Photonics / Fotonik
Permanent URI for this collectionhttps://hdl.handle.net/11147/2590
Browse
Browsing Photonics / Fotonik by Department "İzmir Institute of Technology. Bioengineering"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 26Citation - Scopus: 28Biocomposite Scaffolds for 3d Cell Culture: Propolis Enriched Polyvinyl Alcohol Nanofibers Favoring Cell Adhesion(John Wiley and Sons Inc., 2021-05) Bilginer, Rumeysa; Özkendir İnanç, Dilce; Yıldız, Ümit Hakan; Arslan Yıldız, AhuThe objective of this work is generation of propolis/polyvinyl alcohol (PVA) scaffold by electrospinning for 3D cell culture. Here, PVA used as co-spinning agent since propolis alone cannot be easily processed by electrospinning methodology. Propolis takes charge in maximizing biological aspect of scaffold to facilitate cell attachment and proliferation. Morphological analysis showed size of the electrospun nanofibers varied between 172-523 nm and 345-687 nm in diameter, for non-crosslinked and crosslinked scaffolds, respectively. Incorporation of propolis resulted in desired surface properties of hybrid matrix, where hybrid scaffolds highly favored protein adsorption. To examine cell compatibility, NIH-3T3 and HeLa cells were seeded on propolis/PVA hybrid scaffold. Results confirmed that integration of propolis supported cell adhesion and cell proliferation. Also, results indicated electrospun propolis/PVA hybrid scaffold provide suitable microenvironment for cell culturing. Therefore, developed hybrid scaffold could be considered as potential candidate for 3D cell culture and tissue engineering.Article Citation - WoS: 5Citation - Scopus: 6Boosting Up Printability of Biomacromolecule Based Bio-Ink by Modulation of Hydrogen Bonding Pairs(Elsevier Ltd., 2020) Köksal, Büşra; Önbaş, Rabia; Başkurt, Mehmet; Şahin, Hasan; Arslan Yıldız, Ahu; Yıldız, Ümit HakanThis study describes low dose UV curable and bioprintable new bioink made of hydrogen bond donor-acceptor adaptor molecule 2-isocyanatoethyl methacrylate (NCO)modified gelatin (NCO-Gel). Our theoretical calculations demonstrate that insertion of 2-isocyanatoethyl methacrylate doubles the interaction energy (500 meV) between gelatin chains providing significant contribution in interchain condensation and self-organization as compared to methacrylic anhydride modified gelatin (GelMA). The NCO-Gel exhibits peak around 1720 cm?1 referring to bidentate hydrogen bonding between H-NCO and its counterpart O[dbnd]CN[sbnd]H. These strong interchain interactions drive chains to be packed and thereby facilitating UV crosslinking. The NCO-Gel is exhibiting a rapid, 10 s gelation process by the exposure of laser (3 W, 365 nm). The dynamic light scattering characterization also reveals that NCO-Gel has faster sol to gel transition as compared to GelMA depending on the UV curing time. The NCO-Gel was found to be more firm and mechanically strong that provides advantages in molding as well as bioprinting processes. Bioprinted NCO-Gel has shown sharp borders and stable 3D geometry as compared to GelMA ink under 10 s UV curing time. The cell viability tests confirm that NCO-Gel facilitates cell proliferation and supports cell viability. We foresee that NCO-Gel bioink formulation provides a promising opportunity when low dose UV curing and rapid printing are required. © 2020 Elsevier LtdArticle Citation - WoS: 33Citation - Scopus: 38Glucuronoxylan-Based Quince Seed Hydrogel: a Promising Scaffold for Tissue Engineering Applications(Elsevier, 2021) Güzelgülgen, Meltem; Özkendir İnanç, Dilce; Yıldız, Ümit Hakan; Arslan Yıldız, AhuNatural gums and mucilages from plant-derived polysaccharides are potential candidates for a tissue-engineering scaffold by their ability of gelation and biocompatibility. Herein, we utilized Glucuron-oxylanbased quince seed hydrogel (QSH) as a scaffold for tissue engineering applications. Optimization of QSH gelation was conducted by varying QSH and crosslinker glutaraldehyde (GTA) concentrations. Structural characterization of QSH was done by Fourier Transform Infrared Spectroscopy (MR). Furthermore, morphological and mechanical investigation of QSH was performed by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The protein adsorption test revealed the suitability of QSH for cell attachment. Biocompatibility of QSH was confirmed by culturing NIH-3T3 mouse fibroblast cells on it. Cell viability and proliferation results revealed that optimum parameters for cell viability were 2 mg mi(-1)of QSH and 0.03 M GTA. SEM and DAPI staining results indicated the formation of spheroids with a diameter of approximately 300 pm. Furthermore, formation of extracellular matrix (ECM) microenvironment was confirmed with the Collagen Type-I staining. Here, it was demonstrated that the fabricated QSH is a promising scaffold for 3D cell culture and tissue engineering applications provided by its highly porous structure, remarkable swelling capacity and high biocompatibility. (C) 2021 Published by Elsevier B.V.Article Citation - WoS: 12Citation - Scopus: 11Theoretical and Experimental Investigation of Conjugation of 1,6-Hexanedithiol on Mos2(IOP Publishing Ltd., 2018) Gül, Aytaç; Bacaksız, Cihan; Ünsal, Emre; Akbalı, Barış; Tomak, Aysel; Zareie, Hadi M.; Şahin, HasanWe report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDT structure is changed upon conjugation of HDT on MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.