Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/4719
Browse
Browsing Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği by Access Right "info:eu-repo/semantics/closedAccess"
Now showing 1 - 20 of 69
- Results Per Page
- Sort Options
Book Citation - Scopus: 19Advanced Sensor and Detection Materials(John Wiley and Sons Inc., 2014) Tiwari, Ashutosh; Demir, Mustafa Muammer; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPresents a comprehensive and interdisciplinary review of the major cutting-edge technology research areas-especially those on new materials and methods as well as advanced structures and properties-for various sensor and detection devices. The development of sensors and detectors at macroscopic or nanometric scale is the driving force stimulating research in sensing materials and technology for accurate detection in solid, liquid, or gas phases; contact or non-contact configurations; or multiple sensing. The emphasis on reduced-scale detection techniques requires the use of new materials and methods. These techniques offer appealing perspectives given by spin crossover organic, inorganic, and composite materials that could be unique for sensor fabrication. The influence of the length, composition, and conformation structure of materials on their properties, and the possibility of adjusting sensing properties by doping or adding the side-groups, are indicative of the starting point of multifarious sensing. The role of intermolecular interactions, polymer and ordered phase formation, as well as behavior under pressure and magnetic and electric fields are also important facts for processing ultra-sensing materials. The 15 chapters written by senior researchers in Advanced Sensor and Detection Materials cover all these subjects and key features under three foci: 1) principals and perspectives, 2) new materials and methods, and 3) advanced structures and properties for various sensor devices. © 2014 Scrivener Publishing LLC. All rights reserved.Book Part Citation - Scopus: 3Advances and Future Perspective of Graphene Field Effect Transistors (gfets) for Medical Diagnostics and Point-Of Tools(World Scientific Publishing, 2022) İnanç, Dilce; Mutlu, Mustafa Umut; Karabacak, Soner; Yıldız, Ümit Hakan; 04.04. Department of Photonics; 04.01. Department of Chemistry; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyRecently, major focus has been centered to enhance the capability of graphenebased devices and to facilitate utilization of graphene for biological applications by lowering its toxicity. In this chapter, from synthesis to applications, many of the conspicuous characteristics of graphene have been elaborately reviewed. We primarily focused on graphene-based field effect transistor (FET) for medical diagnostics and point-of-care applications. The device configurations and their application potential as well as sensing capability of various graphene FETs (GFETs) have been discussed. Here, we have also presented several aspects and advantages of GFETs in medical applications while discussing their pros and cons in commercialization. We address the advances and challenges for GFET-based sensing platforms for the medical applications and elaborate the combination strategy of GFETs with the existing commercial systems. © 2023 by World Scientific Publishing Co. Pte. Ltd.Article Citation - WoS: 46Citation - Scopus: 50Advances in Electrospun Fiber-Based Flexible Nanogenerators for Wearable Applications(Wiley-VCH Verlag, 2021) Arıca, Tuğçe Aybüke; Isık, Tuğba; Güner, Tuğrul; Horzum, Nesrin; Demir, Mustafa M.; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn today's digital age, the need and interest in personal and portable electronics shows a dramatic growth trend in daily life parallel to the developments in sensors technologies and the internet. Wearable electronics that can be attached to clothing, accessories, and the human body are one of the most promising subfields. The energy requirement for the devices considering the reduction in device sizes and the necessity of being flexible and light, the existing batteries are insufficient and nanogenerators have been recognized a suitable energy source in the last decade. The mechanical energy created by the daily activities of the human body is an accessible and natural energy source for nanogenerators. Fiber-structured functional materials contribute to the increase in energy efficiency due to their effective surface to volume ratio while providing the necessary compatibility and comfort for the movements in daily life with its flexibility and lightness. Among the potential solutions, electrospinning stands out as a promising technique that can meet these requirements, allowing for simple, versatile, and continuous fabrication. Herein, wearable electronics and their future potential, electrospinning, and its place in energy applications are overviewed. Moreover, piezoelectric, triboelectric, and hybrid nanogenerators fabricated or associated with electrospun fibrous materials are presented.Article Citation - WoS: 59Citation - Scopus: 63Amidoxime Functionalized Polymers of Intrinsic Microporosity (pim-1) Electrospun Ultrafine Fibers for Rapid Removal of Uranyl Ions From Water(Elsevier Ltd., 2019) Satılmış, Bekir; Isık, Tuğba; Demir, Mustafa Muammer; Uyar, Tamer; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe Polymers of Intrinsic Microporosity (PIM-1) is considered as one of the most promising polymer candidates for adsorption applications owing to its high surface area and the ability to tailor the functionality for the targeted species. This study reports a facile method for the preparation of amidoxime functionalized PIM-1 fibrous membrane (AF-PIM-FM) by electrospinning technique and its practical use for the extraction of U(VI) ions from aqueous systems via column sorption under continuous flow. Fibrous membrane form of amidoxime functionalized PIM-1 (AF-PIM-FM) was prepared by electrospinning method owing to its excellent processability in dimethylformamide. Bead-free and uniform fibers were obtained as confirmed by SEM imaging and average fiber diameter was 1.69 +/- 0.34 mu m for AF-PIM-FM. In addition, electrospun PIM-1 fibrous membrane (PIM-FM) was prepared as a control group. Structural and thermal characterization of powder and membrane forms of the materials were performed using FT-IR, H-1 NMR, XPS, Elemental analyses, TGA, and DSC. The porosity of the samples was measured by N-2 sorption isotherms confirming amidoxime PIM-1 still maintain their porosity after functionalization. Amidoxime functionality along with membrane structure makes AF-PIM-FM a promising material for uranyl adsorption. First, a comparison between powder and membrane form of amidoxime functionalized PIM-1 was investigated using batch adsorption process. Although membrane form has shown slightly lower adsorption performance in the batch adsorption process, the advantage of using the membrane in column adsorption processes makes membrane form more feasible for real applications. In addition, amidoxime modification enhanced the uranium adsorption ability of PIM-FM up to 20 times. The effect of initial concentration and pH were investigated along with regeneration of the adsorbents. AF-PIM-FM was successfully used for five adsorption-desorption cycles without having any damage on the fibrous structure.Article Citation - WoS: 3Citation - Scopus: 3Amperometric Detection of Nh3 by Aromatic Sam-Modified Graphene(IEEE, 2023) Yağmurcukardeş, Nesli; Bayram, Abdullah; Aydın, Hasan; Can, Mustafa; Demiç, Şerafettin; Açıkbaş, Yaşar; Çelebi, Cem; 04.05. Department of Pyhsics; 04. Faculty of Science; 01. Izmir Institute of TechnologyAmmonia (NH3) is a toxic substance resulting in various acute and chronic effects on individuals. NH3 detection, monitoring methods, and detection tools are desperately needed. In this work, we improved the NH3 sensing capabilities of grapheme (GP) films deposited by chemical vapor deposition (CVD) by modifying aromatic self-assembled monolayer (SAM) molecules such as 5-[(3-methylphenyl) (phenyl) amino] isophthalic acid (MeIPA) and 5-(diphenyl)amino] isophthalic acid (PhIPA) on amperometric detection method. Morphological investigations of the films were carried out by optical and scanning electron microscopy (SEM). Surface potential was characterized with Kelvin probe force microscopy (KPFM), and vibrational properties were characterized with Raman spectroscopy. MeIPA modification increased NH3 uptake by two times compared to unmodified GP. The results indicated that the SAM modification enhanced NH3 molecule adsorption and improved its periodic reversible and reproducible response using the amperometric detection system, indicating that SAM molecules might be a feasible probe for NH3. © 2001-2012 IEEE.Article Citation - WoS: 8Citation - Scopus: 6Assessment of Melt Cleanliness of Secondary 5000 Aluminum Alloy Via Non-Metallic Inclusions Characterization(Springer, 2023) Li, Cong; Dang, Thien; Huang, Jinxian; Huang, Chunfa; Li, Jianguo; Friedrich, Bernd; Gökelma, Mertol; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe extensive energy consumption of primary aluminum production stimulates increasing need of producing primary-quality alloys with secondary sources, during which process amount of non-metallic inclusions (NMIs) in the alloy must be strictly controlled. In the present study funded by AMAP Open Innovation Research Cluster, NMIs generated during remelting a 5000 Al-Mg alloy was investigated to offer benchmarking characters of NMIs with respect to type, morphology, size, composition, and concentration. Under different remelting conditions NMIs formed in the melt ahead of solidification were concentrated using Porous Disc Filtration Apparatus (PoDFA) and characterized microstructurally and quantitatively. Investigated conditions included heating cycle, organic contaminations, and refractory materials. Results suggested oxide films and cuboid particles as typical oxides with, respectively, different compositions. The amount of formed oxides declined with the increase of heating rate. With respect to aluminum carbide (Al4C3), organic contaminations were confirmed to lead to an increased amount of its formation. The carbon-containing refractory material contributed more significantly than organic contaminations on the formation of Al4C3 at melt temperatures over 760 & DEG;C. Formulas were derived based on trial results to enable translation of NMIs PoDFA value [mm(2)/kg] into their mass fraction [ppm] in the melt.Conference Object Citation - Scopus: 1Assessment of Separation and Agglomerationt Tendency of Non-Metallic Inclusions in an Electromagnetically Stirred Aluminum Melt(Springer, 2023) Li, Cong; Dang, Thien; Gökelma, Mertol; Zimmermann, Sebastian; Mitterecker, Jonas; Friedrich, Bernd; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPresence of non-metallic inclusions (NMIs) reduces surface quality and mechanical properties of aluminum products. The development of good NMIs removal practices relies on the understanding of inclusion behaviors with respect to separation and agglomeration particularly in the turbulent flow. In the scenario of electromagnetically induced recirculated turbulent flow, the concerned behaviors of inclusions with different sizes have rarely been investigated experimentally. In the presented study funded by AMAP Open Innovation Research Cluster, reference materials were prepared with uniformly distributed NMIs (SiC and MgAl2O4) via an ultrasound-involved casting route. Reference materials were charged into an aluminum melt where turbulent flow was promoted via electromagnetic force. Microscopical analysis shows non-significant agglomeration tendency of SiC, MgAl2O4, and TiB2 inclusion. Time-weight filtration curve, PoDFA, and Spark Spectrometer results suggest a strong dependence of separation rate on particle size. Analytical models were established to estimate the collision rate of particles and to evaluate separation probability of different sized particles. © 2023, The Minerals, Metals & Materials Society.Article Citation - WoS: 20Citation - Scopus: 21Atomic–scale Investigations of Passive Film Formation on Ti-Nb Alloys(Elsevier, 2023) Çaha, İhsan; Alves, Alexandra C.; Chirico, Caterina; Maria Pinto, Ana; Tsipas, Sophia; Gordo, Elena; Bondarchuk, Oleksandr; Leonard Deepak, Francis; Toptan, Fatih; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis study extensively investigates the passive film formation mechanisms on Ti-xNb alloys by using several electrochemical techniques, including electrochemical impedance spectroscopy (EIS) before and after potentiostatic polarization at the passive zone, and Mott-Schottky (MS) measurements in 9 g/l NaCl electrolyte at 37 °C, together with X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis. Overall, the Ti40Nb presented lower corrosion resistance due to a thinner passive film as compared to commercial pure Ti (grade 2) and Ti12Nb. The passive film formed on Ti12Nb and Ti40Nb alloys at a steady-state condition (+0.5 VAg/AgCl for 60 min) is composed of amorphous phases of TiO, Ti2O3, TiO2, Nb2O5 and crystalline phases of TiO2 (anatase) and Nb2O5. © 2022 Elsevier B.V.Article Audio-magnetotelluric (amt) studies over rajapur hot spring in west coast maharashtra, India(indian Acad Sciences, 2024) Deshmukh, Vasu; Kumar, P. V. Vijaya; Chandrasekaram, D.; Raju, Khasi; Sathishkumar, S.; Srinivas, Y.; Rao, P. B. V. Subba; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn the west coast geothermal provinces, the Rajapur hot spring, located in the southern part of western Maharashtra, is well thought to originate from the interaction of meteoric water with the granitic basement. A 3D AMT survey was conducted to determine the geo-electrical structure of the hot spring. Dimensionality analysis carried out by phase tensor analysis reveals complex subsurface 3D structures. 2D and 3D modelling have yielded three distinct resistivity layers in the Rajapur geothermal field. These layers include a moderately resistive surface layer representing weathered Deccan traps having a thickness of about 100 m, a conductive second layer with a thickness of about 100-400 m represents Kaladgi sediments and a deeper high resistive layer (0.5-1.0 km) representing granitic gneisses basement. High conductivity anomaly within the Kaladgi sediments represents a hydrothermal reservoir that is associated with faults/fractures beneath the Deccan Traps.Article Citation - WoS: 27Citation - Scopus: 31Ballistic Thermoelectric Transport Properties of Two-Dimensional Group Iii-Vi Monolayers(American Physical Society, 2021) Çınar, Mustafa Neşet; Özbal Sargın, Gözde; Sevim, Koray; Özdamar, Burak; Kurt, Gizem; Sevinçli, Haldun; 03.09. Department of Materials Science and Engineering; 04.05. Department of Pyhsics; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyBallistic transport and thermoelectric properties of group III-VI compounds (XY: X = B, Al, Ga, In, Tl; Y = O, S, Se, Te, Po) are investigated based on first-principles calculations and Landauer formalism. This large family is composed of 25 compounds which stands out with their unique electronic band structures. Mexican hat shaped valence band, which exhibits quartic energy-momentum relation gives rise to a sharp peak in the density of states as well as a steplike electronic transmission spectrum near the valence band edge. The intriguing electronic band structure and transport properties motivate us to explore thermoelectric properties of group III-VI monolayers. We find that, in addition to the stepwise transmission at the band edge, flat bands, valley degeneracy, and band degeneracy are the factors that enhance thermoelectric efficiencies. For heavier compounds, better thermoelectric efficiencies are possible for both n-type and p-type carriers.Article Citation - WoS: 1Citation - Scopus: 1Bioavailability Assessment of the Novel Gsh-Functionalized Feb Nanoparticles Via Oxidative Stress and Trace Element Metabolism in Vitro: Promising Tools for Biomedical Applications(Springer, 2024) Aydemir, Duygu; Aribuga, Dilara; Hashemkhani, Mahshid; Acar, Havva Yagci; Çağıran, Özge Balcı; Ulusu, Nuriye Nuray; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIron-based magnetic nanoparticles (NPs) have attracted significant attention in biomedical research, particularly for applications such as cancer detection and therapy, targeted drug delivery, magnetic resonance imaging (MRI), and hyperthermia. This study focuses on the synthesis and glutathione (GSH) functionalization of iron boride (FeB) nanoparticles (NPs) for prospective biomedical use. The GSH-functionalized FeB NPs (FeB@GSH) demonstrated ferromagnetic behavior, with a saturation magnetization (Ms) of 45.8 emu/g and low coercivity (Hc = 1000 Oe), indicating desirable magnetic properties for biomedical applications. Transmission electron microscopy (TEM) analysis of the FeB@GSH revealed well-dispersed nanoparticles with diameters smaller than 30 nm. Comprehensive nanotoxicity and biocompatibility assessments were performed using various healthy and cancer cell lines, including 293 T, HeLa, 3T3, MCF7, HCT116, and CFPAC-1. Cytotoxicity assays were conducted on FeB@GSH-treated cells over a dose range of 0-300 mu g/mL during 24-h incubations. Results indicated no significant differences in cell viability between treated and untreated control groups, confirming the biocompatibility of FeB@GSH. Further nanotoxicity evaluations were carried out on 3T3, 293 T, and CFPAC-1 cell lines, focusing on oxidative stress markers and cellular metabolism by measuring antioxidant enzyme activity. Additionally, ion release and mineral metabolism were assessed using inductively coupled plasma mass spectrometry (ICP-MS), revealing no notable variations between the treated and control groups. These findings suggest that FeB@GSH NPs exhibit excellent biocompatibility, making them promising candidates for diverse biomedical applications, including medical imaging, drug delivery systems, and therapeutic interventions.Article Citation - WoS: 2Citation - Scopus: 4Characterization and Separation Behavior of Multi-Layers in Aluminum-Rich Waste Pharmaceutical Blisters(Springer, 2023) Çapkın, İrem Yaren; Gökelma, Mertol; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAl-rich waste pharmaceutical blisters (WPBs) have a multi-layer structure that contains aluminum and polymer-based fractions. Although the aluminum mass in WPBs is less than typical aluminum packaging products such as beverage cans, establishing a feasible recycling procedure is possible by separating the fractions to recover both metal and plastic. Hydrometallurgical methods are mostly preferred for the separation of aluminum and plastic in multi-layered structures. This work reports the characterization of Al-rich WPBs and the separation behavior of aluminum and plastic layers. The effects of hydrochloric acid, acetic acid, formic acid, sulfuric acid, ethanol, acetone, and organic solvent (benzene–ethanol–water) on the separation behavior of layers were studied at different temperatures. Furthermore, the recycling yield of the aluminum fraction was experimentally assessed. © 2023, The Minerals, Metals & Materials Society.Article Citation - WoS: 4Citation - Scopus: 10Characterization of Sb Scaling and Fluids in Saline Geothermal Power Plants: a Case Study for Germencik Region (büyük Menderes Graben, Turkey)(Pergamon-Elsevier Science Ltd, 2021) Tonkul, Serhat; Baba, Alper; Demir, Mustafa M.; Regenspurg, Simona; 03.06. Department of Energy Systems Engineering; 03.03. Department of Civil Engineering; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyTurkey is located on the seismically active Alpine-Himalayan belt. Although tectonic activity causes seismicity in the Anatolian plate, it also constitutes an important geothermal energy resource. Today, geothermal energy production is heavily concentrated in Turkey's Western Anatolia region. Graben systems in this region are very suitable for geothermal resources. The Buyuk Menderes Graben (BMG) is an area of complex geology with active tectonics and high geothermal potential power. Germencik (Aydin) is located in the BMG, where the geothermal waters include mainly Na-Cl-HCO3 water types. This study examined the stibnite scaling formed in the preheater system of the Germencik Geothermal Field (GGF). The formation of the stibnite scaling on the preheater system dramatically reduces the energy harvesting of the GGF. Considering the stibnite scaling in the surface equipment, the optimum reinjection temperature was determined as 95 degrees C to prevent stibnite scaling in the GGF.Article Citation - WoS: 4Citation - Scopus: 4Chirality Switching in Ferromagnetic Nanostructures Via Nanosecond Electric Pulses(Wiley-VCH Verlag, 2021) Aldulaimi, W. A. S.; Akaoğlu, C.; Şendur, Kürşat; Okatan, Mahmut Barış; Mısırlıoğlu, İbrahim Burç; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe stability of magnetism in reduced dimensions has become a major scientific agenda in the pursuit of implementing magnetic nanostructures as functional components in spintronic devices. Methods to probe and control magnetization states of such structures in a deterministic manner include use of spin polarized currents, photon absorption, and relatively recently, electric fields that tailor magnetoelectric coupling in multiferroic based structures. In theory, a short electric pulse is able to generate localized magnetic fields that can couple to the local magnetic dipoles electrodynamically. Here, using the Landau-Lifshitz-Gilbert formalism of magnetism dynamics combined with continuum Maxwell relations, the response of a ferromagnetic permalloy nanodisc to nanosecond electric field pulses is studied. The dynamics of the magnetic order of the nanodiscs during this process are examined and discussed. Ferromagnet nanodiscs, when below a critical size and in the absence of any external field, relax to a vortex phase as the ground state due to the demagnetizing field. Simulations demonstrate that the planar chirality of such a ferromagnet nanodisc can be switched via a time-wise asymmetric electric field pulse on the order of a few ns duration that generates radially varying tangential magnetic fields. These fields couple to the vortex state of the nanodisc ferromagnet electrodynamically, revealing an effective and robust method to control chirality.Article Citation - WoS: 8Citation - Scopus: 9Cold Sintering Assisted Two-Step Sintering of Potassium Sodium Niobate (knn) Ceramics(Elsevier, 2023) Karacasulu, Levent; Ahmetoğlu, Çekdar Vakıf; 03.09. Department of Materials Science and Engineering; 01.01. Units Affiliated to the Rectorate; 01. Izmir Institute of Technology; 03. Faculty of EngineeringPotassium sodium niobate (KNN) ceramics were densified using a multiple-stage sintering process in which initially applied cold sintering process (CSP) was followed by the solid-state sintering between 1100 and 1120 °C. Comparative assessments demonstrated that multi-step sintered samples yielded better properties than conventionally sintering ones. The highest relative density (94.7%) and the best electrical properties were obtained from the sample subjected to cold sintering at 120 °C/1 h using 5 wt% deionized water subsequently heat-treated at 1120 °C/2 h, resulting in a monolithic KNN ceramic having a piezoelectric coefficient of 120 pC/N. © 2023 Elsevier B.V.Article Citation - WoS: 28Citation - Scopus: 32Corrosion and Tribocorrosion Behaviour of Ti-B4c Composites Processed by Conventional Sintering and Hot-Pressing Technique(Elsevier, 2021) Sousa, L.; Alves, A. C.; Guedes, A.; Toptan, Fatih; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this work, low volume reinforcement ex-situ Ti-B4C composites were produced using two different routes: conventional powder metallurgy (PM) and hot-pressing (HP). The effect of reinforcement phases and processing method on corrosion and tribocorrosion behaviour were studied. Composites processed by PM lost the typical passive behaviour of Ti matrix, while composites processed by HP presented similar behaviour to unreinforced Ti. Tribocorrosion tests showed that both composite groups presented two times decrease in corrosion kinetics under sliding compared to pure titanium. An antagonistic effect between wear and corrosion was observed for composites with at least two times decrease in wear volume compared to titanium. (C) 2021 Elsevier B.V. All rights reserved.Article Citation - WoS: 20Citation - Scopus: 24Cryopreservation of a Cell-Based Biosensor Chip Modified With Elastic Polymer Fibers Enabling Ready-To On-Site Applications(Elsevier, 2021) Özsoylu, Dua; Isık, Tuğba; Demir, Mustafa M.; Schoning, Michael J.; Wagner, Torsten; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAn efficient preservation of a cell-based biosensor chip to achieve a ready-to-use on-site system is still very challenging as the chip contains a living component such as adherent mammalian cells. Herein, we propose a strategy called on-sensor cryopreservation (OSC), which enables the adherent cells to be preserved by freezing (-80 degrees C) on a biosensor surface, such as the light-addressable potentiometric sensor (LAPS). Adherent cells on rigid surfaces are prone to cryo-injury; thus, the surface was modified to enhance the cell recovery for OSC. It relies on i) the integration of elastic electrospun fibers composed of polyethylene vinyl acetate (PEVA), which has a high thermal expansion coefficient and low glass-transition temperature, and ii) the treatment with O-2 plasma. The modified sensor is integrated into a microfluidic chip system not only to decrease the thermal mass, which is critical for fast thawing, but also to provide a precisely controlled micro-environment. This novel cryo-chip system is effective for keeping cells viable during OSC. As a proof-of-concept for the applicability of a ready-to-use format, the extracellular acidification of cancer cells (CHO-K1) was evaluated by differential LAPS measurements after thawing. Results show, for the first time, that the OSC strategy using the cryo-chip allows label-free and quantitative measurements directly after thawing, which eliminates additional post-thaw culturing steps. The freezing of the chips containing cells at the manufacturing stage and sending them via a cold-chain transport could open up a new possibility for a ready-to-use on-site system.Article Citation - WoS: 7Citation - Scopus: 7Crystallization and Additional Oxide Interlayers Improve the Tribocorrosion Resistance of Tio2 Nanotubular Surfaces Formed on Ti6al4v(Elsevier, 2023) Çaha, İhsan; Türü, İrem Cemre; Erdoğan, Ece; Pinto, Ana Maria Pires; Cansever, Nurhan; Deepak, Francis Leonard; Toptan, Fatih; Alves, Alexandra C.; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyTiO2-based nanotubular surfaces have promising properties for various industrial applications, such as solar cells, fuel cells, photocatalysis, energy storage, gas sensors, and biomedical applications. However, they have very limited use in real applications, and one of the major limiting factors is the weak adhesion of nanotubular surfaces to the substrate. In this study, nanotubular surfaces are formed on Ti6Al4V alloy by anodic treatment followed by a heat treatment at 500 °C for 3 h under an open atmosphere. Microstructural investigations revealed self-organized nanotubes grown on both ? and ? phases. High-resolution TEM/STEM analysis showed crystallization of the nanotubular layer and formation of additional oxide interlayers resulting in a drastic improvement in tribocorrosion resistance. These findings indicated that a simple heat treatment can significantly alter the properties of nanotubular layers and can widen their usage mainly for load-bearing implant applications in corrosive environments. © 2023 Elsevier B.V.Article Citation - WoS: 89Citation - Scopus: 83Cspbbr3 Perovskites: Theoretical and Experimental Investigation on Water-Assisted Transition From Nanowire Formation To Degradation(American Physical Society, 2018) Akbalı, Barış; Topçu, Gökhan; Güner, Tuğrul; Özcan, Mehmet; Demir, Mustafa Muammer; Şahin, Hasan; 04.04. Department of Photonics; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyRecent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.Article Citation - WoS: 5Citation - Scopus: 6Degradation Behaviour of Ti-12nb Alloy Coated With Zno/Tin Double Layer(Elsevier, 2021) Çaha, İhsan; Alves, A. C.; Affonco, L. J.; da Silva, J. H. D.; Rodrigues, I. R.; Grandini, C. R.; Rocha, L. A.; Pinto, Ana Maria Pires; Lisboa Filho, P. N.; Toptan, Fatih; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyTi and its alloys have attracted attention for biomedical applications, but their low tribocorrosion resistance, lack of bioactivity and antimicrobial properties are still major clinical concerns. In this study a ZnO coating, intended to act as an antibacterial agent, was deposited on a Ti-12Nb alloy, which was previously coated with a TiN hard coating, for improving tribocormsion resistance. The idea behind is the proof-of -concept that ZnO is able to provide interesting tribological properties to the surface, thus inspiring new ZnO-containing surfaces that can combine antimicrobial properties and tribocormsion resistance. Thus, the corrosion behaviour was studied by open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization tests in phosphate buffered solution at body temperature. The tribocormsion behaviour was carried out at open circuit potential under 0.5 N of normal load, 1 Hz frequency, during 3600 s sliding in phosphate buffered solution at body temperature. The results indicated that duplex coating sample showed better corrosion resistance and drastically better tribocorrosion resistance compared to uncoated and single TiN coating samples.