Browsing by Author "Chhay, B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Nanoscale Surface Modification of Ultrahigh Molecular Weight Polyethylene (UHMWPE) Samples With the W Plus C Ion Implantation(Materials Research Soc, 2007) Urkac, E. Sokullu; Oztarhan, A.; Tihminlioglu, F.; Kaya, N.; Budak, S.; Chhay, B.; Ila, D.; 03.02. Department of Chemical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this work, Ultra High Molecular Weight Poly Ethylene (UHMWPE) samples Were implanted by W + C ions using Metal-Vapour Vacuum Arc (MEVVA) ion implantation system with a fluence of 10(17) ion/cm(2) and extraction voltage of 30 kV. Samples were characterized with Raman Spectra, ATR-FTIR, UV-VIS-NlR Spectrum and RBS. Surface morphology of implanted and unimplanted samples were examined in nanoscale with AFM.Conference Object Thermal Behaviour of W Plus C Ion Implanted Ultra High Molecular Weight Polyethylene (uhmwpe)(American Institute of Physics, 2009) Urkaç, Emel Sokullu; Öztarhan, Ahmet; Tıhmınlıoğlu, Funda; Ila, Daryush; Budak, S.; Chhay, B.; Nikolaev, A.; 03.02. Department of Chemical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe aim of this work was to examine thermal behavior of the surface modified Ultra High Molecular Weight Poly Ethylene (UHMWPE) in order to understand the effect of ion implantation on the properties of this polymer which is widely used especially for biomedical applications. UHMWPE samples were Tungsten and Carbon (W+C) hybrid ion implanted by using Metal Vapour Vacuum Arc (MEVVA) ion implantation technique with a fluence of 10 17 ions/cm2 and extraction voltage of 30kV. Untreated and surface-treated samples were investigated by Rutherford Back Scattering (RBS) Analysis, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) Spectrometry, Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). This study has shown that ion implantation represents a powerful tool on modifying thermal properties of UHMWPE surfaces. This combination of properties can make implanted UHMWPE a preferred material for biomedical applications.