1. Home
  2. Browse by Author

Browsing by Author "Temelli, Nuran"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 6
    Citation - Scopus: 6
    Organosolv Pretreatment of Corncob for Enzymatic Hydrolysis of Xylan
    (Springer, 2023) Büyükkileci, Ali Oğuz; Temelli, Nuran; 03.08. Department of Food Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology
    Xylan is a renewable polysaccharide, readily available in agricultural and forestry residues. It can be hydrolyzed to produce xylooligosaccharides (XOS) with prebiotic activity and xylose, a precursor for several industrial chemicals. Enzymatic hydrolysis of xylan in the lignocellulosic biomass to obtain xylose and XOS requires a pretreatment to facilitate xylanase activity. In this study, organosolv was evaluated for the delignification of corncob while retaining xylan in the pretreated biomass. The treatment at 170 °C for 1 h with 70% ethanol provided 50% lignin removal and 81% xylan recovery. Increasing temperatures and decreasing ethanol fractions decreased the pH and the xylan recovery. Loss of xylan in the organosolv at 190 °C and in the liquid hot water treatment could be prevented by the addition of 100 mM MgO, without compromising lignin removal. Pretreated corncob was suspended in citrate buffer and hydrolyzed by commercial xylanases. Accellerase XY (250 U/ml) at pH 5.5 and 55 °C and Econase XT (0.6 U/ml) at pH 6.0 and 70 °C provided around 65% xylan digestibility and generated xylose (9.8 g/l) and XOS (10.9 g/l), respectively. This approach could decrease xylan loss and degradation in the pretreatment step and yield clear hydrolysates composed of essentially xylose or XOS. Lignocellulosic biorefineries can benefit from the efficient utilization of xylan, increasing sustainability. © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
  • Loading...
    Thumbnail Image
    Master Thesis
    Organosolv Treatment for Prebiotic Oligosaccharide Production From Agro-Food Waste
    (01. Izmir Institute of Technology, 2020-07) Temelli, Nuran; Büyükkileci, Ali Oğuz; 03.08. Department of Food Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology
    Xylooligosaccharides (XOS), which are among the prebiotic carbohydrates, are produced by hydrolysis of xylan in the lignocellulosic agricultural and food wastes. Production processes, such as autohydrolysis and enzymatic hydrolysis following alkali extraction, have some limitations. In this study, it was aimed to develop a process that could overcome those limitations. Corn cob was used as the model biomass and it was pretreated with organosolv. The organosolv pretreatment conditions (solvent concentration, time, temperature, catalyst addition) were adjusted to maximize the lignin removal from the biomass while recovering xylan in the biomass. Delignification could be achieved with 40%-50% lignin removal, and around 85% of the xylan was retained in the biomass. The effect of the organosolv conditions on XOS formation was investigated by the hydrolysis of the pretreated biomass using three commercial xylanases. The organosolv and the enzymatic hydrolysis conditions influenced the XOS formation. The maximum XOS production was observed with the biomass pretreated at 150°C for 1 h with 70% ethanol and 0.1 M MgO. That biomass was enzymatically hydrolyzed at 70°C with 0.6 U/ml xylanase and 70% of the xylan was converted to XOS yielding a hydrolysate containing 9.5 g/l XOS. With the process developed in this study, the need for the application of concentrated alkaline and acidic solutions can be eliminated since the xylan extraction step is not needed. In addition to that, the formation of carbohydrate degradation products can be avoided due to the lower treatment temperatures compared to autohydrolysis. These can simplify the downstream processing following the production of XOS and minimize the environmentally harmful chemical wastes. In this process, a liquid stream rich in lignin and a solid stream rich in cellulose were released. Following a biorefinery concept, these streams can potentially be valorized together with the xylan, so that lignocellulosic wastes can have an added value. This study will be followed by related projects on XOS purification and determination of the prebiotic potential of XOS. In addition to that, the process developed will be tested on other lignocellulosic wastes.