
2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

SPL-AT Gherkin: A Gherkin Extension for Feature
Oriented Testing of Software Product Lines

Tugkan Tuglular
Dept. ofComputer Engineering

Izmir institute ofTechnology
Izmir, Turkey

tugkantuglular@iyte.edu.tr

Sercan Çensülün
Dept. ofComputer Engineering

Izmirinstitute ofTechnology
Izmir, Turkey

sercansensulun@iyte.edu.tr

Abstract— As cloud platforms turn into software product
lines (SPLs), testing products composed of customer selected
features becomes more and more important. In this paper, we
propose a feature-oriented testing approach for platform-based
SPLs through a novel extension to Gherkin called SPL-AT
Gherkin and a novel automatic test method generation
technique, which utilizes TestNG framework. We demonstrate
the applicability of the proposed approach by a case study.

Keywords— software product lines, feature-oriented testing,
acceptance testing, Gherkin, automatic test generation

I. In t r o d u c t io n

Nowadays, cloud platforms with their extensions, such as
web and mobile applications, are new wave of software
product lines. The features selected by customers shape how
the platform behaves, and the customer is billed according to
the selected features. These cloud platforms enable companies
to add and/or modify features much easier than the past.
However, the problem of how selected features work in a
reliable manner stays still. This problem gets harder if
different mobile applications are provided to different
segments of users of the customer.

To assure the quality of the delivered mobile applications
with respect to selected features, one approach is to follow
feature-oriented testing, where acceptance tests (ATs) are
determined with the “definition of ready”. Then selected
features will indicate acceptance tests that need to be
executed. In this paper, we propose a feature-oriented testing
approach based on Gherkin but with a novel extension called
SPL-AT Gherkin. The proposed approach also includes an
automatic test method generation technique for concrete
acceptance test cases.

Fig. 1. SPL feature diagram for KidsBus™

Feature diagrams [1] are used to represent the feature
options in software product lines for user selection. An
example feature diagram is given in Fig.l for the SPL named
KidsBus™, which is chosen as case study in this work.
KidsBus™ is a platform that manages the school bus
transportation processes effectively and efficiently. The root
of feature diagram represents the SPL and the nodes are
features, which can be mandatory or optional, represented by
filled circle and empty circle respectively. Product diagrams,
similar to feature diagrams, are user-centric representations of
product feature configurations, where all feature selections are
made for the product. An example product diagram of is given
in Fig.2, which shows selected features of the product called
Gold KidsBus™. Since the feature selections are made, filled
and empty circles are removed.

Fig. 2. SPL product diagram of Gold KidsBus™

The proposed feature-oriented testing approach based on
SPL-AT Gherkin enables automatic composition of
acceptance tests with respect to selected feature combination
provided by the product diagram. SPL-AT Gherkin allows
analysts and testers to write scenarios with tags or
placeholders, which are replaced with concrete objects during
test method generation. The proposed approach follows agile
practices for developing software product lines proposed by
de Souza and Vilain [2],

Other advantages of the proposed approach are as follows.
The proposed test method generation technique is open to
work with any testing frameworks. Only, implementation of
the mapping rules needs to be changed with chosen
framework API. Furthermore, it is possible to reuse the
templates of feature-oriented acceptance tests written in SPL­
AT Gherkin. In addition, acceptance test driven development
can be pursued with the proposed approach.

The paper is organized as follows. After the fundamentals
section, the proposed approach is explained with a running
example in Section III. Section IV describes the case study and
presents the results obtained along with a discussion. Related

978-1-7281-2607-4/19/$31.00 ©2019 IEEE 344
DOI 10.1109/COMPSAC.2019.10230

_ IEEE
computer

society

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

work is outlined in Section V. Section VI concludes the paper
and lists possible future works.

II. F u n d a m e n t a l s

A. Domain Specific Languagesfor Test Generation
Gherkin [3] is a domain specific language to create project

documentation and automated tests. It provides the behavior
definitions of the intended software not only to product
owners and business analysts but also to developers and
testers. In other words, it is a well-known language, which is
understandable by any teams with +70 spoken languages
support. Gherkin is a line-oriented language in terms of
structure and each line has to be divided by the Gherkin
keyword except feature and scenario descriptions. In this
paper, some of the Gherkin keywords, which are Scenario
Outline, Given, When, And, Then, Examples, are going to be
handled in describing SPL-AT Gherkin.

B. Page ObjectPattem
Page object design pattern was introduced for web pages

to hide user interface (UI) details from clients. It is a basic
encapsulation mechanism that finds UI components such as
Header or Paragraph tags in HTML pages and manipulates
them without dealing with any technical details through a web
driver. It is necessary to manipulate UI components when
writing test against any web page. Although Martin Fowlers
suggested this pattern for web pages, he claimed that it could
be applied to any UI technology [4],

Right to his claim, this pattern is evolved to be used in
mobile application testing domain. For instance, a login page
in a mobile application contains one editable field, which is
called EditText in Android or UITextField in iOS, and one
button to validate written text in the editable component.
When writing tests to this page, a test framework, such as
Appium, can be used to manipulate these UI components.
Accessor methods, such as getTextQ and setText(...) can be
developed for editable field, and button can be manipulated by
action oriented methods, such as clickButton(). Appium API
methods hide technical details behind these methods. Thanks
to this encapsulation, test methods can be developed with
accessor and action-oriented methods without knowledge of
Appium API.

C. UnitTestingFramework
Test Next Generation (TestNG) [5] is a testing framework

for Java developers inspired by JUnit. It is suitable to write
unit, functional, end-to-end, integration etc. tests. It works
well with test automation frameworks, such as Selenium and
Appium. It can be plugged to some integrated development
environment such as Eclipse and Intellij IDEA.

TestNG supports important features such as data-driven
testing, parametrized testing and flexible test configuration.
Test methods can take one or more parameters and different
arguments can be passed to same test method for different
scenarios. Although parameters can be set in two different
ways, through testing.xml or programmatically, testing.xml is
used for the proposed technique.

Another important feature utilized in the proposed
technique is priority feature of TestNG. If the order of the test
case executions is critical, priority should use with @Test
annotation. Priority is represented by integers and lower value
is executed first.

III. F e a t u r e O r ie n t e d T e s t in g o f S o f t w a r e P r o d u c t
L in e b a s e d M o b il e A p p l ic a t io n s

In this paper, we propose a feature-oriented testing
approach for platform-based SPLs and demonstrate its
application on mobile applications of which back-end is a
cloud-based application platform. In the selected case study,
the features are presented through variable mobile
applications instead of web pages. Customer selected features
are used to develop role specific mobile applications and these
mobile applications communicate with the platform where
only customer selected features are enabled.

In the proposed feature-oriented testing approach, we
assume that a feature may have a number of user stories and
each user story may have a number of acceptance test cases,
which are created manually at the requirements specification
phase. A Gherkin Scenario is an abstract acceptance test case,
which is instantiated once converted to unit test method(s).
Gherkin is an efficient language to write User Scenarios.
However, it is not sufficient to define acceptance tests with
placeholders. Therefore, we extend Gherkin with a tag
structure to introduce variability that SPLs assume and UI
components that a mobile application utilizes. So, we called
this extended Gherkin as SPL-AT Gherkin, which is explained
in the following sub-section. Following that we introduce our
automatic test method generation technique that inputs a SPL­
AT Gherkin scenario and automatically produces TestNG
classes and an XML file to run tests.

A. SPL-AT Gherkin
The proposed approach utilizes mapping rules to achieve

transition from user scenarios to TestNG test project. If user
interfaces, as a set ofUI components, and their behavior were
to be defined in user scenarios, transition would be easy. For
this purpose, we propose a tag structure to achieve this
transition. In this tag structure, there are two different tags,
which are address sign (@) and dollar sign ($). They are added
onto Gherkin to write scenarios convertible to executable
acceptance tests. While @ tag is used to define UI components
such as Edit Text, Button, Text View etc., $ tag is used to
define their behavior.

We propose a tag structure based on object-event pairs to
extend Gherkin. @ tag represents objects in mobile
applications, such as PAGE, BUTTON, EDITABLE TEXT
(EDIT_TEXT in short), and TEXTJVIEW. For $ tag,
different adjective keywords such as OPENED, ENTERED,
CLICKED, ENABLED, DISABLED, and SHOWN are
selected to represent events. $ tag must be used with its related
@ tag. Allowed combinations are given in Table I.

TABLE I. Tag Usage Rules

PairlD Where to Use © Tags S Tags
PI Given, When ©PAGE SOPENED
P2 Given, When ©BUTTON SCLIKED
P3 Given, When ©EDIT TEXT SENTERED
P4 Given, When ©TEXT VIEW SSHOWN
P5 Then ©PAGE SOPENED
P6 Then @BUTTON SENABLED or

SDISABLED
P7 Then @EDIT_TEXT SENABLED or

SDISABLED
P8 Then @TEXT VIEW SSHOWN

@tag-$tag pairs are identified with Pair ID in Table I and
Table I should be read as follows. In Given and When sections

345

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

of SPL-AT Gherkin, @PAGE must be used only with
SOPENED, @BUTTON with SCLIKED, @EDIT_TEXT
with SENTERED, and @TEXT_VIEW with SSHOWN. In
Then section of SPL-AT Gherkin, @PAGE must be used only
with @OPENED and @TEXT_VIEW with SSHOWN,
whereas @EDIT_TEXT and @BUTTON must be used with
SENABLED or SDISABLED. Only these pairs are allowed in
Scenario Outline of SPL-AT Gherkin to generate test methods
with the correct source codes.

We consider Scenario Outline in SPL-AT Gherkin as
acceptance test for a user story, where this user story belongs
to the Feature in SPL-AT Gherkin. In Fig.3, an acceptance
test template in SPL-AT Gherkin is given to materialize our
approach. Identifiers proceeding @ tags are UI components in
the mobile application page.

Feature: This is the title of the Feature

Scenario Outline: This is the title of the Scenario Outline
Given @PAGE this is identifier is SOPENED
When <parameter_for_edit_text> is SENTERED

on @EDIT_TEXT th isised ittex tiden tifier
And @BUTTON thisisbuttonidentifier is SPRESSED

Then @PAGE <paramctcr_for_pagc> is SOPENED

Examples:
parameter for edit text	parameter_for_page
this_is_value_l_for_edit_text	this_is_value_l_for_page
this_is_value_2_for_edit_text	this_is_value_2_for_page

Fig. 3. An example of acceptance test template in SPL-AT Gherkin

In the next sub-section, our automatic test method
generation technique is explained with our mapping rules that
automatically produces TestNG classes and the XML file
from a SPL-AT Gherkin scenario.

B. Executable test method generation
The design we utilize in our proposed test method

generation technique is based on TestNG framework and
TestNG test classes are automatically generated by this design
given in Fig.4. In the design of our proposed technique, there
is a Base Page class and it manages Appium API methods. It
has five methods, which are called as click, setText, getText,
isEnabled, and isShown. All of them take an identifier
parameter of type String to ensure which UI component is
referred in the application under test.

Fig. 4. UML class diagram of test methodmethod generation

The proposed test method generation technique utilizes the
following mapping rules to generate executable TestNG test
methods. With the help of these mapping rules, SPL-AT

Gherkin scenarios are converted into Java source codes that
make up the TestNG test classes.

Rule 1. Generation ofPage Class
The first rule is related with child classes of the Base Page

class. Scenario Outline has to include at least one @PAGE tag
with same identifier in Given and When parts. If only one page
on mobile application is tried to be tested, @PAGE tag with
another identifier only could be existed into Then part of the
SPL-AT Gherkin. If @PAGE tag is detected with identifier,
child of the Base Page should be created into Acceptance Test
Project with identifierPage name. For instance, inFig.3, there
is one @PAGE tag with this is identifier identifier.
According to this rule, ThisIsIdentifierPage class, which is the
child of the Base Page class as in Fig.4, should be created into
the Project as shown in Appendix A.

Rule 2. Generation ofMethodforEditable Text
In the second rule, inside of child class mentioned in Rule

1 is going to be processed. @EDIT_TEXT tag can exist in
Given and When parts in Scenario Outline with delimited
parameter. When it is detected with delimited parameter, there
should be a method into the child class to set any text to
mentioned UI component via @EDIT_TEXT tag. Moreover,
the setText(String identifier, String text) method of the Base
Page should exist inside of the generated method with the
given identifier from SPL-AT Gherkin. For instance, in Fig.3,
@EDIT_TEXT tag exists in When part with
this is edit text identifier identifier. There is also delimited
parameter, that is shown with o special characters, in When
part and a value for this parameter is defined on Examples data
table in SPL-AT Gherkin. When this rule is applied,
implementation of the method is going to be generated as in
Appendix A. The point is that the implementation is generated
automatically so that the rule could be applied for any
delimited parameter in Scenario Outline.

Rule 3. Generation ofMethodforButton
@BUTTON tag is going to be focused in Rule 3. This tag

has to appear in Given or When parts of a Scenario Outline. A
method inside the child class is generated for the clickable UI
component Button. When the tag is detected with the
identifier, action-oriented method has to be created inside of
the child class. Then, click(String identifier), that is
implemented into the Base Page super class, method should
be put into this method. For instance, in Fig.3, the tag is found
in When part with this is button identifier identifier. As a
result, implementation of the method similar to the one in
AppendixA is generated automatically.

Rule 4. Generation o f Page Classes
Definition of the Rule 4 is that every Scenario Outline in

SPL-AT Gherkin is a sub-class of the BaseTestNG. For
instance, in Fig.3, title of the Scenario Outline, which is “This
is the title of the Scenario Outline”, is mapped to the name of
the class. When this rule is applied, a similar class to the one
in AppendixA is generated automatically.

Rule 5. Generation o f Scenario Outline Class
When any Scenario Outline is analyzed, three base

keywords, which are Given, When, Then, are noticed.
Moreover, each keyword describes itself with one sentence.
Rule 5 indicates that each keyword is going to be converted to
a TestNG test method with @Test annotation into the child of
the BaseTestNG class that was described in Rule 4. So that,
number of the test methods are going to be equal to number of

346

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

the keywords that exist into these three base keywords. When
this rule is applied the test methods in Appendix A are going
to be generated.

Rule 6. Generation ofPriorityAssignments
There is a hierarchy between Given, When and Then

keywords in terms of the execution order. Given part is
described as initialization part of the scenario such as opening
the application page. When part has some event-based
operations, e.g., click button, set username in to text field. In
Then part, some assertion operations are found, such as page
is opened, or button is disabled. In summary, Rule 6 indicates
that test methods, which were generated in Rule 5 based on
Given-When-Then template, have to be executed in the same
order. @priority TestNG annotation is going to be used to
implement this order. When Rule 6 considered, there are three
test methods in ThisIsTheTitleOfTheScenarioOutlineTest
class: thisIsTheGivenSentenceTest, thisIsTheWhenSentence-
Test, thisIsTheThenSentenceTest.

Rule 7. Generation ofParameterized Tests
The goal of Rule 7 is to prepare parameterized tests for the

methods explained above. To achieve this, Examples in SPL­
AT Gherkin is going to be converted to @Parameters TestNG
annotation. In Examples, rows other than header row represent
value of each cell of header row. For instance, Scenario
Outline in Fig.3 has two different delimited parameters,
namely delimited_parameter_l and delimited_parameter_2.
Values of these parameters appear in rows of Examples, i.e.,
this_is_value_for_param_l, this_is_value_for_param_2. The
rule indicates that when any delimited parameter detected in
Scenario Outline, it is to be converted to the parameter of the
test method. For instance, delimited_parameter_l is going to
be defined as parameter to thisIsTheGivenSentenceTest test
method as shown in Appendix A.

Rule 8. Generation ofTestNG configurationfile
After setting parameter annotations in the test class called

ThisIsTheTitleOfTheScenarioOutlineTest by the previous
rule as in Appendix A, values of these parameters should be
passed to the test methods. Passing parameters values through
testng.xml is one of the passing manners in TestNG
framework. Testng.xml file is a configuration file to manage
test suite and its parameters in any test project. With Rule 8,
<test>, <parameters>, <classes>, and <class> XML tags of
Testng.xml file are set. As a result of Scenario Outline in
Fig.3, testng.xml file shown in Appendix B is generated with
Rule 8. When the test class is run with the testng.xml file, test
outputs will be generated.

By applying the above rule set to Scenario Outline written
in SPL-AT Gherkin, class implementations as well as
testng.xml file are automatically generated with respect to
UML class diagram given in Fig. 4. For the example user
story template shown in Fig. 3, the classes in Appendix A and
also testng.xml file in Appendix B are automatically
generated. In other words, Scenario Outline written in SPL­
AT Gherkin is converted to an executable test project.

IV. C a s e St u d y

KidsBus™ is a platform that manages the school bus
transportation processes effectively and efficiently. It provides
coordination between the parents, school and bus company so
that children are safely taken to their school and back to their
homes. The cloud based KidsBus™ platform has the features
grouped according to the roles that take place in the

transportation processes. The roles are parent, school
administration, school security, hostess, and bus company.
Depending on the selection of the features by the school
administration, a mobile application for each role is generated
from the software product line. The feature diagram of
KidsBus™ platform is given in Fig.l.

The proposed technique is applied to the mobile
application KidsBus™ School Security and the details are
explained in this section. School securities, in KidsBus™
environment, can display the list of students whom will be
taken from the school by an adult. To show implementation of
our proposed technique on the mobile application, SPL-AT
Gherkin based acceptance tests for three different pages of
School Security mobile application. These pages are getting
SMS code for the entered phone number, verifying the SMS
code and creating new password and they are shown in Fig. 5.
Corresponding test classes and TestNG xml file are
automatically generated, and finally those test classes are
executed.

Fig. 5. KidsBus™ Mobile Application School Security Sign-up Pages

Users can enter their phone number to the editable text
area and can send the number to KidsBus™ system with the
button. If the phone number exists in KidsBus™ system as
school security role, SMS verification code will be sent to the
phone. Otherwise, the mobile application will remain on the
same page with an error message. Two different test scenarios
can be executed on this page. In the first scenario, phone
number, which belongs to any school security role, will be
entered and then it is asserted that the page is changed to the
second page in Fig.5. In the second scenario, phone number,
which does not belong to any school security role, will be
entered and it is expected that current page will not be
changed. The corresponding SPL-AT Gherkin scenario
outline is shown inFig.6.

Feature: Get SMS Code

Scenario Outline: Get SMS code scenario
Given @PAGE ReceiveVerificationCodeActivity is $OPENED
When <usemame> is SENTERED

on @EDIT_TEXT usemamelnput
And @BUTTON loginButton is SCLICKED

Then @PAGE <page> is SOPENED

Examples:
| username | page
| "5454339401"|
".Activity. CommitVerificationCodeActivity" |

| "5359144691"|
".Activity.ReceiveVerificationCodeActivity" |

Fig. 6. Acceptance test for “Get SMS code” scenario in SPL-AT Gherkin

347

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

On the verifying the SMS code page of mobile application,
there are two different user interface components, which are
an edit text and a button. Users, who has school security role
in KidsBus™ system, should enter the verification code,
which is sent via SMS to their phone, to create user password
on the third page, namely creating new password page. To test
this feature, KidsBus™ system generates same verification
code for all test users. So that, mobile application test project
does not need to read content of the SMS. In other words,
mobile application test project assumes that verification code
is 112233, if the phone is verified by KidsBus™ system as
school security role. Two different test scenarios shown in
Fig.7 will be executed as valid and invalid verification code.
These scenarios could be extended with different verification
code combinations.

Feature: Verify SMS Code

Scenario Outline: Verify SMS code scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED
When <usemame> is SI N il Ki l l

on @,EDIT TEXT usemamelnput
And @BUTTON loginButton is SCLICKED

Then @,PAGE CommitVerificationCodeActivity is SOPENED
And <passcode> is SENTERED
on @EDIT TEXT activation code
And @BUTTON loginButton is SCLICKED again
And @PAGE <second_page> is SOPENED

Examples:
| username | passcode | second_page |
| " 5454339401" | " 111111" |

" .Activity. CommitVerificationCodeActivity" |
| "5454339401" | " 112233" |

". Activity .CreateNewPasswordActivity"

Fig. 7. Acceptance test for “Verify SMS code” scenario
in SPL-AT Gherkin

A user in school security role can create new password
with two different edit text and one button components on the
creating new password page of mobile application. The
critical requirement for this page is that the user should enter
same password into the these edit text components. Since
KidsBus™ system must ensure that given password is
confirmed by the user. The test scenario outline shown in
Fig.8 is created to test this feature.

Statistics about the files automatically generated for test
execution are given in Table II. While three different children
of the BasePage classes are created with using the rules, and
also, three different children of the BaseTestNG classes are
generated. Table II summarizes lines of code (LoC) generated
for these classes as well as TestNG.xml file. As a result, three
Scenario Outlines are covered within the generated mobile
application test project. These acceptance tests can be
extended with different combinations of the parameters in the
Examples data table.

TABLE II. Automatically Generated Files for Test
Execution

Scenario Test Classes
(LoC)

TestNG.xml
(# of Lines)

1. Get SMS code 62 15
2. Verify SMS code 98 17
3. Create New Password 145 26

Feature: Create New Password

Scenario Outline: Create new password scenario
Given @PAGE ReceiveVerificationCodeActivity is SOPENED

And <usemame> is SENTERED
on @,EDIT TEXT usemamelnput
And @BUTTON loginButton is SCLICKED
And @PAGE CommitVerificationCodeActivity is SOPENED
And <passcode> is SENTERED
on @EDIT TEXT activation code
And @BUTTON loginButton is SCLICKED again
And @PAGE CreateNewPasswordActivity is SOPENED

When <new_password> is SENTERED
on @EDIT_TEXT new_password
And <new_password_confirm> is SENTERED
on @EDIT_TEXT confirm_new_password
And @BUTTON button save new password is SCLICKED

Then @PAGE <result_page> is SOPENED

Fig. 8. Acceptance test for “Create new password” scenario
in SPL-AT Gherkin

We explained Scenario Outlines for three pages of school
security mobile application. The total number of Scenario
Outlines is 14 with 152 lines in total for the whole school
security mobile application. The total LoC for test classes
automatically generated for the whole school security mobile
application is 878. The length of TestNG.xml file is 176 lines.

V. Related W ork

In this paper, we focus on automatic generation of
acceptance tests for features in SPLs. One research uses a
decision model concept to maintain and generate acceptance
test cases for SPLs [6], which saves space and effort as
compared to conventional methods. There are three research
that utilizes UML for automatic generation of acceptance tests
in SPLs. One research utilizes both use case and sequence
diagrams to compose behavioral test patterns [7], Another one
defines extensions and modifications of the Use Cases
notation, which is called Product Line Use Cases (PLUCs) [8],
The last one proposes a functional test design method for SPLs
called Customizable Activity diagrams, Decision tables and
Test specifications, or CADeT, that defines a use case-based
approach of creating reusable test specifications for a SPL [9],

Robot framework [10] is an open source automation
framework for acceptance testing and acceptance test driven
development. Different than our approach, which is feature-
oriented by nature, users of Robot framework should define a
feature-oriented language to represent feature-based
scenarios. The proposed SPL-AT Gherkin can also be
implemented using Robot framework.

VI. Conclusion

In this paper, we propose a feature-oriented testing
approach for platform-based SPLs through a novel extension
to Gherkin called SPL-AT Gherkin and a novel automatic test
method generation technique based on TestNG framework.
KidsBus™, which is a platform that manages the school bus
transportation processes, is selected as case study. Three
different pages in KidsBus™ School Security mobile
application, which are getting SMS code, verifying the SMS
code and creating new password, are tested with three
different feature files written in SPL-AT Gherkin.

In the future, we are going to develop a test case
management tool for the acceptance tests written in SPL-AT
Gherkin. Moreover, we plan to connect the proposed approach

348

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

with input contract testing based on Event Sequence Graphs
[11] so that coverage-based test generation can be achieved
for platform-based SPLs.

A c k n o w l e d g m e n t

The authors would like to thank Tolgahan Oysal and Delta
Smart Technologies (www.deltasmart.tech) for providing
KidsBus™ to be used in the case study. This research is
supported by The Scientific and Technological Research
Council ofTurkey (TUBITAK) under the grant 117E884.

R e f e r e n c e s

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,”
Camegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[2] D. S. de Souza, P. Vilain. “Selecting Agile Practices for Developing
Software Product Fines”, International Conference on Software
Engineering & Knowledge Engineering (SEKE 2013), 220-225, 2013.

[3] Gherkin, https://docs.cucumber.io/gherkin/. Retrieved on April 14,
2019.

[4] Page Object Pattern. https://martinfowler.com/bliki/PageObject.html.
Retrieved on April 12, 2019.

[5] Test Next Generation framework, (https://testng.org/doc/index.html).
Retrieved on April 10, 2019.

[6] B. Geppert, J. Li, F. Rößler, and D. M. Weiss. “Towards generating
acceptance tests for product lines”. In International Conference on
Software Reuse, pp.35-48. Springer, 2004.

[7] C. Nebut, S. Pickin, Y. Le Traon, and J. M. Jezequel. “Automated
requirements-based generation of test cases for product families”. In
18th IEEE International Conference on Automated Software
EngineeringProceedings, pp. 263-266, 2003.

[8] A. Bertolino, A. Fantechi, S. Gnesi, and G. Lami. “Product line use
cases: Scenario-based specification and testing of requirements”. In
Software Product Lines, pp. 425-445, Springer, 2006.

[9] E. M. Olimpiew. “Model-based testing for software product lines”,
Doctoral dissertation, George Mason University, 2008.

[10] Robot Framework, https://robotframework.org/. Retrieved on May 15,
2019.

[11] T. Tuglular, F. Belli, and M. Linschulte. Input contract testing of
graphical user interfaces. International Journal of Software
Engineering andKnowledge Engineering, 26(02), pp.183-215, 2016.

Appendix-A

public class ThisIsIdentifierPage extends BasePage {
public ThisIsIdentifierPage (AndroidDriver driver,

WebDriverWaitwait) {
super(driver, wait);

}
public void setThisIsEditTextldentifier (String

delimetedParameter) {
super.setText("thisIsEditTextIdentifier",

delimetedParameter);
}
public void clickThisIsButtonldentifier () {

super.click("thisIsButtonIdentifier");
}

public class ThisIsTheTitleOfTheScenarioOutline extends
BaseTestNG {

ThisIsIdentifierPage page = new ThisIsIdentifierPage
(driver, wait);

@Test(priority = 0)
public void Given_PAGE_this_is_identifier_is_OPENED

(String param) {
II executed first
II start appium here

}
@Parameters({"parameter_for_edit_text"})
@Test(priority =1)
public void

When_parameter_for_edit_text_is_ENTERED_on_EDIT_
TEXT_this_is_edit_text_identifier (String param) {

II executed second
page.setThisIsEditTextIdentifier(param);

}
@Test(priority = 2)
public void

And_BUTTON_this_is_button_identifier_is_PRESSED () {
II executed third
page.clickThisIsButtonIdentifier();

}
@Parameters({"parameter_for_page"})
@Test(priority = 3)
public void

Then_PAGE_parameter_for_page_is_OPENED (String
param) {

II executed fourth
assertEquals(param, ((AndroidDriver<MobileElement>)

driver).currentActivity());
}

}

Appendix-B

<suite name="Suite">
<testname="74129e81-7ce2-458b-8683-0a235978dc98">

<parameter name="parameter_for_edit_text" value
="this_is_value_l_for_page">
</parameter>

<parametername="parameter_for_page"
value="this_is_value_l_for_page">
</parameter>

<classes>
<class
name="Tests.ThisIsTheTitleOfTheScenarioOutline"></class
>

</classes>
</test>
<testname="7f935cad-8d28-4dc4-8fc0-725286b83f87">

<parameter name="parameter_for_edit_text" value
="this_is_value_2_for_page">
</parameter>

<parametername="parameter_for_page"
value="this_is_value_2_for_page">
</parameter>

<classes>
<class
name="Tests.ThisIsTheTitleOfTheScenarioOutline"></class
>

</classes>
</test>

</suite>

349

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 07,2022 at 08:23:49 UTC from IEEE Xplore. Restrictions apply.

