Browsing by Author "Ogata, Shigenobu"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Atomistic Insights on the Influence of Pre-Oxide Shell Layer and Size on the Compressive Mechanical Properties of Nickel Nanowires(American Institute of Physics, 2019-04) Aral, Gürcan; Islam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; van Duin, Adri C. T.; 04.05. Department of Pyhsics; 04. Faculty of Science; 01. Izmir Institute of TechnologyWe used ReaxFF reactive molecular dynamics simulations to systematically investigate the effects of a pre-oxide shell layer on the mechanical properties of [001]-oriented nickel (Ni) nanowires (NWs) under the uniaxial compressive loading at room temperature. The pristine Ni NWs are considered as references to compare the mechanical properties of the oxide-coated NWs. We found that the mechanical properties of pristine Ni NWs under uniaxial compression are sensitive to both the diameter of the NWs and the pre-oxide shell layer, and their combined effect determines the overall stress and strain behaviors. The compressive strength of the pristine NWs decreases significantly with the decreasing diameter. We observe that the native defected amorphous pre-oxide shell layer with similar to 1.0 nm thickness leads to a lowering of the mechanical compressive resistivity of NWs and causes additional softening. Oxide-coated NWs exhibit a lesser size-dependent unique properties and a lower overall yield strength compared to their pristine counterparts. The reduction of the mechanical compressive yield stress and strain with the decreasing diameter is due to the substantial changes in plastic flow as well as correlated with the existence of the pre-oxide shell layer as compared to its pristine counterpart. Particularly, pre-oxide shell layers have pronounced effects on the initiation of initial dislocations to onset plastic deformation and consequently on the overall plastic response. Published under license by AIP Publishing.Article Citation - WoS: 28Citation - Scopus: 31Effects of Oxidation on Tensile Deformation of Iron Nanowires: Insights From Reactive Molecular Dynamics Simulations(American Institute of Physics, 2016-10-07) Aral, Gürcan; Wang, Yun-Jiang; Ogata, Shigenobu; Van Duin, Adri C.T.; 04.05. Department of Pyhsics; 04. Faculty of Science; 01. Izmir Institute of TechnologyThe influence of oxidation on the mechanical properties of nanostructured metals is rarely explored and remains poorly understood. To address this knowledge gap, in this work, we systematically investigate the mechanical properties and changes in the metallic iron (Fe) nanowires (NWs) under various atmospheric conditions of ambient dry O2 and in a vacuum. More specifically, we focus on the effect of oxide shell layer thickness over Fe NW surfaces at room temperature. We use molecular dynamics (MD) simulations with the variable charge ReaxFF force field potential model that dynamically handles charge variation among atoms as well as breaking and forming of the chemical bonds associated with the oxidation reaction. The ReaxFF potential model allows us to study large length scale mechanical atomistic deformation processes under the tensile strain deformation process, coupled with quantum mechanically accurate descriptions of chemical reactions. To study the influence of an oxide layer, three oxide shell layer thicknesses of ∼4.81 Å, ∼5.33 Å, and ∼6.57 Å are formed on the pure Fe NW free surfaces. It is observed that the increase in the oxide layer thickness on the Fe NW surface reduces both the yield stress and the critical strain. We further note that the tensile mechanical deformation behaviors of Fe NWs are dependent on the presence of surface oxidation, which lowers the onset of plastic deformation. Our MD simulations show that twinning is of significant importance in the mechanical behavior of the pure and oxide-coated Fe NWs; however, twin nucleation occurs at a lower strain level when Fe NWs are coated with thicker oxide layers. The increase in the oxide shell layer thickness also reduces the external stress required to initiate plastic deformation.Article Citation - WoS: 17Citation - Scopus: 18Oxyhydroxide of Metallic Nanowires in a Molecular H2o and H2o2 Environment and Their Effects on Mechanical Properties(Royal Society of Chemistry, 2018) Aral, Gürcan; İslam, Md Mahbubul; Wang, Yun-Jiang; Ogata, Shigenobu; van Duin, Adri C. T.; 04.05. Department of Pyhsics; 04. Faculty of Science; 01. Izmir Institute of TechnologyTo avoid unexpected environmental mechanical failure, there is a strong need to fully understand the details of the oxidation process and intrinsic mechanical properties of reactive metallic iron (Fe) nanowires (NWs) under various aqueous reactive environmental conditions. Herein, we employed ReaxFF reactive molecular dynamics (MD) simulations to elucidate the oxidation of Fe NWs exposed to molecular water (H2O) and hydrogen peroxide (H2O2) environment, and the influence of the oxide shell layer on the tensile mechanical deformation properties of Fe NWs. Our structural analysis shows that oxidation of Fe NWs occurs with the formation of different iron oxide and hydroxide phases in the aqueous molecular H2O and H2O2 oxidizing environments. We observe that the resulting microstructure due to pre-oxide shell layer formation reduces the mechanical stress via increasing the initial defect sites in the vicinity of the oxide region to facilitate the onset of plastic deformation during tensile loading. Specifically, the oxide layer of Fe NWs formed in the H2O2 environment has a relatively significant effect on the deterioration of the mechanical properties of Fe NWs. The weakening of the yield stress and Young modulus of H2O2 oxidized Fe NWs indicates the important role of local oxide microstructures on mechanical deformation properties of individual Fe NWs. Notably, deformation twinning is found as the primary mechanical plastic deformation mechanism of all Fe NWs, but it is initially observed at low strain and stress level for the oxidized Fe NWs.