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Abstract We introduce the discrete frequency function as a possible new approach to
understanding the discrete Hardy–Littlewood maximal function. Considering that the
discrete Hardy–Littlewoodmaximal function is given at each integer by the supremum
of averages over intervals of integer length, we define the discrete frequency function
at that integer as the value at which the supremum is attained. After verifying that the
function iswell-defined,we investigate size and smoothness properties of this function.
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1 Introduction

Let Z be the set of integers, and let Z+ denote the set of non-negative integers. Let
f ∈ l1(Z). For real numbers a ≤ b, let [a, b] denote the set of integers n such that
a ≤ n ≤ b. We will call [a, b] an interval in Z. We define the average of f over an
interval of radius r ∈ Z

+ by

Ar f (n) := 1

2r + 1

r∑

k=−r

| f (n + k)|.
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The discrete Hardy–Littlewood maximal function is defined as

M f (n) := sup
r∈Z+

Ar f (n). (1)

This is the discrete analogue of the Hardy–Littlewood maximal function on Euclidean
spaces

M f (x) := sup
r>0

−
∫

B(x,r)
| f (y)|dy, (2)

where B(x, r) denotes ball of center x and radius r , and dashed integral denotes
average. Our aim in this work is to study the distribution of the values r for which
M f (n) = Ar f (n). More precisely, we define the discrete frequency function as

T f (n) := inf E f,n where E f,n := {r ∈ Z
+ : M f (n) = Ar f (n)}. (3)

This function is well defined, for the set E f,n is non-empty, and when f is not identi-
cally zero it is actually finite; we will prove these in the next section. We also remark
that T f (n) ∈ E f,n .

We take two very simple functions f, g and calculate T f, T g for these two func-
tions. These calculation will also motivate the theorems below. Let

f (n) :=
{
1 n = 0

0 n �= 0
, g(n) :=

⎧
⎪⎨

⎪⎩

3/5 n = 0

1/5 |n| = 5

0 n �= 0, 5,− 5.

Notice that both functions have the same l1 norm. Thenwe have for maximal functions

M f (n) = 1

2|n| + 1
, Mg(n) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2|n|+1

3
5 |n| ≤ 4

1
2(|n|− 5)+1

1
5 |n| = 5, 6

1
2|n|+1

4
5 7 ≤ |n| ≤ 19

1
2(|n|+5)+1 20 ≤ |n|,

and for frequency functions

T f (n) = |n|, T g(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|n| |n| ≤ 4

|n| − 5 |n| = 5, 6

|n| 7 ≤ |n| ≤ 19

|n| + 5 20 ≤ |n|.

Notice that for both f, g the frequency functions T f (n)/|n|, T g(n)/|n| is very close
to 1 for |n| large enough. For any summable function a behaviour of this type should
be expected, for a summable function must have most of its mass on an interval of
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Fig. 1 T f (n) for non-negative n

finite length centered at the origin. Therefore it is natural to expect the frequency
function to take a value like |n| at |n| large enough. Because of this, it is most natural
to consider level set estimates obtained by comparing T f (n) to |n|. The example g
shows existence of local maxima that are distant from each other may lead to the
frequency function dropping suddenly to 0. Our third theorem will investigate how
often this dropping to 0 can happen for large |n| (Fig. 1).

The motivation behind our definition of the discrete frequency function, and our
naming it so comes from the works [9,10]. In [7] Kinnunen proved that the Hardy–
Littlewood maximal operator is bounded on the Sobolev space W 1,p(Rn) for 1 <

p ≤ ∞. Since the maximal function of a non-trivial function is never integrable, this
cannot be true for p = 1. But, as Hajlasz and Onninen asked in [6], it may still be that
f �→ ∇M f is a bounded operator from W 1,p(Rn) to L1(Rn). In [9] Kurka showed
that if n = 1, actually the following stronger result holds

var M f ≤ C var f ,

and in [10] the author showed that this can be extended to the discrete case, i.e.

var M f ≤ C var f .

In bothworks [9,10], a decompositionof the domainof definitionof the function f with
respect to lengths of intervals on which average of f is equal to value of the maximal
function is used to great effect. As this decomposition reminds us the decomposition of
linear operators using eigenvalues we find it appropriate to call our operator frequency
function. Effectiveness of the decompositionwith respect to frequencies used in [9,10]
motivates a more systematic study of the frequency function. The only investigation of
this function that the author could find is [11], where it is proved that if the frequency
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Fig. 2 T g(n) for non-negative n

function T f takes only a few values then f must be a sine type function, although
we note that in [11] the functions M and T are defined somewhat differently. In this
work we will explore aspects of this function quite different from those in [11], and
we will mainly concentrate on its size and smoothness properties (Fig. 2).

Thiswork is broadly a part ofmore than two decades long study of regularity aspects
of the Hardy–Littlewood maximal function and its variants. The reader interested in
these topics can consult the excellent survey [1], and original research articles [2–
5,8,12]. We now state our theorems.

Theorem 1 For any f ∈ l1(Z) and C > 1 the following set is finite

{
n : |n|

2C
≤ T f (n) ≤ |n|

C

}
. (4)

Theorem 2 For any 0 �= f ∈ l1(Z) and C > 1 we have

lim
N→∞

∣∣∣
{
n : |n| ≤ N , T f (n) ≤ |n|

C

}∣∣∣
N

= 0. (5)

The statement fails if we replace the denominator N with N/ log1+ε N for any positive
ε. That is, for every fixed ε > 0 there exist an f �= 0 and a C > 1 such that

lim
N→∞

∣∣∣
{
n : |n| ≤ N , T f (n) ≤ |n|

C

}∣∣∣

N/ log1+ε N
�= 0. (6)
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We point out that Theorem 2 is sharp in another way. It is not possible to have

lim
N→∞

| {n : |n| ≤ N , T f (n) ≤ θ(n)} |
N/ log1+ε N

= 0. (7)

where θ : Z → Z
+ is any function satisfying θ(n) ≤ n/C . Equivalently, we have the

following theorem.

Theorem 3 For every ε > 0, there exists a function f ∈ l1(Z) such that

| {n : |n| ≤ N , T f (n) = 0} | ≥ 1

8
N/ log1+ε N (8)

for infinitely many values of N .

Thus (7) fails even if θ(n) = 0 for all n. Therefore strengthening the requirement
T f (n) ≤ |n|/C does not give us a better estimate.

We will also investigate the variational behavior of the frequency function, and
show that in fares poorly in this aspect. We will show that for any C > 0 we can find
a function fC such that T fC (1)−T fC (0) > C . By a more elaborate construction we
will also exhibit a function f such that

sup
n∈Z

|T f (n + 1) − T f (n)| = ∞.

We can define and investigate similar concepts for the discrete bilinear maximal
function as well. Let f, g ∈ l1(Z). We define for r ∈ Z

+

Br ( f, g)(n) := 1

2r + 1

r∑

k=−r

| f (n − k)g(n + k)|.

The bilinear maximal function is defined as

B( f, g)(n) = sup
r∈Z+

Br ( f, g)(n). (9)

We introduce the function

T ( f, g)(n) := inf E f,g,n where E f,g,n := {r : B( f, g)(n) = Br ( f, g)(n)}. (10)

This function is also well defined, as will be discussed in the next section. It seems
reasonable to expect a result analogous to Theorem 2 to hold for this case as well, but
we are not able to prove this. What we are able to show is the analogue of Theorem 3.

Theorem 4 For every ε > 0, there are functions f, g ∈ l1(Z) such that

| {n : |n| ≤ N , T ( f, g)(n) = 0} | ≥ 1

8
N/ log1+ε N (11)

for infinitely many values of N .
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The rest of the paper proceeds as follows. In the next section we show that both
the discrete frequency function and the discrete bilinear frequency function are well
defined. In the third section we prove the three theorems on the discrete frequency
function and in the fourth section we investigate the its variational properties. In
the fifth section we discuss the bilinear discrete frequency function. Finally, in the
sixth section we mention some open problems that emerge from the investigations
undertaken in this work.

2 Well-definedness of the Discrete Frequency Functions

In this section we will show that the discrete frequency functions given by (3) and
(10) are both well defined by showing that the sets therein are non-empty. We start
with the function in (3). We first note that if the function f is zero everywhere, then
E f,n obviously is not empty. So we may assume that f is not zero everywhere. In this
case for any point n the value M f (n) is positive. By (1) we can find a non-negative
integer r1 such that M f (n) − Ar1 f (n) ≤ 1. Let d1 denote the difference M f (n) −
Ar1 f (n). Then we can find r2 ∈ Z

+ such that M f (n) − Ar2 f (n) ≤ d1/2. We thus
obtain a sequence r1, r2, r3, . . . of non-negative integers, and a sequence of differences
d1, d2, d3, . . . induced by them that satisfy the relation di+1 ≤ di/2. Thus there exist
j ∈ N such that for i ≥ j we have Ar2 f (n) ≥ M f (n)/2. But then for such i

‖ f ‖1 ≥ riAri f (n) ≥ ri
M f (n)

2
,

and hence

ri ≤ 2‖ f ‖1
M f (n)

,

which means the set of integers {ri : i ∈ N} must be finite. Hence for some ri we must
have M f (n) = Ari f (n), for otherwise di → 0 as i → ∞ would be impossible.

We now show that E f,n is finite if f is not identically zero. In this case M f (n)

is strictly positive. If we assume the set to be infinite then we can list its elements to
obtain a sequence r1, r2, r3, . . . such that r1 < r2 < r3 < . . .. But then

M f (n) = 1

2ri + 1

ri∑

j=−ri

| f (n + j)| ≤ ‖ f ‖1
2ri + 1

.

Since elements of the set are integers, ri → ∞ as i → ∞. Thus we have a contradic-
tion, and our set is finite.

Proof of well-definedness of the bilinear discrete frequency function follows the
same lines. We here wish to prove that E f,g,n is not empty. If B( f, g)(n) is zero
then of course Br ( f, g)(n) is zero for any non-negative r , and thus our set is not
empty. So we may assume that B( f, g)(n) is strictly positive. By (9) we can find a
non-negative integer r1 such that B( f, g)(n) − Br1( f, g)(n) ≤ 1. Let d1 denote the
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differenceB( f, g)(n)−Br1( f, g)(n). Thenwe can find r2 ∈ Z
+ such thatB( f, g)(n)−

Br2( f, g)(n) ≤ d1/2.We thus obtain a sequence r1, r2, r3, . . .of non-negative integers,
and a sequence of differences d1, d2, d3, . . . induced by them that satisfy the relation
di+1 ≤ di/2. Thus there exist j ∈ N such that for i ≥ j we have Bri ( f, g)(n) ≥
B( f, g)(n)/2. But then for such i we have

‖ f ‖1‖g‖1 ≥ riBri ( f, g)(n) ≥ ri
B( f, g)(n)

2
,

and hence

ri ≤ 2‖ f ‖1‖g‖1
B( f, g)(n)

which means the set of integers {ri : i ∈ N} must be finite, and our set is non-empty.
We also prove that if B( f, g)(n) is not zero then E f,g,n is finite. If we assume it to

be infinite then we can list its elements to obtain a sequence r1, r2, r3, . . . such that
r1 < r2 < r3 < . . .. Then

B( f, g)(n) = 1

2ri + 1

ri∑

j=−ri

| f (n − j)g(n + j)| ≤ ‖ f ‖1‖g‖1
2ri + 1

.

Since elements of our set are integers, ri → ∞ as i → ∞. Thus we have a contradic-
tion, and our set is finite.

3 Proofs of Theorems 1, 2, 3

3.1 Proof of Theorem 1

The main idea of the proof is that if the set in the theorem, which we will denote by S,
were infinite, then it would contain an infinite number of points distant enough from
each other such that at each of these points average over an interval not containing the
other points would be comparable to ‖ f ‖1. This contradicts f being summable.

Proof If f is identically zero then we have our result. So we will assume f is not
identically zero. Assume to the contrary that S is not finite. Then we have two cases:
either positive elements of S are infinite, or negative elements of S are infinite. We
will show the impossibility of the first case, that the second is not possible either can
be shown following exactly the same arguments. Let

A := C + 1

C − 1
, B := C + 1

C
, D := C − 1

C
.

Since f ∈ l1(Z) we must have some m ∈ N such that

m∑

j=−m

| f ( j)| ≥ ‖ f ‖1
2

.
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Let n1 > m be a positive element of the set, we can find such an element since we
assumed our set to have infinitely many positive elements. For the same reason we
can find n2 such that n2 > 2An1. Proceeding thus we obtain a sequence {ni }i∈N with
ni+1 > 2Ani for each natural number i . Then we observe that

M f (ni ) = AT f (ni ) f (ni ) = 1

2T f (ni ) + 1

T f (ni )∑

j=−T f (ni )

| f (ni + j)|

≤ 1

2T f (ni ) + 1

∑

j∈[Dni ,Bni ]
| f ( j)|.

Thus we have

(ni
C

+ 1
)
M f (ni ) ≤

∑

j∈[Dni ,Bni ]
| f ( j)|.

But notice that since A = B/D, we have Dni+1 > 2Bni , and therefore the intervals
[Dni , Bni ] never intersect. Hence we must have

∑

i∈N

(ni
C

+ 1
)
M f (ni ) ≤

∑

i∈N

∑

j∈[Dni ,Bni ]
| f ( j)| ≤ ‖ f ‖1. (12)

On the other hand, since ni > m we must have

M f (ni ) ≥ A2ni f (ni ) = 1

4ni + 1

2ni∑

j=−2ni

| f (ni + j)|

= 1

4ni + 1

3ni∑

j=−ni

| f ( j)| ≥ ‖ f ‖1
8ni + 2

.

Thus the inequality (12) implies

‖ f ‖1
C

∑

i∈N

ni + C

8ni + 2
≤ ‖ f ‖1.

Since C > 1 this implies

1

C

∑

i∈N

1

8
≤ 1,

which is not possible. Thus the set cannot contain infinitely many positive elements.
��
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3.2 Proof of Theorem 2

We move to the proof of Theorem 2. We will use the Vitali covering lemma. For the
sake of completeness we will give a proof.

Lemma 1 (Vitali Covering Lemma) Let {Bi }mi=1 be a finite collection of intervals with
finite length. Let E be a subset of integers covered by these intervals. Then we can find
a disjoint subcollection {Bik }nk=1 of {Bi }mi=1 such that

n∑

k=1

|Bik | ≥ |E |
3

.

Proof Let Bi1 be the longest of our intervals. Let Bi2 be the longest interval that does
not intersect Bi1 .We choose Bi3 to be the longest of the intervals that does not intersect
either Bi1 or Bi2 . We proceed thus to obtain a subcollection, which is disjoint. Also
observe that any Bi for 1 ≤ i ≤ m must intersect an interval in the subcollection that
has at least the same length as itself. For if an interval does not intersect intervals of
at least the same length then it must be a member of the collection, which leads to
a contradiction. Therefore if we consider the collection {3Bik }nk=1 where 3Bik is the
interval obtained by adding a translate of Bik to its left and another to its right, this
collection must cover E . Therefore

|E | ≤
n∑

k=1

|3Bik | = 3
n∑

k=1

|Bik |

which implies what we wish. ��
We can start the proof of Theorem 2. We use the Vitali covering lemma to refine

the ideas used for the proof of Theorem 1.

Proof Let A, B, D be defined exactly as in the proof of Theorem 1. We introduce the
following notation for the set in the theorem

KN =
{
n : |n| ≤ N , T f (n) ≤ |n|

C

}
. (13)

Let K+
N denote the positive elements of KN , and K−

N denote its negative elements. We
will show that

lim
N→∞

|K+
N |
N

= 0,

and it will be clear to the reader that the same arguments give this result for K−
N as

well. Our theorem follows from combining these two results.
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We assume to the contrary that

lim
N→∞

|K+
N |
N

�= 0.

This means there exists a small, positive ε such that |K+
Ni

|/Ni ≥ ε for a strictly

increasing sequence {Ni }i∈N of natural numbers. So we have |K+
Ni

| ≥ εNi for such

Ni . We let M > 1010
10Aε−10

be a natural number such that

M∑

j=−M

| f ( j)| ≥ ‖ f ‖1
2

.

We choose a subsequence {Nik }k∈N of {Ni }i∈N as follows. Let Ni1 be such that Ni1 ≥
M , and let Nik+1 ≥ 10Aε−1Nik for every k ≥ 1. Now we fix k ≥ 1. We have

∣∣∣K+
Ni2k

\ K+
Ni2k−1

∣∣∣ ≥ 9εNi2k

10
≥ 9Ni2k−1

Let n ∈ K+
Ni2k

\ K+
Ni2k−1

. We have

M f (n) = 1

2T f (n) + 1

T f (n)∑

j=−T f (n)

| f (n + j)|

but also since no element of the set K+
Ni2k

\ K+
Ni2k−1

is in
[−Ni2k−1 , Ni2k−1

]
,

M f (n) ≥ A2n f (n) = 1

4n + 1

2n∑

j=−2n

| f (n + j)| = 1

4n + 1

3n∑

j=−n

| f ( j)| ≥ ‖ f ‖1
8n + 2

.

Thus combining these two we obtain the fundamental result

T f (n)∑

j=−T f (n)

| f (n + j)| ≥ 2T f (n) + 1

8n + 2
‖ f ‖1.

We consider a covering of K+
Ni2k

\ K+
Ni2k−1

by such [n − T f (n), n + T f (n)]. By
our covering lemma we have a subset n1, n2, . . . n pk for which the intervals [ni −
T f (ni ), ni + T f (ni )], 1 ≤ i ≤ pk are disjoint, and

pk∑

i=1

2T f (ni ) + 1 ≥ 1

3

∣∣∣K+
Ni2k

\ K+
Ni2k−1

∣∣∣ ≥ 9εNi2k

30
.
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We combine this result with the fundamental result above to obtain

pk∑

i=1

T f (ni )∑

j=−T f (ni )

| f (ni + j)| ≥
pk∑

i=1

2T f (ni ) + 1

8ni + 2
‖ f ‖1

≥ ‖ f ‖1
8Ni2k + 2

pk∑

i=1

2T f (ni ) + 1

≥ ‖ f ‖1
8Ni2k + 2

9εNi2k

30

≥ ε‖ f ‖1
30

But since [ni − T f (ni ), ni + T f (ni )] are disjoint, we have

∑

j∈[DNi2k−1 ,BNi2k ]
| f ( j)| ≥

pk∑

i=1

T f (ni )∑

j=−T f (ni )

| f (ni + j)| ≥ ε‖ f ‖1
30

.

Owing to our choice of the subsequence {Nik }k∈N the intervals [DNi2k−1 , BNi2k ] are
disjoint for each natural number k, and therefore summing over k we have

‖ f ‖1 ≥
∑

k∈N

∑

j∈[DNi2k−1 ,BNi2k ]
| f ( j)| ≥

∑

k∈N

ε‖ f ‖1
30

which is a contradiction.
We give two examples that show the sharpness of the estimate. The following is

our most basic example, and the next one will improve upon the same ideas. We let
for a small, positive ε

f (n) :=
⎧
⎨

⎩

1

m1+ε
if n = m2, m ∈ N,

0 elsewhere

Now let N = M2 for M > 1010
10Aε−10

. We have M2 − (M − 1)2 = 2M − 1. Let
n satisfy M2 − M1−2ε/4 < n < M2. We will calculate the maximal function at this
point n. If we take r to be a natural number satisfying M1−2ε/2 < r < M1−2ε, then

Ar f (n) = 1

2r + 1

1

M1+ε
≥ 1

3M1−2εM1+ε
= 1

3M2−ε
.

Obviously taking M1−2ε ≤ r < n− (M − 1)2 cannot give a larger average. We claim
that this is not possible for r ≥ n− (M −1)2 either. The key idea is to note that: as we
approach to the origin from the right hand side the function attains nonzero values with
increasing frequency, and moreover these nonzero values grow. In technical terms, we
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must have average of f over the interval [(m − 2)2, (m − 1)2 − 1] larger than its
average on [(m − 1)2,m2 − 1], that is

1

2m − 3

(m−1)2−1∑

j=(m−2)2

f ( j) = 1

(2m − 3)(m − 2)1+ε

≥ 1

(2m − 1)(m − 1)1+ε

= 1

2m − 1

m2−1∑

j=(m−1)2

f ( j).

Obviously due to this phenomenon r cannot exceed n too much. Indeed, a moment’s
consideration makes it clear that we must have r < 2n. With such r we must have

Ar f (n) = 1

2r + 1

r∑

j=−r

f (n + j) ≤ 3

2r + 1

−1∑

j=−r

f (n + j) ≤ 3

2

1

r

−1∑

j=−r

f (n + j).

Thus at the end we have average over [n − r, n − 1] of f , and we can write,

1

r

−1∑

j=−r

f (n + j) = 1

r

n−1∑

j=n−r

f ( j) ≤ 2
1

M2 − n + r

M2−1∑

j=n−r

f ( j)

Now we have average over [n − r, M2 − 1] of f at the end, and we wish to know the
greatest value that this average can attain. Of course if (m − 1)2 < n − r ≤ m2 for
some natural number m, taking r so that n− r = m2 makes this average largest. Then
using our observation we conclude that we better take m = 1. Thus this average is at
most Cε/M2 where Cε is the constant given by

Cε =
∞∑

m=1

1

m1+ε
≤ 2ε−1.

Therefore Ar f (n) ≤ 3Cε/M2. This, given our choice of M , is less than 1/3M2−ε.
Thus we must have T f (n) ≤ |n|/C . And from amongst 2M − 2 values of n between
(M−1)2 andM2, at leastM1−2ε/8 satisfy this property. Ifwe apply this to each interval
[(M−k−1)2, (M−k)2] for k ∈ [0, M/2], we similarly obtain (M−k)1−2ε/8 values
of n satisfying T f (n) ≤ |n|/C . Thus in [−N , N ] we have at least

M

2

(M − M/2)1−2ε

8
≥ N 1−ε

50

such elements. Therefore KN has at least this cardinality, which makes

lim
N→∞

|KN |
N 1−ε

= 0
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impossible.
We now give our second example. With exactly the same arguments we can use the

function

f (n) :=
⎧
⎨

⎩

1

m log1+ε/2 m
if n = m2, m ∈ N, m ≥ 10

0 elsewhere

to show that

lim
N→∞

|KN |
N/ log1+ε N

= 0

is not possible. ��

3.3 Proof of Theorem 3

We refine the ideas used in the proof of Theorem 2.

Proof We define for a small positive ε

f (n) :=
⎧
⎨

⎩

1

m log1+ε/2 m
if n = m log1+ε m�, m ∈ N, m ≥ 10

0 elsewhere

Here for some real number x the expression x� denotes the smallest integer that is
not less than x .

Let M > 1010
10Aε−10

, and let N = M log1+ε M�. Consider m ∈ [M/2, M] and
values of n = m log1+ε m� that correspond to thesem. For suchm we of course have

A0 f (n) = f (n) = 1

m log1+ε/2 m
.

We will show that Ar f (n) cannot be larger than this for any r . Obviously for r � n
this is true, indeed a moment’s consideration makes it clear that r < 2n. For such r
we have

Ar f (n) = 1

2r + 1

r∑

j=−r

f (n + j) ≤ f (n)

3
+ 2

r

−1∑

j=−r

f (n + j).

Thus the last term is average over [n − r, n − 1], and by the same reasoning as in the
first example this average is largest when r = n − 10 log1+ε 10�, for the function
attains ever growing non-zero values with ever increasing frequency as we approach
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to the origin from the right hand side. Therefore

2

r

1∑

j=−r

f (n + j) ≤ 4

n

∞∑

j=10

j log1+ε j ≤ 4Cε

n

where

∞∑

j=10

j log1+ε/2 j = Cε ≤ 2

ε
.

But obviously

4Cε

n
≤ 16Cε

M log1+ε M
≤ 32ε−1

m log1+ε m
<

1

3m log1+ε/2 m
= f (n)

3

Therefore Ar f (n) < A0 f (n). Thus our set contains at least M/4 elements, hence

| {n : |n| ≤ N , T f (n) = 0} | ≥ M

4
≥ 1

8
N/ log1+ε N

establishing our claim. ��

4 Variational Results

For each C positive real number we will show a function fC such that T fC (1) −
T fC (0) > C . Obviously it is enough to find such functions for all C ∈ N, C ≥ 100.
We define for such a C

fC (n) :=

⎧
⎪⎨

⎪⎩

1 if n = 0,

2C if |n| = 3C,

0 elsewhere

Now consider the only reasonable candidates that may be the value T fC (0): the values
0, 3C . We haveA0 fC (0) = 1 whileA3C fC (0) = (4C + 1)/(6C + 1) < 1. Therefore
T fC (0) = 1. On the other hand the only reasonable candidates that may be the value
T fC (1) are 1, 3C − 1, 3C + 1. We have A1 fC (1) = 1/3 while

A3C−1 fC (1) = (2C + 1)/(6C − 1), A3C+1 fC (1) = (4C + 1)/(6C + 3).

Thus given our large values of C we have T fC (1) = 3C + 1 which proves our claim.
We now consider the function

f (n) =
∞∑

C=100

2−C fC
(
n − 4C

)
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Let n = 4C for some C ≥ 200. Then obviously only reasonable values for T f (n) are
0, 3C or values r > 4C−1 due to the sparse structure of f . We have again A0 f (n) =
2−C while A3C f (n) = 2−C (4C + 1)/(6C + 1) < 2−C . On the other hand for
r > 4C−1 we have

Ar f (n) = 1

2r + 1

r∑

j=−r

f (n + j) ≤ 1

4C−1

∞∑

j=100

4 j + 1

2 j

≤ 1

4C−1

∞∑

j=1

1

(
√
2) j

≤ 5

4C−1

which means that T f (n) = 0. Similarly only reasonable values for T f (n + 1) are
0, 3C − 1, 3C + 1 or values r > 4C−1. Applying exactly the same arguments shows
thatA3C+1 f (n + 1) is the largest, and therefore T f (n + 1) = 3C + 1. Now since C
can be arbitrarily large

sup
n∈Z

|T f (n + 1) − T f (n)| = ∞.

5 The Bilinear Discrete Frequency Function

In this section we prove Theorem 4 by constructing appropriate functions f, g. The
functions we construct are similar to those in the proofs of Theorems 2 and 3.

Proof We let f, g to be the same function

f (n) = g(n) :=
⎧
⎨

⎩

1

m log1+ε/2 m
if n = m log1+ε m�, m ∈ N, m ≥ 10,

0 elsewhere.

Let M > 1010
10Aε−10

, and let N = M log1+ε M�. Consider m ∈ [M/2, M] and
values of n = m log1+ε m� that correspond to thesem. For suchm we have of course
have

B0( f, g)(n) = f (n)g(n) = 1

m2 log2+ε m

We wish to estimate Br ( f, g)(n) for r other than zero. Obviously taking r > n is not
reasonable. So assuming 0 < r ≤ n we have

Br ( f, g)(n) = 1

2r + 1

r∑

j=−r

f (n − j)g(n + j) = 1

2r + 1

r∑

j=−r

f (n − j) f (n + j).
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We can write the last sum as

1

2r + 1

⎡

⎣ f 2(n) +
−1∑

j=−r

f (n − j) f (n + j) +
r∑

j=1

f (n − j) f (n + j)

⎤

⎦ .

The last two sums are the same, so we have

1

2r + 1

⎡

⎣ f 2(n) + 2
r∑

j=1

f (n − j) f (n + j)

⎤

⎦ .

So it is enough to show that

1

2r + 1

r∑

j=1

f (n − j) f (n + j) <
f 2(n)

3
.

We have for j > 1

f (n + j) ≤ 1

m log1+ε/2 m
.

Therefore we have

1

2r + 1

r∑

j=1

f (n − j) f (n + j) ≤ 1

m log1+ε/2 m

1

r

r∑

j=1

f (n − j)

Thus we again have the average of f taken over [n− r, n−1] and as explained before
this becomes largest when r = n − 10 log1+ε 10�, thus we have

1

m log1+ε/2 m

1

r

r∑

j=1

f (n − j) ≤ 2Cε

nm log1+ε/2 m
≤ 2Cε

m2 log2+3ε/2 m
<

f 2(n)

3

where

∞∑

j=10

j log1+ε/2 j = Cε ≤ 2

ε
.

Hence we must have at least M/4 elements in {n : |n| ≤ N , T ( f, g)(n) = 0}, and
thus

| {n : |n| ≤ N , T ( f, g)(n) = 0} | ≥ M

4
≥ 1

8
N log1+ε N

establishing our claim. ��
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6 Open Problems

The proof of the second theorem uses the Vitali covering lemma which is also used to
prove the classical weak type boundedness result for the maximal function, therefore
we suspect that it may be possible to relate this theorem to that result in a relatively
short way, although we could not find it.

Open Problem 1 Let f ∈ l1(Z). Is it possible to deduce the fact that for every real
number λ > 0 we have

|{n ∈ Z|M f (n) > λ}| ≤ C
‖ f ‖l1(Z)

λ

from Theorem 2? Is it possible to deduce Theorem 2 from this result?

Another important question is having seen that we cannot replace N in the denom-
inator of (5) with N/ log1+ε N , whether it is possible to replace it with N/ log N .

Open Problem 2 Let f ∈ l1(Z) be a function that is not identically zero. Let C > 1
be a real number. Is the following statement true?

lim
N→∞

∣∣∣
{
n : |n| ≤ N , T f (n) ≤ |n|

C

}∣∣∣
N/ log N

= 0.

It should be possible to define an analogue of the discrete frequency function for
the usual Hardy–Littlewood maximal function that acts on functions on the real line,
but since analogues of the sets in (3) can be empty in that case, the definition needs to
be more delicate. Furthermore, to prove any kind of level set estimate we need to deal
with the issue of Lebesgue measurability.

Open Problem 3 Is it possible to define an analogueof the discrete frequency function
for the usual Hardy–Littlewood maximal function that acts on functions on the real
line? Is it possible to extend the Theorems 1–3 to that case?

Analogues of the discrete frequency function for higher dimensional discrete and
continuous maximal functions should be possible.

Open Problem 4 Is it possible to define analogues of the discrete frequency function
for these higher dimensional cases? Is it possible to extend the Theorems 1–3 to those
cases?

Finally, defining analogues of the discrete frequency function for non-centered
maximal functions would be a very interesting open problem, as in this case to find
values of maximal functions supremums of averages are taken over more than one
parameters. Consider for example the discrete one-dimensional Hardy–Littlewood
maximal function:

M∗ f (n) = sup
r,s∈Z+

1

r + s + 1

s∑

j=−r

| f (n + j)|. (14)
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Here we have two parameters r, s. Thus the analogues of the discrete frequency func-
tion may need to be vector valued.

Open Problem 5 Is it possible to define analogues of the discrete frequency function
for non-centered maximal functions? Is it possible to extend the Theorems 1–3 to
those cases?
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