1. Home
  2. Browse by Author

Browsing by Author "Saglam, Buket"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 1
    Citation - Scopus: 1
    An Investigation of Rna Methylations With Biophysical Approaches in a Cervical Cancer Cell Model
    (Mdpi, 2024) Saglam, Buket; Akkus, Onur; Akcaoz-Alasar, Azime; Ceylan, Cagatay; Guler, Gunnur; Akgul, Bunyamin
    RNA methylation adds a second layer of genetic information that dictates the post-transcriptional fate of RNAs. Although various methods exist that enable the analysis of RNA methylation in a site-specific or transcriptome-wide manner, whether biophysical approaches can be employed to such analyses is unexplored. In this study, Fourier-transform infrared (FT-IR) and circular dichroism (CD) spectroscopy are employed to examine the methylation status of both synthetic and cellular RNAs. The results show that FT-IR spectroscopy is perfectly capable of quantitatively distinguishing synthetic m(6)A-methylated RNAs from un-methylated ones. Subsequently, FT-IR spectroscopy is successfully employed to assess the changes in the extent of total RNA methylation upon the knockdown of the m(6)A writer, METTL3, in HeLa cells. In addition, the same approach is shown to accurately detect reduction in total RNA methylation upon the treatment of HeLa cells with tumor necrosis factor alpha (TNF-alpha). It is also demonstrated that m(1)A and m(6)A methylation induce quite a distinct secondary structure on RNAs, as evident from CD spectra. These results strongly suggest that both FT-IR and CD spectroscopy methods can be exploited to uncover biophysical properties impinged on RNAs by methyl moieties, providing a fast, convenient and cheap alternative to the existing methods.
  • Loading...
    Thumbnail Image
    Review
    Citation - WoS: 14
    Citation - Scopus: 16
    An Overview of Current Detection Methods for Rna Methylation
    (Mdpi, 2024) Saglam, Buket; Akgul, Bunyamin
    Epitranscriptomic mechanisms, which constitute an important layer in post-transcriptional gene regulation, are involved in numerous cellular processes under health and disease such as stem cell development or cancer. Among various such mechanisms, RNA methylation is considered to have vital roles in eukaryotes primarily due to its dynamic and reversible nature. There are numerous RNA methylations that include, but are not limited to, 2'-O-dimethyladenosine (m6Am), N7-methylguanosine (m7G), N6-methyladenosine (m6A) and N1-methyladenosine (m1A). These biochemical modifications modulate the fate of RNA by affecting the processes such as translation, target site determination, RNA processing, polyadenylation, splicing, structure, editing and stability. Thus, it is highly important to quantitatively measure the changes in RNA methylation marks to gain insight into cellular processes under health and disease. Although there are complicating challenges in identifying certain methylation marks genome wide, various methods have been developed recently to facilitate the quantitative measurement of methylated RNAs. To this end, the detection methods for RNA methylation can be classified in five categories such as antibody-based, digestion-based, ligation-based, hybridization-based or direct RNA-based methods. In this review, we have aimed to summarize our current understanding of the detection methods for RNA methylation, highlighting their advantages and disadvantages, along with the current challenges in the field.
  • Loading...
    Thumbnail Image
    Editorial
    Citation - WoS: 2
    Citation - Scopus: 2
    Rna M6a Methylation at the Juxtaposition of Apoptosis and Rna Therapeutics
    (Cell Press, 2024) Akguel, Buenyamin; Akcaoez-Alasar, Azime; Saglam, Buket
    Targeting RNA m(6)A marks in apoptosis-related transcripts holds promise for RNA therapeutics. However, pathway-specific RNA m(6)A sites on pro- or antiapoptotic transcripts have not been fully unveiled, let alone characterized. This article summarizes the current knowledge and gaps in the cellular response modulated by apoptotic stimulus-specific RNA m(6)A marks.