Browsing by Author "Fomenko, Dmitri E."
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Article Citation - WoS: 48Citation - Scopus: 52Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis(Public Library of Science, 2011-11) Uluışık, İrem; Karakaya, Hüseyin Çağlar; Kaya, Alaattin; Koç, Ahmet; Fomenko, Dmitri E.; Karakaya, Hüseyin Çağlar; Carlson, Bradley A.; Gladyshev, Vadim N.; Koç, Ahmet; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyBoron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance.Article Citation - WoS: 30Citation - Scopus: 32Compartmentalization and Regulation of Mitochondrial Function by Methionine Sulfoxide Reductases in Yeast(American Chemical Society, 2010-10) Kaya, Alaattin; Koç, Ahmet; Koç, Ahmet; Lee, Byung Cheon; Fomenko, Dmitri E.; Rederstorff, Mathieu; Krol, Alain; Lescure, Alain; Gladyshev, Vadim N.; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyElevated levels of reactive oxygen species can damage proteins. Sulfur-containing amino acid residues, cysteine and methionine, are particularly susceptible to such damage. Various enzymes evolved to protect proteins or repair oxidized residues, including methionine sulfoxide reductases MsrA and MsrB, which reduce methionine (S)-sulfoxide (Met-SO) and methionine (R)-sulfoxide (Met-RO) residues, respectively, back to methionine. Here, we show that MsrA and MsrB are involved in the regulation of mitochondrial function. Saccharomyces cerevisiae mutant cells lacking MsrA, MsrB, or both proteins had normal levels of mitochondria but lower levels of cytochrome c and fewer respiration-competent mitochondria. The growth of single MsrA or MsrB mutants on respiratory carbon sources was inhibited, and that of the double mutant was severely compromised, indicating impairment of mitochondrial function. Although MsrA and MsrB are thought to have similar roles in oxidative protein repair each targeting a diastereomer of methionine sulfoxide, their deletion resulted in different phenotypes. GFP fusions of MsrA and MsrB showed different localization patterns and primarily localized to cytoplasm and mitochondria, respectively. This finding agreed with compartment-specific enrichment of MsrA and MsrB activities. These results show that oxidative stress contributes to mitochondrial dysfunction through oxidation of methionine residues in proteins located in different cellular compartments. © 2010 American Chemical Society.Article Citation - WoS: 73Citation - Scopus: 78Functional Analysis of Free Methionine-R Reductase From Saccharomyces Cerevisiae(American Society for Biochemistry and Molecular Biology, 2009-02) Le, Dung Tien; Koç, Ahmet; Lee, Byung Cheon; Marino, Stefano M.; Zhang, Yan; Fomenko, Dmitri E.; Kaya, Alaattin; Hacıoğlu, Elise; Kwak, Geun-Hee; Koç, Ahmet; Kim, Hwa-Young; Gladyshev, Vadim N.; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyMethionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys101 as catalytic and Cys125 as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys91, clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.Article Citation - WoS: 55Citation - Scopus: 64Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast(American Society for Microbiology, 2009-07) Kaya, Alaattin; Karakaya, Hüseyin Çağlar; Karakaya, Hüseyin Çağlar; Koç, Ahmet; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koç, Ahmet; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyBoron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1△ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1△ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1△ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance.Article Citation - WoS: 105Citation - Scopus: 113Msrb1 (methionine-R Reductase 1) Knock-Out Mice: Roles of Msrb1 in Redox Regulation and Identification of a Novel Selenoprotein Form(American Society for Biochemistry and Molecular Biology, 2009-02) Fomenko, Dmitri E.; Koç, Ahmet; Novoselov, Sergey V.; Natarajan, Sathish Kumar; Lee, Byung Cheon; Koç, Ahmet; Carlson, Bradley A.; Lee, Tae- Hyung; Kim, Hwa-Young; Hatfield, Dolph L.; Gladyshev, Vadim N.; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyProtein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with 75Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.Article Citation - WoS: 7Citation - Scopus: 7The Roles of Thiol Oxidoreductases in Yeast Replicative Aging(Elsevier Ltd., 2010-11) Hacıoğlu, Elise; Koç, Ahmet; Esmer, Işıl; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koç, Ahmet; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyThiol-based redox reactions are involved in the regulation of a variety of biological functions, such as protection against oxidative stress, signal transduction and protein folding. Some proteins involved in redox regulation have been shown to modulate life span in organisms from yeast to mammals. To assess the role of thiol oxidoreductases in aging on a genome-wide scale, we analyzed the replicative life span of yeast cells lacking known and candidate thiol oxidoreductases. The data suggest the role of several pathways in controlling yeast replicative life span, including thioredoxin reduction, protein folding and degradation, peroxide reduction, PIP3 signaling, and ATP synthesis. © 2010 Elsevier Ireland Ltd.Article Citation - WoS: 9Citation - Scopus: 10Thiol Peroxidase Deficiency Leads To Increased Mutational Load and Decreased Fitness in Saccharomyces Cerevisiae(Genetics Society of America, 2014-11) Kaya, Alaattin; Koç, Ahmet; Lobanov, Alexey V.; Gerashchenko, Maxim V.; Koren, Amnon; Fomenko, Dmitri E.; Koç, Ahmet; Gladyshev, Vadim N.; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of Science; 01. Izmir Institute of TechnologyThiol peroxidases are critical enzymes in the redox control of cellular processes that function by reducing low levels of hydroperoxides and regulating redox signaling. These proteins were also shown to regulate genome stability, but how their dysfunction affects the actual mutations in the genome is not known. Saccharomyces cerevisiae has eight thiol peroxidases of glutathione peroxidase and peroxiredoxin families, and the mutant lacking all these genes (Δ8) is viable. In this study, we employed two independent Δ8 isolates to analyze the genome-wide mutation spectrum that results from deficiency in these enzymes. Deletion of these genes was accompanied by a dramatic increase in point mutations, many of which clustered in close proximity and scattered throughout the genome, suggesting strong mutational bias. We further subjected multiple lines of wild-type and Δ8 cells to long-term mutation accumulation, followed by genome sequencing and phenotypic characterization. Δ8 lines showed a significant increase in nonrecurrent point mutations and indels. The original Δ8 cells exhibited reduced growth rate and decreased life span, which were further reduced in all Δ8 mutation accumulation lines. Although the mutation spectrum of the two independent isolates was different, similar patterns of gene expression were observed, suggesting the direct contribution of thiol peroxidases to the observed phenotypes. Expression of a single thiol peroxidase could partially restore the growth phenotype of Δ8 cells. This study shows how deficiency in nonessential, yet critical and conserved oxidoreductase function, leads to increased mutational load and decreased fitness.