matrices calculated
using anosmic and normosmic subjects’ entropy vectors, μanosmic and
μnormosmic are the mean entropy vectors of both normosmic and anosmic
subjects. The w0 denotes the bias term which was calculated so that it
minimizes the error rate on the training set.
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