Browsing by Author "Fan, Xi"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 64Citation - Scopus: 67Angle Resolved Vibrational Properties of Anisotropic Transition Metal Trichalcogenide Nanosheets(Royal Society of Chemistry, 2017-03) Kong, Wilson; Bacaksız, Cihan; Chen, Bin; Wu, Kedi; Blei, Mark; Fan, Xi; Shen, Yuxia; Şahin, Hasan; Wright, David; Narang, Deepa S.; Tongay, Sefaattin; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyLayered transition metal trichalcogenides (TMTCs) are a new class of anisotropic two-dimensional materials that exhibit quasi-1D behavior. This property stems from their unique highly anisotropic crystal structure where vastly different material properties can be attained from different crystal directions. Here, we employ density functional theory predictions, atomic force microscopy, and angle-resolved Raman spectroscopy to investigate their fundamental vibrational properties which differ significantly from other 2D systems and to establish a method in identifying anisotropy direction of different types of TMTCs. We find that the intensity of certain Raman peaks of TiS3, ZrS3, and HfS3 have strong polarization dependence in such a way that intensity is at its maximum when the polarization direction is parallel to the anisotropic b-axis. This allows us to readily identify the Raman peaks that are representative of the vibrations along the b-axis direction. Interestingly, similar angle resolved studies on the novel TiNbS3 TMTC alloy reveal that determination of anisotropy/crystalline direction is rather difficult possibly due to loss of anisotropy by randomization distribution of quasi-1D MX6 chains by the presence of defects which are commonly found in 2D alloys and also due to the complex Raman tensor of TMTC alloys. Overall, the experimental and theoretical results establish non-destructive methods used to identify the direction of anisotropy in TMTCs and reveal their vibrational characteristics which are necessary to gain insight into potential applications that utilize direction dependent thermal response, optical polarization, and linear dichroism.Article Citation - WoS: 68Citation - Scopus: 71Strong Dichroic Emission in the Pseudo One Dimensional Material Zrs3(Royal Society of Chemistry, 2016-09-28) Pant, Anupum; Torun, Engin; Chen, Bin; Bhat, Soumya; Fan, Xi; Wu, Kedi; Wright, David P.; Peeters, François M.; Soignard, Emmanuel; Şahin, Hasan; Tongay, Sefaattin; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyZirconium trisulphide (ZrS3), a member of the layered transition metal trichalcogenides (TMTCs) family, has been studied by angle-resolved photoluminescence spectroscopy (ARPLS). The synthesized ZrS3 layers possess a pseudo one-dimensional nature where each layer consists of ZrS3 chains extending along the b-lattice direction. Our results show that the optical properties of few-layered ZrS3 are highly anisotropic as evidenced by large PL intensity variation with the polarization direction. Light is efficiently absorbed when the E-field is polarized along the chain (b-axis), but the field is greatly attenuated and absorption is reduced when it is polarized vertical to the 1D-like chains as the wavelength of the exciting light is much longer than the width of each 1D chain. The observed PL variation with polarization is similar to that of conventional 1D materials, i.e., nanowires, and nanotubes, except for the fact that here the 1D chains interact with each other giving rise to a unique linear dichroism response that falls between the 2D (planar) and 1D (chain) limit. These results not only mark the very first demonstration of PL polarization anisotropy in 2D systems, but also provide novel insight into how the interaction between adjacent 1D-like chains and the 2D nature of each layer influences the overall optical anisotropy of pseudo-1D materials. Results are anticipated to have an impact on optical technologies such as polarized detectors, near-field imaging, communication systems, and bio-applications relying on the generation and detection of polarized light.Article Citation - WoS: 76Citation - Scopus: 89Unusual Lattice Vibration Characteristics in Whiskers of the Pseudo-One Titanium Trisulfide Tis3(Nature Publishing Group, 2016-09-22) Wu, Kedi; Torun, Engin; Şahin, Hasan; Chen, Bin; Fan, Xi; Pant, Anupum; Wright, David Parsons; Aoki, Toshihiro; Peeters, François M.; Soignard, Emmanuel; Tongay, Sefaattin; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyTransition metal trichalcogenides form a class of layered materials with strong in-plane anisotropy. For example, titanium trisulfide (TiS3) whiskers are made out of weakly interacting TiS3 layers, where each layer is made of weakly interacting quasi-one-dimensional chains extending along the b axis. Here we establish the unusual vibrational properties of TiS3 both experimentally and theoretically. Unlike other two-dimensional systems, the Raman active peaks of TiS3 have only out-of-plane vibrational modes, and interestingly some of these vibrations involve unique rigid-chain vibrations and S-S molecular oscillations. High-pressure Raman studies further reveal that the Ag S-S S-S molecular mode has an unconventional negative pressure dependence, whereas other peaks stiffen as anticipated. Various vibrational modes are doubly degenerate at ambient pressure, but the degeneracy is lifted at high pressures. These results establish the unusual vibrational properties of TiS3 with strong in-plane anisotropy, and may have relevance to understanding of vibrational properties in other anisotropic two-dimensional material systems. © The Author(s) 2016.