Photonics / Fotonik
Permanent URI for this collectionhttps://hdl.handle.net/11147/2590
Browse
Browsing Photonics / Fotonik by Department "İzmir Institute of Technology. Materials Science and Engineering"
Now showing 1 - 20 of 42
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Adsorption and Diffusion Characteristics of Lithium on Hydrogenated ?- and Ss-Silicene(Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, 2017-08) İyikanat, Fadıl; Kandemir, Ali; Bacaksız, Cihan; Şahin, HasanUsing first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar. However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion barriers show that α- and β-silicene are promising platforms for Li-storage applications.Book Part Citation - Scopus: 3Advances and Future Perspective of Graphene Field Effect Transistors (gfets) for Medical Diagnostics and Point-Of Tools(World Scientific Publishing, 2022) İnanç, Dilce; Mutlu, Mustafa Umut; Karabacak, Soner; Yıldız, Ümit HakanRecently, major focus has been centered to enhance the capability of graphenebased devices and to facilitate utilization of graphene for biological applications by lowering its toxicity. In this chapter, from synthesis to applications, many of the conspicuous characteristics of graphene have been elaborately reviewed. We primarily focused on graphene-based field effect transistor (FET) for medical diagnostics and point-of-care applications. The device configurations and their application potential as well as sensing capability of various graphene FETs (GFETs) have been discussed. Here, we have also presented several aspects and advantages of GFETs in medical applications while discussing their pros and cons in commercialization. We address the advances and challenges for GFET-based sensing platforms for the medical applications and elaborate the combination strategy of GFETs with the existing commercial systems. © 2023 by World Scientific Publishing Co. Pte. Ltd.Article Citation - WoS: 6Citation - Scopus: 6Anisotropic Etching of Cvd Grown Graphene for Ammonia Sensing(Institute of Electrical and Electronics Engineers Inc., 2022-03) Yağmurcukardeş, Nesli; Bayram, Abdullah; Aydın, Hasan; Yağmurcukardeş, Mehmet; Açıkbaş, Yaser; Peeters, François M.; Çelebi, CemBare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.Article Citation - WoS: 66Citation - Scopus: 66Bilayers of Janus Wsse: Monitoring the Stacking Type: Via the Vibrational Spectrum(Royal Society of Chemistry, 2018) Kandemir, Ali; Şahin, HasanMotivated by the recent successful synthesis of Janus type single layers of transition metal dichalcogenides, we investigate the stability, vibrational and electronic properties of the Janus single layer structure of WSSe and its bilayers by means of density functional theory. The structural and vibrational analysis show that the Janus single layer of WSSe forms a dynamically stable structure in the 2H phase. Owing to its non-centrosymmetric structure, the Janus WSSe single layer has two in-plane (E) and two out-of-plane (A) Raman active phonon modes. The eigen-frequencies of the prominent Raman active modes are calculated to be 277 (A) and 322 (E) cm-1. Similar to single layer WS2 and WSe2, Janus WSSe is a direct band gap semiconductor that has two electronically different faces. In addition, the possible bilayer stacking orders of the Janus WSSe single layers are investigated. It is found that there are 3 stacking types of bilayer Janus WSSe and each stacking type has distinctive Raman characteristics in its vibrational spectrum. Our results show that thanks to the vibrational characteristics, which stem from the distinctive interlayer interactions at different sides, the stability and stacking types of the bilayer of WSSe Janus structure can be monitored.Article Citation - WoS: 5Citation - Scopus: 5Breaking the Boundaries of the Goldschmidt Tolerance Factor With Ethylammonium Lead Iodide Perovskite Nanocrystals(American Chemical Society, 2024) Güvenç, Çetin Meriç; Toso, Stefano; Ivanov, Yurii P.; Saleh, Gabriele; Balcı, Sinan; Divitini, Giorgio; Manna, LiberatoWe report the synthesis of ethylammonium lead iodide (EAPbI3) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large A-cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI3 nanocrystals are highly unstable, evolving to a nonperovskite delta-EAPbI3 polymorph within 1 day. Also, EAPbI3 nanocrystals are very sensitive to electron irradiation and quickly degrade to PbI2 upon exposure to the electron beam, following a mechanism similar to that of other hybrid lead iodide perovskites (although degradation can be reduced by partially replacing the EA+ ions with Cs+ ions). Interestingly, in some cases during this degradation the formation of an epitaxial interface between (EA x Cs1-x )PbI3 and PbI2 is observed. The photoluminescence emission of the EAPbI3 perovskite nanocrystals, albeit being characterized by a low quantum yield (similar to 1%), can be tuned in the 664-690 nm range by regulating their size during the synthesis. The emission efficiency can be improved upon partial alloying at the A site with Cs+ or formamidinium cations. Furthermore, the morphology of the EAPbI3 nanocrystals can be chosen to be either nanocube or nanoplatelet, depending on the synthesis conditions.Article Citation - WoS: 25Citation - Scopus: 25Colloidal Bimetallic Nanorings for Strong Plasmon Exciton Coupling(American Chemical Society, 2020) Güvenç, Çetin Meriç; Mert Balcı, Fadime; Sarısözen, Sema; Polat, Nahit; Balcı, SinanNobel-metal nanostructures strongly localize and manipulate light at nanoscale dimension by supporting surface plasmon polaritons. In fact, the optical properties of the nobel-metal nanostructures strongly depend on their morphology and composition. Until now, various metal nanostructures such as nanocubes, nanoprisms, nanorods, and recently hollow nanostructures have been demonstrated. In addition, the plasmonic field can be further enhanced at nanoparticle dimers and aggregates because of highly localized and intense optical fields, which is known as "plasmonic hot spots". However, colloidally synthesized and circular-shaped nanoring nanostructures with plasmonic hot spots are still lacking. We, herein, show for the first time that colloidal bimetallic nanorings with plasmonic nanocavities and tunable plasmon resonance wavelengths can be synthesized via colloidal synthesis and galvanic replacement reactions. In addition, in the strong coupling regime, plasmons in nanorings and excitons in J-aggregates interact strongly and nanoring-shaped colloidal plexcitonic nanoparticles are demonstrated. The results reveal that the optical properties of the nanoring and the onset of strong coupling can be tamed by the galvanic replacement reaction. Further, the plasmonic nanocavity in the nanorings has immense potential for applications in sensing and spectroscopy because of the space, enclosed by the plasmonic nanocavity, is empty and accessible to a variety of molecules, ions, and quantum dots.Article Citation - WoS: 4Citation - Scopus: 4Color-Tunable All-Inorganic Cspbbr3 Perovskites Nanoplatelet Films for Photovoltaic Devices(American Chemical Society, 2019) Özcan, Mehmet; Özen, Sercan; Topçu, Gökhan; Demir, Mustafa Muammer; Şahin, HasanHerein, we demonstrate a novel coating approach to fabricate CsPbBr3 perovskite nanoplatelet film with heat-free process via electrospraying from precursor solution. A detailed study is carried out to determine the effect of various parameters such as ligand concentration, electric field, flow rate, etc. on the optical properties. By controlling the volume ratios of the oleylamine (OAm) and oleic acid (OA), the coalescing and thickness of the resulting nanoplatelets can be readily tuned that results in control over emission in the range of 100 nm without any antisolvent crystallization or heating processes. The varying electrical field and flow rate was found as inefficient on the emission characteristics of the films. In addition, the crystal films were obtained under ambient conditions on the ITO coated glass surfaces as in the desired pattern. As a result, we demonstrated a facile and reproducible way of synthesizing and coating of CsPbBr3 perovskite nanoplatelets which is suitable for large-scale production. In this method, the ability of tuning the degree of quantum confinement for perovskite nanoplatelets is promising approach for the one-step fabrication of crystal films that may enable the use in optoelectronics.Article Citation - WoS: 89Citation - Scopus: 84Cspbbr3 Perovskites: Theoretical and Experimental Investigation on Water-Assisted Transition From Nanowire Formation To Degradation(American Physical Society, 2018) Akbalı, Barış; Topçu, Gökhan; Güner, Tuğrul; Özcan, Mehmet; Demir, Mustafa Muammer; Şahin, HasanRecent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.Article Citation - WoS: 10Citation - Scopus: 12The Effect of Dopa Hydroxyl Groups on Wet Adhesion To Polystyrene Surface: an Experimental and Theoretical Study(Elsevier, 2020) Yıldız, Remziye; Özen, Sercan; Şahin, Hasan; Akdoğan, YaşarMussels wet adhesive performance has been arousing curiosity for a long time. It is found that 3,4-dihydroxyphenylalanine (DOPA) is responsible for adhesive properties of mussels. Despite a large body of research characterizing the interactions DOPA with hydrophilic surfaces, relatively few works have addressed the mechanism of interactions with hydrophobic surfaces. The benzene ring of DOPA is the main attributor to the adhesion on hydrophobic polystyrene (PS) surface. However, here we showed that two hydroxyl groups of catechol have also effects on wet adhesion. We studied wet adhesive properties of DOPA, tyrosine and phenylalanine functionalized PEG polymers, PEG-(N-Boc-L-DOPA)(4), PEG-(N-Boc-L-Tyrosine)(4), PEG-(N-Boc-L-Phenylalanine)(4), on spin labeled PS nanobeads (SL-PS) by electron paramagnetic resonance (EPR) spectroscopy. Surface coverage ratio of SL-PS upon additions of PEG-(N-Boc-L-DOPA)(4), PEG-(N-Boc-L-Tyrosine)(4) and PEG-(N-Boc-L-Phenylalanine)(4) showed that SL-PS was covered with 70%, 50% and 0%, respectively. This showed that spontaneous wet adhesion on PS increases with the number of amino acids hydroxyl groups. This is also supported with the density functional theory (DFT) energy calculations and ab-initio molecular dynamics (AIMD) simulations. In water, interactions between water molecules and hydroxyl groups on the catechol induce catechol adhesion via 7C-7C stacking between the catechol and double styrene rings which were already tilted out with water.Article Citation - WoS: 8Citation - Scopus: 10Experimental and Computational Investigation of Graphene/Sams Schottky Diodes(Elsevier Ltd., 2018-01) Aydın, Hasan; Bacaksız, Cihan; Yağmurcukardeş, Nesli; Karakaya, Caner; Mermer, Ömer; Can, Mustafa; Senger, Ramazan Tuğrul; Şahin, Hasan; Selamet, YusufWe have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1′:3″-terphenyl-5′ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1′:3′1′-terphenyl-5′ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current–voltage (I–V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)–V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (R s ) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π–π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.Article Citation - WoS: 3Citation - Scopus: 4Experimental and First-Principles Investigation of Cr-Driven Color Change in Cesium Lead Halide Perovskites(American Institute of Physics, 2019) Özen, Sercan; Güner, Tuğrul; Topçu, Gökhan; Özcan, Mehmet; Demir, Mustafa Muammer; Şahin, HasanHerein, we report room temperature Cr-doping for all-inorganic perovskites that have attracted great attention in recent years due to their extraordinary optical properties, low cost, and ease of synthesis. Incorporation of Cr 3 + ions into the perovskite crystal lattices is achieved by following a facile route involving an antisolvent recrystallization method at room temperature. It is shown that both Cr-doping and formation of crystals in the CsPbBr x Cl 3 - x phase are provided by increasing the concentration of the CrCl 3 solution. It is also observed that the doping procedure leads to the emergence of three types of distinctive peaks in the PL spectrum originating from CsPbBr x Cl 3 - x domains (476-427nm), Cr-strained host lattices (515nm), and midgap states formed by Cr dopants (675-775nm). It is also found that the Cr-doped perovskites emitting a dark violaceous color change their color to white with a high color rendering index (88) in 30-day time intervals. Easy-tunable optical properties of all-inorganic Cs perovskites indicate their great potential for future optoelectronic device applications.Article Citation - WoS: 2Citation - Scopus: 5Experimental Modeling of Antimony Sulfides-Rich Geothermal Deposits and Their Solubility in the Presence of Polymeric Antiscalants(Elsevier, 2022-05) Karaburun, Emre; Sözen, Yiğit; Çiftçi, Celal; Şahin, Hasan; Baba, Alper; Akbey, Ümit; Yeşilnacar, Mehmet İrfan; Erdim, Eray; Regenspurg, Simona; Demir, Mustafa MuammerAntimony (Sb)-rich geothermal deposits have been observed in many geothermal power plants worldwide. They occur as red-colored, sulfidic precipitates disturbing energy-harvesting by clogging the geothermal installations. In order to prevent the formation of this scale, information on its physicochemical features is needed. For this purpose, Sb-rich sulfide-based deposits were synthesized at controlled conditions in a pressurized glass reactor at geothermal conditions (135 °C and 3.5 bar). Various polymeric antiscalants with different functional groups, such as acrylic acid, sulphonic acid, and phosphonic acid groups were tested for their effect on Sb sulfide solubility. An additional computational study was performed to determine the binding energy of Sb and S atoms to these groups. The results suggest that sulfonic acid groups are the most affective. Therefore, it was concluded that these macromolecule containing sulfonic acid groups and poly (vinyl sulfonic acid) derivatives could potentially act as antiscalants for the formation of antimony sulfide.Article Citation - WoS: 3Citation - Scopus: 4A Facile Method for Boosting the Graphitic Carbon Nitride's Photocatalytic Activity Based on 0d/2d S-Scheme Heterojunction Nanocomposite Architecture(Elsevier, 2024) Kahraman, Zeynep; Kartal, Uğur; Gent, Aziz; Alp, EmreGraphitic carbon nitride (g-C 3 N 4 ) has received significant interest as a metal -free photocatalyst. The S -scheme photocatalytic system has great potential to improve the charge separation in semiconductor photocatalysts. In this study, we have fabricated non-toxic and low-cost photocatalytic nanocomposites of 0D/2D S -scheme heterojunction composed of iron oxide and graphitic carbon nitride by a facile method. The developed facile method provides a sustainable way with a high atom economy to further enhance the photocatalytic performance of exfoliated g-C 3 N 4 . The 0D -iron oxide/2D-C 3 N 4 exhibited nearly 10 times better than bulk g-C 3 N 4 and almost 60 % better than exfoliated g-C 3 N 4 under simulated solar light irradiation. The experimental results demonstrated that the effective charge -carrier mechanism led to an improved generation of reactive oxygen species (ROSs), resulting in an impressive photocatalytic performance. A serial photocatalytic test was also conducted to understand photocatalytic reaction mechanisms with various scavengers.Article Citation - WoS: 6Citation - Scopus: 6Few-Layer Mos2 as Nitrogen Protective Barrier(IOP Publishing Ltd., 2017-09) Akbalı, Barış; Yanılmaz, Alper; Tomak, Aysel; Tongay, Sefaattin; Çelebi, Cem; Şahin, HasanWe report experimental and theoretical investigations of the observed barrier behavior of few-layer MoS2 against nitrogenation. Owing to its low-strength shearing, low friction coefficient, and high lubricity, MoS2 exhibits the demeanor of a natural N-resistant coating material. Raman spectroscopy is done to determine the coating capability of MoS2 on graphene. Surface morphology of our MoS2/graphene heterostructure is characterized by using optical microscopy, scanning electron microscopy, and atomic force microscopy. In addition, density functional theory-based calculations are performed to understand the energy barrier performance of MoS2 against nitrogenation. The penetration of nitrogen atoms through a defect-free MoS2 layer is prevented by a very high vertical diffusion barrier, indicating that MoS2 can serve as a protective layer for the nitrogenation of graphene. Our experimental and theoretical results show that MoS2 material can be used both as an efficient nanocoating material and as a nanoscale mask for selective nitrogenation of graphene layer.Article Citation - WoS: 69Citation - Scopus: 74Gd3+-Doped Alpha-Cspbi3 Nanocrystals With Better Phase Stability and Optical Properties(American Chemical Society, 2019-10) Güvenç, Çetin Meriç; Yalçınkaya, Yenal; Özen, Sercan; Şahin, Hasan; Demir, Mustafa MuammerBlack alpha-CsPbI3 perovskites are unable to maintain their phase stability under room conditions; hence, the alpha-CsPbI3 phase transforms into a thermodynamically stable yellow delta-CsPbI3 phase within a few days, which has a nonperovskite structure and high band gap for optoelectronic applications. This phase transformation should be prevented or at least retarded to make use of superior properties of alpha-CsPbI3 in optoelectronic applications. In this study, Gd3+ doping was employed with the aim of increasing the stability of alpha-CsPbI3. All doped alpha-CsPbI3 nanocrystals with various levels of Gd3+, between 5 and 15 mol %, have shown greater phase stability than that of the pure alpha-CsPbI3 phase from 5 days up to 11 days under ambient conditions. This prolonged phase stability can be attributed to three potential reasons: increased tolerance factor of the perovskite structure, distorted cubic symmetry, and decreased defect density in nanocrystals. Urbach energy values suggest the reduction of defect density in the doped nanocrystals. Also, use of 10 mol % Gd3+ as a dopant material increases the photoluminescence quantum yield from 70 to 80% and fluorescence lifetime of alpha-CsPbI3 from 47.4 to 64.4 ns. Further, density functional theory calculations are in a good agreement with the experimental results.Article Citation - WoS: 3Citation - Scopus: 3Green Fabrication of Lanthanide-Doped Hydroxide-Based Phosphors: Y(oh)(3):eu3+ Nanoparticles for White Light Generation(Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, 2019) Güner, Tuğrul; Kuş, Anılcan; Özcan, Mehmet; Genç, Aziz; Şahin, Hasan; Demir, Mustafa MuammerPhosphors can serve as color conversion layers to generate white light with varying optical features, including color rendering index (CRI), high correlated color temperature (CCT), and luminous efficacy. However, they are typically produced under harsh synthesis conditions such as high temperature, high pressure, and/or by employing a large amount of solvent. In this work, a facile, water-based, rapid method has been proposed to fabricate lanthanide-doped hydroxide-based phosphors. In this sense, sub-micrometer-sized Y(OH)(3):Eu3+ particles (as red phosphor) were synthesized in water at ambient conditions in <= 60 min reaction time. The doping ratio was controlled from 2.5-20 mol %. Additionally, first principle calculations were performed on Y(OH)(3):Eu3+ to understand the preferable doping scenario and its optoelectronic properties. As an application, these fabricated red phosphors were integrated into a PDMS/YAG:Ce3+ composite and used to generate white light. The resulting white light showed a remarkable improvement (approximate to 24%) in terms of luminous efficiency, a slight reduction of CCT (from 3900 to 3600 K), and an unchanged CRI (approximate to 60) as the amount of Y(OH)(3):Eu3+ was increased.Article Citation - WoS: 47Citation - Scopus: 51Highly Porous Poly(o-Phenylenediamine) Loaded Magnetic Carboxymethyl Cellulose Hybrid Beads for Removal of Two Model Textile Dyes(Springer, 2022-10) Arıca, Tuğçe Aybüke; Balcı, Fadime Mert; Balcı, Sinan; Arıca, Mehmet YakupEnsuring the removal of complex dyes from wastewater is a topic of great interest as it is vital for the environment. The present study reports a facile preparation method for poly(o-phenylenediamine) [p(o-PDA)] micro-particles loaded to magnetic carboxymethyl cellulose (CMC) hydrogel beads as adsorbents. The prepared products were characterized by FTIR, TGA, VSM, SEM, BET, and zeta sizer. The Fe3O4@p(o-PDA)@CMC beads were used for the removal of Reactive Blue 4 (RB-4) and Congo Red (CR) textile dyes from an aqueous medium. Different factors, such as adsorbent dose, initial pH, ionic strength, contact time, temperatures, and initial RB-4 and CR concentrations were examined. The maximum adsorption capacities of the RB-4 dye and CR at optimum pH 5 reached 398.7 and 524.6 mg/g in 120 min, respectively. The adsorption of RB-4 and CR on the hybrid magnetic beads can be due to the electrostatic, hydrogen bonding, and π-π interactions. Moreover, the magnetic hybrid beads showed easy regeneration ability and good reusability. The adsorbent can be a very good candidate for the efficient removal of micro-pollutant from wastewater.Article Citation - WoS: 7Citation - Scopus: 8Hydrogenation-driven phase transition in single-layer TiSe2(IOP Publishing Ltd., 2017-11) İyikanat, Fadıl; Kandemir, Ali; Özaydın, H. Duygu; Senger, Ramazan Tuğrul; Şahin, HasanFirst-principles calculations based on density-functional theory are used to investigate the effects of hydrogenation on the structural, vibrational, thermal and electronic properties of the charge density wave (CDW) phase of single-layer TiSe2. It is found that hydrogenation of single-layer TiSe2 is possible through adsorption of a H atom on each Se site. Our total energy and phonon calculations reveal that a structural phase transition occurs from the CDW phase to the T d phase upon full hydrogenation. Fully hydrogenated TiSe2 presents a direct gap semiconducting behavior with a band gap of 119 meV. Full hydrogenation also leads to a significant decrease in the heat capacity of single-layer TiSe2.Article Citation - WoS: 20Citation - Scopus: 26Increasing Solubility of Metal Silicates by Mixed Polymeric Antiscalants(Elsevier Ltd., 2019-01) Topçu, Gökhan; Çelik, Aslı; Kandemir, Ali; Baba, Alper; Şahin, Hasan; Demir, Mustafa MuammerThe increase of silicate solubility is a big challenge for both hot and cold water because it reduces the deposition of metal silicates frequently observed in such systems and causes operational obstacles. The deposition of silicate coats the inner surface of the pipelines in an uncontrolled manner and reduces the harvesting of energy from brines. In this work, the solubility performance of two commercial water-soluble polymeric agents (poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA)) of various molecular weights employing dosage from 25 to 100 mg/L was examined. Along with dispersant-type antiscalant, poly(acrylamide) (PAM), poly(vinylsulfonic acid, sodium salt) (PVSA), and poly(vinylphosphonic acid) (PVPA) having chelating acidic groups were employed. Metal silicate deposits were obtained artificially in the lab-scale pressurized reactor. The experimental conditions employed were quite similar to a model power plant located in Çanakkale, Turkey. The concentration of dissolved silica was increased from 130 to 420 mg/L when 100 mg/L PEG 1500 and 25 mg/L PVSA were employed as a mixture. For the atomic-level understanding of the interaction of chelating groups with metal cations, DFT calculations were performed too.Article Citation - WoS: 161Citation - Scopus: 162Janus Single Layers of In2sse: a First-Principles Study(American Physical Society, 2018-04) Kandemir, Ali; Şahin, HasanBy performing first-principles calculations, we propose a stable direct band gap semiconductor Janus single-layer structure, In2SSe. The binary analogs of the Janus structure, InS and InSe single layers are reviewed to evince the structural and electronic relation with In2SSe. The structural optimization calculations reveal that a Janus In2SSe single layer has hexagonal geometry like the InS and InSe single layers, which are also its structural analogs. The Janus single layer is dynamically stable, as indicated by the phonon spectrum. The electronic band diagram of the Janus structure shows that an In2SSe single layer is a direct band gap semiconductor, in contrast to its analogs, InS and InSe single layers, which are indirect band gap semiconductors. Nevertheless, it is found that the strain effect on electronic properties of the InS and InSe single layers designates the electronic structure of the Janus single layer. A rough model for the construction of the electronic band diagram of the Janus structures is discussed, and it is indicated that the difference in work functions of chalcogenide sides in the Janus structure determines the construction of the electronic structure. It is found that the Janus structure is a robust direct gap semiconductor under tolerable strain; for that reason, the Janus In2SSe single layer is a candidate for optoelectronic nanodevice applications.
- «
- 1 (current)
- 2
- 3
- »
