Photonics / Fotonik
Permanent URI for this collectionhttps://hdl.handle.net/11147/2590
Browse
Browsing Photonics / Fotonik by Department "İzmir Institute of Technology. Physics"
Now showing 1 - 20 of 46
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Adsorption and Diffusion Characteristics of Lithium on Hydrogenated ?- and Ss-Silicene(Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, 2017-08) İyikanat, Fadıl; Kandemir, Ali; Bacaksız, Cihan; Şahin, HasanUsing first-principles density functional theory calculations, we investigate adsorption properties and the diffusion mechanism of a Li atom on hydrogenated single-layer α- and β-silicene on a Ag(111) surface. It is found that a Li atom binds strongly on the surfaces of both α- and β-silicene, and it forms an ionic bond through the transfer of charge from the adsorbed atom to the surface. The binding energies of a Li atom on these surfaces are very similar. However, the diffusion barrier of a Li atom on H-α-Si is much higher than that on H-β-Si. The energy surface calculations show that a Li atom does not prefer to bind in the vicinity of the hydrogenated upper-Si atoms. Strong interaction between Li atoms and hydrogenated silicene phases and low diffusion barriers show that α- and β-silicene are promising platforms for Li-storage applications.Article Citation - WoS: 64Citation - Scopus: 67Angle Resolved Vibrational Properties of Anisotropic Transition Metal Trichalcogenide Nanosheets(Royal Society of Chemistry, 2017-03) Kong, Wilson; Bacaksız, Cihan; Chen, Bin; Wu, Kedi; Blei, Mark; Fan, Xi; Shen, Yuxia; Şahin, Hasan; Wright, David; Narang, Deepa S.; Tongay, SefaattinLayered transition metal trichalcogenides (TMTCs) are a new class of anisotropic two-dimensional materials that exhibit quasi-1D behavior. This property stems from their unique highly anisotropic crystal structure where vastly different material properties can be attained from different crystal directions. Here, we employ density functional theory predictions, atomic force microscopy, and angle-resolved Raman spectroscopy to investigate their fundamental vibrational properties which differ significantly from other 2D systems and to establish a method in identifying anisotropy direction of different types of TMTCs. We find that the intensity of certain Raman peaks of TiS3, ZrS3, and HfS3 have strong polarization dependence in such a way that intensity is at its maximum when the polarization direction is parallel to the anisotropic b-axis. This allows us to readily identify the Raman peaks that are representative of the vibrations along the b-axis direction. Interestingly, similar angle resolved studies on the novel TiNbS3 TMTC alloy reveal that determination of anisotropy/crystalline direction is rather difficult possibly due to loss of anisotropy by randomization distribution of quasi-1D MX6 chains by the presence of defects which are commonly found in 2D alloys and also due to the complex Raman tensor of TMTC alloys. Overall, the experimental and theoretical results establish non-destructive methods used to identify the direction of anisotropy in TMTCs and reveal their vibrational characteristics which are necessary to gain insight into potential applications that utilize direction dependent thermal response, optical polarization, and linear dichroism.Article Anisotropic Tunability of Vibrational Modes in Black Phosphorus Under Uniaxial Compressive/Tensile Strain(Wiley, 2023) Li, Hao; Kutlu, Tayfun; Carrascoso, Felix; Şahin, Hasan; Munuera, Carmen; Castellanos Gomez, AndresStrain engineering is a powerful strategy for tuning the optical, electrical, vibrational properties of 2D nanomaterials. In this work, a four-point bending apparatus is constructed to apply both compressive and tensile strain on 2D anisotropic black phosphorus flake. Further polarized Raman spectroscopy is used to study the vibrational modes of black phosphorus flakes under uniaxial strain applied along various crystalline orientations. Here, a strong anisotropic blue/redshift of A1g, B2g, and A2g modes is found under compressive/tensile strain, respectively. Interestingly, mode A1g exhibits the maximum/minimum shift while mode B2g and mode A2g present the minimum/maximum shift when the strain is applied along armchair/zigzag direction. Density functional theory calculations are carried out to investigate the anisotropic strain response mechanism, finding that the strain-induced regulation of the PP bond angle, bond length, and especially interlayer interaction has a giant influence on the Raman shift. A four-point bending apparatus is constructed to study the effect of uniaxial strain on the vibrational property of anisotropic black phosphorus. Particularly, strong anisotropy on the Raman blueshift/redshift rate upon compressive/tensile strain can be observed, which results from the strain-induced regulation of the bond angle, bond length, and interlayer interactions according to density functional theory calculation analysis.imageArticle Citation - WoS: 2Citation - Scopus: 2Atomic-scale understanding of dichlorobenzene-assisted poly 3-hexylthiophene-2,5-diyl nanowire formation mechanism(Elsevier Ltd., 2017-04) Yağmurcukardeş, Mehmet; Kıymaz, D.; Zafer, C.; Senger, Ramazan Tuğrul; Şahin, HasanLow-dimensional Poly 3-hexylthiophene-2,5-diyl (P3HT) structures that serve efficient exciton dissociation in organic solar cells, play a major role in increasing the charge collection, and hence, the efficiency of organic devices. In this study, we theoretically and experimentally investigate the Dichlorobenzene (DCB)-assisted formation of P3HT nanowires. Our experiments show that the solution of DCB molecules drive randomly oriented P3HT polymers to form well-stacked nanowires by stabilizing tail-tail and π−π interactions. Here the question is how DCB molecules migrate into the P3HT layers while forming the nanowire structure. Our density functional theory-based calculations reveal that the vertical migration of the DCB molecules between P3HT layers is forbidden due to a high energy barrier that stems from strong alkyl chain-DCB interaction. In contrast to vertical diffusion, lateral diffusion of DCB molecules in between P3HT layers is much more likely. Our results show that migration of a DCB molecule occurs through the alkyl groups with a low energy barrier. Therefore, laterally diffused DCB molecules assist nucleation of top-to-top stacking of P3HT polymers and formation of well-ordered nanowires.Article Citation - WoS: 89Citation - Scopus: 84Cspbbr3 Perovskites: Theoretical and Experimental Investigation on Water-Assisted Transition From Nanowire Formation To Degradation(American Physical Society, 2018) Akbalı, Barış; Topçu, Gökhan; Güner, Tuğrul; Özcan, Mehmet; Demir, Mustafa Muammer; Şahin, HasanRecent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.Article Citation - WoS: 24Citation - Scopus: 24Defect Tolerant and Dimension Dependent Ferromagnetism in Mnse2(Royal Society of Chemistry, 2019) Eren, İsmail; İyikanat, Fadıl; Şahin, HasanBy performing density functional theory-based calculations, we investigate the structural, vibrational, electronic and magnetic properties of 2D monolayers, nanoribbons and quantum dots of MnSe2. Vibrational spectrum analysis reveals the dynamical stability of not only ferromagnetic but also antiferromagnetic phases of single layer MnSe2 crystal structures. Electronically, calculations show that 1T-MnSe2 is a ferromagnetic structure displaying metallic behavior. It is also found that the structure preserves its dynamical stability and metallic behavior even under the presence of high density Se vacancies. Moreover, it was predicted that, differing from the 2D MnSe2, metal-metal interaction driven reconstructions result in ferromagnetic-to-antiferromagnetic crossover in the ground state of nanoribbons and quantum dots. With its robust ferromagnetic metallic character in the 2D ultra-thin limit and dimension-dependent magnetic properties, MnSe2 is an important candidate for spintronic device applications.Article Citation - WoS: 4Citation - Scopus: 4Electromagnetically Induced Transparency and Absorption Cross-Over With a Four-Level Rydberg System(IOP Publishing, 2022) Oyun, Yağız; Çakır, Özgür; Sevinçli, SevilayElectromagnetically induced transparency (EIT) and absorption (EIA) are quantum coherence phenomena which result from the interference of excitation pathways. Combining these with Rydberg atoms have opened up many possibilities for various applications. We introduce a theoretical model to study Rydberg-EIT and Rydberg-EIA effects in cold Cs and Rb atomic ensembles in a four-level ladder type scheme taking into account van der Waals type interactions between the atoms. The proposed many-body method for analysis of such systems involves a self-consistent mean field approach and it produces results which display a very good agreement with recent experiments. Our calculations also successfully demonstrate experimentally observed EIT-EIA cross-over in the Rb case. Being able to simulate the interaction effects in such systems has significant importance, especially for controlling the optical response of these.Article Citation - WoS: 8Citation - Scopus: 10Experimental and Computational Investigation of Graphene/Sams Schottky Diodes(Elsevier Ltd., 2018-01) Aydın, Hasan; Bacaksız, Cihan; Yağmurcukardeş, Nesli; Karakaya, Caner; Mermer, Ömer; Can, Mustafa; Senger, Ramazan Tuğrul; Şahin, Hasan; Selamet, YusufWe have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1′:3″-terphenyl-5′ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1′:3′1′-terphenyl-5′ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current–voltage (I–V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)–V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (R s ) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π–π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.Article Citation - WoS: 6Citation - Scopus: 6Few-Layer Mos2 as Nitrogen Protective Barrier(IOP Publishing Ltd., 2017-09) Akbalı, Barış; Yanılmaz, Alper; Tomak, Aysel; Tongay, Sefaattin; Çelebi, Cem; Şahin, HasanWe report experimental and theoretical investigations of the observed barrier behavior of few-layer MoS2 against nitrogenation. Owing to its low-strength shearing, low friction coefficient, and high lubricity, MoS2 exhibits the demeanor of a natural N-resistant coating material. Raman spectroscopy is done to determine the coating capability of MoS2 on graphene. Surface morphology of our MoS2/graphene heterostructure is characterized by using optical microscopy, scanning electron microscopy, and atomic force microscopy. In addition, density functional theory-based calculations are performed to understand the energy barrier performance of MoS2 against nitrogenation. The penetration of nitrogen atoms through a defect-free MoS2 layer is prevented by a very high vertical diffusion barrier, indicating that MoS2 can serve as a protective layer for the nitrogenation of graphene. Our experimental and theoretical results show that MoS2 material can be used both as an efficient nanocoating material and as a nanoscale mask for selective nitrogenation of graphene layer.Article Citation - WoS: 22Citation - Scopus: 24H-Aln Van Der Waals Bilayer Heterostructure: Tuning the Excitonic Characteristics(American Physical Society, 2017-02) Bacaksız, Cihan; Dominguez, A.; Rubio, A.; Senger, Ramazan Tuğrul; Şahin, HasanMotivated by recent studies that reported the successful synthesis of monolayer Mg(OH)2 [Suslu, Sci. Rep. 6, 20525 (2016)2045-232210.1038/srep20525] and hexagonal (h-)AlN [Tsipas, Appl. Phys. Lett. 103, 251605 (2013)APPLAB0003-695110.1063/1.4851239], we investigate structural, electronic, and optical properties of vertically stacked h-AlN and Mg(OH)2, through ab initio density-functional theory (DFT), many-body quasiparticle calculations within the GW approximation and the Bethe-Salpeter equation (BSE). It is obtained that the bilayer heterostructure prefers the AB′ stacking having direct band gap at the Γ with Type-II band alignment in which the valance band maximum and conduction band minimum originate from different layer. Regarding the optical properties, the imaginary part of the dielectric function of the individual layers and heterobilayer are investigated. The heterobilayer possesses excitonic peaks, which appear only after the construction of the heterobilayer. The lowest three exciton peaks are analyzed in detail by means of band decomposed charge density and the oscillator strength. Furthermore, the wave function calculation shows that the first peak of the heterobilayer originates from spatially indirect exciton where the electron and hole localized at h-AlN and Mg(OH)2, respectively, which is important for the light harvesting applications.Article Citation - WoS: 13Citation - Scopus: 13Hydrogen-Induced Sp2-Sp3 Rehybridization in Epitaxial Silicene(American Physical Society, 2017-12) Solonenko, Dmytro; Dzhagan, Volodymyr; Cahangirov, Seymur; Bacaksız, Cihan; Şahin, Hasan; Zahn, Dietrich R. T.; Vogt, PatrickWe report on the hydrogenation of (3×3)/(4×4) silicene epitaxially grown on Ag(111) studied by in situ Raman spectroscopy and state-of-the-art ab initio calculations. Our results demonstrate that hydrogenation of (3×3)/(4×4) silicene leads to the formation of two different atomic structures which exhibit distinct spectral vibrational modes. Raman selection rules clearly show that the Si atoms undergo a rehybridization in both cases from a mixed sp2-sp3 to a dominating sp3 state increasing the distance between the two silicene sublattices. This results in a softening of the in-plane and a stiffening of the out-of-plane phonon modes. Nevertheless, hydrogenated epitaxial silicene retains a two-dimensional nature and hence can be considered as epitaxial silicane. The level of hydrogenation can be determined by the intensity ratio of the Raman modes with different symmetries.Article Citation - WoS: 31Citation - Scopus: 31Hydrogen-Induced Structural Transition in Single Layer Res2(IOP Publishing Ltd., 2017-09) Yağmurcukardeş, Mehmet; Bacaksız, Cihan; Senger, Ramazan Tuğrul; Şahin, HasanBy performing density functional theory-based calculations, we investigate how structural, electronic and mechanical properties of single layer ReS2 can be tuned upon hydrogenation of its surfaces. It is found that a stable, fully hydrogenated structure can be obtained by formation of strong S-H bonds. The optimized atomic structure of ReS2H2 is considerably different than that of the monolayer ReS2 which has a distorted-1T phase. By performing phonon dispersion calculations, we also predict that the Re2-dimerized 1T structure (called 1TRe2) of the ReS2H2 is dynamically stable. Unlike the bare ReS2 the 1TRe2–ReS2H2 structure which is formed by breaking the Re4 clusters into separated Re2 dimers, is an indirect-gap semiconductor. Furthermore, mechanical properties of the 1TRe2 phase in terms of elastic constants, in-plane stiffness (C) and Poisson ratio (ν) are investigated. It is found that full hydrogenation not only enhances the flexibility of the single layer ReS2 crystal but also increases anisotropy of the elastic constantsArticle Citation - WoS: 3Citation - Scopus: 3Hydrogenated Derivatives of Hexacoordinated Metallic Cu2si Monolayer(Royal Society of Chemistry, 2018) Ünsal, Elif; İyikanat, Fadıl; Şahin, Hasan; Senger, Ramazan TuğrulHerein, we carried out first-principles calculations based on density functional theory to investigate the effects of surface functionalization with hydrogen atoms on structural, dynamical and electronic properties of Cu2Si monolayer. Pristine Cu2Si, a metallic monolayer, has a planar hexacoordinate structure. Calculations revealed that the most favorable position of a single H atom on the Cu2Si monolayer is at the top of a Si site. Derivatives of Cu2Si monolayer with various H concentrations were investigated, and by performing phonon calculations, it was found that there are three stable hydrogenated structures. Specific heat of these monolayers was found to increase with the hydrogen concentration at temperatures higher than 100 K. Electronically, the hydrogenated derivatives of Cu2Si monolayer preserve the metallic character.Article Citation - WoS: 7Citation - Scopus: 8Hydrogenation-driven phase transition in single-layer TiSe2(IOP Publishing Ltd., 2017-11) İyikanat, Fadıl; Kandemir, Ali; Özaydın, H. Duygu; Senger, Ramazan Tuğrul; Şahin, HasanFirst-principles calculations based on density-functional theory are used to investigate the effects of hydrogenation on the structural, vibrational, thermal and electronic properties of the charge density wave (CDW) phase of single-layer TiSe2. It is found that hydrogenation of single-layer TiSe2 is possible through adsorption of a H atom on each Se site. Our total energy and phonon calculations reveal that a structural phase transition occurs from the CDW phase to the T d phase upon full hydrogenation. Fully hydrogenated TiSe2 presents a direct gap semiconducting behavior with a band gap of 119 meV. Full hydrogenation also leads to a significant decrease in the heat capacity of single-layer TiSe2.Article Citation - WoS: 1Interaction of Ge With Single Layer Gaas: From Ge-Island Nucleation To Formation of Novel Stable Monolayers(Elsevier, 2020) Sözen, Yiğit; Eren, İsmail; Özen, Sercan; Yağmurcukardeş, Mehmet; Şahin, HasanIn this study, reactivity of single-layer GaAs against Ge atoms is studied by means of ab initio density functional theory calculations. Firstly, it is shown that Ge atoms interact quite strongly with the GaAs layer which allows the formation of Ge islands while it hinders the growth of detached germanene monolayers. It is also predicted that adsorption of Ge atoms on GaAs single-layer lead to formation of two novel stable single-layer crystal structures, namely 1H-GaGeAs and 1H(A)-GaGeAs. Both the total energy optimizations and the calculated vibrational spectra indicate the dynamical stability of both single layer structures. Moreover, although both structures crystallize in 1H phase, 1H-GaGeAs and 1H(A)-GaGeAs exhibit distinctive vibrational features in their Raman spectra which is quite important for distinguishing the structures. In contrast to the semiconducting nature of single-layer GaAs, both polytypes of GaGeAs exhibit metallic behavior confirmed by the electronic band dispersions. Furthermore, the linear-elastic constants, in-plane stiffness and Poisson ratio, reveal the ultrasoft nature of the GaAs and GaGeAs structures and the rigidity of GaAs is found to be slightly enhanced via Ge adsorption. With their stable, ultra-thin and metallic properties, predicted single-layer GaGeAs structures can be promising candidates for nanoscale electronic and mechanical applications.Article Citation - WoS: 19Citation - Scopus: 23Kagome-Like Silicene: a Novel Exotic Form of Two-Dimensional Epitaxial Silicon(Elsevier, 2020) Sassa, Yasmine; Johansson, Fredrik O. L.; Lindblad, Andreas; Yazdi, Milad G.; Simonov, Konstantin; Weissenrieder, Jonas; Le Lay, Guy; İyikanat, Fadıl; Şahin, HasanSince the discovery of graphene, intensive efforts have been made in search of novel two-dimensional (2D) materials. Decreasing the materials dimensionality to their ultimate thinness is a promising route to unveil new physical phenomena, and potentially improve the performance of devices. Among recent 2D materials, analogs of graphene, the group IV elements have attracted much attention for their unexpected and tunable physical properties. Depending on the growth conditions and substrates, several structures of silicene, germanene, and stanene can be formed. Here, we report the synthesis of a Kagome-like lattice of silicene on aluminum (1 1 1) substrates. We provide evidence of such an exotic 2D Si allotrope through scanning tunneling microscopy (STM) observations, high-resolution core-level (CL) and angle-resolved photoelectron spectroscopy (ARPES) measurements, along with Density Functional Theory calculations.Article Citation - WoS: 11Citation - Scopus: 13Laser Assisted Synthesis of Anisotropic Metal Nanocrystals and Strong Light-Matter Coupling in Decahedral Bimetallic Nanocrystals(Royal Society of Chemistry, 2021) Mert Balcı, Fadime; Sarısözen, Sema; Polat, Nahit; Güvenç, Çetin Meriç; Karadeniz, Uğur; Tertemiz, Necip Ayhan; Balcı, SinanThe advances in colloid chemistry and nanofabrication allowed us to synthesize noble monometallic and bimetallic nanocrystals with tunable optical properties in the visible and near infrared region of the electromagnetic spectrum. In the strong coupling regime, surface plasmon polaritons (SPPs) of metal nanoparticles interact with excitons of quantum dots or organic dyes and plasmon-exciton hybrid states called plexcitons are formed. Until now, various shaped metal nanoparticles such as nanorods, core-shell nanoparticles, hollow nanoparticles, nanoprisms, nanodisks, nanorings, and nanobipyramids have been synthesized to generate plasmon-exciton mixed states. However, in order to boost plasmon-exciton interaction at nanoscale dimensions and expand the application of plexcitonic nanocrystals in a variety of fields such as solar cells, light emitting diodes, and nanolasers, new plexcitonic nanocrystals with outstanding optical and chemical properties remain a key goal and challenge. Here we report laser-assisted synthesis of decahedral shaped noble metal nanocrystals, tuning optical properties of the decahedral shaped nanocrystals by galvanic replacement reactions, colloidal synthesis of bimetallic decahedral shaped plexcitonic nanocrystals, and strong plasmon-plasmon interaction in bimetallic decahedral shaped noble metal nanocrystals near a metal film. We photochemically synthesize decahedral Ag nanoparticles from spherical silver nanoparticles by using a 488 nm laser. The laser assisted synthesis of silver nanoparticles yields decahedral (bicolored) and prism (monocolored) shaped silver nanocrystals. The decahedral shaped nanoparticles were selectively separated from prism shaped nanoparticles by centrifugation. The optical properties of decahedral nanocrystals were tuned by the galvanic replacement reaction between gold ions and silver atoms. Excitons of J-aggregate dyes and SPPs of decahedral bimetallic nanoparticles strongly couple and hence decahedral shaped plexcitonic nanoparticles are prepared. In addition, localized SPPs of decahedral shaped bimetallic nanocrystals interact strongly with the propagating SPPs of a flat silver film and hence new hybrid plasmonic modes (plasmonic nanocavities) are generated. The experimental results are further fully corroborated by theoretical calculations including decahedral shaped plexcitonic nanoparticles and decahedral nanoparticles coupled to flat metal films.Article Citation - WoS: 2Citation - Scopus: 3Light-Induced Modification of the Schottky Barrier Height in Graphene/Si Based Near-Infrared Photodiodes(Elsevier, 2022-06) Fidan, Mehmet; Dönmez, Gülçin; Yanılmaz, Alper; Ünverdi, Özhan; Çelebi, CemThe impact of light on the Schottky barrier height (SBH) in p-type graphene/n-type Si (p-Gr/n-Si) based near-infrared photodiodes is investigated. Hall effect and optoelectronic transport measurements carried out under illumination of 905 nm wavelength light showed that zero-bias SBH in such photodiodes can be effectively tuned in a range between 0.7 and 0.9 eV consistent with the variation in their open-circuit voltage. Shockley-Read-Hall model, which considers the charge recombination through mid-gap and interface states at the p-Gr/n-Si heterojunction, is used to explain the experimentally observed nonlinear dependence of SBH on the incident light. Light induced tunability of SBH at the graphene/semiconductor heterojunction is of great importance especially for the development of new generation optically driven devices in which graphene acts as a functioning element.Article Citation - WoS: 3Citation - Scopus: 4Lipid Bilayer on Wrinkled-Interfaced Graphene Field Effect Transistor(Elsevier Ltd., 2021-02) Özkendir İnanç, Dilce; Çelebi, Cem; Yıldız, Ümit HakanThis study describes lipid bilayer-based sensor interface on SiO2 encapsulated graphene field effect transistors (GFET). The SiO2 layer was utilized as a lipid compatible surface that drives bilayer formation. The two types of surface morphologies i) wrinkled morphology by thermal evaporation (TE) and ii) flat morphology by pulsed electron deposition (PED) were obtained. The sensing performance of wrinkled and flat interfaced-GFETs were investigated, pH sensitivity of wrinkled interfaced-GFETs were found to be ten fold larger than the flat ones. The enhanced sensitivity is attributed to thinning of the oxide layer by formation of wrinkles thereby facilitating electrostatic gating on graphene. We foresee that described wrinkled SiO2 interfaced-GFET holds promise as a cell membrane mimicking sensing platform for novel bioelectronic applications. © 2020Article Citation - WoS: 2Citation - Scopus: 2Magnetic Single-Layer Nanoribbons of Manganese Oxide: Edge- and Width-Dependent Electronic Properties(Royal Society of Chemistry, 2022) Sözen, Yiğit; Topkıran, Uğur; Şahin, HasanIn the present work, the structural, magnetic, and electronic properties of the two- and one-dimensional honeycomb structures of recently synthesized MnO [Zhang et al., Hexagonal metal oxide monolayers derived from the metal-gas interface, Nat. Mater., 2021, 20, 1073-1078] are investigated by using first-principles calculations. Our calculations show that the single-layer 2D MnO crystal has a degenerate antiferromagnetic (AFM) ground state and a relatively less favorable ferromagnetic (FM) state. In addition, the magnetic anisotropy calculations unveil that the easy-axis direction for magnetism originating from unpaired electron states in manganese atoms is normal to the crystal plane. Electronically, while the FM MnO is a direct semiconductor with a narrow bandgap, AFM phases display large indirect bandgap semiconducting behavior. Moreover, the calculations on nanoribbons of MnO reveal that zigzag-edged ribbons display metallic behaviors, whereas armchair-edged nanoribbons are semiconductors. Magnetically, for both zigzag- or armchair-edged nanoribbons, the AFM order perpendicular to the nanoribbon growth direction is found to be favorable over the other AFM and FM orders. Moreover, depending on the edge symmetry and ribbon width, forbidden bandgap values of nanoribbons display distinct family behaviors.
- «
- 1 (current)
- 2
- 3
- »