Browsing by Author "Perpelek, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Erratum Citation - Scopus: 1Corrigendum: Bioactive Snail Mucus-Slime Extract Loaded Chitosan Scaffolds for Hard Tissue Regeneration: the Effect of Mucoadhesive and Antibacterial Extracts on Physical Characteristics and Bioactivity of Chitosan Matrix (2021biomed. Mater.16 065008) [2](NLM (Medline), 2023) Perpelek, M.; Tamburaci, S.; Aydemir, S.; Tihminlioglu, F.; Baykara, B.; Karakasli, A.; Havitcioglu, H.; 03.02. Department of Chemical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology[No abstract available]Article Citation - WoS: 4Citation - Scopus: 9Using Loofah Reinforced Chitosan-Collagen Hydrogel Based Scaffolds In-Vitro and In-Vivo; Healing in Cartilage Tissue Defects(Elsevier B.V., 2023) Baysan, G.; Gunes, O.C.; Turemis, C.; Akokay, Yilmaz, P.; Husemoglu, R.B.; Kara, Ozenler, A.; Perpelek, M.; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe herein article aims to report a new scaffold design as a loofah-reinforced chitosan-collagen hydrogel composite scaffold with three different cross-linker concentrations (0.1, 0.3, and 0.5 wt. /v%). From the analyses, the scaffold crosslinked with 0.5% genipin; collagen-chitosan hydrogel scaffold reinforced with loofah (L-CCol5) was found to be suitable for further in vitro and in vivo studies due to its interconnected porous structure, water content (∼ 97%) and tan delta (0.221 at 1 Hz) values comparable to that of cartilage tissue. In vitro analyses depicted that the L-CCol5 scaffold supported rabbit mesenchymal stem cells (rMSCs) adhesion and proliferation with its non-cytotoxic feature. Moreover, in vivo cartilage healing studies were performed using New Zealand male rabbits in three groups: empty control, cell-free scaffold, and rMSCs-laden scaffold. The elastic moduli of these three groups were 0.69, 0.90, and 1.18 MPa, respectively. Besides, microcomputer tomography (MicroCT) scannings supported the in vivo biomechanical analyses as cell-laden scaffolds showed better osteochondral healing. It can be concluded that the L-CCol5 scaffold could be a promising construct in osteochondral tissue engineering applications. The findings revealed that osteochondral remodeling precedes articular cartilage, providing insight into tailored therapeutic approaches, disease progress, and treatment consequences. © 2023 Acta Materialia Inc.