IZTECH Research Centers Collection / İYTE Araştırma Merkezleri Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/11147/2636
Browse
Browsing IZTECH Research Centers Collection / İYTE Araştırma Merkezleri Koleksiyonu by Department "Izmir Institute of Technology"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 11Citation - Scopus: 10Cfd Characteristics of Refrigerated Trailers and Improvement of Airflow for Preserving Perishable Foods(MDPI, 2019) Yildiz,T.; 01. Izmir Institute of TechnologyWhen preserving perishable goods, maintaining a constant temperature over the cold supply chain is essential. Therefore, refrigerated vehicles are an important part of the cold supply chain system. However, many traditional refrigerated cargo systems are not designed to support the homogeneity of the temperature inside cargo trailers. Indeed, refrigerating equipment is usually placed on one side of transportation systems as this is considered to be more practical. Such a configuration thus leads to significant temperature differences in the two distinct parts of a refrigerated cargo trailer, which might affect the quality, safety, and shelf life of perishable foods. This research aims to improve the temperature distribution of refrigerated trailers. In this study, it is highlighted that in the most commonly used traditional refrigerated trailer models, lower air velocity and higher product temperature are observed at the rear. There is also a partial product chilling risk at the front of the refrigerated trailer. This study investigates and reports significant differences among the three airflow design models of refrigerated cargo systems by applying turbulence flow, heat, and mass transfer models. The analyses of these three models reveal that significant improvement could be achieved by applying the proper arrangements of inlets on the ceiling of the trailer body. © 2019 by the author.Article Citation - WoS: 10Citation - Scopus: 15Design and Analysis of a Lightweight Composite Shipping Container Made of Carbon Fiber Laminates(MDPI, 2019) Yildiz,T.; 01. Izmir Institute of TechnologyThe literature indicates that a 20% reduction in the weight of empty 40-foot shipping containers would result in $28 billion of fuel savings, along with a 3.6 exajoule reduction in the energy demand over containers’ 15-year lifetime. Decreasing the energy demand and thereby greenhouse gas emissions by utilizing lightweight shipping containers has been an unexplored strategy. In this regard, this study investigates the possibility of further reducing the weight of an empty container without compromising the structural integrity, strength, and function of a traditional steel container. This research finds that up to an 80% reduction in weight is possible by producing shipping containers with composite materials. This research presents the new design of a 40-foot container made of carbon fiber laminates. The tare weight of a traditional 40-foot shipping container is around 3750 kg. On the contrary, in this research, the weight of a composite design of the same container is calculated to be around 822 kg. Additional tests with various loads, such as lifting the container and stacking loads onto the composite container, are performed to explore the strength and buckling issues of the design presented in this study. The analyses reveal that the composite shipping container is a highly promising candidate for reducing greenhouse gas emissions, providing fuel savings and thus reducing the operational costs of transportation. © 2019 by the author.Article Citation - WoS: 6Citation - Scopus: 8The Potential, Utilization and Development of Geothermal Energy in Türkiye(Maden Tetkik ve Arama Genel Mudurlugu-mta, 2023) Sener, Mehmet Furkan; Uzelli, Taygun; Akkus, Ibrahim; Mertoglu, Orhan; Baba, Alper; 03.03. Department of Civil Engineering; 01.01. Units Affiliated to the Rectorate; 01. Izmir Institute of Technology; 03. Faculty of EngineeringGeothermal energy is a natural resource that can be utilized directly or by converting to other types of energy. Considering the diversity of the geological structure of Turkiye, the geothermal systems have developed depending on young tectonic and volcanic active rock. Western and Central Anatolia are especially rich in geothermal resources. The geothermal well with the hottest well-bottom temperature was drilled in Central Anatolia, and the well-bottom temperature was measured as 341 degrees C at a depth of 3845 meters. In 2022, Turkiye's electricity generation capacity and the total installed direct heat use reached 1663 MWe and 5113 MWt, respectively. Considering Anatolia's Curie depth and heat flux, the probable thickness of the batholith can be regarded as 10 km. For example, the total granitoid area of Western Anatolia is 4221 km2 and at least 2% of this granitoid can provide approximately 8x107 MWh of electricity by Enhanced Deep Geothermal Systems (EDGS). When all granites in Turkiye are considered, it is expected that the future capacity of Turkiye will be much higher with drilling research and development studies and the discovery of new fields. This capacity will exceed 100.000 MWt levels in the medium term, especially with the addition of EDGSs.