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Abstract—In a wireless sensor network the sensor outputs
are required to be quantized because of energy and bandwidth
requirements. We propose such a distributed detection scheme for
a point source which is based on Neyman-Pearson criterion where
sensor outputs are quantized maximizing the average output
entropy of the sensors under both hypotheses. The quantized
local outputs are transmitted to a fusion center (FC) where
they are used to make a global decision. The performance
of the proposed maximum average entropy (MAE) method in
quantizing sensor outputs was tested for binary, ternary and
quarternary quantization. The effects of the channel from the
sensors to the FC is also addressed by simplified channel models.
The simulation studies show the success of the MAE method.

Index Terms—Decentralized detection, quantization, point
source, field source, wireless sensor networks (WSNs).

I. INTRODUCTION

Decentralized detection using sensor networks has received
considerable attention in the last decade [1], [2]. Owing
to strict energy and bandwidth restrictions, observations of
the sensors are frequently needed to be quantized, before
transmitting them to a fusion center (FC) where a global
decision is made [3]. Distributed detection systems [4] show
the advantages of higher survivability and reliability than
their centralized counterparts. In [5], the authors consider a
detection problem consisting of two sensors and one FC with
a fixed fusion rule to show that the optimum local decision
rule is the likelihood ratio test under the Bayesian criterion.
Then, in [6] and [7], it was shown that the optimum fusion
rule at the FC is also a likelihood ratio test both under the
Neyman-Pearson and the Bayesian criteria.

Optimum quantization levels in the sense of information
theoretic criteria for distributed detection systems were pre-
sented in [8], [9]. In [8], J-divergence has been used to
optimize the distributed detection of a serial system with two
sensors for the Bayesian detection criterion. In [9], optimum
quantization levels have been investigated for a binary system
under the assumption that the decision thresholds and the
decision statistics are given and fixed. Then, they impose
additional partitioning of decision regions on the local sensors
instead of sending hard decisions in order to provide more
detailed information to the FC. In that work, it was assumed
that all local sensors are identical NP detectors observing
the same signal-to-noise ratio (SNR). In [10], the optimal
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quantization intervals based on deflection criterion (DC) and
Chernoff information (CI) are defined for distributed detection
systems consisting of one FC and multiple sensors by using
Bayesian detection criterion for known SNR.

In this paper, we propose an entropy based method for
determining the quantization intervals at distributed sensors
in order to optimize the global binary decision at the fusion
center about the existence of a point source under the Neyman-
Pearson criterion where sensors observe different signal levels
which they do not know.

This paper is organized as follows. First, the problem
statement is given in Section II. Section III covers application
of the proposed method for binary, ternary and quarternary
quantization of sensor observations for detecting a point source
using a wireless sensor network (WSN). The simulation results
are given in Section IV. Finally, conclusions are drawn in
Section V.

II. PROBLEM STATEMENT

A binary hypothesis testing problem has been considered
in this paper, where a group of K sensors cooperate to detect
the existence of a point source described by the parameter f.
The problem at each sensor node is given as follows

Ho :yp = e
versus (1
Hy :yp = pi + €,
where y;, € IR denotes the k’th sensor observation as a
real number, €, € IR denotes additive white Gaussian noise
(AWGN) with variance 02 and zero mean. ju;, denotes the
received signal amplitude from the k’th sensor where k =
1,2, ..., K. In this paper, in order to concentrate on the fusion
of sensor data with non-identical signal levels, mainly, we
assume that error-free sensor outputs are available at the
fusion center. We call this as direct data transmission (DDT).
However, we have also considered simplified practical channel
models to account for the errors introduced at the transmission
from the sensors to the FC. Since relative reliability of sensor
outputs are not evaluated, equal gain fusion rule is applied.
Based on the dispersion pattern over the surveillance zone
and the physical characteristics, the phenomenon to be de-
tected can be modeled either as a field source or a point
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Fig. 1: Positions of the event location and uniformly dis-
tributed sensors transmitting to the FC.

source. A field source is dispersed over the sensor field such
as in temperature monitoring. On the other hand, the event is
generated by a single point source such as in target detection
and fire detection. In this work, we consider a point event
source emitting constant power uniformly in all directions.
For such a source the signal amplitude received by a sensor
will be inversely proportional to the distance from the source.
Considering uniformly deployed sensors, only those sensors
which are within a circle radius, which is determined by the
sensitivity of the sensors, will receive a signal.

Let pmax denote the signal amplitude on a circle with radius
Tmin centered by the event location as shown in Figure 1.
We assume that i, corresponds to the maximum detectable
signal level or the saturation level of the sensors and pimi, de-
notes the minimum value of the detectable signal. This yields
a different and unknown amplitude value at each individual
sensor with known pdf given as:

1
fin log(L)
where L = fimax/pmin and log(-) is the natural logarithm.
We define the SNR as the ratio between the maximum signal
power, p2.., and the noise power, 0. We use the optimal

Bayesian NP detector in our problem which is defined as
follows [11]:

p(pn) = (2)
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where y = [y1, Y2, ..., yx | denotes vector of observations from
K sensors.

III. QUANTIZER DESIGN

It is aimed to make a global decision at the FC under
the NP criterion. Let us assume that each sensor will only
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Fig. 2: Partitioning of the pdf for the observations at each
sensor.

make a single observation and will transmit this observation
to the FC. Then, sensors will make independent and identically
distributed (iid) observations under H and none of the sensors
can estimate the signal level under H;. Consequently, there
is no information at the sensors in order to use different
quantization thresholds under H;. So, it is reasonable to use
identical quantization thresholds at each sensor irrespective of
their distance to the event location since it cannot be estimated.
With constant quantization thresholds, one can estimate the
entropy of the observations at the FC. An intuitive idea to
have an optimum performance at the FC is to maximize the
entropy of the collected observations under both hypotheses
which we call as Maximum Average Entropy (MAE) method.
So, we propose to determine the quantization intervals at
the sensors as resulting in maximum average entropy under
both hypotheses. The entropy of a quantized sensor output
can be calculated based on the partitioning of the pdf of
the observations at the sensor as shown in Figure 2. In this
figure, the number of quantization intervals M = 4. For a
general number of M quantization intervals, there will be
M — 1 thresholds, {\1, Ao, ..., Aas_1}, and M partitions with
corresponding probabilities {pf i pgi, e pfj }. Under Hy, all
of the K sensors have iid observations. For a fixed identical
threshold set at the sensors, the entropy at the FC under H)
can be computed using the closed form formula

Fp, = KFy(phy). (5)

where F)/(-) denotes the entropy function for the M-
probability masses corresponding to quantization intervals
and pﬁ,o = [pfo,pf‘),...,pﬁo] denotes the vector of these
probability masses, i.e. the probabilities of the partitions. The
resulting entropy at the FC with the fixed thresholds under H;
can be estimated as

K M
Fy, =E (— DI logz(pi?)) bit ©6)
k=1:=1

where pgl is the probability mass of the i’th quantization
partition of the k’th sensor. The expectation, E(-), is with
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Fig. 3: The entropy functions Fl,, FHI and [}, for binary
quantization.

respect to the distribution of K sensors in the sensing range
of the sensors defined by a circle within a radius of ry,x from
the event location. In practice, an estimate of this expectation is
performed by averaging the total information of the K sensor
locations and AWGN realizations which is called a histogram
method [12]. Figure 3 shows the entropy function F}y,, FHI
and F,, = 1(Fp, + Fy,) for binary quantization. For M-ary
quantization, Ap; = [A1, A2, ..., Aaps—1] denotes the vector of
quantization thresholds, the optimal value of which, S\M, is
found as

S\M = argmax Fjy. (7

Am
Optimal quantization thresholds correspond to optimal prob-
ability mass vectors. Under H;, different pdfs are observed at
each sensor since the signal level is a function of the distance
from the event location. However, under H, the observations at
each sensor has the same pdf. So, under H, the optimal proba-
bility mass (pm) vector is the same for every sensor which can

~Hg

be given as pio = [p2 1- 15?0] for binary quantization.

This optimal pm vector is p2° ~ [0.4 0.6] corresponding
to the maximum of Fj, in Figure 3. In a similar way, we
can estimate the optimal vector for 3-level quantization to be
f)f“ ~ [0.27 0.32 0.4] as shown in Figure 4. Similarly,
the optimum pm vector is p2° ~ [0.14 0.28 0.24 0.34]
in the case of 4-level quantization.

We can see from Figure 3 that the maximum value of the
estimated entropy under H; is E 7, = 19.1 bit with a less
value than the entropy under H, which is Fgy, = 20 bit,
which follows Jensen’s inequality.

IV. EXPERIMENTAL STUDY

Monte Carlo simulations have been performed in order to
evaluate the detection performance for the proposed method
at SNR= 0 dB for K = 20 transmitting sensors and L = 10.
First we have performed simulations using the direct data
transmissions (DDT) method, that is assuming the sensor
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Fig. 4: The entropy functions Fjy,, FHl and Fav for three level
quantization.
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Fig. 5: Comparison between the ROC curves obtained using
pio = 0.4 (MAE), pi° = 0.89 (Kth root method), pL* = 0.3
and o = 0.5.

outputs arrive error-free to the FC. In Figure 5, the Receiver
Operating Characteristics (ROC) curve is calculated by using
the optimal quantization intervals from MAE method for the
binary data transmission. The optimal threshold is determined
as the one resulting in the MAE which corresponds to the
local probability of false alarm ]350 = 0.4. The K’th root
quantization, which uses the K’th root of the global probabil-
ity of false alarm pg, = 0.1 to find pmf f)fo = (.89 at each
sensor, is also provided for the comparison with the proposed
method, MAE. K’th root method corresponds to setting the
false alarm threshold at the FC to a single "one" coming from
any of K sensors. Additionally, we used two other local pg,
values in order to show that the MAE method outperforms
other methods of setting the partitioning threshold. Indeed,
this was the case as seen in Figure 5.

The simulation performances for the ternary and quarternary
quantizations by using the MAE method are also obtained. For
the ternary quantized data transmissions the MAE = 31.3 bit
which corresponds to P20 ~ [0.44 0.33 0.23], whereas the
MAE= 38.7 bit for quarternary data transmissions at f)f“ ~
[0.14 0.28 0.24 0.34].
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Fig. 6: ROC curves of data with different levels (2,3 and 4)
of quantization and non-quantized data.

ROC curves obtained with different levels of quantization
using MAE method and non-quantized data are shown, in
Figure 6. This figure depicts that at global false alarm proba-
bility ps, = 0.2 probability of detection pg = 0.79,0.72,0.63
and 0.58 for the Gaussian, quarternary, ternary, and binary
data transmissions, respectively. Next, we consider a simplified
realistic channel model for transmission of sensor data to the
FC, namely binary symmetric channel (BSC). In this model,
a bit transmitted from sensor k arrives at the FC without
error with probability (1 — bg) and correspondingly inverted
with probability by. In Figure 7, the ROC curves of binary
sensor data transmission obtained by using the MAE method
are plotted for the case of DDT and BSC. For bit error rate
by, = 0.1 and pp, = 0.4, the values of the pg as 0.80 and
0.72 are obtained for DDT and BSC, respectively. In a similar
way, a comparison between the DDT and noisy channel data
transmission for the same total probability of error in the
channel have been performed for the ternary and quarternary
quantized and non-quantized, i.e. Gaussian data transmissions
and it shows that the loss in the probability of detection
between the DDT and the noisy channel data transmissions
at specific probability of false alarm decreases by increasing
the number of transmitted bits to the FC.

V. CONCLUSION

This paper proposed a multiple level quantization method
for the sensor outputs in a WSN composed of uniformly
deployed sensors and a FC used to detect a static event
which can be observed as signals emitted from a point source.
The developed method is a NP criterion based distributed
detection scheme depending on MAE. Obtained ROCs show
that the MAE method for quantizing sensor outputs performs
significantly better than the K’th root method or other choices
for the thresholds in binary quantization of sensor outputs.
The performance obtained using MAE method has been also
investigated for ternary and quarternary quantization. Increas-
ing number of levels in quantization have resulted in better
performance as expexted, however more bits in transmission

o o o
[N > 2]

probablity of detection

o
[N]

0 0.2 0.4 0.6 0.8 1
probability of false alarm

Fig. 7: ROC curves with fusion of binary sensor data obtained
using either error-free or binary symmetric channels.

are needed for a performance approaching the one of non-
quantized data transmission to the FC.

The effects of the channels from the sensors to the FC have
been also investigated using simple channel models like the
BSC in the case of binary quantization. The loss in probability
of detection by including the channel is observed to decrease
when the level of quantization is increased for 10 percent
probability of error introduced by the simplified symmetric
channel and for the global false alarm rate 0.1 at the FC.
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